51
|
TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Nat Commun 2021; 12:3646. [PMID: 34131137 PMCID: PMC8206348 DOI: 10.1038/s41467-021-23934-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
U5 snRNP is a complex particle essential for RNA splicing. U5 snRNPs undergo intricate biogenesis that ensures that only a fully mature particle assembles into a splicing competent U4/U6•U5 tri-snRNP and enters the splicing reaction. During splicing, U5 snRNP is substantially rearranged and leaves as a U5/PRPF19 post-splicing particle, which requires re-generation before the next round of splicing. Here, we show that a previously uncharacterized protein TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. We provide evidence that TSSC4 associates with U5 snRNP chaperones, U5 snRNP and the U5/PRPF19 particle. Specifically, TSSC4 interacts with U5-specific proteins PRPF8, EFTUD2 and SNRNP200. We also identified TSSC4 domains critical for the interaction with U5 snRNP and the PRPF19 complex, as well as for TSSC4 function in tri-snRNP assembly. TSSC4 emerges as a specific chaperone that acts in U5 snRNP de novo biogenesis as well as post-splicing recycling. The correct assembly and recycling of the multicomponent spliceosome remains largely elusive. Here, the authors show that a previously uncharacterized protein TSSC4 associates with de novo formed spliceosomal U5 snRNP as well as with a post-splicing U5-PRPF19 particle, and that TSSC4 is important for assembly of the splicing competent tri-snRNP.
Collapse
|
52
|
Dickson JR, Yoon H, Frosch MP, Hyman BT. Cytoplasmic Mislocalization of RNA Polymerase II Subunit RPB1 in Alzheimer Disease Is Linked to Pathologic Tau. J Neuropathol Exp Neurol 2021; 80:530-540. [PMID: 33990839 PMCID: PMC8177848 DOI: 10.1093/jnen/nlab040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abnormal protein accumulation and mislocalization is a general hallmark of Alzheimer disease. Recent data suggest nucleocytoplasmic transport may be compromised by tau in Alzheimer disease. In this context, we have examined the RNA polymerase II subunit RPB1, which is the catalytic subunit that plays a critical role in transcription. Using immunofluorescence staining in control and Alzheimer disease hippocampal tissue, we show that 2 phosphoisoforms of RPB1 mislocalize from the nucleus to the cytoplasm of neurons in Alzheimer disease. The number of neurons with this cytoplasmic mislocalization is correlated with the burden of pathologic tau (AT8-immunopositive neurons). In order to test whether there is a causal relationship between pathologic tau and cytoplasmic RPB1 accumulation, we used the rTg4510 mouse model, which expresses a regulatable pathologic human tau species harboring the P301L mutation. Using immunofluorescence staining on brain tissue from young (2.5-month-old) and aged (8.5- to 10-month-old) rTg4510 mice, we found a tau- and age-dependent increase in cytoplasmic mislocalization of Rpb1. In summary, this study provides evidence that tau induces mislocalization of RPB1 in Alzheimer disease, and since RPB1 is essential for transcription, this raises the possibility that RPB1 mislocalization could lead to fundamental alterations in neuronal health.
Collapse
Affiliation(s)
- John R Dickson
- From the Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hyejin Yoon
- From the Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Matthew P Frosch
- Harvard Medical School, Boston, Massachusetts.,C.S. Kubik Laboratory for Neuropathology, Department of Pathology, and Neurology Service, Massachusetts General Hospital, Boston, Massachusetts
| | - Bradley T Hyman
- From the Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
53
|
Martónez-Ferníndez V, Navarro F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS GENETICS 2021. [DOI: 10.3934/genet.2018.1.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractRpb5 is one of the five common subunits to all eukaryotic RNA polymerases, which is conserved in archaea, but not in bacteria. Among these common subunits, it is the only one that is not interchangeable between yeasts and humans, and accounts for the functional incompatibility of yeast and human subunits. Rpb5 has been proposed to contribute to the gene-specific activation of RNA pol II, notably during the infectious cycle of the hepatitis B virus, and also to participate in general transcription mediated by all eukaryotic RNA pol. The structural analysis of Rpb5 and its interaction with different transcription factors, regulators and DNA, accounts for Rpb5 being necessary to maintain the correct conformation of the shelf module of RNA pol II, which favors the proper organization of the transcription bubble and the clamp closure of the enzyme.In this work we provide details about subunit Rpb5's structure, conservation and the role it plays in transcription regulation by analyzing the different interactions with several factors, as well as its participation in the assembly of the three RNA pols, in cooperation with prefoldin-like Bud27/URI.
Collapse
Affiliation(s)
- Veránica Martónez-Ferníndez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of JaÉn, Paraje de las Lagunillas, s/n, 23071, JaÉn, Spain
| | - Francisco Navarro
- Department of Experimental Biology, Faculty of Experimental Sciences, University of JaÉn, Paraje de las Lagunillas, s/n, 23071, JaÉn, Spain
| |
Collapse
|
54
|
Garrido-Godino AI, Gutiérrez-Santiago F, Navarro F. Biogenesis of RNA Polymerases in Yeast. Front Mol Biosci 2021; 8:669300. [PMID: 34026841 PMCID: PMC8136413 DOI: 10.3389/fmolb.2021.669300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerases (RNA pols) transcriptional processes have been extensively investigated, and the structural analysis of eukaryotic RNA pols has been explored. However, the global assembly and biogenesis of these heteromultimeric complexes have been narrowly studied. Despite nuclear transcription being carried out by three RNA polymerases in eukaryotes (five in plants) with specificity in the synthesis of different RNA types, the biogenesis process has been proposed to be similar, at least for RNA pol II, to that of bacteria, which contains only one RNA pol. The formation of three different interacting subassembly complexes to conform the complete enzyme in the cytoplasm, prior to its nuclear import, has been assumed. In Saccharomyces cerevisiae, recent studies have examined in depth the biogenesis of RNA polymerases by characterizing some elements involved in the assembly of these multisubunit complexes, some of which are conserved in humans. This study reviews the latest studies governing the mechanisms and proteins described as being involved in the biogenesis of RNA polymerases in yeast.
Collapse
Affiliation(s)
- Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | | | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
55
|
Backes S, Bykov YS, Flohr T, Räschle M, Zhou J, Lenhard S, Krämer L, Mühlhaus T, Bibi C, Jann C, Smith JD, Steinmetz LM, Rapaport D, Storchová Z, Schuldiner M, Boos F, Herrmann JM. The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Rep 2021; 35:108936. [PMID: 33826901 PMCID: PMC7615001 DOI: 10.1016/j.celrep.2021.108936] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Most mitochondrial proteins are synthesized as precursors in the cytosol and post-translationally transported into mitochondria. The mitochondrial surface protein Tom70 acts at the interface of the cytosol and mitochondria. In vitro import experiments identified Tom70 as targeting receptor, particularly for hydrophobic carriers. Using in vivo methods and high-content screens, we revisit the question of Tom70 function and considerably expand the set of Tom70-dependent mitochondrial proteins. We demonstrate that the crucial activity of Tom70 is its ability to recruit cytosolic chaperones to the outer membrane. Indeed, tethering an unrelated chaperone-binding domain onto the mitochondrial surface complements most of the defects caused by Tom70 deletion. Tom70-mediated chaperone recruitment reduces the proteotoxicity of mitochondrial precursor proteins, particularly of hydrophobic inner membrane proteins. Thus, our work suggests that the predominant function of Tom70 is to tether cytosolic chaperones to the outer mitochondrial membrane, rather than to serve as a mitochondrion-specifying targeting receptor.
Collapse
Affiliation(s)
- Sandra Backes
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jialin Zhou
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Lena Krämer
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Chen Bibi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Cosimo Jann
- Genome Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Justin D Smith
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Genome Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
56
|
Martínez-Matías N, Chorna N, González-Crespo S, Villanueva L, Montes-Rodríguez I, Melendez-Aponte LM, Roche-Lima A, Carrasquillo-Carrión K, Santiago-Cartagena E, Rymond BC, Babu M, Stagljar I, Rodríguez-Medina JR. Toward the discovery of biological functions associated with the mechanosensor Mtl1p of Saccharomyces cerevisiae via integrative multi-OMICs analysis. Sci Rep 2021; 11:7411. [PMID: 33795741 PMCID: PMC8016984 DOI: 10.1038/s41598-021-86671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased expression of anabolic enzymes and increased expression of catabolic enzymes involved in the metabolism of amino acids, with enhanced expression of mitochondrial respirasome proteins. These observations support the idea that Mtl1 protein controls the suppression of a non-lethal heat stress response under normal conditions while it plays an important role in metabolic regulatory mechanisms linked to TORC1 signaling that are required to maintain cellular homeostasis and optimal mitochondrial function.
Collapse
Affiliation(s)
- Nelson Martínez-Matías
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Nataliya Chorna
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Sahily González-Crespo
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Lilliam Villanueva
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Ingrid Montes-Rodríguez
- Comprehensive Cancer Center, University of Puerto Rico, Puerto Rico Medical Center, Rio Piedras, PR 00936-3027 USA
| | - Loyda M. Melendez-Aponte
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Abiel Roche-Lima
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Kelvin Carrasquillo-Carrión
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Ednalise Santiago-Cartagena
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Brian C. Rymond
- grid.266539.d0000 0004 1936 8438Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | - Mohan Babu
- grid.57926.3f0000 0004 1936 9131Department of Biochemistry, University of Regina, Regina, SK S4S 0A2 Canada
| | - Igor Stagljar
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.482535.d0000 0004 4663 8413Mediterranean Institute for Life Sciences, Split, Croatia
| | - José R. Rodríguez-Medina
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| |
Collapse
|
57
|
Chen L, Zhao M, Wu Z, Chen S, Rojo E, Luo J, Li P, Zhao L, Chen Y, Deng J, Cheng B, He K, Gou X, Li J, Hou S. RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:171-189. [PMID: 33058210 DOI: 10.1111/nph.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
RNA polymerase II (Pol II) associated proteins (RPAPs) have been ascribed diverse functions at the cellular level; however, their roles in developmental processes in yeasts, animals and plants are very poorly understood. Through screening for interactors of NRPB3, which encodes the third largest subunit of Pol II, we identified RIMA, the orthologue of mammalian RPAP2. A combination of genetic and biochemical assays revealed the role of RIMA and other RPAPs in stomatal development in Arabidopsis thaliana. We show that RIMA is involved in nuclear import of NRPB3 and other Pol II subunits, and is essential for restraining division and for establishing cell identity in the stomatal cell lineage. Moreover, plant RPAPs IYO/RPAP1 and QQT1/RPAP4, which interact with RIMA, are also crucial for stomatal development. Importantly, RIMA and QQT1 bind physically to stomatal transcription factors SPEECHLESS, MUTE, FAMA and SCREAMs. The RIMA-QQT1-IYO complex could work together with key stomatal transcription factors and Pol II to drive cell fate transitions in the stomatal cell lineage. Direct interactions with stomatal transcription factors provide a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingfeng Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongliang Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sicheng Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, E-28049, Spain
| | - Jiangwei Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianming Deng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Cheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
58
|
Dermouche S, Chagot ME, Manival X, Quinternet M. Optimizing the First TPR Domain of the Human SPAG1 Protein Provides Insight into the HSP70 and HSP90 Binding Properties. Biochemistry 2021; 60:2349-2363. [PMID: 33739091 DOI: 10.1021/acs.biochem.1c00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetratricopeptide repeat domains, or TPR domains, are protein domains that mediate protein:protein interaction. As they allow contacts between proteins, they are of particular interest in transient steps of the assembly process of macromolecular complexes, such as the ribosome or the dynein arms. In this study, we focused on the first TPR domain of the human SPAG1 protein. SPAG1 is a multidomain protein that is important for ciliogenesis whose known mutations are linked to primary ciliary dyskinesia syndrome. It can interact with the chaperones RUVBL1/2, HSP70, and HSP90. Using protein sequence optimization in combination with structural and biophysical approaches, we analyzed, with atomistic precision, how the C-terminal tails of HSPs bind a variant form of SPAG1-TPR1 that mimics the wild-type domain. We discuss our results with regard to other complex three-dimensional structures with the aim of highlighting the motifs in the TPR sequences that could drive the positioning of the HSP peptides. These data could be important for the druggability of TPR regulators.
Collapse
Affiliation(s)
- Sana Dermouche
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| |
Collapse
|
59
|
Erkelenz S, Stanković D, Mundorf J, Bresser T, Claudius AK, Boehm V, Gehring NH, Uhlirova M. Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Res 2021; 49:1688-1707. [PMID: 33444449 PMCID: PMC7897482 DOI: 10.1093/nar/gkaa1274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Pre-mRNA splicing catalyzed by the spliceosome represents a critical step in the regulation of gene expression contributing to transcriptome and proteome diversity. The spliceosome consists of five small nuclear ribonucleoprotein particles (snRNPs), the biogenesis of which remains only partially understood. Here we define the evolutionarily conserved protein Ecdysoneless (Ecd) as a critical regulator of U5 snRNP assembly and Prp8 stability. Combining Drosophila genetics with proteomic approaches, we demonstrate the Ecd requirement for the maintenance of adult healthspan and lifespan and identify the Sm ring protein SmD3 as a novel interaction partner of Ecd. We show that the predominant task of Ecd is to deliver Prp8 to the emerging U5 snRNPs in the cytoplasm. Ecd deficiency, on the other hand, leads to reduced Prp8 protein levels and compromised U5 snRNP biogenesis, causing loss of splicing fidelity and transcriptome integrity. Based on our findings, we propose that Ecd chaperones Prp8 to the forming U5 snRNP allowing completion of the cytoplasmic part of the U5 snRNP biogenesis pathway necessary to meet the cellular demand for functional spliceosomes.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Volker Boehm
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Niels H Gehring
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
60
|
Araujo SA, Martins GH, Quel NG, Aragão AZB, Morea EGO, Borges JC, Houry WA, Cano MIN, Ramos CHI. Purification and characterization of a novel and conserved TPR-domain protein that binds both Hsp90 and Hsp70 and is expressed in all developmental stages of Leishmania major. Biochimie 2021; 182:51-60. [PMID: 33421500 DOI: 10.1016/j.biochi.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/01/2022]
Abstract
Heat shock proteins (Hsps) are involved in several important aspects of the cell proteostasis. Hsp90 interacts with at least a tenth of the cell proteome helping a large number of proteins to fold correctly. Hsp90 function is modulated by several co-chaperones having TPR (tetratricopeptide repeat) domains that allow for interaction with the C-terminal MEEVD motif of the chaperone. Another important chaperone, Hsp70, has a C-terminal EEVD motif that binds to TPR. Leishmania is a protozoan that causes leishmaniasis, a neglected disease in humans and other animals. There is still no effective treatment for leishmaniasis, however the study of structure and function of the proteins of the parasite may generate potential targets for future therapeutic intervention studies. In this work, the genome of Leishmania major was searched for a novel TPR-domain gene, which is conserved in Leishmania. The recombinant protein, LmTPR, was produced in pure and folded state and was characterized by biophysical tools as a monomer with an elongated conformation. Studies in Leishmania major were also preformed to complement these in vitro experiments. Splice Leader RNA-seq analysis and Western blot indicated that the protein was expressed in all developmental stages of the parasite. Binding assays confirmed that both Hsp90 and Hsp70 bind specifically to LmTPR. Finally, sequence and structural predictions indicated a C-terminal region as a RPAP3 domain. Altogether, this study identified a novel TPR-domain co-chaperone of Hsp90 that is conserved and expressed in all developmental stages of Leishmania major.
Collapse
Affiliation(s)
- Sara A Araujo
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970 Brazil
| | - Gustavo H Martins
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970 Brazil
| | - Natália G Quel
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970 Brazil; National Institute of Science & Technology of Structural Biology and Bioimage (INCTBEB), Brazil
| | - Annelize Z B Aragão
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970 Brazil
| | - Edna G O Morea
- Department of Chemical and Biological Sciences, Biosciences Institute, Sao Paulo State University, Botucatu, SP, 18618689, Brazil
| | - Julio C Borges
- National Institute of Science & Technology of Structural Biology and Bioimage (INCTBEB), Brazil; São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Maria I N Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, Sao Paulo State University, Botucatu, SP, 18618689, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970 Brazil; National Institute of Science & Technology of Structural Biology and Bioimage (INCTBEB), Brazil.
| |
Collapse
|
61
|
Martínez-Fernández V, Cuevas-Bermúdez A, Gutiérrez-Santiago F, Garrido-Godino AI, Rodríguez-Galán O, Jordán-Pla A, Lois S, Triviño JC, de la Cruz J, Navarro F. Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2020; 26:1360-1379. [PMID: 32503921 PMCID: PMC7491330 DOI: 10.1261/rna.075507.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 05/08/2023]
Abstract
Understanding the functional connection that occurs for the three nuclear RNA polymerases to synthesize ribosome components during the ribosome biogenesis process has been the focal point of extensive research. To preserve correct homeostasis on the production of ribosomal components, cells might require the existence of proteins that target a common subunit of these RNA polymerases to impact their respective activities. This work describes how the yeast prefoldin-like Bud27 protein, which physically interacts with the Rpb5 common subunit of the three RNA polymerases, is able to modulate the transcription mediated by the RNA polymerase I, likely by influencing transcription elongation, the transcription of the RNA polymerase III, and the processing of ribosomal RNA. Bud27 also regulates both RNA polymerase II-dependent transcription of ribosomal proteins and ribosome biogenesis regulon genes, likely by occupying their DNA ORFs, and the processing of the corresponding mRNAs. With RNA polymerase II, this association occurs in a transcription rate-dependent manner. Our data also indicate that Bud27 inactivation alters the phosphorylation kinetics of ribosomal protein S6, a readout of TORC1 activity. We conclude that Bud27 impacts the homeostasis of the ribosome biogenesis process by regulating the activity of the three RNA polymerases and, in this way, the synthesis of ribosomal components. This quite likely occurs through a functional connection of Bud27 with the TOR signaling pathway.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain
| | - Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Sergio Lois
- Sistemas Genómicos. Ronda de Guglielmo Marconi, 6, 46980 Paterna, Valencia, Spain
| | - Juan C Triviño
- Sistemas Genómicos. Ronda de Guglielmo Marconi, 6, 46980 Paterna, Valencia, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| |
Collapse
|
62
|
Esteve-Bruna D, Carrasco-López C, Blanco-Touriñán N, Iserte J, Calleja-Cabrera J, Perea-Resa C, Úrbez C, Carrasco P, Yanovsky MJ, Blázquez MA, Salinas J, Alabadí D. Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis. Nucleic Acids Res 2020; 48:6280-6293. [PMID: 32396196 PMCID: PMC7293050 DOI: 10.1093/nar/gkaa354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2–8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2–8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2–8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.
Collapse
Affiliation(s)
- David Esteve-Bruna
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Cristian Carrasco-López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Javier Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Julián Calleja-Cabrera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Pedro Carrasco
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| |
Collapse
|
63
|
Deregulated levels of RUVBL1 induce transcription-dependent replication stress. Int J Biochem Cell Biol 2020; 128:105839. [PMID: 32846207 DOI: 10.1016/j.biocel.2020.105839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Collapse
|
64
|
Tessier TM, MacNeil KM, Mymryk JS. Piggybacking on Classical Import and Other Non-Classical Mechanisms of Nuclear Import Appear Highly Prevalent within the Human Proteome. BIOLOGY 2020; 9:biology9080188. [PMID: 32718019 PMCID: PMC7463951 DOI: 10.3390/biology9080188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
One of the most conserved cellular pathways among eukaryotes is the extensively studied classical protein nuclear import pathway mediated by importin-α. Classical nuclear localization signals (cNLSs) are recognized by importin-α and are highly predictable due to their abundance of basic amino acids. However, various studies in model organisms have repeatedly demonstrated that only a fraction of nuclear proteins contain identifiable cNLSs, including those that directly interact with importin-α. Using data from the Human Protein Atlas and the Human Reference Interactome, and proteomic data from BioID/protein-proximity labeling studies using multiple human importin-α proteins, we determine that nearly 50% of the human nuclear proteome does not have a predictable cNLS. Surprisingly, between 25% and 50% of previously identified human importin-α cargoes do not have predictable cNLS. Analysis of importin-α cargo without a cNLS identified an alternative basic rich motif that does not resemble a cNLS. Furthermore, several previously suspected piggybacking proteins were identified, such as those belonging to the RNA polymerase II and transcription factor II D complexes. Additionally, many components of the mediator complex interact with at least one importin-α, yet do not have a predictable cNLS, suggesting that many of the subunits may enter the nucleus through an importin-α-dependent piggybacking mechanism.
Collapse
Affiliation(s)
- Tanner M. Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada; (T.M.T.); (K.M.M.)
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada; (T.M.T.); (K.M.M.)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada; (T.M.T.); (K.M.M.)
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-685-8600 (ext. 53012)
| |
Collapse
|
65
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
66
|
Shin SH, Lee JS, Zhang JM, Choi S, Boskovic ZV, Zhao R, Song M, Wang R, Tian J, Lee MH, Kim JH, Jeong M, Lee JH, Petukhov M, Lee SW, Kim SG, Zou L, Byun S. Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells. SCIENCE ADVANCES 2020; 6:eaay9131. [PMID: 32789167 PMCID: PMC7399646 DOI: 10.1126/sciadv.aay9131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/19/2020] [Indexed: 05/08/2023]
Abstract
Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.
Collapse
Affiliation(s)
- Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Su Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Sungbin Choi
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Zarko V. Boskovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Ran Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mengqiu Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Rui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jie Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sang Gyun Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
67
|
Quintero-Cadena P, Lenstra TL, Sternberg PW. RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. Mol Cell 2020; 79:207-220.e8. [DOI: 10.1016/j.molcel.2020.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
|
68
|
Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie 2020; 173:33-47. [PMID: 32105812 DOI: 10.1016/j.biochi.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
69
|
Rodríguez CF, Llorca O. RPAP3 C-Terminal Domain: A Conserved Domain for the Assembly of R2TP Co-Chaperone Complexes. Cells 2020; 9:cells9051139. [PMID: 32384603 PMCID: PMC7290369 DOI: 10.3390/cells9051139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
The Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex is a co-chaperone complex that works together with HSP90 in the activation and assembly of several macromolecular complexes, including RNA polymerase II (Pol II) and complexes of the phosphatidylinositol-3-kinase-like family of kinases (PIKKs), such as mTORC1 and ATR/ATRIP. R2TP is made of four subunits: RuvB-like protein 1 (RUVBL1) and RuvB-like 2 (RUVBL2) AAA-type ATPases, RNA polymerase II-associated protein 3 (RPAP3), and the Protein interacting with Hsp90 1 (PIH1) domain-containing protein 1 (PIH1D1). R2TP associates with other proteins as part of a complex co-chaperone machinery involved in the assembly and maturation of a growing list of macromolecular complexes. Recent progress in the structural characterization of R2TP has revealed an alpha-helical domain at the C-terminus of RPAP3 that is essential to bring the RUVBL1 and RUVBL2 ATPases to R2TP. The RPAP3 C-terminal domain interacts directly with RUVBL2 and it is also known as RUVBL2-binding domain (RBD). Several human proteins contain a region homologous to the RPAP3 C-terminal domain, and some are capable of assembling R2TP-like complexes, which could have specialized functions. Only the RUVBL1-RUVBL2 ATPase complex and a protein containing an RPAP3 C-terminal-like domain are found in all R2TP and R2TP-like complexes. Therefore, the RPAP3 C-terminal domain is one of few components essential for the formation of all R2TP and R2TP-like co-chaperone complexes.
Collapse
Affiliation(s)
| | - Oscar Llorca
- Correspondence: ; Tel.: +34-91-732-8000 (ext. 3000/3033)
| |
Collapse
|
70
|
Zhang J, Xie M, Li M, Ding J, Pu Y, Bryan AC, Rottmann W, Winkeler KA, Collins CM, Singan V, Lindquist EA, Jawdy SS, Gunter LE, Engle NL, Yang X, Barry K, Tschaplinski TJ, Schmutz J, Tuskan GA, Muchero W, Chen J. Overexpression of a Prefoldin β subunit gene reduces biomass recalcitrance in the bioenergy crop Populus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:859-871. [PMID: 31498543 PMCID: PMC7004918 DOI: 10.1111/pbi.13254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 05/06/2023]
Abstract
Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Jin Zhang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Meng Xie
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Mi Li
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
| | - Jinhua Ding
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
- College of TextilesDonghua UniversityShanghaiChina
| | - Yunqiao Pu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | | | | | - Vasanth Singan
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | | | - Sara S. Jawdy
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Lee E. Gunter
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy L. Engle
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | - Timothy J. Tschaplinski
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
| | - Gerald A. Tuskan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Wellington Muchero
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
71
|
An H, Harper JW. Ribosome Abundance Control Via the Ubiquitin-Proteasome System and Autophagy. J Mol Biol 2020; 432:170-184. [PMID: 31195016 PMCID: PMC6904543 DOI: 10.1016/j.jmb.2019.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Ribosomes are central to the life of a cell, as they translate the genetic code into the amino acid language of proteins. Moreover, ribosomal abundance within the cell is coordinated with protein production required for cell function or processes such as cell division. As such, it is not surprising that these elegant machines are both highly regulated at the level of both their output of newly translated proteins but also at the level of ribosomal protein expression, ribosome assembly, and ribosome turnover. In this review, we focus on mechanisms that regulate ribosome abundance through both the ubiquitin-proteasome system and forms of autophagy referred to as "ribophagy." We discussed mechanisms employed in both yeast and mammalian cells, including the various machineries that are important for recognition and degradation of ribosomal components. In addition, we discussed controversies in the field and how the development of new approaches for examining flux through the proteasomal and autophagic systems in the context of a systematic inventory of ribosomal components is necessary to fully understand how ribosome abundance is controlled under various physiological conditions.
Collapse
Affiliation(s)
- Heeseon An
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
72
|
Kakihara Y, Kiguchi T, Ohazama A, Saeki M. R2TP/PAQosome as a promising chemotherapeutic target in cancer. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:38-42. [PMID: 31890057 PMCID: PMC6926247 DOI: 10.1016/j.jdsr.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
R2TP/PAQosome (particle for arrangement of quaternary structure) is a novel multisubunit chaperone specialized in the assembly/maturation of protein complexes that are involved in essential cellular processes such as PIKKs (phosphatidylinositol 3-kinase-like kinases) signaling, snoRNP (small nucleolar ribonucleoprotein) biogenesis, and RNAP II (RNA polymerase II) complex formation. In this review article, we describe the current understanding of R2TP/PAQosome functions and characteristics as well as how the chaperone complex is involved in oncogenesis, highlighting DNA damage response, mTOR (mammalian target of rapamycin) pathway as well as snoRNP biogenesis. Also, we discuss its possible involvement in HNSCC (head and neck squamous cell carcinoma) including OSCC (oral squamous cell carcinoma). Finally, we provide an overview of current anti-cancer drug development efforts targeting R2TP/PAQosome.
Collapse
Affiliation(s)
- Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuo Kiguchi
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
73
|
A History of Molecular Chaperone Structures in the Protein Data Bank. Int J Mol Sci 2019; 20:ijms20246195. [PMID: 31817979 PMCID: PMC6940948 DOI: 10.3390/ijms20246195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Thirty years ago a class of proteins was found to prevent the aggregation of Rubisco. These proteins’ ability to prevent unwanted associations led to their being called chaperones. These chaperone proteins also increased in expression as a response to heat shock, hence their label as heat shock proteins (Hsps). However, neither label encompasses the breadth of these proteins’ functional capabilities. The term “unfoldases” has been proposed, as this basic function is shared by most members of this protein family. Onto this is added specializations that allow the different family members to perform various cellular functions. This current article focuses on the resolved structural bases for these functions. It reviews the currently available molecular structures in the Protein Data Bank for several classes of Hsps (Hsp60, Hsp70, Hsp90, and Hsp104). When possible, it discusses the complete structures for these proteins, and the types of molecular machines to which they have been assigned. The structures of domains and the associated functions are discussed in order to illustrate the rationale for the proposed unfoldase function.
Collapse
|
74
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
75
|
Cloutier P, Poitras C, Faubert D, Bouchard A, Blanchette M, Gauthier MS, Coulombe B. Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. J Proteome Res 2019; 19:18-27. [PMID: 31738558 DOI: 10.1021/acs.jproteome.9b00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PAQosome is an 11-subunit chaperone involved in the biogenesis of several human protein complexes. We show that ASDURF, a recently discovered upstream open reading frame (uORF) in the 5' UTR of ASNSD1 mRNA, encodes the 12th subunit of the PAQosome. ASDURF displays significant structural homology to β-prefoldins and assembles with the five known subunits of the prefoldin-like module of the PAQosome to form a heterohexameric prefoldin-like complex. A model of the PAQosome prefoldin-like module is presented. The data presented here provide an example of a eukaryotic uORF-encoded polypeptide whose function is not limited to cis-acting translational regulation of downstream coding sequence and highlights the importance of including alternative ORF products in proteomic studies.
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Christian Poitras
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Annie Bouchard
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Mathieu Blanchette
- School of Computer Science , McGill University , 3480 University Street , Montréal , Quebec H3A 0E9 , Canada
| | - Marie-Soleil Gauthier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de Médecine , Université de Montréal , 2900 Boulevard Édouart-Montpetit , Montréal , Quebec H3T 1J4 , Canada
| |
Collapse
|
76
|
Plasmodium falciparum R2TP complex: driver of parasite Hsp90 function. Biophys Rev 2019; 11:1007-1015. [PMID: 31734827 DOI: 10.1007/s12551-019-00605-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/30/2019] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is essential for the development of the main malaria agent, Plasmodium falciparum. Inhibitors that target Hsp90 function are known to not only kill the parasite, but also reverse resistance of the parasite to traditional antimalarials such as chloroquine. For this reason, Hsp90 has been tagged as a promising antimalarial drug target. As a molecular chaperone, Hsp90 facilitates folding of proteins such as steroid hormone receptors and kinases implicated in cell cycle and development. Central to Hsp90 function is its regulation by several co-chaperones. Various co-chaperones interact with Hsp90 to modulate its co-operation with other molecular chaperones such as Hsp70 and to regulate its interaction with substrates. The role of Hsp90 in the development of malaria parasites continues to receive research attention, and several Hsp90 co-chaperones have been mapped out. Recently, focus has shifted to P. falciparum R2TP proteins, which are thought to couple Hsp90 to a diverse set of client proteins. R2TP proteins are generally known to form a complex with Hsp90, and this complex drives multiple cellular processes central to signal transduction and cell division. Given the central role that the R2TP complex may play, the current review highlights the structure-function features of Hsp90 relative to R2TPs of P. falciparum.
Collapse
|
77
|
Takii R, Fujimoto M, Matsumoto M, Srivastava P, Katiyar A, Nakayama KI, Nakai A. The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment. EMBO J 2019; 38:e102566. [PMID: 31657478 DOI: 10.15252/embj.2019102566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
The recruitment of RNA polymerase II (Pol II) to core promoters is highly regulated during rapid induction of genes. In response to heat shock, heat shock transcription factor 1 (HSF1) is activated and occupies heat shock gene promoters. Promoter-bound HSF1 recruits general transcription factors and Mediator, which interact with Pol II, but stress-specific mechanisms of Pol II recruitment are unclear. Here, we show in comparative analyses of HSF1 paralogs and their mutants that HSF1 interacts with the pericentromeric adaptor protein shugoshin 2 (SGO2) during heat shock in mouse cells, in a manner dependent on inducible phosphorylation of HSF1 at serine 326, and recruits SGO2 to the HSP70 promoter. SGO2-mediated binding and recruitment of Pol II with a hypophosphorylated C-terminal domain promote expression of HSP70, implicating SGO2 as one of the coactivators that facilitate Pol II recruitment by HSF1. Furthermore, the HSF1-SGO2 complex supports cell survival and maintenance of proteostasis in heat shock conditions. These results exemplify a proteotoxic stress-specific mechanism of Pol II recruitment, which is triggered by phosphorylation of HSF1 during the heat shock response.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Masaki Matsumoto
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Pratibha Srivastava
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Arpit Katiyar
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Keiich I Nakayama
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
78
|
Liu G, Wang L, Pan J. Chlamydomonas WDR92 in association with R2TP-like complex and multiple DNAAFs to regulate ciliary dynein preassembly. J Mol Cell Biol 2019; 11:770-780. [PMID: 30428028 PMCID: PMC6821370 DOI: 10.1093/jmcb/mjy067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
The motility of cilia or eukaryotic flagella is powered by the axonemal dyneins, which are preassembled in the cytoplasm by proteins termed dynein arm assembly factors (DNAAFs) before being transported to and assembled on the ciliary axoneme. Here, we characterize the function of WDR92 in Chlamydomonas. Loss of WDR92, a cytoplasmic protein, in a mutant wdr92 generated by DNA insertional mutagenesis resulted in aflagellate cells or cells with stumpy or short flagella, disappearance of axonemal dynein arms, and diminishment of dynein arm heavy chains in the cytoplasm, suggesting that WDR92 is a DNAAF. Immunoprecipitation of WDR92 followed by mass spectrometry identified inner dynein arm heavy chains and multiple DNAAFs including RuvBL1, RPAP3, MOT48, ODA7, and DYX1C. The PIH1 domain-containing protein MOT48 formed a R2TP-like complex with RuvBL1/2 and RPAP3, while PF13, another PIH1 domain-containing protein with function in dynein preassembly, did not. Interestingly, the third PIH1 domain-containing protein TWI1 was not related to flagellar motility. WDR92 physically interacted with the R2TP-like complex and the other identified DNNAFs. Our data suggest that WDR92 functions in association with the HSP90 co-chaperone R2TP-like complex as well as linking other DNAAFs in dynein preassembly.
Collapse
Affiliation(s)
- Guang Liu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Limei Wang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
79
|
Contreras R, Kallemi P, González-García MP, Lazarova A, Sánchez-Serrano JJ, Sanmartín M, Rojo E. Identification of Domains and Factors Involved in MINIYO Nuclear Import. FRONTIERS IN PLANT SCIENCE 2019; 10:1044. [PMID: 31552063 PMCID: PMC6748027 DOI: 10.3389/fpls.2019.01044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
The transition of stem cells from self-renewal into differentiation is tightly regulated to assure proper development of the organism. Arabidopsis MINIYO (IYO) and its mammalian orthologue RNA polymerase II associated protein 1 (RPAP1) are essential factors for initiating stem cell differentiation in plants and animals. Moreover, there is evidence suggesting that the translocation of IYO and RPAP1 from the cytosol into the nucleus functions as a molecular switch to initiate this cell fate transition. Identifying the determinants of IYO subcellular localization would allow testing if, indeed, nuclear IYO migration triggers cell differentiation and could provide tools to control this crucial developmental transition. Through transient and stable expression assays in Nicotiana benthamiana and Arabidopsis thaliana, we demonstrate that IYO contains two nuclear localization signals (NLSs), located at the N- and C-terminus of the protein, which mediate the interaction with the NLS-receptor IMPA4 and the import of the protein into the nucleus. Interestingly, IYO also interacts with GPN GTPases, which are involved in selective nuclear import of RNA polymerase II. This interaction is prevented when the G1 motif in GPN1 is mutated, suggesting that IYO binds specifically to the nucleotide-bound form of GPN1. In contrast, deleting the NLSs in IYO does not prevent the interaction with GPN1, but it interferes with import of GPN1 into the nucleus, indicating that IYO and GPN1 are co-transported as a complex that requires the IYO NLSs for import. This work unveils key domains and factors involved in IYO nuclear import, which may prove instrumental to determine how IYO and RPAP1 control stem cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Enrique Rojo
- *Correspondence: Maite Sanmartín, , ; Enrique Rojo,
| |
Collapse
|
80
|
Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, Huang X, Wan S, Lan HY, Wang H. Cardiomyocyte-specific loss of RNA polymerase II subunit 5-mediating protein causes myocardial dysfunction and heart failure. Cardiovasc Res 2019; 115:1617-1628. [PMID: 30590389 DOI: 10.1093/cvr/cvy307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Myocardial dysfunction is an important cause of heart failure (HF). RNA polymerase II subunit 5 (RPB5)-mediating protein (RMP) is a transcriptional mediating protein which co-ordinates cellular processes including gene expression, metabolism, proliferation, and genome stability. However, its role in cardiac disease remains unknown. We aimed to determine the role and regulatory mechanisms of RMP in cardiomyocyte function and the development of HF. METHODS AND RESULTS Myocardial RMP expression was examined in human heart tissues from healthy controls and patients with advanced HF. Compared to normal cardiac tissues, RMP levels were significantly decreased in the myocardium of patients with advanced HF. To investigate the role of RMP in cardiac function, Cre-loxP recombinase technology was used to generate tamoxifen-inducible cardiomyocyte-specific Rmp knockout mice. Unexpectedly, cardiomyocyte-specific deletion of Rmp in mice resulted in contractile dysfunction, cardiac dilatation, and fibrosis. Furthermore, the lifespan of cardiac-specific Rmp-deficient mice was significantly shortened when compared with littermates. Mechanistically, we found that chronic HF in Rmp-deficient mice was associated with impaired mitochondrial structure and function, which may be mediated via a transforming growth factor-β/Smad3-proliferator-activated receptor coactivator1α (PGC1α)-dependent mechanism. PGC1α overexpression partially rescued chronic HF in cardiomyocyte-specific Rmp-deficient mice, and Smad3 blockade protected against the loss of PGC1α and adenosine triphosphate content that was induced by silencing RMP in vitro. CONCLUSIONS RMP plays a protective role in chronic HF. RMP may protect cardiomyocytes from injury by maintaining PGC1α-dependent mitochondrial biogenesis and function. The results from this study suggest that RMP may be a potential therapeutic agent for treating HF.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning, China.,Division of Cardiothoracic Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong
| | - Jingyi Sheng
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong
| | - Liwei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, No.225, Changhai Road, Shanghai, China.,National Center for Liver Cancer, No.366, Qianju Road, Shanghai, China
| | - Yinli Xu
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | - Liming Yu
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | - Yu Liu
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | - Xiaoru Huang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong
| | - Song Wan
- Division of Cardiothoracic Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong
| | - Huishan Wang
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| |
Collapse
|
81
|
Cristóbal-Mondragón GR, Lara-Chacón B, Santiago Á, De-la-Rosa V, González-González R, Muñiz-Luna JA, Ladrón-de-Guevara E, Romero-Romero S, Rangel-Yescas GE, Fernández Velasco DA, Islas LD, Pastor N, Sánchez-Olea R, Calera MR. FRET-based analysis and molecular modeling of the human GPN-loop GTPases 1 and 3 heterodimer unveils a dominant-negative protein complex. FEBS J 2019; 286:4797-4818. [PMID: 31298811 DOI: 10.1111/febs.14996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
Abstract
GPN-loop GTPases 1 and 3 are required for RNA polymerase II (RNAPII) nuclear import. Gpn1 and Gpn3 display some sequence similarity, physically associate, and their protein expression levels are mutually dependent in human cells. We performed here Fluorescence Resonance Energy Transfer (FRET), molecular modeling, and cell biology experiments to understand, and eventually disrupt, human Gpn1-Gpn3 interaction in live HEK293-AD cells. Transiently expressed EYFP-Gpn1 and Gpn3-CFP generated a strong FRET signal, indicative of a very close proximity, in the cytoplasm of HEK293-AD cells. Molecular modeling of the human Gpn1-Gpn3 heterodimer based on the crystallographic structure of Npa3, the Saccharomyces cerevisiae Gpn1 ortholog, revealed that human Gpn1 and Gpn3 associate through a large interaction surface formed by internal α-helix 7, insertion 2, and the GPN-loop from each protein. In site-directed mutagenesis experiments of interface residues, we identified the W132D and M227D EYFP-Gpn1 mutants as defective to produce a FRET signal when coexpressed with Gpn3-CFP. Simultaneous but not individual expression of Gpn1 and Gpn3, with either or both proteins fused to EYFP, retained RNAPII in the cytoplasm and markedly inhibited global transcription in HEK293-AD cells. Interestingly, the W132D and M227D Gpn1 mutants that showed an impaired ability to interact with Gpn3 by FRET were also unable to delocalize RNAPII in this assay, indicating that an intact Gpn1-Gpn3 interaction is required to display the dominant-negative effect on endogenous Gpn1/Gpn3 function we described here. Altogether, our results suggest that a Gpn1-Gpn3 strong interaction is critical for their cellular function.
Collapse
Affiliation(s)
| | - Bárbara Lara-Chacón
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ángel Santiago
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Víctor De-la-Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | | | - Julio A Muñiz-Luna
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ernesto Ladrón-de-Guevara
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Gisela E Rangel-Yescas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Daniel Alejandro Fernández Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Roberto Sánchez-Olea
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| |
Collapse
|
82
|
Lynch CJ, Bernad R, Calvo I, Nóbrega-Pereira S, Ruiz S, Ibarz N, Martinez-Val A, Graña-Castro O, Gómez-López G, Andrés-León E, Espinosa Angarica V, Del Sol A, Ortega S, Fernandez-Capetillo O, Rojo E, Munoz J, Serrano M. The RNA Polymerase II Factor RPAP1 Is Critical for Mediator-Driven Transcription and Cell Identity. Cell Rep 2019; 22:396-410. [PMID: 29320736 PMCID: PMC5775503 DOI: 10.1016/j.celrep.2017.12.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
The RNA polymerase II-associated protein 1 (RPAP1) is conserved across metazoa and required for stem cell differentiation in plants; however, very little is known about its mechanism of action or its role in mammalian cells. Here, we report that RPAP1 is essential for the expression of cell identity genes and for cell viability. Depletion of RPAP1 triggers cell de-differentiation, facilitates reprogramming toward pluripotency, and impairs differentiation. Mechanistically, we show that RPAP1 is essential for the interaction between RNA polymerase II (RNA Pol II) and Mediator, as well as for the recruitment of important regulators, such as the Mediator-specific RNA Pol II factor Gdown1 and the C-terminal domain (CTD) phosphatase RPAP2. In agreement, depletion of RPAP1 diminishes the loading of total and Ser5-phosphorylated RNA Pol II on many genes, with super-enhancer-driven genes among the most significantly downregulated. We conclude that Mediator/RPAP1/RNA Pol II is an ancient module, conserved from plants to mammals, critical for establishing and maintaining cell identity. RPAP1 is an RNA Pol II regulator, conserved from plants to mammals RPAP1 depletion erases cell identity gene expression, triggering de-differentiation Mechanistically, RPAP1 is critical for the Mediator-RNA Pol II interaction RPAP1 preferentially contributes to enhancer-driven gene transcription
Collapse
Affiliation(s)
- Cian J Lynch
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Raquel Bernad
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Isabel Calvo
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sandrina Nóbrega-Pereira
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sergio Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Nuria Ibarz
- ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ana Martinez-Val
- ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Bioinformatics Unit, Institute of Parasitology and Biomedicine Lopez-Neyra, Granada 18016, Spain
| | - Vladimir Espinosa Angarica
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Sagrario Ortega
- Transgenic Mouse Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 21, Sweden
| | - Enrique Rojo
- Department of Plant Molecular Genetics, National Center of Biotechnology (CNB-CSIC), Madrid 280049, Spain
| | - Javier Munoz
- ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
83
|
Patel-King RS, Sakato-Antoku M, Yankova M, King SM. WDR92 is required for axonemal dynein heavy chain stability in cytoplasm. Mol Biol Cell 2019; 30:1834-1845. [PMID: 31116681 PMCID: PMC6727741 DOI: 10.1091/mbc.e19-03-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
WDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of WDR92 expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia. We have now identified a Chlamydomonas wdr92 mutant that encodes a protein missing the last four WD repeats. The wdr92-1 mutant builds only ∼0.7-μm cilia lacking both inner and outer dynein arms, but with intact doublet microtubules and central pair. When cytoplasmic extracts prepared by freeze/thaw from a control strain were fractionated by gel filtration, outer arm dynein components were present in several distinct high molecular weight complexes. In contrast, wdr92-1 extracts almost completely lacked all three outer arm heavy chains, while the IFT dynein heavy chain was present in normal amounts. A wdr92-1 tpg1-2 double mutant builds ∼7-μm immotile flaccid cilia that completely lack dynein arms. These data indicate that WDR92 is a key assembly factor specifically required for the stability of axonemal dynein heavy chains in cytoplasm and suggest that cytoplasmic/IFT dynein heavy chains use a distinct folding pathway.
Collapse
Affiliation(s)
- Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
84
|
Ray M, Acharya S, Shambhavi S, Lakhotia SC. Over-expression of Hsp83 in grossly depleted hsrω lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. J Biosci 2019; 44:36. [PMID: 31180049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examined interactions between the 83 kDa heat-shock protein (Hsp83) and hsrω long noncoding RNAs (lncRNAs) in hsrω66 Hsp90GFP homozygotes, which almost completely lack hsrω lncRNAs but over-express Hsp83. All +/+; hsrω66 Hsp90GFP progeny died before the third instar. Rare Sp/CyO; hsrω66 Hsp90GFP reached the third instar stage but phenocopied l(2)gl mutants, becoming progressively bulbous and transparent with enlarged brain and died after prolonged larval life. Additionally, ventral ganglia too were elongated. However, hsrω66 Hsp90GFP/TM6B heterozygotes, carrying +/+ or Sp/CyO second chromosomes, developed normally. Total RNA sequencing (+/+, +/+; hsrω66/hsrω66, Sp/CyO; hsrω66/ hsrω66, +/+; Hsp90GFP/Hsp90GFP and Sp/CyO; hsrω66 Hsp90GFP/hsrω66 Hsp90GFP late third instar larvae) revealed similar effects on many genes in hsrω66 and Hsp90GFP homozygotes. Besides additive effect on many of them, numerous additional genes were affected in Sp/CyO; hsrω66 Hsp90GFP larvae, with l(2)gl and several genes regulating the central nervous system being highly down-regulated in surviving Sp/CyO; hsrω66 Hsp90GFP larvae, but not in hsrω66 or Hsp90GFP single mutants. Hsp83 and several omega speckle-associated hnRNPs were bioinformatically found to potentially bind with these gene promoters and transcripts. Since Hsp83 and hnRNPs are also known to interact, elevated Hsp83 in an altered background of hnRNP distribution and dynamics, due to near absence of hsrω lncRNAs and omega speckles, can severely perturb regulatory circuits with unexpected consequences, including down-regulation of tumoursuppressor genes such as l(2)gl.
Collapse
Affiliation(s)
- Mukulika Ray
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
85
|
The R2TP complex regulates paramyxovirus RNA synthesis. PLoS Pathog 2019; 15:e1007749. [PMID: 31121004 PMCID: PMC6532945 DOI: 10.1371/journal.ppat.1007749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
The regulation of paramyxovirus RNA synthesis by host proteins is poorly understood. Here, we identified a novel regulation mechanism of paramyxovirus RNA synthesis by the Hsp90 co-chaperone R2TP complex. We showed that the R2TP complex interacted with the paramyxovirus polymerase L protein and that silencing of the R2TP complex led to uncontrolled upregulation of mumps virus (MuV) gene transcription but not genome replication. Regulation by the R2TP complex was critical for MuV replication and evasion of host innate immune responses. The R2TP complex also regulated measles virus (MeV) RNA synthesis, but its function was inhibitory and not beneficial to MeV, as MeV evaded host innate immune responses in the absence of the R2TP complex. The identification of the R2TP complex as a critical host factor sheds new light on the regulation of paramyxovirus RNA synthesis. The family Paramyxoviridae includes several important human and animal pathogens such as mumps virus (MuV) and measles virus (MeV). Paramyxovirus RNA synthesis is strictly regulated by both viral and host proteins. In this study, we identified the R2TP complex as a novel host factor regulating paramyxovirus RNA synthesis. The R2TP complex is a Hsp90 co-chaperone and is involved in Hsp90-mediated assembly of large protein complexes. We showed that the R2TP complex precisely regulated MuV transcription by interacting with the polymerase L protein. This regulation was critical for MuV evasion of host innate immune responses and for viral replication. We also showed that the R2TP complex regulated MeV RNA synthesis, but that its function was inhibitory and not beneficial to MeV. Our findings support a novel regulation mechanism of paramyxovirus RNA synthesis that is directly relevant to its biology and life cycle, and provide the first evidence linking the R2TP complex to defense against viral infection.
Collapse
|
86
|
Frischknecht L, Britschgi C, Galliker P, Christinat Y, Vichalkovski A, Gstaiger M, Kovacs WJ, Krek W. BRAF inhibition sensitizes melanoma cells to α-amanitin via decreased RNA polymerase II assembly. Sci Rep 2019; 9:7779. [PMID: 31123282 PMCID: PMC6533289 DOI: 10.1038/s41598-019-44112-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
Despite the great success of small molecule inhibitors in the treatment of patients with BRAFV600E mutated melanoma, the response to these drugs remains transient and patients eventually relapse within a few months, highlighting the need to develop novel combination therapies based on the understanding of the molecular changes induced by BRAFV600E inhibitors. The acute inhibition of oncogenic signaling can rewire entire cellular signaling pathways and thereby create novel cancer cell vulnerabilities. Here, we demonstrate that inhibition of BRAFV600E oncogenic signaling in melanoma cell lines leads to destabilization of the large subunit of RNA polymerase II POLR2A (polymerase RNA II DNA-directed polypeptide A), thereby preventing its binding to the unconventional prefoldin RPB5 interactor (URI1) chaperone complex and the successful assembly of RNA polymerase II holoenzymes. Furthermore, in melanoma cell lines treated with mitogen-activated protein kinase (MAPK) inhibitors, α-amanitin, a specific and irreversible inhibitor of RNA polymerase II, induced massive apoptosis. Pre-treatment of melanoma cell lines with MAPK inhibitors significantly reduced IC50 values to α-amanitin, creating a state of collateral vulnerability similar to POLR2A hemizygous deletions. Thus, the development of melanoma specific α-amanitin antibody-drug conjugates could represent an interesting therapeutic approach for combination therapies with BRAFV600E inhibitors.
Collapse
Affiliation(s)
- Lukas Frischknecht
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Christian Britschgi
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland.,Department of Medical Oncology and Hematology, University Hospital of Zurich and University of Zurich, 8091, Zurich, Switzerland
| | - Patricia Galliker
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Yann Christinat
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Anton Vichalkovski
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
87
|
Muñoz-Hernández H, Pal M, Rodríguez CF, Fernandez-Leiro R, Prodromou C, Pearl LH, Llorca O. Structural mechanism for regulation of the AAA-ATPases RUVBL1-RUVBL2 in the R2TP co-chaperone revealed by cryo-EM. SCIENCE ADVANCES 2019; 5:eaaw1616. [PMID: 31049401 PMCID: PMC6494491 DOI: 10.1126/sciadv.aaw1616] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/16/2019] [Indexed: 05/04/2023]
Abstract
The human R2TP complex (RUVBL1-RUVBL2-RPAP3-PIH1D1) is an HSP90 co-chaperone required for the maturation of several essential multiprotein complexes, including RNA polymerase II, small nucleolar ribonucleoproteins, and PIKK complexes such as mTORC1 and ATR-ATRIP. RUVBL1-RUVBL2 AAA-ATPases are also primary components of other essential complexes such as INO80 and Tip60 remodelers. Despite recent efforts, the molecular mechanisms regulating RUVBL1-RUVBL2 in these complexes remain elusive. Here, we report cryo-EM structures of R2TP and show how access to the nucleotide-binding site of RUVBL2 is coupled to binding of the client recruitment component of R2TP (PIH1D1) to its DII domain. This interaction induces conformational rearrangements that lead to the destabilization of an N-terminal segment of RUVBL2 that acts as a gatekeeper to nucleotide exchange. This mechanism couples protein-induced motions of the DII domains with accessibility of the nucleotide-binding site in RUVBL1-RUVBL2, and it is likely a general mechanism shared with other RUVBL1-RUVBL2-containing complexes.
Collapse
Affiliation(s)
- Hugo Muñoz-Hernández
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Carlos F. Rodríguez
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Rafael Fernandez-Leiro
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Laurence H. Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Corresponding author.
| |
Collapse
|
88
|
Identification of RUVBL1 and RUVBL2 as Novel Cellular Interactors of the Ebola Virus Nucleoprotein. Viruses 2019; 11:v11040372. [PMID: 31018511 PMCID: PMC6521077 DOI: 10.3390/v11040372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
Ebola virus (EBOV) is a filovirus that has become a global public health threat in recent years. EBOV is the causative agent of a severe, often fatal hemorrhagic fever. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. To date, several investigations have discovered specific host-pathogen interactions for various EBOV proteins. However, relatively little is known about the EBOV nucleoprotein (NP) with regard to host interactions. In the present study, we aimed to elucidate NP-host protein-protein interactions (PPIs). Affinity purification-mass spectrometry (AP-MS) was used to identify candidate NP cellular interactors. Candidate interactors RUVBL1 and RUVBL2, partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) superfamily, were confirmed to interact with NP in co-immunoprecipitation (co-IP) and immunofluorescence (IF) experiments. Functional studies using a minigenome system revealed that the siRNA-mediated knockdown of RUVBL1 but not RUVBL2 moderately decreased EBOV minigenome activity. Super resolution structured illumination microscopy (SIM) was used to identify an association between NP and components of the R2TP complex, which includes RUVBL1, RUVBL2, RPAP3, and PIH1D1, suggesting a potential role for the R2TP complex in capsid formation. Moreover, the siRNA-mediated knockdown of RPAP3 and subsequent downregulation of PIH1D1 was shown to have no effect on minigenome activity, further suggesting a role in capsid formation. Overall, we identify RUVBL1 and RUVBL2 as novel interactors of EBOV NP and for the first time report EBOV NP recruitment of the R2TP complex, which may provide novel targets for broad-acting anti-EBOV therapeutics.
Collapse
|
89
|
Over-expression of Hsp83 in grossly depleted hsrω lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. J Biosci 2019. [DOI: 10.1007/s12038-019-9852-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
90
|
Target Identification of the Marine Natural Products Dictyoceratin-A and -C as Selective Growth Inhibitors in Cancer Cells Adapted to Hypoxic Environments. Mar Drugs 2019; 17:md17030163. [PMID: 30857246 PMCID: PMC6471994 DOI: 10.3390/md17030163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-adapted cancer cells in tumors contribute to the pathological progression of cancer. The marine spongean sesquiterpene phenols dictyoceratin-A (1) and -C (2) have been shown to induce hypoxia-selective growth inhibition in cultured cancer cells and exhibit in vivo antitumor effects. These compounds inhibit the accumulation of hypoxia-inducible factor-1α (HIF-1α), which is a drug target in hypoxia-adapted cancer cells, under hypoxic conditions. However, the target molecules of compounds 1 and 2, which are responsible for decreasing HIF-1α expression under hypoxic conditions, remain unclear. In this study, we synthesized probe molecules for compounds 1 and 2 to identify their target molecules and found that both compounds bind to RNA polymerase II-associated protein 3 (RPAP3), which is a component of the R2TP/Prefoldin-like (PEDL) complex. In addition, RPAP3-knockdown cells showed a phenotype similar to that of compound-treated cells.
Collapse
|
91
|
Bensaddek D, Nicolas A, Lamond AI. Signal enhanced proteomics: a biological perspective on dissecting the functional organisation of cell proteomes. Curr Opin Chem Biol 2018; 48:114-122. [PMID: 30551035 DOI: 10.1016/j.cbpa.2018.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 01/28/2023]
Abstract
Proteomes are highly dynamic and can respond rapidly to environmental and cellular signals. Within cells, proteins often form distinct pools with different functions and properties. However, in quantitative proteomics studies it is common to measure averaged values for proteins that do not reflect variations that may occur between different protein isoforms, different subcellular compartments, or in cells at different cell cycle stages and so on. Here we review experimental approaches that can be used to enhance the signal from specific pools of protein that may otherwise be obscured through averaging across protein populations. This signal enhancement can help to reveal functions associated with specific protein pools, providing insight into the regulation of cellular processes. We review different strategies for proteomic signal enhancement, with a focus on the analysis of protein pools in different subcellular locations. We describe how MS-based proteome analyses can be combined with a general physico-chemical cell fractionation procedure that can be applied to many cultured cell lines.
Collapse
Affiliation(s)
- Dalila Bensaddek
- Laboratory of Quantitative Proteomics, Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Armel Nicolas
- Laboratory of Quantitative Proteomics, Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Angus I Lamond
- Laboratory of Quantitative Proteomics, Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
92
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
93
|
Son HG, Seo K, Seo M, Park S, Ham S, An SWA, Choi ES, Lee Y, Baek H, Kim E, Ryu Y, Ha CM, Hsu AL, Roh TY, Jang SK, Lee SJV. Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in C. elegans. Genes Dev 2018; 32:1562-1575. [PMID: 30478249 PMCID: PMC6295163 DOI: 10.1101/gad.317362.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.
Collapse
Affiliation(s)
- Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Mihwa Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea.,Center for plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea.,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seokjin Ham
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seon Woo A An
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Eun-Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Yujin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Haeshim Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Eunju Kim
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Youngjae Ryu
- Research Division, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Chang Man Ha
- Research Division, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.,Research Center for Healthy Aging, China Medical University, Taichung 404, Taiwan.,Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
94
|
Deep Structural Analysis of RPAP3 and PIH1D1, Two Components of the HSP90 Co-chaperone R2TP Complex. Structure 2018; 26:1196-1209.e8. [DOI: 10.1016/j.str.2018.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
|
95
|
Coulombe B, Cloutier P, Gauthier MS. How do our cells build their protein interactome? Nat Commun 2018; 9:2955. [PMID: 30054485 PMCID: PMC6063932 DOI: 10.1038/s41467-018-05448-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/20/2018] [Indexed: 12/28/2022] Open
Abstract
Chaperones are cellular factors that help in the folding of newly synthesized polypeptides (or clients) and, in some cases, ensure their integration within larger complexes. They often require non-client proteins, or co-chaperones, to help drive specificity to particular target polypeptides or facilitate the nucleotide hydrolysis cycle of some chaperones. The latest findings on the characterization of the PAQosome (Particle for Arrangement of Quaternary structure; formerly known as R2TP/PFDL complex) published recently in Nature Communications help to explain how this particular co-chaperone plays a central role in organizing our proteome into protein complexes and networks. The exploitation by the cell of alternative PAQosomes formed through the differential integration of homologous subunits, in conjunction with the use of several adaptors (specificity factors), provide the conceptual basis for interaction of multiple clients in a structure that is favorable to their simultaneous binding en route to protein complex and network assembly/maturation.
Collapse
Affiliation(s)
- Benoit Coulombe
- Translational Proteomics Research Unit, Montreal Clinical Research Institute, Montreal, H2W 1R7, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada.
| | - Philippe Cloutier
- Translational Proteomics Research Unit, Montreal Clinical Research Institute, Montreal, H2W 1R7, QC, Canada
| | - Marie-Soleil Gauthier
- Translational Proteomics Research Unit, Montreal Clinical Research Institute, Montreal, H2W 1R7, QC, Canada
| |
Collapse
|
96
|
Gpn2 and Rba50 Directly Participate in the Assembly of the Rpb3 Subcomplex in the Biogenesis of RNA Polymerase II. Mol Cell Biol 2018; 38:MCB.00091-18. [PMID: 29661922 DOI: 10.1128/mcb.00091-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023] Open
Abstract
RNA polymerase II (RNAPII) is one of the central enzymes in cell growth and organizational development. It is a large macromolecular complex consisting of 12 subunits. Relative to the clear definition of RNAPII structure and biological function, the molecular mechanism of how RNAPII is assembled is poorly understood, and thus the key assembly factors acting for the assembly of RNAPII remain elusive. In this study, we identified two factors, Gpn2 and Rba50, that directly participate in the assembly of RNAPII. Gpn2 and Rba50 were demonstrated to interact with Rpb12 and Rpb3, respectively. An interaction between Gpn2 and Rba50 was also demonstrated. When Gpn2 and Rba50 are functionally defective, the assembly of the Rpb3 subcomplex is disrupted, leading to defects in the assembly of RNAPII. Based on these results, we conclude that Gpn2 and Rba50 directly participate in the assembly of the Rpb3 subcomplex and subsequently the biogenesis of RNAPII.
Collapse
|
97
|
Berg MD, Genereaux J, Karagiannis J, Brandl CJ. The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3 (BETHESDA, MD.) 2018; 8:1943-1957. [PMID: 29626083 PMCID: PMC5982823 DOI: 10.1534/g3.118.200288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022]
Abstract
Tra1 is an essential component of the SAGA/SLIK and NuA4 complexes in S. cerevisiae, recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members (e.g., Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity. We identified three conserved arginine residues in Tra1 that reside proximal or within the cleft between the N- and C-terminal subdomains of the PI3K domain. To establish a function for Tra1's PI3K domain and specifically the cleft region, we characterized a tra1 allele where these three arginine residues are mutated to glutamine. The half-life of the Tra1[Formula: see text] protein is reduced but its steady state level is maintained at near wild-type levels by a transcriptional feedback mechanism. The tra1[Formula: see text] allele results in slow growth under stress and alters the expression of genes also regulated by other components of the SAGA complex. Tra1[Formula: see text] is less efficiently transported to the nucleus than the wild-type protein. Likely related to this, Tra1[Formula: see text] associates poorly with SAGA/SLIK and NuA4. The ratio of Spt7SLIK to Spt7SAGA increases in the tra1[Formula: see text] strain and truncated forms of Spt20 become apparent upon isolation of SAGA/SLIK. Intragenic suppressor mutations of tra1[Formula: see text] map to the cleft region further emphasizing its importance. We propose that the PI3K domain of Tra1 is directly or indirectly important for incorporating Tra1 into SAGA and NuA4 and thus the biosynthesis and/or stability of the intact complexes.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Jim Karagiannis
- Department of Biology, Western University, London, Ontario, Canada N6A5B7
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| |
Collapse
|
98
|
Maurizy C, Quinternet M, Abel Y, Verheggen C, Santo PE, Bourguet M, C F Paiva A, Bragantini B, Chagot ME, Robert MC, Abeza C, Fabre P, Fort P, Vandermoere F, M F Sousa P, Rain JC, Charpentier B, Cianférani S, Bandeiras TM, Pradet-Balade B, Manival X, Bertrand E. The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 2018; 9:2093. [PMID: 29844425 PMCID: PMC5974087 DOI: 10.1038/s41467-018-04431-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis. R2TP is an HSP90 co-chaperone composed of an RPAP3-PIH1D1 heterodimer, which binds two essential AAA+ ATPases RUVBL1/RUVBL2. Here authors use a structural approach to study RPAP3 and find an RPAP3-like protein (SPAG1) which also forms a co-chaperone complex with PIH1D2 and RUVBL1/2 enriched in testis.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Marc Quinternet
- CNRS, INSERM, IBSLOR, Université de Lorraine, Nancy, F-54000, France
| | - Yoann Abel
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Céline Verheggen
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, 67000, France
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Marie-Cécile Robert
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Claire Abeza
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Philippe Fabre
- CNRS, IMoPA, Université de Lorraine, Nancy, F-54000, France
| | - Philippe Fort
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, Montpellier, 34090, France
| | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, 67000, France
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | - Xavier Manival
- CNRS, IMoPA, Université de Lorraine, Nancy, F-54000, France.
| | - Edouard Bertrand
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France. .,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France.
| |
Collapse
|
99
|
Zur Lage P, Stefanopoulou P, Styczynska-Soczka K, Quinn N, Mali G, von Kriegsheim A, Mill P, Jarman AP. Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 2018; 217:2583-2598. [PMID: 29743191 PMCID: PMC6028525 DOI: 10.1083/jcb.201709026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/21/2018] [Accepted: 04/06/2018] [Indexed: 01/12/2023] Open
Abstract
Wdr92 is associated with the multifunctional cochaperone, R2TP, but its function is unknown. In this study, the authors show that Drosophila Wdr92 is exclusively required for preassembly of ciliary dynein motor complexes, which are confined to sensory neuron ciliary dendrites and sperm flagella. Wdr92 is proposed to direct R2TP/HSP90 to dynein chain clients to chaperone cytoplasmic preassembly. The massive dynein motor complexes that drive ciliary and flagellar motility require cytoplasmic preassembly, a process requiring dedicated dynein assembly factors (DNAAFs). How DNAAFs interact with molecular chaperones to control dynein assembly is not clear. By analogy with the well-known multifunctional HSP90-associated cochaperone, R2TP, several DNAAFs have been suggested to perform novel R2TP-like functions. However, the involvement of R2TP itself (canonical R2TP) in dynein assembly remains unclear. Here we show that in Drosophila melanogaster, the R2TP-associated factor, Wdr92, is required exclusively for axonemal dynein assembly, likely in association with canonical R2TP. Proteomic analyses suggest that in addition to being a regulator of R2TP chaperoning activity, Wdr92 works with the DNAAF Spag1 at a distinct stage in dynein preassembly. Wdr92/R2TP function is likely distinct from that of the DNAAFs proposed to form dynein-specific R2TP-like complexes. Our findings thus establish a connection between dynein assembly and a core multifunctional cochaperone.
Collapse
Affiliation(s)
- Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| | - Panagiota Stefanopoulou
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| | - Katarzyna Styczynska-Soczka
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| | - Niall Quinn
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Girish Mali
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Pleasantine Mill
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
100
|
Ly T, Endo A, Brenes A, Gierlinski M, Afzal V, Pawellek A, Lamond AI. Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells. Wellcome Open Res 2018; 3:51. [PMID: 29904729 PMCID: PMC5989152 DOI: 10.12688/wellcomeopenres.14392.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Viral oncogenes and mutated proto-oncogenes are potent drivers of cancer malignancy. Downstream of the oncogenic trigger are alterations in protein properties that give rise to cellular transformation and the acquisition of malignant cellular phenotypes. Developments in mass spectrometry enable large-scale, multidimensional characterisation of proteomes. Such techniques could provide an unprecedented, unbiased view of how oncogene activation remodels a human cell proteome. Methods: Using quantitative MS-based proteomics and cellular assays, we analysed how transformation induced by activating v-Src kinase remodels the proteome and cellular phenotypes of breast epithelial (MCF10A) cells. SILAC MS was used to comprehensively characterise the MCF10A proteome and to measure v-Src-induced changes in protein abundance across seven time-points (1-72 hrs). We used pulse-SILAC MS ( Boisvert et al., 2012), to compare protein synthesis and turnover in control and transformed cells. Follow-on experiments employed a combination of cellular and functional assays to characterise the roles of selected Src-responsive proteins. Results: Src-induced transformation changed the expression and/or turnover levels of ~3% of proteins, affecting ~1.5% of the total protein molecules in the cell. Transformation increased the average rate of proteome turnover and disrupted protein homeostasis. We identify distinct classes of protein kinetics in response to Src activation. We demonstrate that members of the polycomb repressive complex 1 (PRC1) are important regulators of invasion and migration in MCF10A cells. Many Src-regulated proteins are present in low abundance and some are regulated post-transcriptionally. The signature of Src-responsive proteins is highly predictive of poor patient survival across multiple cancer types. Open access to search and interactively explore all these proteomic data is provided via the EPD database ( www.peptracker.com/epd). Conclusions: We present the first comprehensive analysis measuring how protein expression and protein turnover is affected by cell transformation, providing a detailed picture at the protein level of the consequences of activation of an oncogene.
Collapse
Affiliation(s)
- Tony Ly
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aki Endo
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Alejandro Brenes
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Vackar Afzal
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| |
Collapse
|