51
|
Targeting hsp90 family members: A strategy to improve cancer cell death. Biochem Pharmacol 2019; 164:177-187. [PMID: 30981878 DOI: 10.1016/j.bcp.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
A crucial process in biology is the conversion of the genetic information into functional proteins that carry out the genetic program. However, a supplementary step is required to obtain functional proteins: the folding of the newly translated polypeptides into well-defined, three-dimensional conformations. Proteins chaperones are crucial for this final step in the readout of genetic information, which results in the formation of functional proteins. In this review, a special attention will be given to the strategies targeting hsp90 family members in order to increase cancer cell death. We argue that disruption of hsp90 machinery and the further client protein degradation is the main consequence of hsp90 oxidative cleavage taking place at the N-terminal nucleotide-binding site. Moreover, modulation of Grp94 expression will be discussed as a potential therapeutic goal looking for a decrease in cancer relapses.
Collapse
|
52
|
Sager RA, Woodford MR, Backe SJ, Makedon AM, Baker-Williams AJ, DiGregorio BT, Loiselle DR, Haystead TA, Zachara NE, Prodromou C, Bourboulia D, Schmidt LS, Linehan WM, Bratslavsky G, Mollapour M. Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90. Cell Rep 2019; 26:1344-1356.e5. [PMID: 30699359 PMCID: PMC6370319 DOI: 10.1016/j.celrep.2019.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone Hsp90 stabilizes and activates client proteins. Co-chaperones and post-translational modifications tightly regulate Hsp90 function and consequently lead to activation of clients. However, it is unclear whether this process occurs abruptly or gradually in the cellular context. We show that casein kinase-2 phosphorylation of the co-chaperone folliculin-interacting protein 1 (FNIP1) on priming serine-938 and subsequent relay phosphorylation on serine-939, 941, 946, and 948 promotes its gradual interaction with Hsp90. This leads to incremental inhibition of Hsp90 ATPase activity and gradual activation of both kinase and non-kinase clients. We further demonstrate that serine/threonine protein phosphatase 5 (PP5) dephosphorylates FNIP1, allowing the addition of O-GlcNAc (O-linked N-acetylglucosamine) to the priming serine-938. This process antagonizes phosphorylation of FNIP1, preventing its interaction with Hsp90, and consequently promotes FNIP1 lysine-1119 ubiquitination and proteasomal degradation. These findings provide a mechanism for gradual activation of the client proteins through intricate crosstalk of post-translational modifications of the co-chaperone FNIP1.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bryanna T DiGregorio
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Laura S Schmidt
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
53
|
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 2018; 27:3040-3054. [PMID: 29920826 DOI: 10.1111/mec.14769] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Heat-shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat-shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat-shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in "omic" quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat-shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade-offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
54
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
55
|
Dushukyan N, Dunn DM, Sager RA, Woodford MR, Loiselle DR, Daneshvar M, Baker-Williams AJ, Chisholm JD, Truman AW, Vaughan CK, Haystead TA, Bratslavsky G, Bourboulia D, Mollapour M. Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer. Cell Rep 2018; 21:1883-1895. [PMID: 29141220 DOI: 10.1016/j.celrep.2017.10.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The serine/threonine protein phosphatase 5 (PP5) regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90), promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an "on/off switch" mechanism for PP5 regulation. The casein kinase 1δ (CK1δ) phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL) interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer.
Collapse
Affiliation(s)
- Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Daneshvar
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Cara K Vaughan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Biological Sciences, Malet Street, London WC1E 7HX, UK
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
56
|
Stetz G, Tse A, Verkhivker GM. Dissecting Structure-Encoded Determinants of Allosteric Cross-Talk between Post-Translational Modification Sites in the Hsp90 Chaperones. Sci Rep 2018; 8:6899. [PMID: 29720613 PMCID: PMC5932063 DOI: 10.1038/s41598-018-25329-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023] Open
Abstract
Post-translational modifications (PTMs) represent an important regulatory instrument that modulates structure, dynamics and function of proteins. The large number of PTM sites in the Hsp90 proteins that are scattered throughout different domains indicated that synchronization of multiple PTMs through a combinatorial code can be invoked as an important mechanism to orchestrate diverse chaperone functions and recognize multiple client proteins. In this study, we have combined structural and coevolutionary analysis with molecular simulations and perturbation response scanning analysis of the Hsp90 structures to characterize functional role of PTM sites in allosteric regulation. The results reveal a small group of conserved PTMs that act as global mediators of collective dynamics and allosteric communications in the Hsp90 structures, while the majority of flexible PTM sites serve as sensors and carriers of the allosteric structural changes. This study provides a comprehensive structural, dynamic and network analysis of PTM sites across Hsp90 proteins, identifying specific role of regulatory PTM hotspots in the allosteric mechanism of the Hsp90 cycle. We argue that plasticity of a combinatorial PTM code in the Hsp90 may be enacted through allosteric coupling between effector and sensor PTM residues, which would allow for timely response to structural requirements of multiple modified enzymes.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Amanda Tse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America.
- Chapman University School of Pharmacy, Irvine, California, United States of America.
| |
Collapse
|
57
|
A switch point in the molecular chaperone Hsp90 responding to client interaction. Nat Commun 2018; 9:1472. [PMID: 29662162 PMCID: PMC5902578 DOI: 10.1038/s41467-018-03946-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a dimeric molecular chaperone that undergoes large conformational changes during its functional cycle. It has been established that conformational switch points exist in the N-terminal (Hsp90-N) and C-terminal (Hsp90-C) domains of Hsp90, however information for switch points in the large middle-domain (Hsp90-M) is scarce. Here we report on a tryptophan residue in Hsp90-M as a new type of switch point. Our study shows that this conserved tryptophan senses the interaction of Hsp90 with a stringent client protein and transfers this information via a cation–π interaction with a neighboring lysine. Mutations at this position hamper the communication between domains and the ability of a client protein to affect the Hsp90 cycle. The residue thus allows Hsp90 to transmit information on the binding of a client from Hsp90-M to Hsp90-N which is important for progression of the conformational cycle and the efficient processing of client proteins. The heat shock protein 90 (Hsp90) chaperone undergoes large conformational changes during its functional cycle. Here the authors combine in vivo, biochemical, biophysical and computational approaches and provide insights into the allosteric regulation of Hsp90 by identifying and characterizing a switch point in the Hsp90 middle domain.
Collapse
|
58
|
Sánchez-Pozo J, Baker-Williams AJ, Woodford MR, Bullard R, Wei B, Mollapour M, Stetler-Stevenson WG, Bratslavsky G, Bourboulia D. Extracellular Phosphorylation of TIMP-2 by Secreted c-Src Tyrosine Kinase Controls MMP-2 Activity. iScience 2018; 1:87-96. [PMID: 30227959 PMCID: PMC6135941 DOI: 10.1016/j.isci.2018.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
The tissue inhibitor of metalloproteinases 2 (TIMP-2) is a specific endogenous inhibitor of matrix metalloproteinase 2 (MMP-2), which is a key enzyme that degrades the extracellular matrix and promotes tumor cell invasion. Although the TIMP-2:MMP-2 complex controls proteolysis, the signaling mechanism by which the two proteins associate in the extracellular space remains unidentified. Here we report that TIMP-2 is phosphorylated outside the cell by secreted c-Src tyrosine kinase. As a consequence, phosphorylation at Y90 significantly enhances TIMP-2 potency as an MMP-2 inhibitor and weakens the catalytic action of the active enzyme. TIMP-2 phosphorylation also appears to be essential for its interaction with the latent enzyme proMMP-2 in vivo. Absence of the kinase or non-phosphorylatable Y90 abolishes TIMP-2 binding to the latent enzyme, ultimately hampering proMMP-2 activation. Together, TIMP-2 phosphorylation by secreted c-Src represents a critical extracellular regulatory mechanism that controls the proteolytic function of MMP-2. c-Src tyrosine kinase phosphorylates TIMP-2 Secreted c-Src phosphorylates TIMP-2 extracellularly TIMP-2 Y90 phosphorylation promotes extracellular interaction with proMMP-2 Tyrosine phosphorylation of TIMP-2 regulates proMMP-2 processing and MMP-2 activity
Collapse
Affiliation(s)
- Javier Sánchez-Pozo
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Beiyang Wei
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
59
|
Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat Commun 2018; 9:265. [PMID: 29343704 PMCID: PMC5772613 DOI: 10.1038/s41467-017-02711-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
During the Hsp90-mediated chaperoning of protein kinases, the core components of the machinery, Hsp90 and the cochaperone Cdc37, recycle between different phosphorylation states that regulate progression of the chaperone cycle. We show that Cdc37 phosphorylation at Y298 results in partial unfolding of the C-terminal domain and the population of folding intermediates. Unfolding facilitates Hsp90 phosphorylation at Y197 by unmasking a phosphopeptide sequence, which serves as a docking site to recruit non-receptor tyrosine kinases to the chaperone complex via their SH2 domains. In turn, Hsp90 phosphorylation at Y197 specifically regulates its interaction with Cdc37 and thus affects the chaperoning of only protein kinase clients. In summary, we find that by providing client class specificity, Hsp90 cochaperones such as Cdc37 do not merely assist in client recruitment but also shape the post-translational modification landscape of Hsp90 in a client class-specific manner. The Hsp90 chaperone cycle is influenced by multiple phosphorylation events but their regulatory functions are poorly understood. Here, the authors show that phosphorylation and unfolding of cochaperone Cdc37 tailors the Hsp90 chaperone cycle by recruiting kinases that promote distinct phosphorylation patterns.
Collapse
|
60
|
WEE1 epigenetically modulates 5-hmC levels by pY37-H2B dependent regulation of IDH2 gene expression. Oncotarget 2017; 8:106352-106368. [PMID: 29290954 PMCID: PMC5739739 DOI: 10.18632/oncotarget.22374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Epigenetic signaling networks dynamically regulate gene expression to maintain cellular homeostasis. Previously, we uncovered that WEE1 phosphorylates histone H2B at tyrosine 37 (pY37-H2B) to negatively regulate global histone transcriptional output. Although pY37-H2B is readily detected in cancer cells, its functional role in pathogenesis is not known. Herein, we show that WEE1 deposits the pY37-H2B marks within the tumor suppressor gene, isocitrate dehydrogenase 2 (IDH2), to repress transcription in multiple cancer cells, including glioblastoma multiforme (GBMs), melanoma and prostate cancer. Consistently, GBMs and primary melanoma tumors that display elevated WEE1 mRNA expression exhibit significant down regulation of the IDH2 gene transcription. IDH2 catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), an essential cofactor for the TET family of 5-methylcytosine (5mC) hydroxylases that convert 5-mC to 5-hydroxymethylcytosine (5-hmC). Significantly, the WEE1 inhibitor AZD1775 not only abrogated the suppressive H2B Y37-phosphorylation and upregulated IDH2 mRNA levels but also effectively reversed the ‘loss of 5-hmC’ phenotype in melanomas, GBMs and prostate cancer cells, as well as melanoma xenograft tumors. These data indicate that the epigenetic repression of IDH2 by WEE1/pY37-H2B circuit may be a hitherto unknown mechanism of global 5-hmC loss observed in human malignancies.
Collapse
|
61
|
MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Sci Rep 2017; 7:10202. [PMID: 28860596 PMCID: PMC5579238 DOI: 10.1038/s41598-017-09725-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023] Open
Abstract
MAP kinases (MAPK) are the most downstream kinases in signal transduction cascades and regulate critical cellular activities such as cell proliferation, differentiation, mortality, stress response, and apoptosis. The Leishmania donovani MAPK1 (LdMAPK1) is involved in parasite viability and drug resistance, but its substrates have not been identified yet. Aiming to identify the possible targets(s) of LdMAPK1, we sought to isolate interacting partners by co-immunoprecipitation, gel electrophoresis and mass spectrometry. Out of fifteen analyzed protein bands, four were identified as subunits of the HSP90 foldosome complex, namely HSP 90, HSP70, STI and SGT. Western blot analysis not only confirmed that LdMAPK1 interacts with HSP70 and HSP90 but also demonstrated that MAPK1 abundance modulates their expression. The interaction is sensitive to treatment with AMTZD, a competitive ERK inhibitor. MAPK1 also displayed kinase activity with HSP90 or HSP70 as substrates. By phosphorylating HSPs in the foldosome complex, MAPK1 may regulate the stability and activity of the foldosome which in turn plays a pivotal role in the parasitic life cycle of L. donovani. Our study therefore implicates LdMAPK1 in the post-translational modification and possibly the regulation of heat shock proteins. Conversely, HSP90 and HSP70 are identified as the first substrates of LdMAPK1.
Collapse
|
62
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat shock elements (HSEs) within Hsp90 promoters. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, which in turn regulate Hsp90 appropriately. Because of the diverse clientele of Hsp90 a whole variety of co-chaperones also regulate its activity and some are directly responsible for delivery of client protein. Consequently, co-chaperones themselves, like Hsp90, are also subject to regulatory mechanisms such as post translational modification. This review, looks at the many different levels by which Hsp90 activity is ultimately regulated.
Collapse
|
63
|
Zuehlke AD, Reidy M, Lin C, LaPointe P, Alsomairy S, Lee DJ, Rivera-Marquez GM, Beebe K, Prince T, Lee S, Trepel JB, Xu W, Johnson J, Masison D, Neckers L. An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nat Commun 2017; 8:15328. [PMID: 28537252 PMCID: PMC5458067 DOI: 10.1038/ncomms15328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cells remains unclear. Phosphorylation of human Hsp90α at the highly conserved tyrosine 627 has previously been reported to reduce client interaction and Aha1 binding. Here we report that these effects are due to a long-range conformational impact inhibiting Hsp90α N-domain dimerization and involving a region of the middle domain/carboxy-terminal domain interface previously suggested to be a substrate binding site. Although Y627 is not phosphorylated in yeast, we demonstrate that the non-conserved yeast co-chaperone, Hch1, similarly affects yeast Hsp90 (Hsp82) conformation and function, raising the possibility that appearance of this PTM in higher eukaryotes represents an evolutionary substitution for HCH1.
Collapse
Affiliation(s)
- Abbey D Zuehlke
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Coney Lin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sarah Alsomairy
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - D Joshua Lee
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Genesis M Rivera-Marquez
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Kristin Beebe
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Thomas Prince
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Wanping Xu
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jill Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844, USA
| | - Daniel Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Len Neckers
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| |
Collapse
|
64
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
65
|
de Gooijer MC, van den Top A, Bockaj I, Beijnen JH, Würdinger T, van Tellingen O. The G2 checkpoint-a node-based molecular switch. FEBS Open Bio 2017; 7:439-455. [PMID: 28396830 PMCID: PMC5377395 DOI: 10.1002/2211-5463.12206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Tight regulation of the eukaryotic cell cycle is paramount to ensure genomic integrity throughout life. Cell cycle checkpoints are present in each phase of the cell cycle and prevent cell cycle progression when genomic integrity is compromised. The G2 checkpoint is an intricate signaling network that regulates the progression of G2 to mitosis (M). We propose here a node-based model of G2 checkpoint regulation, in which the action of the central CDK1-cyclin B1 node is determined by the concerted but opposing activities of the Wee1 and cell division control protein 25C (CDC25C) nodes. Phosphorylation of both Wee1 and CDC25C at specific sites determines their subcellular localization, driving them either toward activity within the nucleus or to the cytoplasm and subsequent ubiquitin-mediated proteasomal degradation. In turn, this subcellular balance of the Wee1 and CDC25C nodes is directed by the action of the PLK1 and CHK1 nodes via what we have termed the 'nuclear and cytoplasmic decision states' of Wee1 and CDC25C. The proposed node-based model provides an intelligible structure of the complex interactions that govern the decision to delay or continue G2/M progression. The model may also aid in predicting the effects of agents that target these G2 checkpoint nodes.
Collapse
Affiliation(s)
- Mark C. de Gooijer
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Arnout van den Top
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Irena Bockaj
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
- Division of Drug ToxicologyFaculty of PharmacyUtrecht UniversityThe Netherlands
- Division of Biomedical AnalysisFaculty of ScienceUtrecht UniversityThe Netherlands
| | - Thomas Würdinger
- Neuro‐oncology Research GroupDepartments of Neurosurgery and Pediatric Oncology/HematologyCancer Center AmsterdamVU University Medical CenterThe Netherlands
- Molecular Neurogenetics UnitDepartments of Neurology and RadiologyMassachusetts General HospitalBostonMAUSA
- Neuroscience ProgramHarvard Medical SchoolBostonMAUSA
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
66
|
Nguyen MT, Knieß RA, Daturpalli S, Le Breton L, Ke X, Chen X, Mayer MP. Isoform-Specific Phosphorylation in Human Hsp90β Affects Interaction with Clients and the Cochaperone Cdc37. J Mol Biol 2017; 429:732-752. [DOI: 10.1016/j.jmb.2017.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 11/28/2022]
|
67
|
Li X, Robbins N, O'Meara TR, Cowen LE. Extensive functional redundancy in the regulation of Candida albicans drug resistance and morphogenesis by lysine deacetylases Hos2, Hda1, Rpd3 and Rpd31. Mol Microbiol 2016; 103:635-656. [PMID: 27868254 DOI: 10.1111/mmi.13578] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
Current treatment efforts for fungal infections are hampered by the limited availability of antifungal drugs and by the emergence of drug resistance. A powerful strategy to enhance the efficacy of antifungal drugs is to inhibit the molecular chaperone Hsp90. Hsp90 governs drug resistance, morphogenesis and virulence in a leading fungal pathogen of humans, Candida albicans. Our previous work with Saccharomyces cerevisiae established acetylation as a novel mechanism of posttranslational control of Hsp90 function in fungi. We implicated lysine deacetylases (KDACs) as key regulators of resistance to the most widely deployed class of antifungals, the azoles, in both S. cerevisiae and C. albicans. Here, we demonstrate high levels of functional redundancy among the KDACs that are important for regulating Hsp90 function. We identify Hos2, Hda1, Rpd3 and Rpd31 as the KDACs mediating azole resistance and morphogenesis in C. albicans. Furthermore, we identify lysine 30 and 271 as critical acetylation sites on C. albicans Hsp90, and substitutions at these residues compromise Hsp90 function. Finally, we show that pharmacological inhibition of KDACs phenocopies pharmacological inhibition of Hsp90 and abrogates Hsp90-dependent azole resistance in numerous Candida species. This work illuminates new facets to the impact of KDACs on fungal drug resistance and morphogenesis, provides important insights into the divergence of the C. albicans Hsp90 regulatory network and reveals new targets for development of antifungal drugs.
Collapse
Affiliation(s)
- Xinliu Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
68
|
Allosteric Regulation Points Control the Conformational Dynamics of the Molecular Chaperone Hsp90. J Mol Biol 2016; 428:4559-4571. [DOI: 10.1016/j.jmb.2016.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/02/2023]
|
69
|
Wolmarans A, Lee B, Spyracopoulos L, LaPointe P. The Mechanism of Hsp90 ATPase Stimulation by Aha1. Sci Rep 2016; 6:33179. [PMID: 27615124 PMCID: PMC5018835 DOI: 10.1038/srep33179] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022] Open
Abstract
Hsp90 is a dimeric molecular chaperone responsible for the folding, maturation, and activation of hundreds of substrate proteins called ‘clients’. Numerous co-chaperone proteins regulate progression through the ATP-dependent client activation cycle. The most potent stimulator of the Hsp90 ATPase activity is the co-chaperone Aha1p. Only one molecule of Aha1p is required to fully stimulate the Hsp90 dimer despite the existence of two, presumably identical, binding sites for this regulator. Using ATPase assays with Hsp90 heterodimers, we find that Aha1p stimulates ATPase activity by a three-step mechanism via the catalytic loop in the middle domain of Hsp90. Binding of the Aha1p N domain to the Hsp90 middle domain exerts a small stimulatory effect but also drives a separate conformational rearrangement in the Hsp90 N domains. This second event drives a rearrangement in the N domain of the opposite subunit and is required for the stimulatory action of the Aha1p C domain. Furthermore, the second event can be blocked by a mutation in one subunit of the Hsp90 dimer but not the other. This work provides a foundation for understanding how post-translational modifications regulate co-chaperone engagement with the Hsp90 dimer.
Collapse
Affiliation(s)
- Annemarie Wolmarans
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Brian Lee
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
70
|
Zhou X, Qian G, Yi X, Li X, Liu W. Systematic Analysis of the Lysine Acetylome in Candida albicans. J Proteome Res 2016; 15:2525-36. [PMID: 27297460 DOI: 10.1021/acs.jproteome.6b00052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Candida albicans (C. albicans) is a worldwide cause of fungal infectious diseases. As a general post-translational modification (PTM), lysine acetylation of proteins play an important regulatory role in almost every cell. In our research, we used a high-resolution proteomic technique (LC-MS/MS) to present the comprehensive analysis of the acetylome in C. albicans. In general, we detected 477 acetylated proteins among all 9038 proteins (5.28%) in C. albicans, which had 1073 specific acetylated sites. The bioinformatics analysis of the acetylome showed a significant role in the regulation of metabolism. To be more precise, proteins involved in carbon metabolism and biosynthesis were the underlying objectives of acetylation. Besides, through the study of the acetylome, we found a universal rule in acetylated motifs: the +4, +5, or +6 position, which is an alkaline residue with a long side chain (K or R), and the +1 or +2 position, which is a residue with a long side chain (Y, H, W, or F). To the best of our knowledge, all screening acetylated histone sites of this study have not been previously reported. Moreover, protein-protein interaction network (PPI) study demonstrated that a variety of connections in glycolysis/gluconeogenesis, oxidative phosphorylation, and the ribosome were modulated by acetylation and phosphorylation, but the phosphorylated proteins in oxidative phosphorylation PPI network were not abundant, which indicated that acetylation may have a more significant effect than phosphorylation on oxidative phosphorylation. This is the first study of the acetylome in human pathogenic fungi, providing an important starting point for the in-depth discovery of the functional analysis of acetylated proteins in such fungal pathogens.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, Jiangsu, People's Republic of China
| | - Guanyu Qian
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China
| | - Xingling Yi
- Jingjie PTM Bio (Hangzhou) Co., Ltd., Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xiaofang Li
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, Jiangsu, People's Republic of China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
71
|
Woodford MR, Truman AW, Dunn DM, Jensen SM, Cotran R, Bullard R, Abouelleil M, Beebe K, Wolfgeher D, Wierzbicki S, Post DE, Caza T, Tsutsumi S, Panaretou B, Kron SJ, Trepel JB, Landas S, Prodromou C, Shapiro O, Stetler-Stevenson WG, Bourboulia D, Neckers L, Bratslavsky G, Mollapour M. Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors. Cell Rep 2016; 14:872-884. [PMID: 26804907 PMCID: PMC4887101 DOI: 10.1016/j.celrep.2015.12.084] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/17/2015] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Sandra M Jensen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Cotran
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mourad Abouelleil
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sara Wierzbicki
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Dawn E Post
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Tiffany Caza
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Shinji Tsutsumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Barry Panaretou
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steve Landas
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | | | - Oleg Shapiro
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
72
|
Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:132635. [PMID: 26881084 PMCID: PMC4736001 DOI: 10.1155/2015/132635] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
Abstract
Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.
Collapse
|
73
|
He Q, Liu K, Tian Z, Du SJ. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization. PLoS One 2015; 10:e0142573. [PMID: 26562659 PMCID: PMC4642942 DOI: 10.1371/journal.pone.0142573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/24/2015] [Indexed: 01/08/2023] Open
Abstract
Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organization. DNA constructs expressing the Hsp90α1 mutants with altered putative ATP binding, phosphorylation, acetylation or methylation sites were co-injected with Hsp90α1 specific morpholino into zebrafish embryos. Myosin thick filament organization was analyzed in skeletal muscles of the injected embryos by immunostaining. The results showed that mutating the conserved D90 residue in the Hsp90α1 ATP binding domain abolished its function in thick filament organization. In addition, phosphorylation mimicking mutations of T33D, T33E and T87E compromised Hsp90α1 function in myosin thick filament organization. Similarly, K287Q acetylation mimicking mutation repressed Hsp90α1 function in myosin thick filament organization. In contrast, K206R and K608R hypomethylation mimicking mutations had not effect on Hsp90α1 function in thick filament organization. Given that T33 and T87 are highly conserved residues involved post-translational modification (PTM) in yeast, mouse and human Hsp90 proteins, data from this study could indicate that Hsp90α1 function in myosin thick filament organization is potentially regulated by PTMs involving phosphorylation and acetylation.
Collapse
Affiliation(s)
- Qiuxia He
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21202, United States of America
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, 250014, P. R. China
| | - Kechun Liu
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, 250014, P. R. China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, 710062, P. R. China
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21202, United States of America
- * E-mail:
| |
Collapse
|
74
|
Franco MC, Ricart KC, Gonzalez AS, Dennys CN, Nelson PA, Janes MS, Mehl RA, Landar A, Estévez AG. Nitration of Hsp90 on Tyrosine 33 Regulates Mitochondrial Metabolism. J Biol Chem 2015; 290:19055-66. [PMID: 26085096 PMCID: PMC4521030 DOI: 10.1074/jbc.m115.663278] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
Peroxynitrite production and tyrosine nitration are present in several pathological conditions, including neurodegeneration, stroke, aging, and cancer. Nitration of the pro-survival chaperone heat shock protein 90 (Hsp90) in position 33 and 56 induces motor neuron death through a toxic gain-of-function. Here we show that nitrated Hsp90 regulates mitochondrial metabolism independently of the induction of cell death. In PC12 cells, a small fraction of nitrated Hsp90 was located on the mitochondrial outer membrane and down-regulated mitochondrial membrane potential, oxygen consumption, and ATP production. Neither endogenous Hsp90 present in the homogenate nor unmodified and fully active recombinant Hsp90 was able to compete with the nitrated protein for the binding to mitochondria. Moreover, endogenous or recombinant Hsp90 did not prevent the decrease in mitochondrial activity but supported nitrated Hsp90 mitochondrial gain-of-function. Nitrotyrosine in position 33, but not in any of the other four tyrosine residues prone to nitration in Hsp90, was sufficient to down-regulate mitochondrial activity. Thus, in addition to induction of cell death, nitrated Hsp90 can also regulate mitochondrial metabolism, suggesting that depending on the cell type, distinct Hsp90 nitration states regulate different aspects of cellular metabolism. This regulation of mitochondrial homeostasis by nitrated Hsp90 could be of particular relevance in cancer cells.
Collapse
Affiliation(s)
- Maria C Franco
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827,
| | - Karina C Ricart
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Analía S Gonzalez
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Buenos Aires C1120AAR, Argentina
| | - Cassandra N Dennys
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Pascal A Nelson
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | | | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Aimee Landar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Alvaro G Estévez
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|
75
|
Pérez-Landero S, Sandoval-Motta S, Martínez-Anaya C, Yang R, Folch-Mallol JL, Martínez LM, Ventura L, Guillén-Navarro K, Aldana-González M, Nieto-Sotelo J. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences. BMC SYSTEMS BIOLOGY 2015. [PMID: 26209979 PMCID: PMC4515323 DOI: 10.1186/s12918-015-0185-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory, learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS) as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological processes. Results Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase. Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response for Hsf1/Skn7 when PKA activity was low (cdc25Δ cells). Experimental results were used to propose an interaction scheme for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational model reproduced the experimental data and predicted complex interactions between the CS and the existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssa1 and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of Hsf1/Skn7, active only in theabsence of Tpk2. By averaging the network state over all its attractors, a good quantitative agreement between computational and experimental results was obtained, as the averages reflected more accurately the population measurements. Conclusions The assumption of PKA being one molecular entity has hindered the study of a wide range of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc.). We show that the differential roles of the CS are essential to understand the dynamics of the PKA-RN and its targets. Our systems level approach, which combined experimental results with theoretical modeling, unveils the relevance of the interaction scheme for the CS and offers quantitative predictions for several scenarios (WT vs. mutants in PKA-RN genes and growth at optimal temperature vs. heat shock). Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0185-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Pérez-Landero
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| | - Santiago Sandoval-Motta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Claudia Martínez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Runying Yang
- Present Address: Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Jorge Luis Folch-Mallol
- Present Address: Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Mor., Mexico.
| | - Luz María Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Larissa Ventura
- Present Address: Grupo La Florida México, Tlalnepantla, 54170, Edo. de Méx., Mexico.
| | | | - Maximino Aldana-González
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Jorge Nieto-Sotelo
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| |
Collapse
|
76
|
Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med Chem 2015; 6:1587-605. [PMID: 25367392 DOI: 10.4155/fmc.14.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed.
Collapse
|
77
|
Abstract
Hsp90 chaperones receive much attention due to their role in cancer and other pathological conditions, and a tremendous effort of many laboratories has contributed in the past decades to considerable progress in the understanding of their functions. Hsp90 chaperones exist as dimers and, with the help of cochaperones, promote the folding of numerous client proteins. Although the original view of these interactions suggested that these dimeric complexes were symmetrical, it is now clear that many features are asymmetrical. In this review we discuss several recent advances that highlight how asymmetric interactions with cochaperones as well as asymmetric posttranslational modifications provide mechanisms to regulate client interactions and the progression through Hsp90's chaperone cycle.
Collapse
Affiliation(s)
- Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Laura Le Breton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
78
|
Dobbelstein M, Sørensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 2015; 14:405-23. [PMID: 25953507 DOI: 10.1038/nrd4553] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms that govern replicative stress, thus providing ample opportunities to enhance replicative stress for therapeutic purposes. Rather than trying to halt cell cycle progression, cancer therapeutics could aim to increase replicative stress by further loosening the checkpoints that remain available to cancer cells and ultimately inducing the catastrophic failure of proliferative machineries. In this Review, we outline current and future approaches to achieve this, emphasizing the combination of conventional chemotherapy with targeted approaches.
Collapse
Affiliation(s)
- Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, Ernst Caspari Haus, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
79
|
Qi X, Xie C, Hou S, Li G, Yin N, Dong L, Lepp A, Chesnik MA, Mirza SP, Szabo A, Tsai S, Basir Z, Wu S, Chen G. Identification of a ternary protein-complex as a therapeutic target for K-Ras-dependent colon cancer. Oncotarget 2015; 5:4269-82. [PMID: 24962213 PMCID: PMC4147322 DOI: 10.18632/oncotarget.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A cancer phenotype is driven by several proteins and targeting a cluster of functionally interdependent molecules should be more effective for therapeutic intervention. This is specifically important for Ras-dependent cancer, as mutated (MT) Ras is non-druggable and targeting its interaction with effectors may be essential for therapeutic intervention. Here, we report that a protein-complex activated by the Ras effector p38γ MAPK is a novel therapeutic target for K-Ras-dependent colon cancer. Unbiased proteomic screening and immune-precipitation analyses identified p38γ interaction with heat shock protein 90 (Hsp90) and K-Ras in K-Ras MT, but not wild-type (WT), colon cancer cells, indicating a role of this complex in Ras-dependent growth. Further experiments showed that this complex requires p38γ and Hsp90 activity to maintain MT, but not WT, K-Ras protein expression. Additional studies demonstrated that this complex is activated by p38γ-induced Hsp90 phosphorylation at S595, which is important for MT K-Ras stability and for K-Ras dependent growth. Of most important, pharmacologically inhibition of Hsp90 or p38γ activity disrupts the complex, decreases K-Ras expression, and selectively inhibits the growth of K-Ras MT colon cancer in vitro and in vivo. These results demonstrated that the p38γ-activated ternary complex is a novel therapeutic target for K-Ras-dependent colon cancer.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | - Shixiu Wu
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin; Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
80
|
Chehab M, Caza T, Skotnicki K, Landas S, Bratslavsky G, Mollapour M, Bourboulia D. Targeting Hsp90 in urothelial carcinoma. Oncotarget 2015; 6:8454-73. [PMID: 25909217 PMCID: PMC4496161 DOI: 10.18632/oncotarget.3502] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma, or transitional cell carcinoma, is the most common urologic malignancy that carries significant morbidity, mortality, recurrence risk and associated health care costs. Despite use of current chemotherapies and immunotherapies, long-term remission in patients with muscle-invasive or metastatic disease remains low, and disease recurrence is common. The molecular chaperone Heat Shock Protein-90 (Hsp90) may offer an ideal treatment target, as it is a critical signaling hub in urothelial carcinoma pathogenesis and potentiates chemoradiation. Preclinical testing with Hsp90 inhibitors has demonstrated reduced proliferation, enhanced apoptosis and synergism with chemotherapies and radiation. Despite promising preclinical data, clinical trials utilizing Hsp90 inhibitors for other malignancies had modest efficacy. Therefore, we propose that Hsp90 inhibition would best serve as an adjuvant treatment in advanced muscle-invasive or metastatic bladder cancers to potentiate other therapies. An overview of bladder cancer biology, current treatments, molecular targeted therapies, and the role for Hsp90 inhibitors in the treatment of urothelial carcinoma is the focus of this review.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Antineoplastic Agents/therapeutic use
- Apoptosis
- BCG Vaccine/therapeutic use
- Carcinoma, Transitional Cell/epidemiology
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Carcinoma, Transitional Cell/therapy
- Cell Cycle/drug effects
- Cell Division
- Cell Transformation, Neoplastic
- Chemoradiotherapy
- Chemotherapy, Adjuvant
- Clinical Trials as Topic
- Combined Modality Therapy
- Cystectomy
- Drug Resistance, Neoplasm
- Drugs, Investigational/therapeutic use
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/chemistry
- HSP90 Heat-Shock Proteins/physiology
- Histone Code/drug effects
- Humans
- Models, Biological
- Molecular Targeted Therapy
- Muscle, Smooth/pathology
- Neoplasm Invasiveness
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Transcription, Genetic/drug effects
- Urologic Neoplasms/epidemiology
- Urologic Neoplasms/metabolism
- Urologic Neoplasms/pathology
- Urologic Neoplasms/therapy
Collapse
Affiliation(s)
- Mahmoud Chehab
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tiffany Caza
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kamil Skotnicki
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Steve Landas
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
81
|
Stability of the human Hsp90-p50Cdc37 chaperone complex against nucleotides and Hsp90 inhibitors, and the influence of phosphorylation by casein kinase 2. Molecules 2015; 20:1643-60. [PMID: 25608045 PMCID: PMC4601640 DOI: 10.3390/molecules20011643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein–protein interaction (PPI) inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2) did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM), while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands.
Collapse
|
82
|
Röhl A, Tippel F, Bender E, Schmid AB, Richter K, Madl T, Buchner J. Hop/Sti1 phosphorylation inhibits its co-chaperone function. EMBO Rep 2014; 16:240-9. [PMID: 25504578 PMCID: PMC4328751 DOI: 10.15252/embr.201439198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In eukaryotes, the molecular chaperones Hsp90 and Hsp70 are connected via the co-chaperone Sti1/Hop, which allows transfer of clients. Here, we show that the basic functions of yeast Sti1 and human Hop are conserved. These include the simultaneous binding of Hsp90 and Hsp70, the inhibition of the ATPase activity of Hsp90, and the ability to support client activation in vivo. Importantly, we reveal that both Hop and Sti1 are subject to inhibitory phosphorylation, although the sites modified and the influence of regulatory phosphorylation is species specific. Phospho-mimetic variants have a reduced ability to activate clients in vivo and different affinity for Hsp70. Hop is more tightly regulated, as phosphorylation affects also the interaction with Hsp90 and induces structural rearrangements in the core part of the protein.
Collapse
Affiliation(s)
- Alina Röhl
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Franziska Tippel
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Evelyn Bender
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Andreas B Schmid
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Klaus Richter
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany Institute of Structural Biology Helmholtz Zentrum München, Neuherberg, Germany Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Buchner
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
83
|
Solárová Z, Mojžiš J, Solár P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol 2014; 46:907-26. [PMID: 25501619 DOI: 10.3892/ijo.2014.2791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Hsp90 is a molecular chaperone that maintains the structural and functional integrity of various client proteins involved in signaling and many other functions of cancer cells. The natural inhibitors, ansamycins influence the Hsp90 chaperone function by preventing its binding to client proteins and resulting in their proteasomal degradation. N- and C-terminal inhibitors of Hsp90 and their analogues are widely tested as potential anticancer agents in vitro, in vivo as well as in clinical trials. It seems that Hsp90 competitive inhibitors target different tumor types at nanomolar concentrations and might have therapeutic benefit. On the contrary, some Hsp90 inhibitors increased toxicity and resistance of cancer cells induced by heat shock response, and through the interaction of survival signals, that occured as side effects of treatments, could be very effectively limited via combination of therapies. The aim of our review was to collect the data from experimental and clinical trials where Hsp90 inhibitor was combined with other therapies in order to prevent resistance as well as to potentiate the cytotoxic and/or antiproliferative effects.
Collapse
Affiliation(s)
- Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Peter Solár
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| |
Collapse
|
84
|
Synoradzki K, Bieganowski P. Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:445-52. [PMID: 25486457 DOI: 10.1016/j.bbamcr.2014.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022]
Abstract
Hsp90 is an essential chaperone for more than 200 client proteins in eukaryotic cells. The human genome encodes two highly similar cytosolic Hsp90 proteins called Hsp90α and Hsp90β. Most of the client proteins can interact with either Hsp90 protein; however, only a handful client proteins and one co-chaperone that interact specifically with one of the Hsp90 isoforms were identified. Structural differences underlying these isoform-specific interactions were not studied. Here we report for the first time that the Hsp90 co-chaperone Aha1 interacts preferentially with Hsp90α. The distinction depends on the middle domain of Hsp90. The middle domain of Hsp90α is also responsible for the slow growth phenotype of yeasts that express this isoform as a sole source of Hsp90. These results suggest that differences in the middle domain of Hsp90α and Hsp90β may be responsible for the isoform-specific interactions with selected proteins. Also shown here within, we determine that preferential chaperoning of cIAP1 by Hsp90β is mediated by the N-terminal domain of this isoform.
Collapse
Affiliation(s)
- Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland
| | - Pawel Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland.
| |
Collapse
|
85
|
Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, Wang Z, Yan Y. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics 2014; 15:1029. [PMID: 25427527 PMCID: PMC4301063 DOI: 10.1186/1471-2164-15-1029] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is an economically important grain crop. Two-dimensional gel-based approaches are limited by the low identification rate of proteins and lack of accurate protein quantitation. The recently developed isobaric tag for relative and absolute quantitation (iTRAQ) method allows sensitive and accurate protein quantification. Here, we performed the first iTRAQ-based quantitative proteome and phosphorylated proteins analyses during wheat grain development. RESULTS The proteome profiles and phosphoprotein characterization of the metabolic proteins during grain development of the elite Chinese bread wheat cultivar Yanyou 361 were studied using the iTRAQ-based quantitative proteome approach, TiO2 microcolumns, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among 1,146 non-redundant proteins identified, 421 showed at least 2-fold differences in abundance, and they were identified as differentially expressed proteins (DEPs), including 256 upregulated and 165 downregulated proteins. Of the 421 DEPs, six protein expression patterns were identified, most of which were up, down, and up-down expression patterns. The 421 DEPs were classified into nine functional categories mainly involved in different metabolic processes and located in the membrane and cytoplasm. Hierarchical clustering analysis indicated that the DEPs involved in starch biosynthesis, storage proteins, and defense/stress-related proteins significantly accumulated at the late grain development stages, while those related to protein synthesis/assembly/degradation and photosynthesis showed an opposite expression model during grain development. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 12 representative genes encoding different metabolic proteins showed certain transcriptional and translational expression differences during grain development. Phosphorylated proteins analyses demonstrated that 23 DEPs such as AGPase, sucrose synthase, Hsp90, and serpins were phosphorylated in the developing grains and were mainly involved in starch biosynthesis and stress/defense. CONCLUSIONS Our results revealed a complex quantitative proteome and phosphorylation profile during wheat grain development. Numerous DEPs are involved in grain starch and protein syntheses as well as adverse defense, which set an important basis for wheat yield and quality. Particularly, some key DEPs involved in starch biosynthesis and stress/defense were phosphorylated, suggesting their roles in wheat grain development.
Collapse
Affiliation(s)
- Chaoying Ma
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Jianwen Zhou
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Guanxing Chen
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yanwei Bian
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Dongwen Lv
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Xiaohui Li
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Zhimin Wang
- />College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100094 China
| | - Yueming Yan
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
86
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. Raf-interactome in tuning the complexity and diversity of Raf function. FEBS J 2014; 282:32-53. [PMID: 25333451 DOI: 10.1111/febs.13113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Raf kinases have been intensely studied subsequent to their discovery 30 years ago. The Ras-Raf-mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase/mitogen-activated protein kinase (Ras-Raf-MEK-ERK/MAPK) signaling pathway is at the heart of the signaling networks that control many fundamental cellular processes and Raf kinases takes centre stage in the MAPK pathway, which is now appreciated to be one of the most common sources of the oncogenic mutations in cancer. The dependency of tumors on this pathway has been clearly demonstrated by targeting its key nodes; however, blockade of the central components of the MAPK pathway may have some unexpected side effects. Over recent years, the Raf-interactome or Raf-interacting proteins have emerged as promising targets for protein-directed cancer therapy. This review focuses on the diversity of Raf-interacting proteins and discusses the mechanisms by which these proteins regulate Raf function, as well as the implications of targeting Raf-interacting proteins in the treatment of human cancer.
Collapse
Affiliation(s)
- Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, China
| | | | | | | | | | | |
Collapse
|
87
|
Zhang M, Ma CY, Lv DW, Zhen SM, Li XH, Yan YM. Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. J Proteome Res 2014; 13:4281-97. [PMID: 25145454 DOI: 10.1021/pr500400t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wheat (Triticum aestivum), one of the most important cereal crops, is often threatened by drought. In this study, water deficit significantly reduced the height of plants and yield of grains. To explore further the effect of drought stress on the development and yield of grains, we first performed a large scale phosphoproteome analysis of developing grains in wheat. A total of 590 unique phosphopeptides, representing 471 phosphoproteins, were identified under well-watered conditions. Motif-X analysis showed that four motifs were enriched, including [sP], [Rxxs], [sDxE], and [sxD]. Through comparative phosphoproteome analysis between well-watered and water-deficit conditions, we found that 63 unique phosphopeptides, corresponding to 61 phosphoproteins, showed significant changes in phosphorylation level (≥2-fold intensities). Functional analysis suggested that some of these proteins may be involved in signal transduction, embryo and endosperm development of grains, and drought response and defense under water-deficit conditions. Moreover, we also found that some chaperones may play important roles in protein refolding or degradation when the plant is subjected to water stress. These results provide a detailed insight into the stress response and defense mechanisms of developmental grains at the phosphoproteome level. They also suggested some potential candidates for further study of transgenosis and drought stress as well as incorporation into molecular breeding for drought resistance.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Capital Normal University , 100048 Beijing, China
| | | | | | | | | | | |
Collapse
|
88
|
Blacklock K, Verkhivker GM. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. PLoS Comput Biol 2014; 10:e1003679. [PMID: 24922508 PMCID: PMC4055421 DOI: 10.1371/journal.pcbi.1003679] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023] Open
Abstract
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. Functional versatility and structural adaptability of the Hsp90 chaperones are regulated by allosteric interactions that allow for diverse functions including modulation of ATP hydrolysis and binding with cochaperones and client proteins. By integrating molecular simulations and network-based approaches we have characterized conformational dynamics and allosteric interactions in different functional forms of Hsp90. The network centrality analysis and structural mapping of allosteric communications have revealed a small-world organization of the interaction network that is mediated by functionally important residues of the Hsp90 activity. We have found that effective allosteric communications in the Hsp90 chaperone may be provided by structurally stable residues that exhibit high centrality properties. Nucleotide-specific rewiring of the network topology and assortative organization of functional residues may protect the active form of the chaperone from random perturbations and detrimental mutations. These results have confirmed that allosteric interactions in the Hsp90 chaperone may be determined by a small-world network of functional residues that can regulate the network efficiency and resiliency by modulating the statistical ensemble of communication pathways in response to functional requirements of the ATPase cycle.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America; Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
89
|
Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y. SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett 2014; 351:126-33. [PMID: 24880080 DOI: 10.1016/j.canlet.2014.05.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/30/2014] [Accepted: 05/11/2014] [Indexed: 02/07/2023]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that facilitates the maturation of a wide range of proteins, and it has been recognized as a crucial facilitator of oncogene addiction and cancer cell survival. Although HSP90 function is regulated by a variety of post-translational modifications, the physiological significance of methylation has not fully been elucidated. Here we demonstrate that HSP90AB1 is methylated by the histone methyltransferase SMYD2 and that it plays a critical role in human carcinogenesis. HSP90AB1 and SMYD2 can interact through the C-terminal region of HSP90AB1 and the SET domain of SMYD2. Both in vitro and in vivo methyltransferase assays revealed that SMYD2 could methylate HSP90AB1 and mass spectrometry analysis indicated lysines 531 and 574 of HSP90AB1 to be methylated. These methylation sites were shown to be important for the dimerization and chaperone complex formation of HSP90AB1. Furthermore, methylated HSP90AB1 accelerated the proliferation of cancer cells. Our study reveals a novel mechanism for human carcinogenesis via methylation of HSP90AB1 by SMYD2, and additional functional studies may assist in developing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC2115 Chicago, IL 60637, United States; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Gouji Toyokawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC2115 Chicago, IL 60637, United States
| | - Koji Ueda
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC2115 Chicago, IL 60637, United States
| |
Collapse
|
90
|
Beebe K, Mollapour M, Scroggins B, Prodromou C, Xu W, Tokita M, Taldone T, Pullen L, Zierer BK, Lee MJ, Trepel J, Buchner J, Bolon D, Chiosis G, Neckers L. Posttranslational modification and conformational state of heat shock protein 90 differentially affect binding of chemically diverse small molecule inhibitors. Oncotarget 2014; 4:1065-74. [PMID: 23867252 PMCID: PMC3759666 DOI: 10.18632/oncotarget.1099] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an essential molecular chaperone in eukaryotes that facilitates the conformational maturation and function of a diverse protein clientele, including aberrant and/or over-expressed proteins that are involved in cancer growth and survival. A role for Hsp90 in supporting the protein homeostasis of cancer cells has buoyed interest in the utility of Hsp90 inhibitors as anti-cancer drugs. Despite the fact that all clinically evaluated Hsp90 inhibitors target an identical nucleotide-binding pocket in the N domain of the chaperone, the precise determinants that affect drug binding in the cellular environment remain unclear, and it is possible that chemically distinct inhibitors may not share similar binding preferences. Here we demonstrate that two chemically unrelated Hsp90 inhibitors, the benzoquinone ansamycin geldanamycin and the purine analog PU-H71, select for overlapping but not identical subpopulations of total cellular Hsp90, even though both inhibitors bind to an amino terminal nucleotide pocket and prevent N domain dimerization. Our data also suggest that PU-H71 is able to access a broader range of N domain undimerized Hsp90 conformations than is geldanamycin and is less affected by Hsp90 phosphorylation, consistent with its broader and more potent anti-tumor activity. A more complete understanding of the impact of the cellular milieu on small molecule inhibitor binding to Hsp90 should facilitate their more effective use in the clinic.
Collapse
Affiliation(s)
- Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Asymmetric Hsp90 N domain SUMOylation recruits Aha1 and ATP-competitive inhibitors. Mol Cell 2014; 53:317-29. [PMID: 24462205 DOI: 10.1016/j.molcel.2013.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/11/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022]
Abstract
The stability and activity of numerous signaling proteins in both normal and cancer cells depends on the dimeric molecular chaperone heat shock protein 90 (Hsp90). Hsp90's function is coupled to ATP binding and hydrolysis and requires a series of conformational changes that are regulated by cochaperones and numerous posttranslational modifications (PTMs). SUMOylation is one of the least-understood Hsp90 PTMs. Here, we show that asymmetric SUMOylation of a conserved lysine residue in the N domain of both yeast (K178) and human (K191) Hsp90 facilitates both recruitment of the adenosine triphosphatase (ATPase)-activating cochaperone Aha1 and, unexpectedly, the binding of Hsp90 inhibitors, suggesting that these drugs associate preferentially with Hsp90 proteins that are actively engaged in the chaperone cycle. Importantly, cellular transformation is accompanied by elevated steady-state N domain SUMOylation, and increased Hsp90 SUMOylation sensitizes yeast and mammalian cells to Hsp90 inhibitors, providing a mechanism to explain the sensitivity of cancer cells to these drugs.
Collapse
|
92
|
An in vivo photo-cross-linking approach reveals a homodimerization domain of Aha1 in S. cerevisiae. PLoS One 2014; 9:e89436. [PMID: 24614167 PMCID: PMC3948627 DOI: 10.1371/journal.pone.0089436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions play an essential role in almost any biological processes. Therefore, there is a particular need for methods which describe the interactions of a defined target protein in its physiological context. Here we report a method to photo-cross-link interacting proteins in S. cerevisiae by using the non-canonical amino acid p-azido-L-phenylalanine (pAzpa). Based on the expanded genetic code the photoreactive non-canonical amino acid pAzpa was site-specifically incorporated at eight positions into a domain of Aha1 that was previously described to bind Hsp90 in vitro to function as a cochaperone of Hsp90 and activates its ATPase activity. In vivo photo-cross-linking to the cognate binding partner of Aha1 was carried out by irradiation of mutant strains with UV light (365 nm) to induce covalent intermolecular bonds. Surprisingly, an interaction between Aha1 and Hsp90 was not detected, although, we could confirm binding of suppressed pAzpa containing Aha1 to Hsp90 by native co-immunoprecipitation. However, a homodimer consisting of two covalently crosslinked Aha1 monomers was identified by mass spectrometry. This homodimer could also be confirmed using p-benzoyl-L-phenylalanine, another photoreactive non-canonical amino acid. Crosslinking was highly specific as it was dependent on irradiation using UV light, the exact position of the non-canonical amino acid in the protein sequence as well as on the addition of the non-canonical amino acid to the growth medium. Therefore it seems possible that an interaction of Aha1 with Hsp90 takes place at different positions than previously described in vitro highlighting the importance of in vivo techniques to study protein-protein interactions. Accordingly, the expanded genetic code can easily be applied to other S. cerevisiae proteins to study their interaction under physiological relevant conditions in vivo.
Collapse
|
93
|
The regulatory mechanism of a client kinase controlling its own release from Hsp90 chaperone machinery through phosphorylation. Biochem J 2014; 457:171-83. [PMID: 24117238 PMCID: PMC3927929 DOI: 10.1042/bj20130963] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is believed that the stability and activity of client proteins are passively regulated by the Hsp90 (heat-shock protein 90) chaperone machinery, which is known to be modulated by its intrinsic ATPase activity, co-chaperones and post-translational modifications. However, it is unclear whether client proteins themselves participate in regulation of the chaperoning process. The present study is the first example to show that a client kinase directly regulates Hsp90 activity, which is a novel level of regulation for the Hsp90 chaperone machinery. First, we prove that PKCγ (protein kinase Cγ) is a client protein of Hsp90α, and, that by interacting with PKCγ, Hsp90α prevents PKCγ degradation and facilitates its cytosol-to-membrane translocation and activation. A threonine residue set, Thr115/Thr425/Thr603, of Hsp90α is specifically phosphorylated by PKCγ, and, more interestingly, this threonine residue set serves as a ‘phosphorylation switch’ for Hsp90α binding or release of PKCγ. Moreover, phosphorylation of Hsp90α by PKCγ decreases the binding affinity of Hsp90α towards ATP and co-chaperones such as Cdc37 (cell-division cycle 37), thereby decreasing its chaperone activity. Further investigation demonstrated that the reciprocal regulation of Hsp90α and PKCγ plays a critical role in cancer cells, and that simultaneous inhibition of PKCγ and Hsp90α synergistically prevents cell migration and promotes apoptosis in cancer cells. The present study is the first example to show that a client directly regulates Hsp90 activity, which is a novel level of regulation for the Hsp90 chaperone machinery.
Collapse
|
94
|
Toxoplasma gondii Hsp90: potential roles in essential cellular processes of the parasite. Parasitology 2014; 141:1138-47. [PMID: 24560345 DOI: 10.1017/s0031182014000055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hsp90 is a widely distributed and highly conserved molecular chaperone that is ubiquitously expressed throughout nature, being one of the most abundant proteins within non-stressed cells. This chaperone is up-regulated following stressful events and has been involved in many cellular processes. In Toxoplasma gondii, Hsp90 could be linked with many essential processes of the parasite such as host cell invasion, replication and tachyzoite-bradyzoite interconversion. A Protein-Protein Interaction (PPI) network approach of TgHsp90 has allowed inferring how these processes may be altered. In addition, data mining of T. gondii phosphoproteome and acetylome has allowed the generation of the phosphorylation and acetylation map of TgHsp90. This review focuses on the potential roles of TgHsp90 in parasite biology and the analysis of experimental data in comparison with its counterparts in yeast and humans.
Collapse
|
95
|
Abstract
SummaryFungal pathogens pose a major threat to human health worldwide. They infect billions of people each year, leading to at least 1·5 million deaths. Treatment of fungal infections is difficult due to the limited number of clinically useful antifungal drugs, and the emergence of drug resistance. A promising new strategy to enhance the efficacy of antifungal drugs and block the evolution of drug resistance is to target the molecular chaperone Hsp90. Pharmacological inhibitors of Hsp90 function that are in development as anticancer agents have potential to be repurposed as agents for combination antifungal therapy for some applications, such as biofilm infections. For systemic infections, however, effective combination therapy regimens may require Hsp90 inhibitors that can selectively target Hsp90 in the pathogen, or alternate strategies to compromise function of the Hsp90 chaperone machine. Selectively impairing Hsp90 function in the pathogen could in principle be achieved by targeting Hsp90 co-chaperones or regulators of Hsp90 function that are more divergent between pathogen and host than Hsp90. Antifungal combination therapies could also exploit downstream effectors of Hsp90 that are critical for fungal drug resistance and virulence. Here, we discuss the progress and prospects for establishing Hsp90 as an important therapeutic target for life-threatening fungal infections.
Collapse
|
96
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
97
|
Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity. Future Med Chem 2013; 5:1059-71. [PMID: 23734688 DOI: 10.4155/fmc.13.88] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hsp90 is a molecular chaperone and important driver of stabilization and activation of several oncogenic proteins that are involved in the malignant transformation of tumor cells. Therefore, it is not surprising that Hsp90 has been reported to be a promising target for the treatment of several neoplasias, such as non-small-cell lung cancer and HER2-positive breast cancer. Hsp90 chaperone function depends on its ability to bind and hydrolyze ATP and Hsp90 inhibitors have been shown to compete with nucleotides for binding to Hsp90. Multiple factors, such as co-chaperones and post-translational modification, are involved in regulating Hsp90 ATPase activity. Here, the impact of post-translational modifications and co-chaperones on the efficacy of Hsp90 inhibitors are reviewed.
Collapse
|
98
|
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
99
|
Miyata Y, Nakamoto H, Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 2013; 19:347-65. [PMID: 22920906 DOI: 10.2174/138161213804143725] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 01/22/2023]
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
100
|
Do K, Doroshow JH, Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle 2013; 12:3159-64. [PMID: 24013427 PMCID: PMC3865011 DOI: 10.4161/cc.26062] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/05/2013] [Indexed: 02/08/2023] Open
Abstract
Wee1, a protein kinase, regulates the G 2 checkpoint in response to DNA damage. Preclinical studies have elucidated the role of wee1 in DNA damage repair and the stabilization of replication forks, supporting the validity of wee1 inhibition as a viable therapeutic target in cancer. MK-1775, a selective and potent small-molecule inhibitor of wee1, is under clinical development as a potentiator of DNA damage caused by cytotoxic chemotherapies. We present a review of the role of wee1 in the cell cycle and DNA replication and summarize the clinical development to date of this novel class of anticancer agents.
Collapse
Affiliation(s)
- Khanh Do
- Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - James H Doroshow
- Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
- Division of Cancer Treatment and Diagnosis; National Cancer Institute; Bethesda, MD USA
| | - Shivaani Kummar
- Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
- Division of Cancer Treatment and Diagnosis; National Cancer Institute; Bethesda, MD USA
| |
Collapse
|