51
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
52
|
Ma Q, Hu CT, Yue J, Luo Y, Qiao F, Chen LQ, Zhang ML, Du ZY. High-carbohydrate diet promotes the adaptation to acute hypoxia in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:665-679. [PMID: 31820205 DOI: 10.1007/s10695-019-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Oxygen deprivation (hypoxia) is a common challenge in water environment, which causes lack of energy and oxidative damage in organisms. Many studies have indicated a number of physiological and metabolic changes under hypoxia, but the effects of dietary nutrients on hypoxia tolerance have not been well evaluated. In the present 7-week feeding trial, we fed zebrafish with low-protein diet (LP), high-protein diet (HP), low-fat diet (LF), high-fat diet (HF), low-carbohydrate diet (LC), and high-carbohydrate diet (HC), respectively. Afterward, the resistance to acute hypoxia challenge, growth, body composition, activities of metabolic enzymes, and expressions of energy homeostasis-related genes and six hifαs genes were measured. The results indicated that only the HC diet could significantly improve the resistance to hypoxia challenge. Moreover, the HC diet feeding caused higher glycogen deposition in the liver and muscle, and these glycogens were significantly reduced after 6-h acute hypoxia challenge. Meanwhile, the lactate content in the liver and blood was increased in the HC groups. At hypoxia status, the relative mRNA expressions of the genes related to glycolysis, ATP production, insulin signaling pathway, and hif-3a (hif1al) were all significantly increased in the muscle of the HC diet-fed fish. This study revealed that high-carbohydrate diet could improve the resistance to hypoxia by activating glycolysis and hif/insulin signaling pathway in zebrafish, mainly in the muscle, to efficiently supply energy. Therefore, our results highlight the importance of dietary carbohydrate in resisting hypoxia in fish.
Collapse
Affiliation(s)
- Qiang Ma
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Chun-Ting Hu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Junjiayu Yue
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
53
|
Cold Exposure-Induced Up-Regulation of Hsp70 Positively Regulates PEDV mRNA Synthesis and Protein Expression In Vitro. Pathogens 2020; 9:pathogens9040246. [PMID: 32224931 PMCID: PMC7237993 DOI: 10.3390/pathogens9040246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/14/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious, intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV as an emerging and re-emerging epizootic virus of swine causes substantial economic losses to the pig industry in China and other countries. In China, the occurrence of PED shows significant seasonal variations, usually outbreak during the winter season. The epidemic characteristics of PED may be highly correlated with the changes of ambient temperature. However, molecular mechanism on the seasonal occurrence of PED still remains unclear. It has been widely observed that low ambient temperature up-regulates the expression of host heat shock protein 70 (Hsp70). Here, we showed that nucleotide and protein levels of Hsp70 were up-regulated in the intestinal of cold exposed pig and cold exposed Vero E6 cells. We found that overexpression of Hsp70 could increase PEDV mRNA synthesis and protein expression in Vero E6 and IPEC-J2 cells, while the siRNAs mediated knockdown of Hsp70 and VER155008 mediated inhibition of Hsp70 resulted in inhibition of viral mRNA synthesis and protein expression in Vero E6 cells. These data suggested that Hsp70 positively regulated PEDV mRNA synthesis and protein expression, which being helpful for understanding the seasonality of PED epidemics and development of novel antiviral therapies in the future.
Collapse
|
54
|
Zhang WY, Storey KB, Dong YW. Adaptations to the mudflat: Insights from physiological and transcriptional responses to thermal stress in a burrowing bivalve Sinonovacula constricta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136280. [PMID: 31911257 DOI: 10.1016/j.scitotenv.2019.136280] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Understanding physiological adaptations of organisms to temperature changes that characterize their habitat is the first step in predicting the putative effects of global climate change on population dynamics. Mudflats are an important part of the intertidal zone and experience extreme and fluctuating temperatures. Therein, species would be potentially susceptible to global warming. The present study explored physiological adaptations of burrowing species to life in an intertidal mudflat by analyzing the potential operative temperatures in the mudflat, and assessing cardiac performance and the transcriptional response to thermal stress by a typical burrowing bivalve, the razor clam Sinonovacula constricta in different thermal environments, mimicking conditions during low tides. Clams showed higher thermal sublethal limits in mud with overlying air than in mud with overlying water, indicating an adaptation to rapidly changing ambient temperatures and thermal environments during emersion. This sublethal limit was far above the maximum operative temperature in the actual habitat site and suggests a potential buffer zone to ensure survival under unexpected high temperatures, that could occur with global warming. In response to high temperature, S. constricta exhibited the common heat stress response by up-regulating expression of the Bcl2-associated athanogene 3 (BAG3) and heat shock proteins to cope with the adverse effects of high temperature on protein homeostasis. Increased expression of key genes, including molybdenum cofactor synthesis 3 (MOCS3), oligoribonuclease (REX2), and NFκappaB inhibitor alpha (NFIA) may further remit the effect of thermal stress during the emersion period and delay a situation where clams reach their thermal sublethal limit, thereby helping to endure high temperature during low tide. These results clearly illustrate significant adaptations of a burrowing bivalve to life in intertidal mudflats at both physiological and molecular levels and can provide insights into potential physiological or evolutionary responses that could aid survival of mudflat species in a changing global climate.
Collapse
Affiliation(s)
- Wen-Yi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
55
|
Kassem MM, Muqri F, Dacosta M, Bruch D, Gahtan V, Maier KG. Inhibition of heat shock protein 90 attenuates post‑angioplasty intimal hyperplasia. Mol Med Rep 2020; 21:1959-1964. [PMID: 32319637 DOI: 10.3892/mmr.2020.10994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 11/05/2022] Open
Abstract
Intimal hyperplasia (IH) is a pathologic process that leads to restenosis after treatment for peripheral arterial disease. Heat shock protein 90 (HSP90) is a molecular chaperone that regulates protein maturation. Activation of HSP90 results in increased cell migration and proliferation. 17‑N‑allylamino‑17‑demethoxygeldanamycin (17‑AAG) and 17‑dimethylaminoethylamino‑17‑demethoxygeldanamycin (17‑DMAG) are low toxicity Food and Drug Association approved HSP90 inhibitors. The current study hypothesized that HSP90 inhibition was predicted to reduce vascular smooth muscle cell (VSMC) migration and proliferation. In addition, localized HSP90 inhibition may inhibit post‑angioplasty IH formation. For proliferation, VSMCs were treated with serum‑free media (SFM), 17‑DMAG or 17‑AAG. The selected proliferative agents were SFM, platelet derived growth factor (PDGF) or fibronectin. After three days, proliferation was measured. For migration, VSMCs were treated with SFM, 17‑AAG or 17‑DMAG with SFM, PDGF or fibronectin as chemoattractants. Balloon injury to the carotid artery was performed in rats. The groups included in the present study were the control, saline control, 17‑DMAG in 20% pluronic gel delivered topically to the adventitia or intraluminal delivery of 17‑DMAG. After 14 days, arteries were fixed and sectioned for morphometric analysis. Data was analyzed using ANOVA or a student's t‑test. P<0.05 was considered to indicate a statistically significant difference. The results revealed that 17‑AAG and 17‑DMAG had no effect on cell viability. PDGF and fibronectin also increased VSMC proliferation and migration. Furthermore, both 17‑AAG and 17‑DMAG decreased cell migration and proliferation in all agonists. Topical adventitial treatment with 17‑DMAG after balloon arterial injury reduced IH. HSP90 inhibitors suppressed VSMC proliferation and migration without affecting cell viability. Topical treatment with a HSP90 inhibitor (DMAG) decreased IH formation after arterial injury. It was concluded that 17‑DMAG may be utilized as an effective therapy to prevent restenosis after revascularization.
Collapse
Affiliation(s)
- Mohammed M Kassem
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Furqan Muqri
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mary Dacosta
- College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - David Bruch
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vivian Gahtan
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kristopher G Maier
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
56
|
Chang X, Shi X, Zhang X, Chen J, Fan X, Yang Y, Wang L, Wang A, Deng R, Zhou E, Zhang G. miR-382-5p promotes porcine reproductive and respiratory syndrome virus (PRRSV) replication by negatively regulating the induction of type I interferon. FASEB J 2020; 34:4497-4511. [PMID: 32037657 DOI: 10.1096/fj.201902031rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have indicated that inhibition of type I interferon production may be an important reason for porcine reproductive and respiratory syndrome virus (PRRSV) to achieve immune escape, revealing the mechanism of inhibiting the production of type I interferon will help design novel strategies for controlling PRRS. Here, we found that PRRSV infection upregulated the expression of miR-382-5p, which in turn inhibited polyI:C-induced the production of type I interferon by targeting heat shock protein 60 (HSP60), thus facilitating PRRSV replication in MARC-145 cells. Furthermore, we found that HSP60 could interact with mitochondrial antiviral signaling protein (MAVS), an important signal transduction protein for inducing production of type I interferon, and promote polyI:C-mediated the production of type I interferon in a MAVS-dependent manner. Finally, we also found that HSP60 could inhibit PRRSV replication in a MAVS-dependent manner, which indicated that HSP60 was a novel antiviral protein against PRRSV replication. In conclusion, the study demonstrated that miR-382-5p was upregulated during PRRSV infection and may promote PRRSV replication by negatively regulating the production of type I interferon, which also indicated that miR-382-5p and HSP60 might be the potential therapeutic targets for anti-PRRSV.
Collapse
Affiliation(s)
- Xiaobo Chang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaomin Fan
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Department of Bioengineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
57
|
Li H, Zhu H, Sarbeng EB, Liu Q, Tian X, Yang Y, Lyons C, Zhou L, Liu Q. An unexpected second binding site for polypeptide substrates is essential for Hsp70 chaperone activity. J Biol Chem 2019; 295:584-596. [PMID: 31806707 DOI: 10.1074/jbc.ra119.009686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins of 70 kDa (Hsp70s) are ubiquitous and highly conserved molecular chaperones. They play multiple essential roles in assisting with protein folding and maintaining protein homeostasis. Their chaperone activity has been proposed to require several rounds of binding to and release of polypeptide substrates at the substrate-binding domain (SBD) of Hsp70s. All available structures have revealed a single substrate-binding site in the SBD that binds a single segment of an extended polypeptide of 3-4 residues. However, this well-established single peptide-binding site alone has made it difficult to explain the efficient chaperone activity of Hsp70s. In this study, using purified proteins and site-directed mutagenesis, along with fluorescence polarization and luciferase-refolding assays, we report the unexpected discovery of a second peptide-binding site in Hsp70s. More importantly, the biochemical analyses suggested that this novel binding site, named here P2, is essential for Hsp70 chaperone activity. Furthermore, cross-linking and mutagenesis studies indicated that this second binding site is in the SBD adjacent to the first binding site. Taken together, our results suggest that these two essential binding sites of Hsp70s cooperate in protein folding.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Huanyu Zhu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Evans Boateng Sarbeng
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qingdai Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xueli Tian
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ying Yang
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Charles Lyons
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
58
|
Day J, Passecker A, Beck HP, Vakonakis I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. FASEB J 2019; 33:14611-14624. [PMID: 31690116 PMCID: PMC6894070 DOI: 10.1096/fj.201901741r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 01/25/2023]
Abstract
Plasmodium falciparum is the most lethal of human-infective malaria parasites. A hallmark of P. falciparum malaria is extensive remodeling of host erythrocytes by the parasite, which facilitates the development of virulence properties such as host cell adhesion to the endothelial lining of the microvasculature. Host remodeling is mediated by a large complement of parasite proteins exported to the erythrocyte; among them is a single heat shock protein (Hsp)70-class protein chaperone, P. falciparum Hsp70-x (PfHsp70-x). PfHsp70-x was previously shown to assist the development of virulent cytoadherence characteristics. Here, we show that PfHsp70-x also supports parasite growth under elevated temperature conditions that simulate febrile episodes, especially at the beginning of the parasite life cycle when most of host cell remodeling takes place. Biochemical and biophysical analyses of PfHsp70-x, including crystallographic structures of its catalytic domain and the J-domain of its stimulatory Hsp40 cochaperone, suggest that PfHsp70-x is highly similar to human Hsp70 chaperones endogenous to the erythrocyte. Nevertheless, our results indicate that selective inhibition of PfHsp70-x function using small molecules may be possible and highlight specific sites of its catalytic domain as potentially of high interest. We discuss the likely roles of PfHsp70-x and human chaperones in P. falciparum biology and how specific inhibitors may assist us in disentangling their relative contributions.-Day, J., Passecker, A., Beck, H.-P., Vakonakis, I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite.
Collapse
Affiliation(s)
- Jemma Day
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Armin Passecker
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
59
|
Nagaraju M, Reddy PS, Kumar SA, Kumar A, Rajasheker G, Rao DM, Kavi Kishor PB. Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). Int J Biol Macromol 2019; 142:822-834. [PMID: 31622710 DOI: 10.1016/j.ijbiomac.2019.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
The small heat shock proteins (sHsps/Hsp20s) are the molecular chaperones that maintain proper folding, trafficking and disaggregation of proteins under diverse abiotic stress conditions. In the present investigation, a genome-wide scan revealed the presence of a total of 47 sHsps in Sorghum bicolor (SbsHsps), distributed across 10 subfamilies, the major subfamily being P (plastid) group with 17 genes. Chromosomes 1 and 3 appear as the hot spot regions for SbsHsps, and majority of them were found acidic, hydrophilic, unstable and intron less. Interestingly, promoter analysis indicated that they are associated with both biotic and abiotic stresses, as well as plant development. Sorghum sHsps exhibited 15 paralogous and 20 orthologous duplications. Expression analysis of 15 genes selected from different subfamilies showed high transcript levels in roots and leaves implying that they are likely to participate in the developmental processes. SbsHsp genes were highly induced by diverse abiotic stresses inferring their critical role in mediating the environmental stress responses. Gene expression data revealed that SbsHsp-02 is a candidate gene expressed in all the tissues under varied stress conditions tested. Our results contribute to the understanding of the complexity of SbsHsp genes and help to analyse them further for functional validation.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad 500 007, India; Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad 500 007, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun 248 007, India
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
60
|
Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2019; 29:378-390. [PMID: 31509306 DOI: 10.1002/pro.3725] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Ce Liang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
61
|
The Link That Binds: The Linker of Hsp70 as a Helm of the Protein's Function. Biomolecules 2019; 9:biom9100543. [PMID: 31569820 PMCID: PMC6843406 DOI: 10.3390/biom9100543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022] Open
Abstract
The heat shock 70 (Hsp70) family of molecular chaperones plays a central role in maintaining cellular proteostasis. Structurally, Hsp70s are composed of an N-terminal nucleotide binding domain (NBD) which exhibits ATPase activity, and a C-terminal substrate binding domain (SBD). The binding of ATP at the NBD and its subsequent hydrolysis influences the substrate binding affinity of the SBD through allostery. Similarly, peptide binding at the C-terminal SBD stimulates ATP hydrolysis by the N-terminal NBD. Interdomain communication between the NBD and SBD is facilitated by a conserved linker segment. Hsp70s form two main subgroups. Canonical Hsp70 members generally suppress protein aggregation and are also capable of refolding misfolded proteins. Hsp110 members are characterized by an extended lid segment and their function tends to be largely restricted to suppression of protein aggregation. In addition, the latter serve as nucleotide exchange factors (NEFs) of canonical Hsp70s. The linker of the Hsp110 family is less conserved compared to that of the canonical Hsp70 group. In addition, the linker plays a crucial role in defining the functional features of these two groups of Hsp70. Generally, the linker of Hsp70 is quite small and varies in size from seven to thirteen residues. Due to its small size, any sequence variation that Hsp70 exhibits in this motif has a major and unique influence on the function of the protein. Based on sequence data, we observed that canonical Hsp70s possess a linker that is distinct from similar segments present in Hsp110 proteins. In addition, Hsp110 linker motifs from various genera are distinct suggesting that their unique features regulate the flexibility with which the NBD and SBD of these proteins communicate via allostery. The Hsp70 linker modulates various structure-function features of Hsp70 such as its global conformation, affinity for peptide substrate and interaction with co-chaperones. The current review discusses how the unique features of the Hsp70 linker accounts for the functional specialization of this group of molecular chaperones.
Collapse
|
62
|
He L, Hiller S. Frustrated Interfaces Facilitate Dynamic Interactions between Native Client Proteins and Holdase Chaperones. Chembiochem 2019; 20:2803-2806. [PMID: 31063619 DOI: 10.1002/cbic.201900215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Lichun He
- Wuhan Institute of Physics and MathematicsChinese Academy of Sciences West No. 30 Xiao Hong Shan Wuhan 430071 P.R. China
| | - Sebastian Hiller
- BiozentrumUniversity of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
63
|
Chakafana G, Zininga T, Shonhai A. Comparative structure-function features of Hsp70s of Plasmodium falciparum and human origins. Biophys Rev 2019; 11:591-602. [PMID: 31280465 PMCID: PMC6682331 DOI: 10.1007/s12551-019-00563-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023] Open
Abstract
The heat shock protein 70 (Hsp70) family of molecular chaperones are crucial for the survival and pathogenicity of the main agent of malaria, Plasmodium falciparum. Hsp70 is central to cellular proteostasis and some of its isoforms are essential for survival of the malaria parasite. In addition, they are also implicated in the development of antimalarial drug resistance. For these reasons, they are thought to be potential drug targets, especially in antimalarial combination therapies. However, their high sequence conservation across species presents a hurdle with respect to their selective targeting. The human genome encodes 17 Hsp70 isoforms while P. falciparum encodes for only 6. The structural architecture of Hsp70s is typically characterized by a highly conserved N-terminal nucleotide-binding domain (NBD) and a less conserved C-terminal substrate-binding domain (SBD). The two domains are connected by a highly conserved linker. In spite of their fairly high sequence conservation, Hsp70s from various species possess unique signature motifs that appear to uniquely influence their function. In addition, their cooperation with co-chaperones further regulates their functional specificity. In the current review, bioinformatics tools were used to identify conserved and unique signature motifs in Hsp70s of P. falciparum versus their human counterparts. We discuss the common and distinctive structure-function features of these proteins. This information is important towards elucidating the prospects of selective targeting of parasite heat shock proteins as part of antimalarial design efforts.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
64
|
Description of strongly heat-inducible heat shock protein 70 transcripts from Baikal endemic amphipods. Sci Rep 2019; 9:8907. [PMID: 31222132 PMCID: PMC6586656 DOI: 10.1038/s41598-019-45193-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins/cognates 70 are chaperones essential for proper protein folding. This protein family comprises inducible members (Hsp70s) with expression triggered by the increased concentration of misfolded proteins due to protein-destabilizing conditions, as well as constitutively expressed cognate members (Hsc70s). Previous works on non-model amphipod species Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, both endemic to Lake Baikal in Eastern Siberia, have only revealed a constitutively expressed form, expression of which was moderately further induced by protein-destabilizing conditions. Here we describe heat-inducible hsp70s in these species. Contrary to the common approach of using sequence similarity with hsp/hsc70 of a wide spectrum of organisms and some characteristic features, such as absence of introns within genes and presence of heat shock elements in their promoter areas, the present study is based on next-generation sequencing for the studied or related species followed by differential expression analysis, quantitative PCR validation and detailed investigation of the predicted polypeptide sequences. This approach allowed us to describe a novel type of hsp70 transcripts that overexpress in response to heat shock. Moreover, we propose diagnostic sequence features of this Hsp70 type for amphipods. Phylogenetic comparisons with different types of Hsp/Hsc70s allowed us to suggest that the hsp/hsc70 gene family in Amphipoda diversified into cognate and heat-inducible paralogs independently from other crustaceans. Thus, the cognate and inducible hsp70 types in distant taxa may not be recognized by sequence similarity.
Collapse
|
65
|
de Luna-Valdez LA, Villaseñor-Salmerón CI, Cordoba E, Vera-Estrella R, León-Mejía P, Guevara-García AA. Functional analysis of the Chloroplast GrpE (CGE) proteins from Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:293-306. [PMID: 30927692 DOI: 10.1016/j.plaphy.2019.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
The function of proteins depends on specific partners that regulate protein folding, degradation and protein-protein interactions, such partners are the chaperones and cochaperones. In chloroplasts, proteins belonging to several families of chaperones have been identified: chaperonins (Cpn60s), Hsp90s (Hsp90-5/Hsp90C), Hsp100s (Hsp93/ClpC) and Hsp70s (cpHsc70s). Several lines of evidence have demonstrated that cpHsc70 chaperones are involved in molecular processes like protein import, protein folding and oligomer formation that impact important physiological aspects in plants such as thermotolerance and thylakoid biogenesis. Despite the vast amount of data existing around the function of cpHcp70s chaperones, very little attention has been paid to the roles of DnaJ and GrpE cochaperones in the chloroplast. In this study, we performed a phylogenetic analysis of the chloroplastic GrpE (CGE) proteins from 71 species. Based on their phylogenetic relationships and on a motif enrichment analysis, we propose a classification system for land plants' CGEs, which include two independent groups with specific primary structure traits. Furthermore, using in vivo assays we determined that the two CGEs from A. thaliana (AtCGEs) complement the mutant phenotype displayed by a knockout E. coli strain defective in the bacterial grpE gene. Moreover, we determined in planta that the two AtCGEs are bona fide chloroplastic proteins, which form the essential homodimers needed to establish direct physical interactions with the cpHsc70-1 chaperone. Finally, we found evidence suggesting that AtCGE1 is involved in specific physiological phenomena in A. thaliana, such as the chloroplastic response to heat stress, and the correct oligomerization of the photosynthesis-related LHCII complex.
Collapse
Affiliation(s)
- L A de Luna-Valdez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - C I Villaseñor-Salmerón
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - E Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - R Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - P León-Mejía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - A A Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
66
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol Biol 2019. [DOI: 10.1134/s0026893319020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Tiroli-Cepeda AO, Seraphim TV, Pinheiro GM, Souto DE, Kubota LT, Borges JC, Barbosa LR, Ramos CH. Studies on the effect of the J-domain on the substrate binding domain (SBD) of Hsp70 using a chimeric human J-SBD polypeptide. Int J Biol Macromol 2019; 124:111-120. [DOI: 10.1016/j.ijbiomac.2018.11.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
68
|
Farahtaj F, Alizadeh L, Gholami A, Tahamtan A, Shirian S, Fazeli M, Nejad ASM, Gorji A, Niknam HM, Ghaemi A. Natural Infection with Rabies Virus: A Histopathological and Immunohistochemical Study of Human Brains. Osong Public Health Res Perspect 2019; 10:6-11. [PMID: 30847265 PMCID: PMC6396821 DOI: 10.24171/j.phrp.2019.10.1.03] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objectives Despite all the efforts and increased knowledge of rabies, the exact mechanisms of infection and mortality from the rabies virus are not well understood. To understand the mechanisms underlying the pathogenicity of rabies virus infection, it is crucial to study the tissue that the rabies virus naturally infects in humans. Methods Cerebellum brain tissue from 9 human post mortem cases from Iran, who had been infected with rabies virus, were examined histopathologically and immunohistochemically to evaluate the innate immune responses against the rabies virus. Results Histopathological examination revealed inflammation of the infected cerebellum and immunohistochemical analyses showed an increased immunoreactivity of heat shock protein 70, interleukin-6, interleukin-1, tumor necrosis factor-alpha, caspase-3, caspase-9, toll-like receptor3 and toll-like receptor4 in the infected brain tissue. Conclusion These results indicated the involvement of innate immunity in rabies infected human brain tissue, which may aggravate the progression of this deadly disease.
Collapse
Affiliation(s)
- Firouzeh Farahtaj
- Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Alireza Gholami
- Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Tahamtan
- Department of Virology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Maryam Fazeli
- Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Sasan Mozaffari Nejad
- Molecular Research Center, Student Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neurosurgery and Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
69
|
Modulation of Human Hsp90α Conformational Dynamics by Allosteric Ligand Interaction at the C-Terminal Domain. Sci Rep 2019; 9:1600. [PMID: 30733455 PMCID: PMC6367426 DOI: 10.1038/s41598-018-35835-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Recent years have seen heat shock protein 90 kDa (Hsp90) attract significant interest as a viable drug target, particularly for cancer. To date, designed inhibitors that target the ATPase domain demonstrate potent anti-proliferative effects, but have failed clinical trials due to high levels of associated toxicity. To circumvent this, the focus has shifted away from the ATPase domain. One option involves modulation of the protein through allosteric activation/inhibition. Here, we propose a novel approach: we use previously obtained information via residue perturbation scanning coupled with dynamic residue network analysis to identify allosteric drug targeting sites for inhibitor docking. We probe the open conformation of human Hsp90α for druggable sites that overlap with these allosteric control elements, and identify three putative natural compound allosteric modulators: Cephalostatin 17, 20(29)-Lupene-3β-isoferulate and 3'-Bromorubrolide F. We assess the allosteric potential of these ligands by examining their effect on the conformational dynamics of the protein. We find evidence for the selective allosteric activation and inhibition of Hsp90's conformational transition toward the closed state in response to ligand binding and shed valuable insight to further the understanding of allosteric drug design and Hsp90's complex allosteric mechanism of action.
Collapse
|
70
|
Sager RA, Woodford MR, Backe SJ, Makedon AM, Baker-Williams AJ, DiGregorio BT, Loiselle DR, Haystead TA, Zachara NE, Prodromou C, Bourboulia D, Schmidt LS, Linehan WM, Bratslavsky G, Mollapour M. Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90. Cell Rep 2019; 26:1344-1356.e5. [PMID: 30699359 PMCID: PMC6370319 DOI: 10.1016/j.celrep.2019.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone Hsp90 stabilizes and activates client proteins. Co-chaperones and post-translational modifications tightly regulate Hsp90 function and consequently lead to activation of clients. However, it is unclear whether this process occurs abruptly or gradually in the cellular context. We show that casein kinase-2 phosphorylation of the co-chaperone folliculin-interacting protein 1 (FNIP1) on priming serine-938 and subsequent relay phosphorylation on serine-939, 941, 946, and 948 promotes its gradual interaction with Hsp90. This leads to incremental inhibition of Hsp90 ATPase activity and gradual activation of both kinase and non-kinase clients. We further demonstrate that serine/threonine protein phosphatase 5 (PP5) dephosphorylates FNIP1, allowing the addition of O-GlcNAc (O-linked N-acetylglucosamine) to the priming serine-938. This process antagonizes phosphorylation of FNIP1, preventing its interaction with Hsp90, and consequently promotes FNIP1 lysine-1119 ubiquitination and proteasomal degradation. These findings provide a mechanism for gradual activation of the client proteins through intricate crosstalk of post-translational modifications of the co-chaperone FNIP1.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bryanna T DiGregorio
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Laura S Schmidt
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
71
|
Liu Y, Jovcevski B, Pukala TL. C-Phycocyanin from Spirulina Inhibits α-Synuclein and Amyloid-β Fibril Formation but Not Amorphous Aggregation. JOURNAL OF NATURAL PRODUCTS 2019; 82:66-73. [PMID: 30620188 DOI: 10.1021/acs.jnatprod.8b00610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proteinopathies including cataracts and neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are characterized by a series of aberrant protein folding events, resulting in amorphous aggregate or amyloid fibril formation. In the latter case, research has heavily focused on the development of small-molecule inhibitors with limited success during clinical trials. However, very few studies have focused on utilizing exogenous proteins as potential aggregation inhibitors. C-Phycocyanin, derived from Spirulina sp., has been known to exert anti-inflammatory properties; however, the ability of C-phycocyanin to inhibit protein aggregation has yet to be investigated. We have demonstrated that C-phycocyanin is an effective inhibitor of A53Tα-synuclein at extremely low substoichiometric ratios (200-fold excess of α-synuclein) and Aβ40/42 fibril formation. However, C-phycocyanin is relatively ineffective in inhibiting the reduction-induced amorphous aggregation of ADH and heat-induced aggregation of catalase. In addition, 2D NMR, ion mobility-mass spectrometry, and analytical-SEC demonstrate that the interaction between C-phycocyanin and α-synuclein is through nonstable interactions, indicating that transient interactions are likely to be responsible for preventing fibril formation. Overall, this work highlights how biomolecules from natural sources could be used to aid in the development of therapeutics to combat protein misfolding diseases.
Collapse
Affiliation(s)
- Yanqin Liu
- The School of Technology , Hebei Agricultural University , Cangzhou , Hebei 061100 , People's Republic of China
- The School of Physical Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Blagojce Jovcevski
- The School of Physical Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Tara L Pukala
- The School of Physical Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
72
|
Galigniana MD. HSP90-Based Heterocomplex as Essential Regulator for Cancer Disease. HEAT SHOCK PROTEINS 2019:19-45. [DOI: 10.1007/978-3-030-23158-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
73
|
Xu T, Lin Z, Wang C, Li Y, Xia Y, Zhao M, Hua L, Chen Y, Guo M, Zhu B. Heat shock protein 70 as a supplementary receptor facilitates enterovirus 71 infections in vitro. Microb Pathog 2018; 128:106-111. [PMID: 30579945 DOI: 10.1016/j.micpath.2018.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
As one of the major causative agents of hand, foot and mouth disease (HFMD), enterovirus 71 (EV71) is a small, non-enveloped positive stranded RNA virus. Children suffering EV71 infection may cause severe symptoms including neurological complications, pulmonary edema and aseptic meningitis. EV71 is a neurotropic virus and it can cause the damage of nervous cells, cytokine storm and toxic substance. Identifying the factors that mediate viral binding or entry to host cells is important to uncover the mechanisms which viruses utilize to cause diseases in human body. Heat shock protein 70 (HSP70) is induced during virus infection and facilitates proper protein folding during viral propagation. The role that HSP70 plays during EV71 infection is still unclear. In this study, siRNA interference technique and transgenic technique were used to investigate the interaction between HSP70 and EV71 virus. The result demonstrated that the cell surface HSP70 is not essential for EV71 infection but helps the initial binding of virus to host cells and that multiple receptors are involved during EV71 infection. In addition, HSP70 was upregulated in human neuroblastoma cells (SK-N-SH) infected with EV71.
Collapse
Affiliation(s)
- Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yu Xia
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Liang Hua
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yi Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Min Guo
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
74
|
Morán Luengo T, Mayer MP, Rüdiger SGD. The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends Cell Biol 2018; 29:164-177. [PMID: 30502916 DOI: 10.1016/j.tcb.2018.10.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Conserved families of molecular chaperones assist protein folding in the cell. Here we review the conceptual advances on three major folding routes: (i) spontaneous, chaperone-independent folding; (ii) folding assisted by repetitive Hsp70 cycles; and (iii) folding by the Hsp70-Hsp90 cascades. These chaperones prepare their protein clients for folding on their own, without altering their folding path. A particularly interesting role is reserved for Hsp90. The function of Hsp90 in folding is its ancient function downstream of Hsp70, free of cochaperone regulation and present in all kingdoms of life. Eukaryotic signalling networks, however, embrace Hsp90 by a plethora of cochaperones, transforming the profolding machinery to a folding-on-demand factor. We discuss implications for biology and molecular medicine.
Collapse
Affiliation(s)
- Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
75
|
Abstract
Protein homeostasis, or proteostasis, is required for proper cell function and thus must be
under tight maintenance in all circumstances. In crowded cell conditions, protein folding is sometimes
unfavorable, and this condition is worsened during stress situations. Cells cope with such stress
through the use of a Protein Quality Control system, which uses molecular chaperones and heat shock
proteins as its major players. This system aids with folding, avoiding misfolding and/or reversing aggregation.
A pivotal regulator of the response to heat stress is Heat Shock Factor, which is recruited to
the promoters of the chaperone genes, inducting their expression. This mini review aims to cover our
general knowledge on the structure and function of this factor.
Collapse
Affiliation(s)
- Natália Galdi Quel
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Carlos H.I. Ramos
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
76
|
Genest O, Wickner S, Doyle SM. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J Biol Chem 2018; 294:2109-2120. [PMID: 30401745 DOI: 10.1074/jbc.rev118.002806] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.
Collapse
Affiliation(s)
- Olivier Genest
- From the Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille, France and
| | - Sue Wickner
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shannon M Doyle
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
77
|
Hupało K, Riss HW, Grabowski M, Thiel J, Bącela-Spychalska K, Meyer EI. Climate change as a possible driver of invasion and differential in HSP70 expression in two genetically distinct populations of the invasive killer shrimp, Dikerogammarus villosus. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1679-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractGlobal climate change is known to affect physiological processes in charge of cellular stress response. That often results in forcing many organisms to shift their biogeographic distribution ranges. It also holds true for euryoecious and highly invasive species like the killer shrimp, Dikerogammarus villosus. In this study we compare the level of response to thermal stress in two genetically diversified populations of the amphipod D. villosus on the cellular level, namely HSP70 expression. The results show clear difference in HSP70 expression, that can be a direct consequence of the different climatic conditions both populations faced along their invasion routes. We conclude that the eastern population of D. villosus is more sensitive to thermal stress than the western population, hence its invasion potential may be lower than that of the latter. Considering the thermal tolerance of both populations and global warming, we can make some predictions about further spread of D. villosus, including the possibility of an emergence of the super-invader that may arise after cross-breeding of both populations, imposing even larger threat to the freshwater ecosystems.
Collapse
|
78
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
79
|
Radli M, Rüdiger SGD. Dancing with the Diva: Hsp90-Client Interactions. J Mol Biol 2018; 430:3029-3040. [PMID: 29782836 DOI: 10.1016/j.jmb.2018.05.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Abstract
The molecular chaperone Hsp90 is involved in the folding, maturation, and degradation of a large number structurally and sequentially unrelated clients, often connected to serious diseases. Elucidating the principles of how Hsp90 recognizes this large variety of substrates is essential for comprehending the mechanism of this chaperone machinery, as well as it is a prerequisite for the design of client specific drugs targeting Hsp90. Here, we discuss the recent progress in understanding the substrate recognition principles of Hsp90 and its implications for the role of Hsp90 in the lifecycle of proteins. Hsp90 acts downstream of the chaperone Hsp70, which exposes its substrate to a short and highly hydrophobic cleft. The subsequently acting Hsp90 has an extended client-binding interface that enables a large number of low-affinity contacts. Structural studies show interaction modes of Hsp90 with the intrinsically disordered Alzheimer's disease-causing protein Tau, the kinase Cdk4 in a partially unfolded state and the folded ligand-binding domain of a steroid receptor. Comparing the features shared by these different proteins provides a picture of the substrate-binding principles of Hsp90.
Collapse
Affiliation(s)
- Martina Radli
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
80
|
Li T, Jiang HL, Tong YG, Lu JJ. Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery. J Hematol Oncol 2018; 11:59. [PMID: 29699578 PMCID: PMC5921262 DOI: 10.1186/s13045-018-0602-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a critical molecular chaperone protein that regulates the folding, maturation, and stability of a wide variety of proteins. In recent years, the development of Hsp90-directed inhibitors has grown rapidly, and many of these inhibitors have entered clinical trials. In parallel, the functional dissection of the Hsp90 chaperone machinery has highlighted the activity disruption of Hsp90 co-chaperone as a potential target. With the roles of Hsp90 co-chaperones being elucidated, cell division cycle 37 (Cdc37), a ubiquitous co-chaperone of Hsp90 that directs the selective client proteins into the Hsp90 chaperone cycle, shows great promise. Moreover, the Hsp90-Cdc37-client interaction contributes to the regulation of cellular response and cellular growth and is more essential to tumor tissues than normal tissues. Herein, we discuss the current understanding of the clients of Hsp90-Cdc37, the interaction of Hsp90-Cdc37-client protein, and the therapeutic possibilities of targeting Hsp90-Cdc37-client protein interaction as a strategy to inhibit Hsp90 chaperone machinery to present new insights on alternative ways of inhibiting Hsp90 chaperone machinery.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yun-Guang Tong
- Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.,Omigen, Inc., 15375 Barranca Pkwy, Irvine, CA, H106, USA
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China.
| |
Collapse
|
81
|
Wang X, Cao X, Liu M, Zhang R, Zhang X, Gao Z, Zhao X, Xu K, Li D, Zhang Y. Hsc70-2 is required for Beet black scorch virus infection through interaction with replication and capsid proteins. Sci Rep 2018; 8:4526. [PMID: 29540800 PMCID: PMC5852052 DOI: 10.1038/s41598-018-22778-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/27/2018] [Indexed: 11/09/2022] Open
Abstract
Dissecting the complex molecular interplay between the host plant and invading virus improves our understanding of the mechanisms underlying viral pathogenesis. In this study, immunoprecipitation together with the mass spectrometry analysis revealed that the heat shock protein 70 (Hsp70) family homolog, Hsc70-2, was co-purified with beet black scorch virus (BBSV) replication protein p23 and coat protein (CP), respectively. Further experiments demonstrated that Hsc70-2 interacts directly with both p23 and CP, whereas there is no interaction between p23 and CP. Hsc70-2 expression is induced slightly during BBSV infection of Nicotiana benthamiana, and overexpression of Hsc70-2 promotes BBSV accumulation, while knockdown of Hsc70-2 in N. benthamiana leads to drastic reduction of BBSV accumulation. Infection experiments revealed that CP negatively regulates BBSV replication, which can be mitigated by overexpression of Hsc70-2. Further experiments indicate that CP impairs the interaction between Hsc70-2 and p23 in a dose-dependent manner. Altogether, we provide evidence that besides specific functions of Hsp70 family proteins in certain aspects of viral infection, they can serve as a mediator for the orchestration of virus infection by interacting with different viral components. Our results provide new insight into the role of Hsp70 family proteins in virus infection.
Collapse
Affiliation(s)
- Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiuling Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Min Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Ruiqi Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Zongyu Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
82
|
Imamoto N. Heat stress-induced nuclear transport mediated by Hikeshi confers nuclear function of Hsp70s. Curr Opin Cell Biol 2018; 52:82-87. [PMID: 29490261 DOI: 10.1016/j.ceb.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Abstract
The prime feature of eukaryotic cells is the separation of the intracellular space into two compartments, the nucleus and the cytoplasm. Active nuclear transport is crucial for the maintenance of this separation. In this report, we focus on a nuclear transport receptor named Hikeshi, which mediates the heat stress-induced nuclear import of 70-kDa heat shock proteins (Hsp70s), and discuss how the same protein can function differently depending on the cellular compartment in which it is localized. Hsp70 is a molecular chaperone that is predominantly localized in the cytoplasm under normal conditions but is known to accumulate in the nucleus under conditions of heat stress. Although the reported function of Hsp70 is mostly attributed to its molecular function in the cytoplasm, the functions of Hsp70 may extend beyond molecular chaperone activity in the nucleus.
Collapse
Affiliation(s)
- Naoko Imamoto
- Cellular Dynamics Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
83
|
Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
84
|
Kelbauskas L, Shetty R, Cao B, Wang KC, Smith D, Wang H, Chao SH, Gangaraju S, Ashcroft B, Kritzer M, Glenn H, Johnson RH, Meldrum DR. Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells. SCIENCE ADVANCES 2017; 3:e1602580. [PMID: 29226240 PMCID: PMC5721812 DOI: 10.1126/sciadv.1602580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 05/24/2023]
Abstract
Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field.
Collapse
Affiliation(s)
- Laimonas Kelbauskas
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Rishabh Shetty
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Bin Cao
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Kuo-Chen Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Dean Smith
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Hong Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Shi-Hui Chao
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Sandhya Gangaraju
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Brian Ashcroft
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Margaret Kritzer
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Honor Glenn
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
85
|
Jahangirizadeh Z, Ghafouri H, Sajedi RH, Sarikhan S, Taghdir M, Sariri R. Molecular cloning, prokaryotic expression, purification, structural studies and functional implications of Heat Shock Protein 70 (Hsp70) from Rutilus frisii kutum. Int J Biol Macromol 2017; 108:798-807. [PMID: 29107750 DOI: 10.1016/j.ijbiomac.2017.10.174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
A novel Hsp70 chaperone from Rutilus frisii kutum was identified, cloned, expressed, purified and its functional characteristics revealed. The 3D structure of Hsp70 from Rutilus kutum was constructed using the crystal structure of E. coli Hsp70 as the template, with 47% sequence identity. The in vitro ATPase activity assay after 60min, ATP hydrolysis of purified recombinant Hsp70 (8μM) was improved by binding to denatured thermally luciferase (3μM) about 2.5-fold compared with that of Hsp70 alone. Based on the results, it was found that the purified Hsp70 chaperone was able to considerably suppress heat-induced aggregation of luciferase by binding to DnaJ co-chaperone (5μM) more than 70% after 10min at 42°C. In addition, Hsp70 DnaJ complex improved the refolding of heat-shocked luciferase nearly 40% after 60min at 25°C. It was concluded that Hsp70 protein from Rutilus frisii kutum has the critical role in preventing heat-induced aggregation of luciferase and refolding of heat-denatured luciferase was strictly dependent on the activity of Hsp70, thus, this protein can potentially be used for improving the functional properties of luciferase in various applications.
Collapse
Affiliation(s)
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, IR Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, IR Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, IR Iran
| |
Collapse
|
86
|
Bentley SJ, Boshoff A. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis. PLoS One 2017; 12:e0183858. [PMID: 28902917 PMCID: PMC5597180 DOI: 10.1371/journal.pone.0183858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly.
Collapse
Affiliation(s)
- Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- * E-mail:
| |
Collapse
|
87
|
Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J. The Plasticity of the Hsp90 Co-chaperone System. Mol Cell 2017; 67:947-961.e5. [PMID: 28890336 DOI: 10.1016/j.molcel.2017.08.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/10/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.
Collapse
Affiliation(s)
- Priyanka Sahasrabudhe
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Julia Rohrberg
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Maximillian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
88
|
Li T, Chen X, Dai XY, Wei B, Weng QJ, Chen X, Ouyang DF, Yan R, Huang ZJ, Jiang HL, Zhu H, Lu JJ. Novel Hsp90 inhibitor platycodin D disrupts Hsp90/Cdc37 complex and enhances the anticancer effect of mTOR inhibitor. Toxicol Appl Pharmacol 2017; 330:65-73. [DOI: 10.1016/j.taap.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 02/02/2023]
|
89
|
Yuan K, Yuan FH, He HH, Bi HT, Weng SP, He JG, Chen YH. Heat shock 70 kDa protein cognate 5 involved in WSSV toleration of Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:9-20. [PMID: 28193450 DOI: 10.1016/j.dci.2017.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
The expression levels of 97 unigenes encoding heat shock proteins of Litopenaeus vannamei was scanned, and ten of them were significantly induced by white spot syndrome virus (WSSV). Among these genes, heat shock 70 kDa protein cognate 5 (LvHSC70-5) was upregulated to the highest extent and subjected to further studies. Subcellular localization assay revealed that LvHSC70-5 was located in the mitochondria. Aside from WSSV infection, unfolded protein response activation and thermal stress could also upregulate LvHSC70-5. Results of reporter gene assay demonstrated that promoter of LvHSC70-5 was activated by L. vannamei heat shock factor protein 1, activating transcription factor 4 and thermal stress. A decrease in the expression of LvHSC70-5 could reduce the aggregation of proteins in hemocytes and the cumulative mortality of WSSV-infected L. vannamei. LvHSC70-5 in L. vannamei hemocytes was upregulated by mild thermal stress. In addition, mild thermal stress, decreased the copy number of WSSV in shrimp muscle and the cumulative mortality of WSSV-infected L. vannamei. Therefore, collecting results suggested that LvHSC70-5 should be involved in WSSV toleration of shrimp L. vannamei.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hong-Hui He
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Yi-Hong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
90
|
Penkler D, Sensoy Ö, Atilgan C, Tastan Bishop Ö. Perturbation-Response Scanning Reveals Key Residues for Allosteric Control in Hsp70. J Chem Inf Model 2017; 57:1359-1374. [PMID: 28505454 DOI: 10.1021/acs.jcim.6b00775] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hsp70 molecular chaperones play an important role in maintaining cellular homeostasis, and are implicated in a wide array of cellular processes, including protein recovery from aggregates, cross-membrane protein translocation, and protein biogenesis. Hsp70 consists of two domains, a nucleotide binding domain (NBD) and a substrate binding domain (SBD), each of which communicates via an allosteric mechanism such that the protein interconverts between two functional states, an ATP-bound open conformation and an ADP-bound closed conformation. The exact mechanism for interstate conversion is not as yet fully understood. However, the ligand-bound states of the NBD and SBD as well as interactions with cochaperones such as DnaJ and nucleotide exchange factor are thought to play crucial regulatory roles. In this study, we apply the perturbation-response scanning (PRS) method in combination with molecular dynamics simulations as a computational tool for the identification of allosteric hot residues in the large multidomain Hsp70 protein. We find evidence in support of the hypothesis that substrate binding triggers ATP hydrolysis and that the ADP-substrate complex favors interstate conversion to the closed state. Furthermore, our data are in agreement with the proposal that there is an allosterically active intermediate state between the open and closed states and vice versa, as we find evidence that ATP binding to the closed structure and peptide binding to the open structure allosterically "activate" the respective complexes. We conclude our analysis by showing how our PRS data fit the current opinion on the Hsp70 conformational cycle and present several allosteric hot residues that may provide a platform for further studies to gain additional insight into Hsp70 allostery.
Collapse
Affiliation(s)
- David Penkler
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown 6140, South Africa
| | - Özge Sensoy
- School of Engineering and Natural Sciences, Istanbul Medipol University , Beykoz 34810, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University , Tuzla 34956, Istanbul, Turkey
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown 6140, South Africa
| |
Collapse
|
91
|
Mechaly AE, Soto Diaz S, Sassoon N, Buschiazzo A, Betton JM, Alzari PM. Structural Coupling between Autokinase and Phosphotransferase Reactions in a Bacterial Histidine Kinase. Structure 2017; 25:939-944.e3. [PMID: 28552574 DOI: 10.1016/j.str.2017.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/06/2017] [Accepted: 04/28/2017] [Indexed: 01/22/2023]
Abstract
Bacterial two-component systems consist of a sensor histidine kinase (HK) and a response regulator (RR). HKs are homodimers that catalyze the autophosphorylation of a histidine residue and the subsequent phosphoryl transfer to its RR partner, triggering an adaptive response. How the HK autokinase and phosphotransferase activities are coordinated remains unclear. Here, we report X-ray structures of the prototypical HK CpxA trapped as a hemi-phosphorylated dimer, and of the receiver domain from the RR partner, CpxR. Our results reveal that the two catalytic reactions can occur simultaneously, one in each protomer of the asymmetric CpxA dimer. Furthermore, the increase of autokinase activity in the presence of phosphotransfer-impaired CpxR put forward the idea of an allosteric switching mechanism, according to which CpxR binding to one CpxA protomer triggers autophosphorylation in the second protomer. The ensuing dynamical model provides a mechanistic explanation of how HKs can efficiently orchestrate two catalytic reactions involving large-scale protein motions.
Collapse
Affiliation(s)
- Ariel E Mechaly
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, Sorbonne Paris Cité, 25 rue du Dr. Roux, 75724, Paris Cedex 15, France.
| | - Silvia Soto Diaz
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, Sorbonne Paris Cité, 25 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Nathalie Sassoon
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, Sorbonne Paris Cité, 25 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo 11400, Uruguay
| | - Jean-Michel Betton
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, Sorbonne Paris Cité, 25 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Pedro M Alzari
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, Sorbonne Paris Cité, 25 rue du Dr. Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
92
|
Malinverni D, Jost Lopez A, De Los Rios P, Hummer G, Barducci A. Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis. eLife 2017; 6. [PMID: 28498104 PMCID: PMC5519331 DOI: 10.7554/elife.23471] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
The interaction between the Heat Shock Proteins 70 and 40 is at the core of the ATPase regulation of the chaperone machinery that maintains protein homeostasis. However, the structural details of the interaction remain elusive and contrasting models have been proposed for the transient Hsp70/Hsp40 complexes. Here we combine molecular simulations based on both coarse-grained and atomistic models with coevolutionary sequence analysis to shed light on this problem by focusing on the bacterial DnaK/DnaJ system. The integration of these complementary approaches resulted in a novel structural model that rationalizes previous experimental observations. We identify an evolutionarily conserved interaction surface formed by helix II of the DnaJ J-domain and a structurally contiguous region of DnaK, involving lobe IIA of the nucleotide binding domain, the inter-domain linker, and the β-basket of the substrate binding domain. DOI:http://dx.doi.org/10.7554/eLife.23471.001
Collapse
Affiliation(s)
- Duccio Malinverni
- Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institut für Biophysik, Johann Wolfgang Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Alessandro Barducci
- Inserm, U1054, Montpellier, France.,Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| |
Collapse
|
93
|
Vora A, Taank V, Dutta SM, Anderson JF, Fish D, Sonenshine DE, Catravas JD, Sultana H, Neelakanta G. Ticks elicit variable fibrinogenolytic activities upon feeding on hosts with different immune backgrounds. Sci Rep 2017; 7:44593. [PMID: 28300174 PMCID: PMC5353578 DOI: 10.1038/srep44593] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Ticks secrete several anti-hemostatic factors in their saliva to suppress the host innate and acquired immune defenses against infestations. Using Ixodes scapularis ticks and age-matched mice purchased from two independent commercial vendors with two different immune backgrounds as a model, we show that ticks fed on immunodeficient animals demonstrate decreased fibrinogenolytic activity in comparison to ticks fed on immunocompetent animals. Reduced levels of D-dimer (fibrin degradation product) were evident in ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Increased engorgement weights were noted for ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Furthermore, the LC-MS/MS and quantitative real-time-PCR analysis followed by inhibitor and antibody-blocking assays revealed that the arthropod HSP70-like molecule contributes to differential fibrinogenolysis during tick feeding. Collectively, these results not only indicate that ticks elicit variable fibrinogenolysis upon feeding on hosts with different immune backgrounds but also provide insights for the novel role of arthropod HSP70-like molecule in fibrinogenolysis during blood feeding.
Collapse
Affiliation(s)
- Ashish Vora
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Sucharita M Dutta
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Durland Fish
- School of Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
94
|
Mechanistic basis for the recognition of a misfolded protein by the molecular chaperone Hsp90. Nat Struct Mol Biol 2017; 24:407-413. [PMID: 28218749 DOI: 10.1038/nsmb.3380] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
The critical toxic species in over 40 human diseases are misfolded proteins. Their interaction with molecular chaperones such as Hsp90, which preferentially interacts with metastable proteins, is essential for the blocking of disease progression. Here we used nuclear magnetic resonance (NMR) spectroscopy to determine the three-dimensional structure of the misfolded cytotoxic monomer of the amyloidogenic human protein transthyretin, which is characterized by the release of the C-terminal β-strand and perturbations of the A-B loop. The misfolded transthyretin monomer, but not the wild-type protein, binds to human Hsp90. In the bound state, the Hsp90 dimer predominantly populates an open conformation, and transthyretin retains its globular structure. The interaction surface for the transthyretin monomer comprises the N-terminal and middle domains of Hsp90 and overlaps with that of the Alzheimer's-disease-related protein tau. Taken together, the data suggest that Hsp90 uses a mechanism for the recognition of aggregation-prone proteins that is largely distinct from those of other Hsp90 clients.
Collapse
|
95
|
Stetz G, Verkhivker GM. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication. PLoS Comput Biol 2017; 13:e1005299. [PMID: 28095400 PMCID: PMC5240922 DOI: 10.1371/journal.pcbi.1005299] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. The diversity of allosteric mechanisms in the Hsp70 proteins could range from modulation of the inter-domain interactions and conformational dynamics to fine-tuning of the Hsp70 interactions with co-chaperones. The goal of this study is to present a systematic computational analysis of the dynamic and evolutionary factors underlying allosteric structural transformations of the Hsp70 proteins. We investigated the relationship between functional dynamics, residue coevolution, and network organization of residue interactions in the Hsp70 proteins. The results of this study revealed that conformational dynamics of the Hsp70 proteins may be linked with coevolutionary propensities and mutual information dependencies of the protein residues. Modularity and connectivity of allosteric interactions in the Hsp70 chaperones are coordinated by stable functional sites that feature unique coevolutionary signatures and high network centrality. The emergence of the inter-domain communities that are coordinated by functional centers and include highly coevolving residues could facilitate structural transitions through cooperative reorganization of the local interacting modules. We determined that the differences in the modularity of the residue interactions and organization of coevolutionary networks in DnaK may be associated with variations in their allosteric mechanisms. The network signatures of the DnaK structures are characteristic of a population-shift allostery that allows for coordinated structural rearrangements of local communities. A dislocation of mediating centers and insufficient coevolutionary coupling between functional regions may render a reduced cooperativity and promote a limited entropy-driven allostery in the Sse1 chaperone that occurs without structural changes. The results of this study showed that a network-centric framework and a community-hopping model of allosteric communication pathways may provide novel insights into molecular and evolutionary principles of allosteric regulation in the Hsp70 proteins.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
96
|
Zhang C, Wang X, Liu H, Zhang M, Geng M, Sun L, Shen A, Zhang A. Design, synthesis and pharmacological evaluation of 4,5-diarylisoxazols bearing amino acid residues within the 3-amido motif as potent heat shock protein 90 (Hsp90) inhibitors. Eur J Med Chem 2017; 125:315-326. [DOI: 10.1016/j.ejmech.2016.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
|
97
|
Willot Q, Gueydan C, Aron S. Proteome stability, heat hardening, and heat-shock protein expression profiles in Cataglyphis desert ants. J Exp Biol 2017; 220:1721-1728. [DOI: 10.1242/jeb.154161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023]
Abstract
In ectotherms, high temperatures impose physical limits, impeding activity. Exposure to high heat levels causes various deleterious and lethal effects, including protein misfolding and denaturation. Thermophilic ectotherms have thus evolved various ways to increase macromolecular stability and cope with elevated body temperatures; these include the high constitutive expression of molecular chaperones. In this work, we investigated the effect of moderate to severe heat shock (37°C–45°C) on survival, heat hardening, protein damage, and the expression of five heat-tolerance related genes (hsc70-4 h1, hsc70-4 h2, hsp83, hsc70-5, and hsf1) in two rather closely related Cataglyphis ants that occur in distinct habitats. Our results show that the highly thermophilic Sahara ant Cataglyphis bombycina constitutively expresses HSC70 at higher levels, but has lower induced expression of heat-tolerance related genes in response to heat shock, as compared to the more mesophilic C. mauritanica found in the Atlas Mountains. As a result, C. bombycina demonstrates increased protein stability when exposed to acute heat stress but is less prone to acquiring induced thermotolerance via heat hardening. These results provide further insight into the evolutionary plasticity of the hsps gene expression system and subsequent physiological adaptations in thermophilous desert insects to adapt to harsh environmental conditions.
Collapse
Affiliation(s)
- Quentin Willot
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Belgium
| | - Cyril Gueydan
- Molecular Biology of the Gene, Université Libre de Bruxelles, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Belgium
| |
Collapse
|
98
|
Interaction of E. coli Hsp90 with DnaK Involves the DnaJ Binding Region of DnaK. J Mol Biol 2016; 429:858-872. [PMID: 28013030 DOI: 10.1016/j.jmb.2016.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/05/2023]
Abstract
The 90-kDa heat shock protein (Hsp90) is a widely conserved and ubiquitous molecular chaperone that participates in ATP-dependent protein remodeling in both eukaryotes and prokaryotes. It functions in conjunction with Hsp70 and the Hsp70 cochaperones, an Hsp40 (J-protein) and a nucleotide exchange factor. In Escherichia coli, the functional collaboration between Hsp90Ec and Hsp70, DnaK, requires that the two chaperones directly interact. We used molecular docking to model the interaction of Hsp90Ec and DnaK. The top-ranked docked model predicted that a region in the nucleotide-binding domain (NBD) of DnaK interacted with a region in the middle domain of Hsp90Ec. We then made substitution mutants in DnaK residues suggested by the model to interact with Hsp90Ec. Of the 12 mutants tested, 11 were defective or partially defective in their ability to interact with Hsp90Ecin vivo in a bacterial two-hybrid assay and in vitro in a bio-layer interferometry assay. These DnaK mutants were also defective in their ability to function collaboratively in protein remodeling with Hsp90Ec but retained the ability to act with DnaK cochaperones. Taken together, these results suggest that a specific region in the NBD of DnaK is involved in the interaction with Hsp90Ec, and this interaction is functionally important. Moreover, the region of DnaK that we found to be necessary for Hsp90Ec binding includes residues that are also involved in J-protein binding, suggesting a functional interplay among DnaK, DnaK cochaperones, and Hsp90Ec.
Collapse
|
99
|
VanPelt J, Page RC. Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:133-141. [PMID: 27863257 DOI: 10.1016/j.bbapap.2016.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
The CHIP:Hsp70 complex stands at the crossroads of the cellular protein quality control system. Hsp70 facilitates active refolding of misfolded client proteins, while CHIP directs ubiquitination of misfolded client proteins bound to Hsp70. The direct competition between CHIP and Hsp70 for the fate of misfolded proteins leads to the question: how does the CHIP:Hsp70 complex execute triage decisions that direct misfolded proteins for either refolding or degradation? The current body of literature points toward action of the CHIP:Hsp70 complex as an information processor that takes inputs in the form of client folding state, dynamics, and posttranslational modifications, then outputs either refolded or ubiquitinated client proteins. Herein we examine the CHIP:Hsp70 complex beginning with the structure and function of CHIP and Hsp70, followed by an examination of recent studies of the interactions and dynamics of the CHIP:Hsp70 complex.
Collapse
Affiliation(s)
- Jamie VanPelt
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
100
|
Structural and functional studies of the Leishmania braziliensis mitochondrial Hsp70: Similarities and dissimilarities to human orthologues. Arch Biochem Biophys 2016; 613:43-52. [PMID: 27840097 DOI: 10.1016/j.abb.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
Heat shock protein 70 kDa (Hsp70) is a conserved molecular chaperone family involved in several functions related to protein homeostasis. In eukaryotes, Hsp70 homologues are found in all cell compartments. The mitochondrial Hsp70 isoform (mtHsp70) is involved in import of mitochondrial matrix proteins as well as their folding and maturation. Moreover, mtHsp70 has the propensity to self-aggregate, and it depends on the action of the co-chaperone Hsp70-escort protein 1 (Hep1) to be produced functional. Here, we analyze the solution structure and function of mtHsp70 of Leishmania braziliensis (LbmtHsp70). This recombinant protein was obtained folded, in the monomeric state and it has an elongated shape. We observed that LbmtHsp70 suffers thermal aggregation that depends on the protein concentration and is composed of domains with different thermal stabilities. LbmtHsp70 interacted with adenosine nucleotides with a thermodynamic signature different from those reported for human orthologues and interacted, driven by both enthalpy and entropy, with L. braziliensis Hep1 (LbHep1) with a nanomolar dissociation constant. Moreover, LbHep1 stimulated the LbmtHsp70 ATPase activity. Since little is known about mitochondrial Hsp70, particularly in protozoa, we believe that our data are of interest for understanding protozoan Hsp70 machinery.
Collapse
|