51
|
Zhang Y, Zhao Z, Li J, Wang Q, Fan Z, Yuan Z, Feng Y, Fu A. Treatment of colorectal cancer by anticancer and antibacterial effects of hemiprotonic phenanthroline-phenanthroline+ with nanomicelle delivery. Asian J Pharm Sci 2023. [DOI: 10.1016/j.ajps.2023.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
52
|
Unraveling topoisomerase IA gate dynamics in presence of PPEF and its preclinical evaluation against multidrug-resistant pathogens. Commun Biol 2023; 6:195. [PMID: 36807602 PMCID: PMC9938908 DOI: 10.1038/s42003-023-04412-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/03/2023] [Indexed: 02/20/2023] Open
Abstract
Type IA topoisomerases maintain DNA topology by cleaving ssDNA and relaxing negative supercoils. The inhibition of its activity in bacteria prevents the relaxation of negative supercoils, which in turn impedes DNA metabolic processes leading to cell death. Using this hypothesis, two bisbenzimidazoles, PPEF and BPVF are synthesized, selectively inhibiting bacterial TopoIA and TopoIII. PPEF stabilizes the topoisomerase and topoisomerase-ssDNA complex, acts as an interfacial inhibitor. PPEF display high efficacy against ~455 multi-drug resistant gram positive and negative bacteria. To understand molecular mechanism of inhibition of TopoIA and PPEF, accelerated MD simulation is carried out, and results suggested that PPEF binds, stabilizes the closed conformation of TopoIA with -6Kcal/mol binding energy and destabilizes the binding of ssDNA. The TopoIA gate dynamics model can be used as a tool to screen TopoIA inhibitors as therapeutic candidates. PPEF and BPVF cause cellular filamentation and DNA fragmentation leading to bacterial cell death. PPEF and BPVF show potent efficacy against systemic and neutropenic mouse models harboring E. coli, VRSA, and MRSA infection without cellular toxicity.
Collapse
|
53
|
Qassadi FI, Zhu Z, Monaghan TM. Plant-Derived Products with Therapeutic Potential against Gastrointestinal Bacteria. Pathogens 2023; 12:pathogens12020333. [PMID: 36839605 PMCID: PMC9967904 DOI: 10.3390/pathogens12020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The rising burden of antimicrobial resistance and increasing infectious disease outbreaks, including the recent COVID-19 pandemic, has led to a growing demand for the development of natural products as a valuable source of leading medicinal compounds. There is a wide variety of active constituents found in plants, making them an excellent source of antimicrobial agents with therapeutic potential as alternatives or potentiators of antibiotics. The structural diversity of phytochemicals enables them to act through a variety of mechanisms, targeting multiple biochemical pathways, in contrast to traditional antimicrobials. Moreover, the bioactivity of the herbal extracts can be explained by various metabolites working in synergism, where hundreds to thousands of metabolites make up the extract. Although a vast amount of literature is available regarding the use of these herbal extracts against bacterial and viral infections, critical assessments of their quality are lacking. This review aims to explore the efficacy and antimicrobial effects of herbal extracts against clinically relevant gastrointestinal infections including pathogenic Escherichia coli, toxigenic Clostridioides difficile, Campylobacter and Salmonella species. The review will discuss research gaps and propose future approaches to the translational development of plant-derived products for drug discovery purposes for the treatment and prevention of gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Fatimah I. Qassadi
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Zheying Zhu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
54
|
Antibacterial Effects of ZnO Nanodisks: Shape Effect of the Nanostructure on the Lethality in Escherichia coli. Appl Biochem Biotechnol 2022; 195:3067-3095. [PMID: 36520354 DOI: 10.1007/s12010-022-04265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The role of the shape of the nanostructure on the antibacterial effects of ZnO nanodisks has been investigated by detailed mass spectrometry-based proteomics along with other spectroscopic and microscopic studies on E. coli. The primary interaction study of the E. coli cells in the presence of ZnO nanodisks showed rigorous cell surface damage disrupting the cell wall/membrane components detected by microscopic and ATR-FTIR studies. Protein profiling of whole-cell extracts in the presence and absence of ZnO nanodisks identified several proteins that are upregulated and downregulated under the stress of the nanodisks. This suggests that the bacterial response to the primary stress leads to a secondary impact of ZnO nanodisk toxicity via regulation of the expression of specific proteins. Results showed that the ZnO nanodisks lead to the over-expression of peptidyl-dipeptidase Dcp, Transketolase-1, etc., which are important to maintaining the osmotic balance in the cell. The abrupt change in osmotic pressure leads to mechanical injury to the membrane, and nutritional starvation conditions, which is revealed from the expression of the key proteins involved in membrane-protein assembly, maintaining membrane integrity, cell division processes, etc. Thus, indicating a deleterious effect of ZnO nanodisk on the protective layer of E. coli. ZnO nanodisks seem to primarily affect the protective membrane layer, inducing cell death via the development of osmotic shock conditions, as one of the possible reasons for cell death. These results unravel a unique behavior of the disk-shaped ZnO nanostructure in executing lethality in E. coli, which has not been reported for other known shapes or morphologies of ZnO nanoforms.
Collapse
|
55
|
Lu S, Lin J, Jin J, Zhang L, Guan Y, Chen H, Wu Y, Zhang W, Luan X. Tachyplesin I and its derivatives: A pharmaco-chemical perspective on their antimicrobial and antitumor potential. Expert Opin Drug Discov 2022; 17:1407-1423. [PMID: 36503335 DOI: 10.1080/17460441.2023.2157402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Increasing evidence suggests that intratumor microbiota are an intrinsic component in the tumor microenvironment across multiple cancer types, and that there is a close relationship between microbiota and tumor progression. Therefore, how to address the interaction between bacteria and malignances has become a growing concern. Tachyplesin I (TPI), a peptide with dual antimicrobial and antitumor effects, holds great promise as a therapeutic alternative for the aforementioned diseases, with the advantage of broad-spectrum activities, quick killing efficacy, and a low tendency to induce resistance. AREAS COVERED This review comprehensively summarizes the pharmacological mechanisms of TPI with an emphasis on its antimicrobial and antitumor potential. Furthermore, it presents advances in TPI derivatives and gives a perspective on their future development. The article is based on literature searches using PubMed and SciFinder to retrieve the most up-to-date information of TPI. EXPERT OPINION Bacterial infections and cancer both pose a serious threat to health due to their symbiotic interactions and drug resistance. TPI is anticipated to be a novel agent to control pathogenic bacteria and various tumors through multiple mechanisms of action. Indeed, the continuous advancements in chemical modification and innovative applications of TPI give hope for future improvements in therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Yingyun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Municipality, Shanghai, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China.,School of Pharmacy, Naval Medical University, Municipality, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| |
Collapse
|
56
|
Continuous hydrolysis of mango peel pectin for the production of antibacterial pectic oligosaccharides in packed-bed reactor using immobilized polygalacturonase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Ni L, Wang K, Wang Z, Wang Y. Antibiofouling Characteristics and Mechanisms in an Anammox Membrane Bioreactor Based on an Optimized Photocatalytic Technology─Photocatalytic Optical Fibers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16144-16155. [PMID: 36269937 DOI: 10.1021/acs.est.2c04023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an ecofriendly photocatalytic antifouling technology for membrane bioreactors (MBRs), photocatalytic optical fibers (POFs) can decrease the replacement cost of modified membranes and prevent the proliferation of photosynthetic bacteria caused by direct light illumination. Here, POFs were applied in situ in an anaerobic ammonium oxidation (anammox) MBR for membrane biofouling control. Compared with the control MBR without POFs treatment, the average fouling cycle of the POFs-loaded MBR was extended by 137%, and the energy consumption caused by membrane fouling was saved by 18%. In the antibiofouling process, •OH was the key photocatalytic reactive species. On the fouled POFs-loaded membranes, the membrane-adhered foulant was significantly decreased by photocatalytic degradation of the proteins, polysaccharides and humic substances in the microbial metabolites. The membrane-attached bacteria were inactivated by the POFs by the mechanisms of cell-membrane destruction and cell-membrane permeabilization, which caused bacterial necrosis and apoptosis, respectively. Moreover, the total nitrogen-removal efficiencies of the two MBRs were maintained at 85.3-90.4%, and the abundance of anammox bacteria increased from 21.3% to 46.2% during the 202 days of operation, indicating an efficient anammox process with excellent nitrogen-removal performance, biomass retention, and anammox bacteria enrichment. The systematic insights into the antibiofouling performance and mechanisms of POFs in anammox MBRs will promote application and development of membrane-filtration technology in wastewater treatment using environmentally friendly and energy-efficient antifouling strategies.
Collapse
Affiliation(s)
- Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| |
Collapse
|
58
|
Lai MJ, Huang YW, Chen HC, Tsao LI, Chang Chien CF, Singh B, Liu BR. Effect of Size and Concentration of Copper Nanoparticles on the Antimicrobial Activity in Escherichia coli through Multiple Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213715. [PMID: 36364491 PMCID: PMC9656174 DOI: 10.3390/nano12213715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2023]
Abstract
Metal and metal oxide nanoparticles, including copper nanoparticles (CuNPs), display antimicrobial activities and are regarded as promising microorganism inhibitors. Here, we explored the antimicrobial activity of CuNPs in Escherichia coli (E. coli) using two particle sizes (20 and 60 nm) and five concentrations (1, 5, 10, 50 and 100 μg/mL). The result showed a concentration-dependent trend of bactericidal activities for both size groups, with 20 nm particles more effective than 60 nm particles at low concentrations. The membrane disruption caused by CuNPs was confirmed by electron microscopy, PI staining and protein leaking analysis. However, the results of reactive oxygen species generation and genomic DNA damage revealed that the size and concentration of CuNPs were factors affecting the induction of multiple bactericidal mechanisms simultaneously on different scales. Further results of annexin V-PI staining supported this hypothesis by showing the shifting composition of the early-, late- and non-apoptotic dead cells across the CuNP groups. Many CuNP treatment groups were rescued when four mammalian modulators-wortmannin, necrosulfonamide, Z-VAD-FMK, and SBI-0206965-were applied separately. The results suggest the possible existence of bacterial programmed cell death pathways in E. coli which could be triggered by CuNP treatments.
Collapse
Affiliation(s)
- Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Hsuan-Chun Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Li-I Tsao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Chih-Fang Chang Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Bhaskar Singh
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
59
|
Singh S, Verma T, Nandi D, Umapathy S. Herbicides 2,4-Dichlorophenoxy Acetic Acid and Glyphosate Induce Distinct Biochemical Changes in E. coli during Phenotypic Antibiotic Resistance: A Raman Spectroscopic Study. J Phys Chem B 2022; 126:8140-8154. [PMID: 36205931 DOI: 10.1021/acs.jpcb.2c04151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibiotic resistance is a major global health concern. The increased use of herbicides may lead to multiple antibiotic resistance in bacteria. Conventional techniques for diagnosing antibiotic resistance are laborious, time-intensive, expensive, and lack information about antibiotic susceptibility. On the other hand, Raman spectroscopy is a rapid, label-free, noninvasive alternative to traditional techniques to detect antibiotic resistance. In this study, two popular herbicides 2,4-dichlorophenoxy acetic acid (2,4-D) and N-(phosphonomethyl)glycine (glyphosate) were used to study their effects on the emergence of antibiotic resistance. The Escherichia coli wild-type (WT) MG1655 strain and two isogenic mutants, Δlon and ΔacrB, were used together with Raman spectroscopy. The WT E. coli is sensitive to antibiotics, but exposure to both herbicides induces antibiotic resistance. Using an excitation wavelength of 785 nm, the intensity ratios (e.g., I740/I785, I740/I1003, I1480/I1445, I2934/I2868, and I2934/I2845) were identified as biomarkers to study the induction of antibiotic resistance in bacteria but not NaCl-mediated stress. Using an excitation wavelength of 633 nm, the peak intensity at 740 cm-1 assigned to cytochrome bd decreases under antibiotic stress but increases upon exposure to both herbicides and antibiotics, indicating the development of resistance. Thus, this study can be applied to monitor antibiotic resistance using Raman spectroscopy.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Taru Verma
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Dipankar Nandi
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India.,Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India.,Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
60
|
Zhan L, Hou Z, Wang Y, Liu H, Liu Y, Huang G. Rapid Profiling of Metabolic Perturbations to Antibiotics in Living Bacteria by Induced Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1960-1966. [PMID: 36106750 DOI: 10.1021/jasms.2c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid monitoring of real bacterial metabolic perturbations to antibiotics may be helpful to better understand the mechanisms of action and more targeted treatment. In this study, the real metabolic responses to antibiotic treatment in living bacteria were profiled rapidly by induced electrospray ionization mass spectrometry. Significant metabolic perturbations were profiled after antibiotic treatment compared with untreated bacteria. Similar and unique metabolic responses were observed with different antibiotic treatments. Further multivariable analysis was performed to determine significant metabolites as potential biomarkers. Moreover, different metabolic disturbances were detected for serial dilutions of antibiotic treatments. Overall, combined with induced electrospray ionization mass spectrometry, the rapid and real bacterial metabolic status caused by antibiotics was monitored, suggesting the potential application of our method in mechanism exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yu Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
61
|
Wong F, Stokes JM, Bening SC, Vidoudez C, Trauger SA, Collins JJ. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol Cell 2022; 82:3499-3512.e10. [PMID: 35973427 PMCID: PMC10149100 DOI: 10.1016/j.molcel.2022.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/19/2022] [Accepted: 07/17/2022] [Indexed: 01/21/2023]
Abstract
Understanding how bactericidal antibiotics kill bacteria remains an open question. Previous work has proposed that primary drug-target corruption leads to increased energetic demands, resulting in the generation of reactive metabolic byproducts (RMBs), particularly reactive oxygen species, that contribute to antibiotic-induced cell death. Studies have challenged this hypothesis by pointing to antibiotic lethality under anaerobic conditions. Here, we show that treatment of Escherichia coli with bactericidal antibiotics under anaerobic conditions leads to changes in the intracellular concentrations of central carbon metabolites, as well as the production of RMBs, particularly reactive electrophilic species (RES). We show that antibiotic treatment results in DNA double-strand breaks and membrane damage and demonstrate that antibiotic lethality under anaerobic conditions can be decreased by RMB scavengers, which reduce RES accumulation and mitigate associated macromolecular damage. This work indicates that RMBs, generated in response to antibiotic-induced energetic demands, contribute in part to antibiotic lethality under anaerobic conditions.
Collapse
Affiliation(s)
- Felix Wong
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan M Stokes
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah C Bening
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - James J Collins
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
62
|
Liu E, Chen Y, Xu J, Gu S, An N, Xin J, Wang W, Liu Z, An Q, Yi J, Yin W. Platelets Inhibit Methicillin-Resistant Staphylococcus aureus by Inducing Hydroxyl Radical-Mediated Apoptosis-Like Cell Death. Microbiol Spectr 2022; 10:e0244121. [PMID: 35852345 PMCID: PMC9431477 DOI: 10.1128/spectrum.02441-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common drug-resistant bacteria and poses a significant threat to human health. Due to the emergence of multidrug resistance, limited drugs are available for the treatment of MRSA infections. In recent years, platelets have been reported to play important roles in inflammation and immune responses, in addition to their functions in blood hemostasis and clotting. We and other researchers have previously reported that platelets can inhibit Staphylococcus aureus growth. However, it remained unclear whether platelets have the same antibacterial effect on drug-resistant strains. In this study, we hypothesized that platelets may also inhibit the growth of MRSA; the results confirmed that platelets significantly inhibited the growth of MRSA in vitro. In a murine model of MRSA infection, we found that a platelet transfusion alleviated the symptoms of MRSA infection; in contrast, depletion of platelets aggravated infective symptoms. Moreover, we observed an overproduction of hydroxyl radicals in MRSA following platelet treatment, which induced apoptosis-like death of MRSA. Our findings demonstrate that platelets can inhibit MRSA growth by promoting the overproduction of hydroxyl radicals and inducing apoptosis-like death. IMPORTANCE The widespread use of antibiotics has led to the emergence of drug-resistant bacteria, particularly multidrug-resistant bacteria. MRSA is the most common drug-resistant bacterium that causes suppurative infections in humans. As only a limited number of drugs are available to treat the infections caused by drug-resistant pathogens, it is imperative to develop novel and effective biological agents for treating MRSA infections. This is the first study to show that platelets can inhibit MRSA growth in vitro and in vivo. Our results revealed that platelets enhanced the production of hydroxyl radicals in MRSA, which induced a series of apoptosis hallmarks in MRSA, including DNA fragmentation, chromosome condensation, phosphatidylserine exposure, membrane potential depolarization, and increased intracellular caspase activity. These findings may further our understanding of platelet function.
Collapse
Affiliation(s)
- Erxiong Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Yutong Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Shunli Gu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Jiajia Xin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Wenting Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Qunxing An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Jing Yi
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| |
Collapse
|
63
|
Antibacterial mechanism of beetroot (Beta vulgaris) extract against Listeria monocytogenes through apoptosis-like death and its application in cooked pork. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
64
|
Nakamura M, Murasato F, Øverby A, Kodama Y, Michimae H, Sasaki K, Flahou B, Haesebrouck F, Murayama SY, Takahashi S, Uchida M, Suzuki H, Matsui H. Effect of Acid Suppressants on Non–Helicobacter pylori Helicobacters Within Parietal Cells. Front Pharmacol 2022; 13:692437. [PMID: 35935877 PMCID: PMC9355715 DOI: 10.3389/fphar.2022.692437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2022] [Indexed: 12/22/2022] Open
Abstract
We investigated the effect of increased pH induced by acid suppressants on the viability of non–Helicobacter pylori helicobacters (NHPHs) within parietal cell intracellular canaliculi and fundic glandular lumina by immunohistochemistry, electron microscopy, quantitative PCR, urea breath tests, and using a bilayer culture system. Three months before the experiment, mice were infected with the NHPH H. suis and then treated with famotidine (2 mg/kg body weight [BW], once daily), lansoprazole (30 mg/kg BW, once daily), or vonoprazan (20 mg/kg BW, once daily) for 3 days. Immunohistochemical studies using the TUNEL method, quantitative PCR analysis, and urea breath tests were performed. PCR analysis showed a decrease in the NHPH quantity after vonoprazan treatment. Urea breath tests revealed a significant decrease in the NHPH urease activity after vonoprazan, lansoprazole, and famotidine treatments for 3 days; however, 4 days after the treatment, urease activity reversed to the pretreatment level for each treatment group. Electron microscopy revealed an increase in the damaged NHPH after vonoprazan treatment. The TUNEL method revealed apoptotic NHPH within parietal cells after vonoprazan treatment. The bilayer culture results demonstrated that NHPH moved more quickly at a pH of 4.0 than at a pH of 3.0, 5.0, and 6.5, and electron microscopy revealed a change from the spiral form to the coccoid form under near-neutral pH conditions. We thus proposed that acid suppressants, especially vonoprazan, induce NHPH damage by altering pH.
Collapse
Affiliation(s)
- Masahiko Nakamura
- Ohmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
- *Correspondence: Masahiko Nakamura,
| | - Futa Murasato
- School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Anders Øverby
- Center of Education in Kongsvinger, Kongsvinger, Norway
| | - Yosuke Kodama
- School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hirofumi Michimae
- Department of Clinical Medicine (Biostatistics), School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Kazuki Sasaki
- School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Somay Y. Murayama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Masayuki Uchida
- Division of Research and Development, Meiji Dairies Corporation, Food Science Institute, Odawara, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hidenori Matsui
- Ohmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| |
Collapse
|
65
|
Priya A, Aditya A, Budagavi DP, Chugh A. Tachyplesin and CyLoP-1 as efficient anti-mycobacterial peptides: A novel finding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183895. [PMID: 35271828 DOI: 10.1016/j.bbamem.2022.183895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Mycobacterium tuberculosis is an etiological agent of tuberculosis (TB) known to be a highly contagious disease and is the major cause of mortality from a single infectious agent worldwide. Emergence of multi-drug resistant and extremely drug resistant strains of M. tuberculosis has made TB management extremely challenging eliciting the urgent need for alternative therapeutics. Peptide based therapeutic strategies are an emerging area that can be employed as a prospective alternative to the currently existing therapeutic regime for TB treatment. Here, we are reporting the anti-mycobacterial activity of two peptides, Tachyplesin and CyLoP-1, derived from marine horseshoe crab and snake toxin respectively, with potent anti-mycobacterial activity against various mycobacterium species. Both the peptides exhibit appreciable antimicrobial and anti-biofilm activities against mycobacterium species with minimum cytotoxicity towards macrophage cells. They are also effective in eliminating mycobacterium cells from infected macrophage cells. Tachyplesin acts on mycobacterium cells in a lytic manner with outer membrane disruption confirmed by propidium iodide uptake with slight membrane depolarization and reactive oxygen species (ROS) production. CyLoP-1, on the other hand, does not rupture the mycobacterium cells even at high concentrations. It seems to follow intracellular pathway of killing mycobacterium cells by production of more ROS and membrane depolarization. Both the peptides do not lead to apoptotic way of mycobacterium cell death. These results suggest an effective peptide-based antimicrobial strategy for development of future anti-TB therapeutics.
Collapse
Affiliation(s)
- Anjali Priya
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| | - Anusha Aditya
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | | | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| |
Collapse
|
66
|
Safdar M, Kim W, Park S, Gwon Y, Kim YO, Kim J. Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnology 2022; 20:275. [PMID: 35701848 PMCID: PMC9195285 DOI: 10.1186/s12951-022-01483-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023] Open
Abstract
Sustainable agriculture is an important conception to meet the growing food demand of the global population. The increased need for adequate and safe food, as well as the ongoing ecological destruction associated with conventional agriculture practices are key global challenges. Nanomaterials are being developed in the agriculture sector to improve the growth and protection of crops. Among the various engineered nanomaterials, carbon nanotubes (CNTs) are one of the most promising carbon-based nanomaterials owing to their attractive physiochemical properties such as small size, high surface area, and superior mechanical and thermal strength, offering better opportunities for agriculture sector applications. This review provides basic information about CNTs, including their history; classification; and electrical, thermal, and mechanical properties, with a focus on their applications in the agriculture field. Furthermore, the mechanisms of the uptake and translocation of CNTs in plants and their defense mechanisms against environmental stresses are discussed. Finally, the major shortcomings, threats, and challenges of CNTs are assessed to provide a broad and clear view of the potential and future directions for CNT-based agriculture applications to achieve the goal of sustainability.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
67
|
Vibhute A, Nille O, Kolekar G, Rohiwal S, Patil S, Lee S, Tiwari AP. Fluorescent Carbon Quantum Dots Functionalized by Poly L-Lysine: Efficient Material for Antibacterial, Bioimaging and Antiangiogenesis Applications. J Fluoresc 2022; 32:1789-1800. [PMID: 35689742 DOI: 10.1007/s10895-022-02977-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
This study illustrates the synthesis of functionalized carbon quantum dots (CQDs) by the one-pot pyrolysis method. The functionalization agent used in CQD synthesis was poly l- lysine (PLL). Various physicochemical techniques were employed to confirm the successful formation of PLLCQD including High resolution transmission electron microscopy (HR-TEM), UV-Vis spectroscopy, fluorescence spectroscopy; Atomic force microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The size of PLLCQD was confirmed by HRTEM and AFM. The synthesized PLLCQD shows bright blue fluorescence and has a quantum yield of 19.35%. The highest emission band was observed at 471nm when excited to 370nm. The prepared PLLCQD exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus with inhibition zone 7-20 mm. The concentrations of 0.9 to 0.1gmL-1 were studied to determine minimum inhibitory concentration (MIC) by the agar well diffusion assay method. MIC of 0.2gml -1 concentration of PLLCQD is achieved. The anti-angiogenic activity of PLLCQD was determined using (Chick Chorioallantoic Membrane) CAM assay. CAM assay is a reliable in -vivo model to study angiogenesis also; many stimulators and inhibitors have been examined by this method. This study proves higher antibacterial efficiency of PLLCQD over non functionalized CQD. PLLCQD was successfully employed in bio-imaging of the bacterial cell through fluorescence microscopy. Further, PLLCQD displayed cytotoxic effect on endothelial cells and inhibited blood vessel formation in the CAM model.
Collapse
Affiliation(s)
- Anuja Vibhute
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, D. Y. Patil Education Society(Deemed to Be University), Kolhapur, 416 006, Maharashtra, India
| | - Omkar Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Govind Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Sonali Rohiwal
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics AS CR, v.v.i. Rumburska 89, Libechov, 277 21, Czech Republic
| | - Shubham Patil
- Department of Electronics and Information Convergence Engineering, Kyung Hee University (Global Campus), 1732, Deogyoung Road, Giheung, Gyeonggi, Yongin, 17104, South Korea
| | - Seunghyun Lee
- Department of Electronics and Information Convergence Engineering, Kyung Hee University (Global Campus), 1732, Deogyoung Road, Giheung, Gyeonggi, Yongin, 17104, South Korea
| | - Arpita Pandey Tiwari
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, D. Y. Patil Education Society(Deemed to Be University), Kolhapur, 416 006, Maharashtra, India.
| |
Collapse
|
68
|
Han G, Lee DG. Naringin generates three types of reactive oxygen species contributing differently to apoptosis-like death in Escherichia coli. Life Sci 2022; 304:120700. [PMID: 35690109 DOI: 10.1016/j.lfs.2022.120700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
AIMS Naringin is a flavonoid with a polyphenolic structure which induces formation of reactive oxygen species (ROS). Although the antibacterial effect of naringin has been demonstrated, the mechanism underlying this effect has not yet been elucidated. We focused on investigating the antibacterial mode of action of naringin in Escherichia coli following ROS generation. The contributions of ROS, hydroxy radicals (OH-), super oxide (O2-), and hydrogen peroxide (H2O2) were investigated. MAIN METHODS ROS accumulation was detected using fluorescence dyes, and all experiments were conducted using the scavenger including tiron, sodium pyruvate, and thiourea to assess the contribution of each ROS. Western blotting assays were used to observe the activation of the SOS response for DNA repair. DNA fragmentation, membrane depolarization, and phosphatidylserine exposure were estimated using TUNEL, DiBAC4(3), and Annexin V/PI. KEY FINDINGS Accumulation of ROS was observed in Escherichia coli after treatment with naringin. Oxidative stress induced cellular dysfunction including DNA damage, which results in SOS response activation. Eventually, apoptosis-like death occurred in cells treated with naringin. The cells had different contributions of each ROS and accompanying apoptotic factors. The ROS most destructive to E. coli was OH-, followed by H2O2 and O2-. SIGNIFICANCE Due to its efficacy, naringin is a useful antimicrobial agent. An initial investigation into the antibacterial mode of action of naringin is presented in this paper. The contribution of each ROS to apoptosis-like cell death (ALD) was investigated, and the results enhanced our understanding of the correlation between the SOS response and oxidative stress in bacteria.
Collapse
Affiliation(s)
- Giyeol Han
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
69
|
Semeraro EF, Marx L, Mandl J, Letofsky-Papst I, Mayrhofer C, Frewein MPK, Scott HL, Prévost S, Bergler H, Lohner K, Pabst G. Lactoferricins impair the cytosolic membrane of Escherichia coli within a few seconds and accumulate inside the cell. eLife 2022; 11:e72850. [PMID: 35670565 PMCID: PMC9352351 DOI: 10.7554/elife.72850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
We report the real-time response of Escherichia coli to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s-much faster than previously considered. Final intracellular AMP concentrations of ∼80-100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Johannes Mandl
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI GrazGrazAustria
| | | | - Moritz PK Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
- Institut Laue-LangevinGrenobleFrance
| | - Haden L Scott
- Center for Environmental Biotechnology, University of TennesseeKnoxvilleUnited States
- Shull Wollan Center, Oak Ridge National LaboratoryOak RidgeUnited States
| | | | - Helmut Bergler
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Karl Lohner
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| |
Collapse
|
70
|
Ultrastructure and Morphological Variability of Non-Culturable Forms of Yersinia pseudotuberculosis Bacteria. Bull Exp Biol Med 2022; 172:725-728. [PMID: 35503586 DOI: 10.1007/s10517-022-05465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 10/18/2022]
Abstract
One of the mechanisms underlying the appearance of chronic infections is transition of pathogens into a non-culturable state, which is largely associated with the use of antibiotics. We studied ultrastructure of dormant bacteria Yersinia pseudotuberculosis obtained from the vegetative form of strain 512 by inhibition with kanamycin. On the model of the causative agent of pseudotuberculosis we showed that transition of prokaryotes to a dormant state occurs through apoptosis of bacteria. Fragmentation and condensation of chromatin with the formation of electron-dense fibrils, clumps and large conglomerates characteristic of apoptosis were found in the nucleoid zone of the cytoplasm of inhibited bacterial cells. These results are of great importance for understanding the mechanisms of the existence of pathogens in different conditions, as well as for identifying the causative agents of infectious diseases.
Collapse
|
71
|
Liu C, Mao X, Meng L, Li J. Stresses make microbe undergo programmed cell death: Mechanisms and opportunities. Food Res Int 2022; 157:111273. [DOI: 10.1016/j.foodres.2022.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
|
72
|
Lu C, Zhang N, Kou S, Gao L, Peng B, Dai Y, Zheng J. Sanguinarine synergistically potentiates aminoglycoside-mediated bacterial killing. Microb Biotechnol 2022; 15:2055-2070. [PMID: 35318794 PMCID: PMC9249330 DOI: 10.1111/1751-7915.14017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Aminoglycosides are one of the oldest classes of antimicrobials that are being used in current clinical practice, especially on multi‐drug resistant Gram‐negative pathogenic bacteria. However, the serious side effects at high dosage such as ototoxicity, neuropathy and nephrotoxicity limit their applications in clinical practice. Approaches that potentiate aminoglycoside killing could lower down their effective concentrations to a non‐toxic dosage for clinical treatment. In this research, we screened a compound library and identified sanguinarine that acts synergistically with various aminoglycosides. By checkerboard and dynamical killing assay, we found that sanguinarine effectively potentiated aminoglycoside killing on diverse bacterial pathogens, including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumonia and Pseudomonas aeruginosa. The mechanistic studies showed an elevated intracellular ROS and DNA oxidative level in the bacterial cells treated by a combination of sanguinarine with aminoglycosides. Furthermore, an enhanced level of sanguinarine was observed in bacteria in the presence of aminoglycosides, suggesting that aminoglycosides promote the uptake of sanguinarine. Importantly, sanguinarine was shown to promote the elimination of persister cells and established biofilm cells both in vivo and in vitro. Our study provides a novel insight for approaches to lower down the clinical dosages of aminoglycosides.
Collapse
Affiliation(s)
- Chang Lu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Nian Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Sihoi Kou
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Liangliang Gao
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| |
Collapse
|
73
|
Meng L, Ma J, Liu C, Mao X, Li J. The microbial stress responses of Escherichia coli and Staphylococcus aureus induced by chitooligosaccharide. Carbohydr Polym 2022; 287:119325. [DOI: 10.1016/j.carbpol.2022.119325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022]
|
74
|
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants (Basel) 2022; 11:459. [PMID: 35326110 PMCID: PMC8944601 DOI: 10.3390/antiox11030459] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiahao Lin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100193, China;
| | - Zhangqi Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
75
|
Zhao S, Li Z, Linklater DP, Han L, Jin P, Wen L, Chen C, Xing D, Ren N, Sun K, Juodkazis S, Ivanova EP, Jiang L. Programmed Death of Injured Pseudomonas aeruginosa on Mechano-Bactericidal Surfaces. NANO LETTERS 2022; 22:1129-1137. [PMID: 35040647 DOI: 10.1021/acs.nanolett.1c04243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechano-bactericidal surfaces deliver lethal effects to contacting bacteria. Until now, cell death has been attributed to the mechanical stress imparted to the bacterial cell envelope by the surface nanostructures; however, the process of bacterial death encountering nanostructured surfaces has not been fully illuminated. Here, we perform an in-depth investigation of the mechano-bactericidal action of black silicon (bSi) surfaces toward Gram-negative bacteria Pseudomonas aeruginosa. We discover that the mechanical injury is not sufficient to kill the bacteria immediately due to the survival of the inner plasma membrane. Instead, such sublethal mechanical injury leads to apoptosis-like death (ALD) in affected bacteria. In addition, when the mechanical stress is removed, the self-accumulated reactive oxygen species (ROS) incur poststress ALD in damaged cells in a nonstressed environment, revealing that the mechano-bactericidal actions have sustained physiological effects on the bacterium. This work creates a new facet and can introduce many new regulation tools to this field.
Collapse
Affiliation(s)
- Shuo Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Lin Han
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150080, China
| | - Peng Jin
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150080, China
| | - Liping Wen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Saulius Juodkazis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
76
|
Jiang C, Chen Q. Effect of long-term low concentrations of TiO 2 nanoparticles on dewaterability of activated sludge and the relevant mechanism: the role of nanoparticle aging. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12188-12197. [PMID: 34562215 DOI: 10.1007/s11356-021-16451-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles can undergo aging phenomena in sewage treatment systems, which alter their physical and chemical properties. However, the effect of aged nanoparticles on the dewatering performance of activated sludge under long-term low concentrations is yet to be reported in sewage treatment systems. Here, we compared the chronic effects of pristine and aged TiO2 nanoparticles on the sludge dewatering index, which includes specific resistance to filtration (SRF) and bound water (BW) in a sequencing batch reactor (SBR) at μg/L concentration levels, and analyzed the relevant mechanisms. The results indicated that aging in the sludge supernatant altered the photosensitivity and water stability of nanoparticles, which was mainly due to the changes in the zeta potential and energy band of the particle and was ultimately attributed to the combined effect of particle surface inclusions such as organic matter and inorganic salt. At 10 μg/L, nanoparticles reduced the sludge dewaterability, which observed an improvement at 100 μg/L. This is because 10 μg/L promoted the secretion of extracellular polymeric substances (EPS), which regulated the structure of sludge flora and increased the abundance of secreted quorum sensing-acyl-homoserine lactones (QS-AHL) and EPS genera, while the corresponding exposure results for 100 μg/L were the opposite, owing to the damage and necrosis effects caused by exposure under long-term light, which reduced EPS production and increased sludge density. Interestingly, aging could alleviate the effects of two exposure concentrations on sludge dewatering, mainly because of the decrease in the photoactivity of the nanoparticles. The results of this study show that environmental aging could delay, but not reverse the results of exposure to specific concentrations of nanoparticles. However, the significantly different ecological effects of photosensitive nanoparticles with two environmentally relevant concentration should be refined and confirmed again in freshwater environments to provide a basis for subsequent scientific management and control of photosensitive nanoparticles.
Collapse
Affiliation(s)
- Chengyu Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Qingjin Chen
- Nanjing QianFu Engineering Corporation Limited, Nanjing, 210029, People's Republic of China
| |
Collapse
|
77
|
Inhibition mechanism of high voltage prick electrostatic field (HVPEF) on Staphylococcus aureus through ROS-mediated oxidative stress. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
78
|
Smirnova GV, Tyulenev AV, Muzyka NG, Oktyabrsky ON. Study of the contribution of active defense mechanisms to ciprofloxacin tolerance in Escherichia coli growing at different rates. Antonie Van Leeuwenhoek 2022; 115:233-251. [PMID: 35022927 DOI: 10.1007/s10482-021-01693-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
Using rpoS, tolC, ompF, and recA knockouts, we investigated their effect on the physiological response and lethality of ciprofloxacin in E. coli growing at different rates on glucose, succinate or acetate. We have shown that, regardless of the strain, the degree of changes in respiration, membrane potential, NAD+/NADH ratio, ATP and glutathione (GSH) strongly depends on the initial growth rate and the degree of its inhibition. The deletion of the regulator of the general stress response RpoS, although it influenced the expression of antioxidant genes, did not significantly affect the tolerance to ciprofloxacin at all growth rates. The mutant lacking TolC, which is a component of many E. coli efflux pumps, showed the same sensitivity to ciprofloxacin as the parent. The absence of porin OmpF slowed down the entry of ciprofloxacin into cells, prolonged growth and shifted the optimal bactericidal concentration towards higher values. Deficiency of RecA, a regulator of the SOS response, dramatically altered the late phase of the SOS response (SOS-dependent cell death), preventing respiratory inhibition and a drop in membrane potential. The recA mutation inverted GSH fluxes across the membrane and abolished ciprofloxacin-induced H2S production. All studied mutants showed an inverse linear relationship between logCFU ml-1 and the specific growth rate. Mutations shifted the plot of this dependence relative to the parental strain according to their significance for ciprofloxacin tolerance. The crucial role of the SOS system is confirmed by dramatic shift down of this plot in the recA mutant.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| |
Collapse
|
79
|
Namiecińska E, Grazul M, Sadowska B, Więckowska-Szakiel M, Hikisz P, Pasternak B, Budzisz E. Arene-Ruthenium(II) Complexes with Carbothiamidopyrazoles as a Potential Alternative for Antibiotic Resistance in Human. Molecules 2022; 27:468. [PMID: 35056783 PMCID: PMC8781304 DOI: 10.3390/molecules27020468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/25/2022] Open
Abstract
To meet the demand for alternatives to commonly used antibiotics, this paper evaluates the antimicrobial potential of arene-ruthenium(II) complexes and their salts, which may be of value in antibacterial treatment. Their antimicrobial activity (MIC, MBC/MFC) was examined in vitro against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus vulgaris and Candida albicans and compared with classic antibiotics used as therapeutics. Selected arene-ruthenium(II) complexes were found to have synergistic effects with oxacillin and vancomycin against staphylococci. Their bactericidal effect was found to be associated with cell lysis and the ability to cut microbial DNA. To confirm the safety of the tested arene-ruthenium(II) complexes in vivo, their cytotoxicity was also investigated against normal human foreskin fibroblasts (HFF-1). In addition, the antioxidant and thus pro-health potential of the compounds, i.e., their nonenzymatic antioxidant capacity (NEAC), was determined by two different methods: ferric-TPTZ complex and DPPH assay.
Collapse
Affiliation(s)
- Ewelina Namiecińska
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (B.S.); (M.W.-S.)
| | - Marzena Więckowska-Szakiel
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (B.S.); (M.W.-S.)
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
80
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Liu X, Wang K. A PPy/MoS 2 core–shell heterojunction modified by carbon dots exhibits high photocatalytic antibacterial performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj04388b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CQDs and PPy facilitate the separation of MoS2 electron–hole pairs and enhance their photocatalytic antibacterial performance.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Sha Han
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Deyi Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Xiaoyu Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kunjie Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|
81
|
Bandyopadhyay D, Mukherjee M. Combination of bactericidal antibiotics and inhibitors of Universal stress protein A (UspA): a potential therapeutic alternative against multidrug resistant Escherichia coli in urinary tract infections. J Antibiot (Tokyo) 2022; 75:21-28. [PMID: 34526667 DOI: 10.1038/s41429-021-00477-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/09/2022]
Abstract
The increasing incidence of multidrug resistant uropathogenic E. coli (MDR-UPEC), the most common opportunistic pathogen in urinary tract infections (UTI) pose a global health problem and demands searching for alternative therapeutics. Antibiotics generate oxidative stress in bacteria which results in overexpression of the universal stress protein, UspA that helps in bacterial survival. An in silico study showed that two compounds ZINC000104153710, and ZINC000000217308 effectively bound bacterial UspA. This study aimed to determine the activity of ZINC000104153710, and ZINC000000217308 against bacterial UspA function in MDR-UPEC in vitro. Twenty-five highly MDR-UPEC were screened against ZINC000104153710, and, ZINC000000217308 either alone or in combination with the bactericidal antibiotics; ciprofloxacin (CIP), ceftazidime(CAZ), gentamicin(GEN) respectively by determining minimum inhibitory concentrations (MICs) using a broth microdilution assay. Additionally, the effect of ZINC000104153710, and ZINC000000217308 in the absence and presence of antibiotics on the bacteria was monitored by bacterial growth curve assays, ROS production, structure of the organism by scanning electron microscopy (FESEM) and quantitating UspA using a western blot technique. A 2-8 fold reduction in MIC values against ZINC000104153710, and ZINC000000217308 was observed against all 25 MDR-UPEC isolates in the presence of antibiotics with no alteration in intracellular ROS production. Discrete changes in cell morphology was evident in bacteria treated with ZINC000104153710 or ZINC000000217308 and antibiotics individually by FESEM compared with untreated control. Reduction in the level of UspA protein in bacteria treated with combination of ZINC000104153710 or ZINC000000217308 with individual antibiotics established their ability to inhibit UspA whose expression was elevated in presence of antibiotics alone. Therefore this study validated ZINC000104153710, and ZINC000000217308 as potent inhibitors of bacterial UspA function and indicated their potential as alternative therapeutics to combat the MDR-UPEC.
Collapse
Affiliation(s)
- Debojyoty Bandyopadhyay
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| |
Collapse
|
82
|
Behrmann MS, Trakselis MA. In vivo fluorescent TUNEL detection of single stranded DNA gaps and breaks induced by dnaB helicase mutants in Escherichia coli. Methods Enzymol 2022; 672:125-142. [DOI: 10.1016/bs.mie.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
83
|
Kim M, Lee DG. Propionic acid induces apoptosis-like death in Escherichia coli O157. J Basic Microbiol 2021; 62:22-34. [PMID: 34904256 DOI: 10.1002/jobm.202100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 11/06/2022]
Abstract
Propionic acid (PPA), utilized in the manufacture of cellulose acetate propionate, is known to exhibit antimicrobial effects, but its mechanism in Escherichia coli O157 is still unknown. In general, antimicrobial activity is associated with reactive oxygen species (ROS), but ROS generation is not observed under PPA treatment. In addition to ROS, experiments were conducted to observe changes in trehalose and ion balance to discover factors that may affect the cell proliferation. Bacteria use trehalose, a sugar used for stabilization due to stress factors, which contradicts PPA concentration. Discrepancy in homeostasis follows as a result of ion imbalance. PPA causes interruption in bacterial internal stability in a dose-dependent manner. Membrane damage by ion imbalance occurs due to the binding ability of ionized PPA and divalent ions, which induce membrane depolarization, leading to a reduction in cell viability. Considering the lethal impact of membrane depolarization on cell death in bacteria, DNA fragmentation and phosphatidylserine exposure in apoptosis are confirmed. Due to severe damage in DNA, the activation of caspase-like protein is observed. Apoptosis-like death (ALD), a novel programmed cell death in bacteria, occurs eventually. In conclusion, ALD in E. coli O157 is induced via the contribution of homeostasis disruption in a ROS-independent manner.
Collapse
Affiliation(s)
- Minji Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong G Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
84
|
Bacteria clip out damaged cells from populations. Proc Natl Acad Sci U S A 2021; 118:2118892118. [PMID: 34848543 DOI: 10.1073/pnas.2118892118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
85
|
Fang Y, Zhu Y, Li L, Lai Z, Dong N, Shan A. Biomaterial-Interrelated Bacterial Sweeper: Simplified Self-Assembled Octapeptides with Double-Layered Trp Zipper Induces Membrane Destabilization and Bacterial Apoptosis-Like Death. SMALL METHODS 2021; 5:e2101304. [PMID: 34928043 DOI: 10.1002/smtd.202101304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Treatment of microbial-associated infections continues to be hampered by impaired antibacterial efficiency and the variability in nanomedicines. Herein, an octapeptide library with a double-layered zipper, constructed via a systematic arrangement, simplifying the sequence and optimizing the structure (diverse motifs including surfactant-like, central-bola, and end-bola), is assessed in terms of biological efficiency and self-assembly properties. The results indicate that peptides with double-layered Trp zipper exhibit significant antimicrobial activity. Extracellularly, affinity interactions between micelles and bacteria induce the lateral flow of the membrane and electric potential perturbation. Intracellularly, lead molecules cause apoptosis-like death, as indicated by excessive accumulation of reactive oxygen species, generation of a DNA ladder, and upregulation of mazEF expression. Among them, RW-1 performs the best in vivo and in vitro. The intersecting combination of Trp zipper and surfactants possesses overwhelming superiority with respect to bacterial sweepers (therapeutic index [TI] = 52.89), nanostructures (micelles), and bacterial damage compared to RW-2 (central-bola) and RW-3 (end-bola). These findings confirm that the combination of double-layered Trp zipper and surfactants has potential for application as a combined motif for combating microbial infection and connects the vast gap between antimicrobial peptides and self-assembly, such as Jacob's ladder.
Collapse
Affiliation(s)
- Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yunhui Zhu
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhenheng Lai
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
86
|
Staphylococcal ClpXP protease targets the cellular antioxidant system to eliminate fitness-compromised cells in stationary phase. Proc Natl Acad Sci U S A 2021; 118:2109671118. [PMID: 34782466 DOI: 10.1073/pnas.2109671118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
The transition from growth to stationary phase is a natural response of bacteria to starvation and stress. When stress is alleviated and more favorable growth conditions return, bacteria resume proliferation without a significant loss in fitness. Although specific adaptations that enhance the persistence and survival of bacteria in stationary phase have been identified, mechanisms that help maintain the competitive fitness potential of nondividing bacterial populations have remained obscure. Here, we demonstrate that staphylococci that enter stationary phase following growth in media supplemented with excess glucose, undergo regulated cell death to maintain the competitive fitness potential of the population. Upon a decrease in extracellular pH, the acetate generated as a byproduct of glucose metabolism induces cytoplasmic acidification and extensive protein damage in nondividing cells. Although cell death ensues, it does not occur as a passive consequence of protein damage. Instead, we demonstrate that the expression and activity of the ClpXP protease is induced, resulting in the degeneration of cellular antioxidant capacity and, ultimately, cell death. Under these conditions, inactivation of either clpX or clpP resulted in the extended survival of unfit cells in stationary phase, but at the cost of maintaining population fitness. Finally, we show that cell death from antibiotics that interfere with bacterial protein synthesis can also be partly ascribed to the corresponding increase in clpP expression and activity. The functional conservation of ClpP in eukaryotes and bacteria suggests that ClpP-dependent cell death and fitness maintenance may be a widespread phenomenon in these domains of life.
Collapse
|
87
|
Investigation of distinct contribution of nitric oxide and each reactive oxygen species in indole-3-propionic-acid-induced apoptosis-like death in Escherichia coli. Life Sci 2021; 285:120003. [PMID: 34599936 DOI: 10.1016/j.lfs.2021.120003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
AIMS Indole-3-propionic acid (IPA) is a natural product from human microbiota, exhibiting diverse biological activities. The study focused on investigating the antibacterial mode of action(s) triggered by IPA in Escherichia coli. Separate influence of nitric oxide (NO) and each reactive oxygen species, including superoxide anion (O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH-), was specifically analyzed throughout the process. MAIN METHODS The generation of respective reactive oxygen species (ROS), NO, and ONOO- was conducted using flow cytometer using different dyes. Further analysis of separate influences was held based on usage of each scavenger: sodium pyruvate, thiourea, tiron, and L-NAME. Oxidative cell damage was observed through the detection of glutathione depletion and lipid peroxidation. DNA fragmentation and membrane depolarization were observed by TUNEL and DiBAC4(3) staining agent. Finally, Annexin V/PI and FITC-VAD-FMK were applied to detect apoptosis-like death. KEY FINDINGS IPA exhibited antibacterial activity in E. coli through the accumulation of ROS, NO, ONOO-, and DNA damage, eventually leading to apoptosis-like death. NO and O2- exerted the most potent influence on oxidative damage of E. coli, whereas H2O2 accounts for the least impact. Moreover, the results reveal the major contribution of ONOO- in IPA-induced apoptosis-like death in E. coli. SIGNIFICANCE This is the first study that introduces the antibacterial activity and apoptosis-like death induced by IPA and suggests the possibility of being an alternative for current antibiotics. Furthermore, the distinct influence of each ROS and NO was analyzed to investigate their contribution to oxidative damage leading to bacterial apoptosis-like death.
Collapse
|
88
|
Abstract
Metabolomics is a powerful tool that can systematically describe global changes in the metabolome of microbes, thus improving our understanding of the mechanisms of action of antibiotics and facilitating the development of next-generation antibacterial therapies. However, current sample preparation methods are not efficient or reliable for studying the effects of antibiotics on microbes. In the present study, we reported a novel sample preparation approach using cold methanol/ethylene glycol for quenching Escherichia coli, thus overcoming the loss of intracellular metabolites caused by cell membrane damage. After evaluating the extraction efficiency of several extraction methods, we employed the optimized workflow to profile the metabolome of E. coli exposed to cephalexin. In doing so, we proved the utility of the proposed approach and provided insights into the comprehensive metabolic alterations associated with antibiotic treatment. IMPORTANCE The emergence and global spread of multidrug-resistant bacteria and genes are a global problem. It is critical to understand the interactions between antibiotics and bacteria and find alternative treatments for infections when we are moving closer to a postantibiotic era. It has been demonstrated that the bacterial metabolic environment plays an important role in the modulation of antibiotic susceptibility and efficacy. In the present study, we proposed a novel metabolomic approach for intracellular metabolite profiling of E. coli, which can be used to investigate the metabolite alterations of bacteria caused by antibiotic treatment. Further understanding of antibiotic-induced perturbations of bacterial metabolism would facilitate the discovery of new therapeutic targets and pathways.
Collapse
|
89
|
Nam Y, Goo E, Kang Y, Hwang I. Membrane Depolarization and Apoptosis-Like Cell Death in an Alkaline Environment in the Rice Pathogen Burkholderia glumae. Front Microbiol 2021; 12:755596. [PMID: 34712216 PMCID: PMC8546246 DOI: 10.3389/fmicb.2021.755596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
The rice pathogen Burkholderia glumae uses amino acids as a principal carbon source and thus produces ammonia in amino acid-rich culture medium such as Luria-Bertani (LB) broth. To counteract ammonia-mediated environmental alkaline toxicity, the bacterium produces a public good, oxalate, in a quorum sensing (QS)-dependent manner. QS mutants of B. glumae experience alkaline toxicity and may undergo cell death at the stationary phase when grown in LB medium. Here, we show that the cell-death processes of QS mutants due to alkaline environmental conditions are similar to the apoptosis-like cell death reported in other bacteria. Staining QS mutants with bis-(1,3-dibutylbarbituric acid)-trimethine oxonol revealed membrane depolarization. CellROX™ staining showed excessive generation of reactive oxygen species (ROS) in QS mutants. The expression of genes encoding HNH endonuclease (BGLU_1G15690), oligoribonuclease (BGLU_1G09120), ribonuclease E (BGLU_1G09400), and Hu-beta (BGLU_1G13530) was significantly elevated in QS mutants compared to that in wild-type BGR1, consistent with the degradation of cellular materials as observed under transmission electron microscopy (TEM). A homeostatic neutral pH was not attainable by QS mutants grown in LB broth or by wild-type BGR1 grown in an artificially amended alkaline environment. At an artificially adjusted alkaline pH, wild-type BGR1 underwent apoptosis-like cell death similar to that observed in QS mutants. These results show that environmental alkaline stress interferes with homeostatic neutral cellular pH, induces membrane depolarization, and causes apoptosis-like cell death in B. glumae.
Collapse
Affiliation(s)
- Yewon Nam
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yongsung Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
90
|
Carbon Nanotubes-Based Hydrogels for Bacterial Eradiation and Wound-Healing Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biocompatible nanomaterials have attracted enormous interest for biomedical applications. Carbonaceous materials, including carbon nanotubes (CNTs), have been widely explored in wound healing and other applications because of their superior physicochemical and potential biomedical properties to the nanoscale level. CNTs-based hydrogels are widely used for wound-healing and antibacterial applications. CNTs-based materials exhibited improved antimicrobial, antibacterial, adhesive, antioxidants, and mechanical properties, which are beneficial for the wound-healing process. This review concisely discussed the preparation of CNTs-based hydrogels and their antibacterial and wound-healing applications. The conductive potential of CNTs and their derivatives is discussed. It has been observed that the conductivity of CNTs is profoundly affected by their structure, temperature, and functionalization. CNTs properties can be easily modified by surface functionalization. CNTs-based composite hydrogels demonstrated superior antibacterial potential to corresponding pure polymer hydrogels. The accelerated wound healing was observed with CNTs-based hydrogels.
Collapse
|
91
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
92
|
Laganà P, Visalli G, Facciolà A, Ciarello MP, Laganà A, Iannazzo D, Di Pietro A. Is the Antibacterial Activity of Multi-Walled Carbon Nanotubes (MWCNTs) Related to Antibiotic Resistance? An Assessment in Clinical Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179310. [PMID: 34501898 PMCID: PMC8431017 DOI: 10.3390/ijerph18179310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance has spread globally, compromising the treatment of common infections. This feature is particularly harmful for nosocomial pathogens that can survive on hospital surfaces. Research studies have been conducted to evaluate new materials that are able to counteract the microbial growth and the colonization of the hospital environment. In this context, nanotechnologies have showed encouraging applications. We investigated the antibacterial activity of multi-walled carbon nanotubes (MWCNTs), both pristine (p) and functionalized (f), at concentrations of 50 and 100 μg mL−1, against bacterial strains isolated from hospital-acquired infections, and this activity was correlated with the antibiotic susceptibility of the strains. The inhibiting effect of MWCNTs occurred for both types and doses tested. Moreover, f-MWCNTs exerted a greater inhibiting effect, with growth decreases greater than 10% at 24 h and 20% at 48 h compared to p-MWCNTs. Moreover, a lower inhibitory effect of MWCNTs, which was more lasting in Gram-positives resistant to cell wall antibiotics, or temporary in Gram-negatives resistant to nucleic acid and protein synthesis inhibitors, was observed, highlighting the strong relation between antibiotic resistance and MWCNT effect. In conclusion, an antimicrobial activity was observed especially for f-MWCNTs that could therefore be loaded with bioactive antimicrobial molecules. However, this potential application of CNTs presupposes the absence of toxicity and therefore total safety for patients.
Collapse
Affiliation(s)
- Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Marianna Pruiti Ciarello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98125 Messina, Italy;
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| |
Collapse
|
93
|
Kim H, Lee DG. Contribution of SOS genes to H 2O 2-induced apoptosis-like death in Escherichia coli. Curr Genet 2021; 67:969-980. [PMID: 34435216 DOI: 10.1007/s00294-021-01204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023]
Abstract
Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exerts oxidative stress on microorganisms. The spread of antibiotic-resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxydeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentous cells were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.
Collapse
Affiliation(s)
- Heesu Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
94
|
Li J, Kolbasov VG, Lee D, Pang Z, Huang Y, Collins N, Wang N. Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on ' Candidatus Liberibacter asiaticus' Titer. PHYTOPATHOLOGY 2021; 111:1095-1103. [PMID: 33267628 DOI: 10.1094/phyto-09-20-0427-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Streptomycin (STR) has been used to control citrus huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) via foliar spray. Here, we studied the residue dynamics of STR and its effect on CLas titers in planta applied by foliar spray and trunk injection of 3-year-old citrus trees that were naturally infected by CLas in the field. After foliar spray, STR levels in leaves peaked at 2 to 7 days postapplication (dpa) and gradually declined thereafter. The STR spray did not significantly affect CLas titers in leaves of treated plants as determined by quantitative PCR. After trunk injection, peak levels of STR were observed 7 to 14 dpa in the leaf and root tissues, and near-peak levels were sustained for another 14 days before significantly declining. At 12 months after injection, moderate to low or undetectable levels of STR were observed in the leaf, root, and fruit, depending on the doses of STR injected, with a residue level of 0.28 µg/g in harvested fruit at the highest injection concentration of 2.0 µg/tree. CLas titers in leaves were significantly reduced by trunk injection of STR at 1.0 or 2.0 g/tree, starting from 7 dpa and throughout the experimental period. The reduction of CLas titers was positively correlated with STR residue levels in leaves. The in planta minimum effective concentration of STR needed to suppress the CLas titer to an undetectable level (cycle threshold ≥36.0) was 1.92 µg/g fresh weight. Determination of the in planta minimum effective concentration of STR against CLas and its spatiotemporal residue levels in planta provides the guidance to use STR for HLB management.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Vladimir G Kolbasov
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Yixiao Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nicole Collins
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
95
|
Li A, Okada BK, Rosen PC, Seyedsayamdost MR. Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2021; 118:e2021483118. [PMID: 34172579 PMCID: PMC8256049 DOI: 10.1073/pnas.2021483118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural products have been an important source of therapeutic agents and chemical tools. The recent realization that many natural product biosynthetic genes are silent or sparingly expressed during standard laboratory growth has prompted efforts to investigate their regulation and develop methods to induce their expression. Because it is difficult to intuit signals that induce a given biosynthetic locus, we recently implemented a forward chemical-genetic approach to identify such inducers. In the current work, we applied this approach to nine silent biosynthetic loci in the model bacterium Burkholderia thailandensis to systematically screen for elicitors from a library of Food and Drug Administration-approved drugs. We find that β-lactams, fluoroquinolones, antifungals, and, surprisingly, calcimimetics, phenothiazine antipsychotics, and polyaromatic antidepressants are the most effective global inducers of biosynthetic genes. Investigations into the mechanism of stimulation of the silent virulence factor malleicyprol by the β-lactam piperacillin allowed us to elucidate the underlying regulatory circuits. Low-dose piperacillin causes oxidative stress, thereby inducing redox-sensing transcriptional regulators, which activate malR, a pathway-specific positive regulator of the malleicyprol gene cluster. Malleicyprol is thus part of the OxyR and SoxR regulons in B. thailandensis, allowing the bacterium to initiate virulence in response to oxidative stress. Our work catalogs a diverse array of elicitors and a previously unknown regulatory input for secondary metabolism in B. thailandensis.
Collapse
Affiliation(s)
- Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul C Rosen
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
96
|
Yu M, Zhang G, Li P, Lu H, Tang W, Yang X, Huang R, Yu F, Wu W, Xiao Y, Xing X. Acid-activated ROS generator with folic acid targeting for bacterial biofilm elimination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112225. [PMID: 34225870 DOI: 10.1016/j.msec.2021.112225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Many medical and chemical applications require the precise supply of antimicrobial components in a controlled manner at the location of mature biofilm deposits. This work reports a facile strategy to fabricate nanoscale metal-organic frameworks (NMOFs) coencapsulating the antibacterial ligand (lysine carbon dots, Lys-CDs) and targeted drug (folic acid, FA) in one pot to improve antibiofilm efficiency against established biofilms. The resulting products are characterized by transmission electron microscopy, field-emission scanning electron microscopy, powder x-ray diffraction, and ultraviolet-visible spectroscopy. The results show that Lys-CDs could coordinate with Zn2+ and the adding of FA inhibits the coordination of Lys-CDs with central ions of Zn. The Lys-CDs and FA are successfully exposed with the NMOFs disintegrating in the acid environment of bacterial metabolites. We are surprised to find a sharp increase of reactive oxygen species (ROS) inside the bacterial cells by FA functionalizing NMOFs, which undoubtedly enhance the antibacterial and antibiofilm activity. The as-synthesized ZIF-8-based nanocomposites also show the peroxidase-like activity in an acid environment, and produce extremely active hydroxyl radicals resulting in the improved antibacterial and antibiofilm activity. The possible mechanisms of antibacterial activities indicate that the presence of FA is significant in the sense of targeting bacteria. This study shows a novel approach to construct acid stimulation supply system which may be helpful for the research of antibiofilms.
Collapse
Affiliation(s)
- Meizhe Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gaoke Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peili Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haojie Lu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wentao Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xu Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ruobing Huang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fan Yu
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Wenzhen Wu
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Yuhong Xiao
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Xiaodong Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
97
|
Zong L, Li C, Zhong Y, Shi J, Yuan Z, Wang X. FTIR microspectroscopic investigation of Lactobacillus paracasei apoptosis induced by cisplatin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119542. [PMID: 33581574 DOI: 10.1016/j.saa.2021.119542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have shown that bacteria can also undergo apoptosis, which has gradually attracted researchers' attention. Cisplatin is a first-line drug to treat several cancers, but it can damage beneficial bacteria. Hence it is very important to explore the damage mechanism of cisplatin on beneficial bacteria. In this study, Lactobacillus paracasei, one kind of beneficial bacteria, was used as the model to investigate cisplatin damage. Conventional detection showed that cisplatin induced the apoptosis of Lactobacillus paracasei. Then Fourier transform infrared (FTIR) microspectroscopy was used to detect biomacromolecular changes in Lactobacillus paracasei apoptosis, and the following results were obtained: ① Second derivative IR spectra showed the changes of DNA, proteins, polysaccharides and lipids; ② Peak-area ratios suggested the changes of the protein and lipid structure and the decrease of DNA content; ③ Principal component analysis (PCA) further revealed significant changes in the DNA and protein content/structure. This study may have a new insight into the adverse reaction mechanism of cisplatin on Lactobacillus, moreover, it suggests that FTIR microspectroscopy may be a useful supplementary tool for investigating bacterial apoptosis.
Collapse
Affiliation(s)
- Ling Zong
- Department of Chemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Li
- Department of Oncology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yang Zhong
- Department of Radiotherapy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, China
| | - Jie Shi
- Department of Chemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhanyuan Yuan
- The Second Clinical College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Wang
- Department of Chemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
98
|
Li L, Yang M, Zhu WC, Liu XJ, Peng XX, Li H. Functionally ampicillin-stressed proteomics reveals that AdhE regulates alcohol metabolism for antibiotic resistance in Escherichia coli. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
99
|
Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF, Rocha da Silva C, Gurgel do Amaral Valente Sá L, Ramos da Silva A, Barbosa da Silva WM, Silva J, Marinho ES, Cavalcanti BC, Odorico de Moraes M, Nobre Júnior HV. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb Pathog 2021; 155:104892. [PMID: 33894289 DOI: 10.1016/j.micpath.2021.104892] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a commensal bacterium and opportunistic human pathogen that can cause a wide variety of clinical infections. It is recognized for its ability to acquire antimicrobial resistance, so methicillin-resistant Staphylococcus aureus (MRSA) infections are a global healthcare challenge. Therefore, the development of new therapeutic options and alternative therapies for treatment is necessary. Curcumin, a polyphenolic substance found in the rhizome of turmeric longa L, has been shown to have several therapeutic properties, including antimicrobial activity. The objective of the study was to evaluate the in vitro antibacterial activity of curcumin alone and associated with oxacillin against MRSA strains, to analyze the mechanism of cell death involved in the isolated action of curcumin by means of flow cytometry and molecular docking, and to verify its superbiofilm action. Curcumin showed antibacterial activity in the range of 125-500 μg/mL against the tested strains, since it caused an increase in membrane permeability and DNA fragmentation, as revealed by flow cytometry analysis. Moreover, it was possible to observe interactions of curcumin with wild-type S. aureus DHFR, S. aureus gyrase and S. aureus gyrase complex with DNA, DNA (5'-D(*CP*GP*AP*TP*GP*CP*G)-3') and Acyl-PBP2a from MRSA by molecular docking. Curcumin also had a synergistic and additive effect when associated with oxacillin, and significantly reduced the cell viability of the analyzed biofilms. Thus, curcumin is a possible candidate for pharmaceutical formulation development for the treatment of MRSA infections.
Collapse
Affiliation(s)
- João Batista de Andrade Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anderson Ramos da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Jacilene Silva
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Bruno Coelho Cavalcanti
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
100
|
Nasiru MM, Frimpong EB, Muhammad U, Qian J, Mustapha AT, Yan W, Zhuang H, Zhang J. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Compr Rev Food Sci Food Saf 2021; 20:2626-2659. [PMID: 33876887 DOI: 10.1111/1541-4337.12740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
Decontamination of meat is commonly practiced to get rid of or decrease the microbial presence on the meat surface. Dielectric barrier discharge cold atmospheric plasma (DBD-CAP) as innovative technology is a food microbial inactivation technique considered in high regard by food scientists and engineers in present times. However, cold atmospheric plasma application is at the experimental stage, due to lack of sufficient information on its mode of action in inactivating microbes, food shelf-life extensibility, whereas, the nutritional value of food is preserved. In this review, we have appraised recent work on DBD-CAP concerning the decontamination treatment of meat products, highlighting the processing value results on the efficacy of the DBD-CAP microbial inactivation technique. Also, the paper will review the configurations, proposed mechanisms, and chemistry of DBD-CAP. Satisfactory microbial inactivation was observed. In terms of DBD-CAP application on sensory evaluation, inferences from reviewed literature showed that DBD has no significant effect on meat color and tenderness, whereas in contrast, TBARS values of fresh and processed meat are affected. DBD seems economically efficient and environmentally sustainable.
Collapse
Affiliation(s)
- Mustapha Muhammad Nasiru
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Federal University Dutsin-Ma, Kankara-Katsina Road, Dutsin-Ma, Katsina, 821101, Nigeria
| | - Evans Boateng Frimpong
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Umair Muhammad
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jing Qian
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | | | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| |
Collapse
|