51
|
Insights into the Role of Circadian Rhythms in Bone Metabolism: A Promising Intervention Target? BIOMED RESEARCH INTERNATIONAL 2018; 2018:9156478. [PMID: 30363685 PMCID: PMC6180976 DOI: 10.1155/2018/9156478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/09/2018] [Indexed: 11/18/2022]
Abstract
Numerous physiological processes of mammals, including bone metabolism, are regulated by the circadian clock system, which consists of a central regulator, the suprachiasmatic nucleus (SCN), and the peripheral oscillators of the BMAL1/CLOCK-PERs/CRYs system. Various bone turnover markers and bone metabolism-regulating hormones such as melatonin and parathyroid hormone (PTH) display diurnal rhythmicity. According to previous research, disruption of the circadian clock due to shift work, sleep restriction, or clock gene knockout is associated with osteoporosis or other abnormal bone metabolism, showing the importance of the circadian clock system for maintaining homeostasis of bone metabolism. Moreover, common causes of osteoporosis, including postmenopausal status and aging, are associated with changes in the circadian clock. In our previous research, we found that agonism of the circadian regulators REV-ERBs inhibits osteoclast differentiation and ameliorates ovariectomy-induced bone loss in mice, suggesting that clock genes may be promising intervention targets for abnormal bone metabolism. Moreover, osteoporosis interventions at different time points can provide varying degrees of bone protection, showing the importance of accounting for circadian rhythms for optimal curative effects in clinical treatment of osteoporosis. In this review, we summarize current knowledge about circadian rhythms and bone metabolism.
Collapse
|
52
|
Gα i3 signaling is associated with sexual dimorphic expression of the clock-controlled output gene Dbp in murine liver. Oncotarget 2018; 9:30213-30224. [PMID: 30100984 PMCID: PMC6084400 DOI: 10.18632/oncotarget.25727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2018] [Indexed: 11/25/2022] Open
Abstract
The albumin D-box binding protein (DBP) is a member of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family and functions as important regulator of circadian core and output gene expression. Gene expression of DBP itself is under the control of E-box-dependent binding by the Bmal1-Clock heterodimer and CRE-dependent binding by the cAMP responsive element binding protein (CREB). However, the signaling mechanism mediating CREB-dependent regulation of DBP expression in the peripheral clock remains elusive. In this study, we examined the role of the GPCR (G-protein-coupled receptor)/Gαi3 (Galphai3) controlled cAMP-CREB signaling pathway in the regulation of hepatic expression of core clock and clock-regulated genes, including Dbp. Analysis of circadian gene expression revealed that rhythmicity of hepatic transcript levels of the majority of core clock (including Per1) and clock-regulated genes were not affected by Gαi3 deficiency. Consistently, the period length of primary Gαi3 deficient tail fibroblasts expressing a Bmal1-Luciferase reporter was not affected. Interestingly, however, Gαi3 deficient female but not male mice showed a tendentiously increased activation of CREB (nuclear pSer133-CREB) accompanied by an advanced peak in Dbp gene expression and elevated mRNA levels of the cytochrome P450 family member Cyp3a11, a target gene of DBP. Accordingly, selective inhibition of CREB led to a strongly decreased expression of DBP and CYP3A4 (human Cyp3a11 homologue) in HepG2 liver cells. In summary, our data suggest that the Gαi3-pCREB signalling pathway functions as a regulator of sexual-dimorphic expression of DBP and its xenobiotic target enzymes Cyp3a11/CYP3A4.
Collapse
|
53
|
Chen S, Yang J, Yang L, Zhang Y, Zhou L, Liu Q, Duan C, Mieres CA, Zhou G, Xu G. Ubiquitin ligase
TRAF
2 attenuates the transcriptional activity of the core clock protein
BMAL
1 and affects the maximal
Per1
mRNA
level of the circadian clock in cells. FEBS J 2018; 285:2987-3001. [DOI: 10.1111/febs.14595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Lu Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Crystal A. Mieres
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Guanghai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Institute of Cardiovascular Endocrinology Key Laboratory of Atherosclerosis in Universities of Shandong Taishan Medical University Tai'an Shandong China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
54
|
Davis BT, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A. Circadian Mechanisms in Alcohol Use Disorder and Tissue Injury. Alcohol Clin Exp Res 2018; 42:668-677. [PMID: 29450896 DOI: 10.1111/acer.13612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Abstract
Heavy use of alcohol can lead to addictive behaviors and to eventual alcohol-related tissue damage. While increased consumption of alcohol has been attributed to various factors including level of alcohol exposure and environmental factors such as stress, data from behavioral scientists and physiological researchers are revealing roles for the circadian rhythm in mediating the development of behaviors associated with alcohol use disorder as well as the tissue damage that drives physiological disease. In this work, we compile recent work on the complex mutually influential relationship that exists between the core circadian rhythm and the pharmacodynamics of alcohol. As we do so, we highlight implications of the relationship between alcohol and common circadian mechanisms of effected organs on alcohol consumption, metabolism, toxicity, and pathology.
Collapse
Affiliation(s)
| | | | | | | | - Ali Keshavarzian
- Division of Digestive Disease and Nutrition, Section of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
55
|
Salvadores N, Sanhueza M, Manque P, Court FA. Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Front Neurosci 2017; 11:451. [PMID: 28928628 PMCID: PMC5591337 DOI: 10.3389/fnins.2017.00451] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Aging constitutes the main risk factor for the development of neurodegenerative diseases. This represents a major health issue worldwide that is only expected to escalate due to the ever-increasing life expectancy of the population. Interestingly, axonal degeneration, which occurs at early stages of neurodegenerative disorders (ND) such as Alzheimer's disease, Amyotrophic lateral sclerosis, and Parkinson's disease, also takes place as a consequence of normal aging. Moreover, the alteration of several cellular processes such as proteostasis, response to cellular stress and mitochondrial homeostasis, which have been described to occur in the aging brain, can also contribute to axonal pathology. Compelling evidence indicate that the degeneration of axons precedes clinical symptoms in NDs and occurs before cell body loss, constituting an early event in the pathological process and providing a potential therapeutic target to treat neurodegeneration before neuronal cell death. Although, normal aging and the development of neurodegeneration are two processes that are closely linked, the molecular basis of the switch that triggers the transition from healthy aging to neurodegeneration remains unrevealed. In this review we discuss the potential role of axonal degeneration in this transition and provide a detailed overview of the literature and current advances in the molecular understanding of the cellular changes that occur during aging that promote axonal degeneration and then discuss this in the context of ND.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Mario Sanhueza
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| |
Collapse
|
56
|
Papazyan R, Zhang Y, Lazar MA. Genetic and epigenomic mechanisms of mammalian circadian transcription. Nat Struct Mol Biol 2017; 23:1045-1052. [PMID: 27922611 DOI: 10.1038/nsmb.3324] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022]
Abstract
The mammalian molecular clock comprises a complex network of transcriptional programs that integrates environmental signals with physiological pathways in a tissue-specific manner. Emerging technologies are extending knowledge of basic clock features by uncovering their underlying molecular mechanisms, thus setting the stage for a 'systems' view of the molecular clock. Here we discuss how recent data from genome-wide genetic and epigenetic studies have informed the understanding of clock function. In addition to its importance in human physiology and disease, the clock mechanism provides an ideal model to assess general principles of dynamic transcription regulation in vivo.
Collapse
Affiliation(s)
- Romeo Papazyan
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Department of Genetics; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Department of Genetics; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Department of Genetics; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
57
|
Mermet J, Yeung J, Naef F. Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028720. [PMID: 27920039 DOI: 10.1101/cshperspect.a028720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammals have evolved an internal timing system, the circadian clock, which synchronizes physiology and behavior to the daily light and dark cycles of the Earth. The master clock, located in the suprachiasmatic nucleus (SCN) of the brain, takes fluctuating light input from the retina and synchronizes other tissues to the same internal rhythm. The molecular clocks that drive these circadian rhythms are ticking in nearly all cells in the body. Efforts in systems chronobiology are now being directed at understanding, on a comprehensive scale, how the circadian clock controls different layers of gene regulation to provide robust timing cues at the cellular and tissue level. In this review, we introduce some basic concepts underlying periodicity of gene regulation, and then highlight recent genome-wide investigations on the propagation of rhythms across multiple regulatory layers in mammals, all the way from chromatin conformation to protein accumulation.
Collapse
Affiliation(s)
- Jérôme Mermet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jake Yeung
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
58
|
Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 2017; 8:14336. [PMID: 28186121 PMCID: PMC5309809 DOI: 10.1038/ncomms14336] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- NetS3 Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Meritxell Pons-Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Philipp Follert
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- D3 PharmaChemistry, Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Luca Berdondini
- NetS3 Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Davide De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
59
|
Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Front Endocrinol (Lausanne) 2017; 8:42. [PMID: 28337174 PMCID: PMC5340782 DOI: 10.3389/fendo.2017.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 12/29/2022] Open
Abstract
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- *Correspondence: Frédéric Gachon,
| |
Collapse
|
60
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. NATURE REVIEWS. GENETICS 2016. [PMID: 27990019 DOI: 10.1038/nrg.2016.150]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
61
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2016; 18:164-179. [PMID: 27990019 DOI: 10.1038/nrg.2016.150] [Citation(s) in RCA: 1670] [Impact Index Per Article: 185.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
62
|
Hirano A, Fu YH, Ptáček LJ. The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 2016; 23:1053-1060. [DOI: 10.1038/nsmb.3326] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022]
|
63
|
Abstract
Disruptions of normal circadian rhythms and sleep cycles are consequences of aging and can profoundly affect health. Accumulating evidence indicates that circadian and sleep disturbances, which have long been considered symptoms of many neurodegenerative conditions, may actually drive pathogenesis early in the course of these diseases. In this Review, we explore potential cellular and molecular mechanisms linking circadian dysfunction and sleep loss to neurodegenerative diseases, with a focus on Alzheimer's disease. We examine the interplay between central and peripheral circadian rhythms, circadian clock gene function, and sleep in maintaining brain homeostasis, and discuss therapeutic implications. The circadian clock and sleep can influence a number of key processes involved in neurodegeneration, suggesting that these systems might be manipulated to promote healthy brain aging.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
64
|
CRY2 and FBXL3 Cooperatively Degrade c-MYC. Mol Cell 2016; 64:774-789. [PMID: 27840026 DOI: 10.1016/j.molcel.2016.10.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/31/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022]
Abstract
For many years, a connection between circadian clocks and cancer has been postulated. Here we describe an unexpected function for the circadian repressor CRY2 as a component of an FBXL3-containing E3 ligase that recruits T58-phosphorylated c-MYC for ubiquitylation. c-MYC is a critical regulator of cell proliferation; T58 is central in a phosphodegron long recognized as a hotspot for mutation in cancer. This site is also targeted by FBXW7, although the full machinery responsible for its turnover has remained obscure. CRY1 cannot substitute for CRY2 in promoting c-MYC degradation. Their unique functions may explain prior conflicting reports that have fueled uncertainty about the relationship between clocks and cancer. We demonstrate that c-MYC is a target of CRY2-dependent protein turnover, suggesting a molecular mechanism for circadian control of cell growth and a new paradigm for circadian protein degradation.
Collapse
|
65
|
Morishita Y, Miura D, Kida S. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter. Biosci Biotechnol Biochem 2016; 80:1131-40. [PMID: 27022680 DOI: 10.1080/09168451.2015.1136885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 01/29/2023]
Abstract
The circadian rhythm generated by circadian clock underlies a molecular mechanism of rhythmic transcriptional regulation by transcription factor BMAL1/CLOCK. Importantly, the circadian clock is coordinated by exogenous cues to accommodate to changes in the external environment. However, the molecular mechanisms by which intracellular-signaling pathways mediate the adjustments of the circadian transcriptional rhythms remain unclear. In this study, we found that pharmacological inhibition or shRNA-mediated knockdown of phosphatidylinositol 3-kinase (PI3K) blocked upregulation of Dbp mRNA induced by serum shock in NIH 3T3 cells. Moreover, the inhibition of PI3K significantly reduced the promoter activity of the Dbp gene, as well as decreased the recruitment of BMAL1/CLOCK to the E-box in the Dbp promoter. Interestingly, the inhibition of PI3K blocked heterodimerization of BMAL1 and CLOCK. Our findings suggest that PI3K signaling plays a modulatory role in the regulation of the transcriptional rhythm of the Dbp gene by targeting BMAL1 and CLOCK.
Collapse
Affiliation(s)
- Yoshikazu Morishita
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Daiki Miura
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Satoshi Kida
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
- b Core Research for Evolutional Science and Technology, Japan Science and Technology Agency , Saitama , Japan
| |
Collapse
|
66
|
Shi G, Xie P, Qu Z, Zhang Z, Dong Z, An Y, Xing L, Liu Z, Dong Y, Xu G, Yang L, Liu Y, Xu Y. Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function. Cell Rep 2016; 14:823-834. [PMID: 26776516 DOI: 10.1016/j.celrep.2015.12.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/11/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023] Open
Abstract
In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3) is a critical component of the circadian negative feedback loop by regulating both the activation and repression processes in a deacetylase activity-independent manner. Genetic depletion of Hdac3 results in low-amplitude circadian rhythms and dampened E-box-driven transcription. In subjective morning, HDAC3 is required for the efficient transcriptional activation process by regulating BMAL1 stability. In subjective night, however, HDAC3 blocks FBXL3-mediated CRY1 degradation and strongly promotes BMAL1 and CRY1 association. Therefore, these two opposing but temporally separated roles of HDAC3 in the negative feedback loop provide a mechanism for robust circadian gene expression.
Collapse
Affiliation(s)
- Guangsen Shi
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Pancheng Xie
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhipeng Qu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhihui Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhen Dong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Yang An
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Lijuan Xing
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yingying Dong
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ling Yang
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ying Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China; Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China.
| |
Collapse
|
67
|
Lück S, Westermark PO. Circadian mRNA expression: insights from modeling and transcriptomics. Cell Mol Life Sci 2016; 73:497-521. [PMID: 26496725 PMCID: PMC11108398 DOI: 10.1007/s00018-015-2072-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
Abstract
Circadian clocks synchronize organisms to the 24 h rhythms of the environment. These clocks persist under constant conditions, have their origin at the cellular level, and produce an output of rhythmic mRNA expression affecting thousands of transcripts in many mammalian cell types. Here, we review the charting of circadian output rhythms in mRNA expression, focusing on mammals. We emphasize the challenges in statistics, interpretation, and quantitative descriptions that such investigations have faced and continue to face, and outline remaining outstanding questions.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany.
| |
Collapse
|
68
|
Wang L, Li L, Zhao L, Liu C, Liu J, Liu L, Lin P, Liu B, Li M. Chronopharmacokinetics and mechanisms of gefitinib in a nude mice model of non-small cell lung cancer. RSC Adv 2016. [DOI: 10.1039/c6ra13854c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms may influence the pharmacokinetics of drugs.
Collapse
Affiliation(s)
- Le Wang
- Department of Pharmacy
- Pharmaceutical College of Qingdao University
- Qingdao 266021
- China
| | - Lujia Li
- Department of Oncology
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| | - Liyan Zhao
- Department of Pharmacy
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| | - Changjiao Liu
- Pharmaceutical College of Dalian Medical University
- Dalian 116000
- China
| | - Jiao Liu
- Department of Pharmacy
- Affiliate Hospital of Weifang Medical University
- Weifang
- 261000 China
| | - Liang Liu
- Department of Pharmacy
- Pharmaceutical College of Qingdao University
- Qingdao 266021
- China
| | - Pingping Lin
- Department of Clinical Pharmacology
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- China
| | - Bo Liu
- Department of Pharmacy
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| | - Mingchun Li
- Department of Pharmacy
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| |
Collapse
|
69
|
Studer P, da Silva CG, Revuelta Cervantes JM, Mele A, Csizmadia E, Siracuse JJ, Damrauer SM, Peterson CR, Candinas D, Stroka DM, Ma A, Bhasin M, Ferran C. Significant lethality following liver resection in A20 heterozygous knockout mice uncovers a key role for A20 in liver regeneration. Cell Death Differ 2015; 22:2068-77. [PMID: 25976305 PMCID: PMC4816110 DOI: 10.1038/cdd.2015.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatic expression of A20, including in hepatocytes, increases in response to injury, inflammation and resection. This increase likely serves a hepatoprotective purpose. The characteristic unfettered liver inflammation and necrosis in A20 knockout mice established physiologic upregulation of A20 as integral to the anti-inflammatory and anti-apoptotic armamentarium of hepatocytes. However, the implication of physiologic upregulation of A20 in modulating hepatocytes' proliferative responses following liver resection remains controversial. To resolve the impact of A20 on hepatocyte proliferation and the liver's regenerative capacity, we examined whether decreased A20 expression, as in A20 heterozygous knockout mice, affects outcome following two-third partial hepatectomy. A20 heterozygous mice do not demonstrate a striking liver phenotype, indicating that their A20 expression levels are still sufficient to contain inflammation and cell death at baseline. However, usually benign partial hepatectomy provoked a staggering lethality (>40%) in these mice, uncovering an unsuspected phenotype. Heightened lethality in A20 heterozygous mice following partial hepatectomy resulted from impaired hepatocyte proliferation due to heightened levels of cyclin-dependent kinase inhibitor, p21, and deficient upregulation of cyclins D1, E and A, in the context of worsened liver steatosis. A20 heterozygous knockout minimally affected baseline liver transcriptome, mostly circadian rhythm genes. Nevertheless, this caused differential expression of >1000 genes post hepatectomy, hindering lipid metabolism, bile acid biosynthesis, insulin signaling and cell cycle, all critical cellular processes for liver regeneration. These results demonstrate that mere reduction of A20 levels causes worse outcome post hepatectomy than full knockout of bona fide liver pro-regenerative players such as IL-6, clearly ascertaining A20's primordial role in enabling liver regeneration. Clinical implications of these data are of utmost importance as they caution safety of extensive hepatectomy for donation or tumor in carriers of A20/TNFAIP3 single nucleotide polymorphisms alleles that decrease A20 expression or function, and prompt the development of A20-based liver pro-regenerative therapies.
Collapse
Affiliation(s)
- P Studer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - C G da Silva
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J M Revuelta Cervantes
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Mele
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Csizmadia
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J J Siracuse
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S M Damrauer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C R Peterson
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Candinas
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - D M Stroka
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - A Ma
- Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Bhasin
- Division of Gastroenterology, Department of Medicine, University of California in San Francisco, San Fransisco, CA, USA
| | - C Ferran
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
70
|
Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res 2015; 25:1848-59. [PMID: 26486724 PMCID: PMC4665006 DOI: 10.1101/gr.195404.115] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022]
Abstract
Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ.
Collapse
|
71
|
Park N, Kim HD, Cheon S, Row H, Lee J, Han DH, Cho S, Kim K. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms. PLoS One 2015; 10:e0138661. [PMID: 26394143 PMCID: PMC4578957 DOI: 10.1371/journal.pone.0138661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/02/2015] [Indexed: 01/29/2023] Open
Abstract
The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC) allele. The homozygous mutant (Bmal1GTΔC/GTΔC) mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC) mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.
Collapse
Affiliation(s)
- Noheon Park
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Dae Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Solmi Cheon
- Department of Brain & Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Hansang Row
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jiyeon Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Dong-Hee Han
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Sehyung Cho
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyungjin Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Department of Brain & Cognitive Sciences, Seoul National University, Seoul, Korea
- Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| |
Collapse
|
72
|
Jeong K, He B, Nohara K, Park N, Shin Y, Kim S, Shimomura K, Koike N, Yoo SH, Chen Z. Dual attenuation of proteasomal and autophagic BMAL1 degradation in Clock Δ19/+ mice contributes to improved glucose homeostasis. Sci Rep 2015; 5:12801. [PMID: 26228022 PMCID: PMC4521189 DOI: 10.1038/srep12801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks orchestrate essential physiology in response to various cues, yet their mechanistic and functional plasticity remains unclear. Here, we investigated Clock(Δ19/+) heterozygous (Clk/+) mice, known to display lengthened periodicity and dampened amplitude, as a model of partially perturbed clocks. Interestingly, Clk/+ mice exhibited improved glycemic control and resistance to circadian period lengthening under high-fat diet (HFD). Furthermore, BMAL1 protein levels in Clk/+ mouse liver were upregulated compared with wild-type (WT) mice under HFD. Pharmacological and molecular studies showed that BMAL1 turnover entailed proteasomal and autophagic activities, and CLOCKΔ19 attenuated both processes. Consistent with an important role of BMAL1 in glycemic control, enhanced activation of insulin signaling was observed in Clk/+ mice relative to WT in HFD. Finally, transcriptome analysis revealed reprogramming of clock-controlled metabolic genes in Clk/+ mice. Our results demonstrate a novel role of autophagy in circadian regulation and reveal an unforeseen plasticity of circadian and metabolic networks.
Collapse
Affiliation(s)
- Kwon Jeong
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Baokun He
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Noheon Park
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Youngmin Shin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Seonghwa Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Kazuhiro Shimomura
- Department of Neurobiology and Physiology, Center for Sleep and Circadian Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60201
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| |
Collapse
|
73
|
Transcriptional refractoriness is dependent on core promoter architecture. Nat Commun 2015; 6:6753. [PMID: 25851692 DOI: 10.1038/ncomms7753] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/24/2015] [Indexed: 12/28/2022] Open
Abstract
Genes are often transcribed in random bursts followed by long periods of inactivity. Here we employ the light-activatable white collar complex (WCC) of Neurospora to study the transcriptional bursting with a population approach. Activation of WCC by a light pulse triggers a synchronized wave of transcription from the frequency promoter followed by an extended period (∼1 h) during which the promoter is refractory towards restimulation. When challenged by a second light pulse, the newly activated WCC binds to refractory promoters and has the potential to recruit RNA polymerase II (Pol II). However, accumulation of Pol II and phosphorylation of its C-terminal domain repeats at serine 5 are impaired. Our results suggest that refractory promoters carry a physical memory of their recent transcription history. Genome-wide analysis of light-induced transcription suggests that refractoriness is rather widespread and a property of promoter architecture.
Collapse
|
74
|
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Proc Natl Acad Sci U S A 2014; 112:6863-70. [PMID: 25378702 DOI: 10.1073/pnas.1411264111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional-translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear "hubs" of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control.
Collapse
|
75
|
Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev 2014; 28:1989-98. [PMID: 25228643 PMCID: PMC4173159 DOI: 10.1101/gad.249417.114] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian circadian clock is based on a transcription–translation feedback loop in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼ 24 h. Ye et al. show that CRY binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex. PER alone has no effect on CLOCK–BMAL1-activated transcription, but in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK–BMAL1 from the promoter. The mammalian circadian clock is based on a transcription–translation feedback loop (TTFL) in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼24 h. In this model, the mechanistic roles of CRY and PER are unclear. Here, we used a controlled targeting system to introduce CRY1 or PER2 into the nuclei of mouse cells with defined circadian genotypes to characterize the functions of CRY and PER. Our data show that CRY is the primary repressor in the TTFL: It binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex (“blocking”-type repression). PER alone has no effect on CLOCK–BMAL1-activated transcription. However, in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK–BMAL1 from the promoter (“displacement”-type repression). In light of these findings, we propose a new model for the mammalian circadian clock in which the negative arm of the TTFL proceeds by two different mechanisms during the circadian cycle.
Collapse
|
76
|
Stojkovic K, Wing SS, Cermakian N. A central role for ubiquitination within a circadian clock protein modification code. Front Mol Neurosci 2014; 7:69. [PMID: 25147498 PMCID: PMC4124793 DOI: 10.3389/fnmol.2014.00069] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome, and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation–transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here, we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.
Collapse
Affiliation(s)
- Katarina Stojkovic
- Douglas Mental Health University Institute, McGill University, Montréal, QC Canada
| | - Simon S Wing
- Polypeptide Laboratory, Department of Medicine-McGill University Health Centre Research Institute, McGill University, Montréal, QC Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montréal, QC Canada
| |
Collapse
|
77
|
Abstract
The mammalian circadian clock comprises a system of interconnected transcriptional and translational feedback loops. Proper oscillator function requires the precisely timed synthesis and degradation of core clock proteins. Heat shock protein 90 (HSP90), an adenosine triphosphate (ATP)-dependent molecular chaperone, has important functions in many cellular regulatory pathways by controlling the activity and stability of its various client proteins. Despite accumulating evidence for interplay between the heat shock response and the circadian system, the role of HSP90 in the mammalian core clock is not known. The results of this study suggest that inhibition of the ATP-dependent chaperone activity of HSP90 impairs circadian rhythmicity of cultured mouse fibroblasts whereby amplitude and phase of the oscillations are predominantly affected. Inhibition of HSP90 shortened the half-life of BMAL1, which resulted in reduced cellular protein levels and blunted expression of rhythmic BMAL1-CLOCK target genes. Furthermore, the HSP90 isoforms HSP90AA1 and HSP90AB1, and not HSP90B1-GRP94 or TRAP1, are responsible for maintaining proper cellular levels of BMAL1 protein. In summary, these findings provide evidence for a model in which cytoplasmic HSP90 is required for transcriptional activation processes by the positive arm of the mammalian circadian clock.
Collapse
Affiliation(s)
- Rebecca Schneider
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | | | | |
Collapse
|
78
|
Tamaru T, Hattori M, Ninomiya Y, Kawamura G, Varès G, Honda K, Mishra DP, Wang B, Benjamin I, Sassone-Corsi P, Ozawa T, Takamatsu K. ROS stress resets circadian clocks to coordinate pro-survival signals. PLoS One 2013; 8:e82006. [PMID: 24312621 PMCID: PMC3846904 DOI: 10.1371/journal.pone.0082006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/20/2013] [Indexed: 01/04/2023] Open
Abstract
Dysfunction of circadian clocks exacerbates various diseases, in part likely due to impaired stress resistance. It is unclear how circadian clock system responds toward critical stresses, to evoke life-protective adaptation. We identified a reactive oxygen species (ROS), H2O2 -responsive circadian pathway in mammals. Near-lethal doses of ROS-induced critical oxidative stress (cOS) at the branch point of life and death resets circadian clocks, synergistically evoking protective responses for cell survival. The cOS-triggered clock resetting and pro-survival responses are mediated by transcription factor, central clock-regulatory BMAL1 and heat shock stress-responsive (HSR) HSF1. Casein kinase II (CK2) –mediated phosphorylation regulates dimerization and function of BMAL1 and HSF1 to control the cOS-evoked responses. The core cOS-responsive transcriptome includes CK2-regulated crosstalk between the circadian, HSR, NF-kappa-B-mediated anti-apoptotic, and Nrf2-mediated anti-oxidant pathways. This novel circadian-adaptive signaling system likely plays fundamental protective roles in various ROS-inducible disorders, diseases, and death.
Collapse
Affiliation(s)
- Teruya Tamaru
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan
- * E-mail: (TT); (TO)
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Ninomiya
- Research Center for Radiation Protection, National Institute of Radiological Science, Chiba, Japan
| | - Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Guillaume Varès
- Research Center for Radiation Protection, National Institute of Radiological Science, Chiba, Japan
| | - Kousuke Honda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Science, Chiba, Japan
| | - Ivor Benjamin
- Division of Cardiology, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail: (TT); (TO)
| | - Ken Takamatsu
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
79
|
Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad Sci U S A 2013; 110:20563-8. [PMID: 24297917 DOI: 10.1073/pnas.1312310110] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian genes are often transcribed discontinuously as short bursts of RNA synthesis followed by longer silent periods. However, how these "on" and "off" transitions, together with the burst sizes, are modulated in single cells to increase gene expression upon stimulation is poorly characterized. By combining single-cell time-lapse luminescence imaging with stochastic modeling of the time traces, we quantified the transcriptional responses of the endogenous connective tissue growth factor gene to different physiological stimuli: serum and TGF-β1. Both stimuli caused a rapid and acute increase in burst sizes. Whereas TGF-β1 showed prolonged transcriptional activation mediated by an increase of transcription rate, serum stimulation resulted in a large and temporally tight first transcriptional burst, followed by a refractory period in the range of hours. Our study thus reveals how different physiological stimuli can trigger kinetically distinct transcriptional responses of the same gene.
Collapse
|
80
|
Dickmeis T, Weger BD, Weger M. The circadian clock and glucocorticoids--interactions across many time scales. Mol Cell Endocrinol 2013; 380:2-15. [PMID: 23707790 DOI: 10.1016/j.mce.2013.05.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are steroid hormones of the adrenal gland that are an integral component of the stress response and regulate many physiological processes, including metabolism and immune response. Their release into the blood is highly dynamic and occurs in about hourly pulses, the amplitude of which is modulated in a daytime dependent fashion. In addition, in many species seasonal changes in basal glucocorticoid levels have been reported. In their target tissues, glucocorticoids bind to cytoplasmic receptors of the nuclear receptor superfamily. Upon binding, these receptors regulate transcription in a highly dynamic fashion, which involves stochastic binding to regulatory DNA elements on a time scale of seconds and heat shock protein mediated receptor-ligand complex recycling within minutes. The glucocorticoid hormone system interacts with another highly dynamic system, the circadian clock. The circadian clock is an endogenous biological timing mechanism that allows organisms to anticipate regular daily changes in their environment. It regulates daily rhythms of glucocorticoid release by a variety of mechanisms, modulates glucocorticoid signaling and is itself influenced by glucocorticoids. Here, we discuss mechanisms, functions and interactions of the circadian and glucocorticoid systems across time scales ranging from seconds (DNA binding by transcriptional regulators) to years (seasonal rhythms).
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Campus Nord, Postfach 3640, D-76021 Karlsruhe, Germany.
| | | | | |
Collapse
|
81
|
Aguilar-Arnal L, Hakim O, Patel VR, Baldi P, Hager GL, Sassone-Corsi P. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat Struct Mol Biol 2013; 20:1206-13. [PMID: 24056944 PMCID: PMC3885543 DOI: 10.1038/nsmb.2667] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 01/10/2023]
Abstract
Dynamic transitions in the epigenome have been associated with regulated patterns of nuclear organization. The accumulating evidence that chromatin remodeling is implicated in circadian function prompted us to explore whether the clock may control nuclear architecture. We applied the chromosome conformation capture on chip technology in mouse embryonic fibroblasts (MEFs) to demonstrate the presence of circadian long-range interactions using the clock-controlled Dbp gene as bait. The circadian genomic interactions with Dbp were highly specific and were absent in MEFs whose clock was disrupted by ablation of the Bmal1 gene (also called Arntl). We establish that the Dbp circadian interactome contains a wide variety of genes and clock-related DNA elements. These findings reveal a previously unappreciated circadian and clock-dependent shaping of the nuclear landscape.
Collapse
Affiliation(s)
- Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California Irvine, Irvine, California, U.S.A
| | - Ofir Hakim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, U.S.A
| | - Vishal R. Patel
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine, Irvine, California, U.S.A
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine, Irvine, California, U.S.A
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, U.S.A
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California Irvine, Irvine, California, U.S.A
| |
Collapse
|
82
|
Szabó Á, Papin C, Zorn D, Ponien P, Weber F, Raabe T, Rouyer F. The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator. PLoS Biol 2013; 11:e1001645. [PMID: 24013921 PMCID: PMC3754892 DOI: 10.1371/journal.pbio.1001645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER) and TIMELESS (TIM) proteins, which inhibit CLOCK (CLK) transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic α subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory β subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of CK2α activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.
Collapse
Affiliation(s)
- Áron Szabó
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Christian Papin
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Daniela Zorn
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France
- IMAGIF, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Frank Weber
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Thomas Raabe
- University of Wuerzburg, Institute of Medical Radiation and Cell Research, Wuerzburg, Germany
| | - François Rouyer
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
- * E-mail:
| |
Collapse
|
83
|
Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, Nitabach MN, Yang X. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013; 17:303-10. [PMID: 23395176 PMCID: PMC3647362 DOI: 10.1016/j.cmet.2012.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/25/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022]
Abstract
Circadian clocks are coupled to metabolic oscillations through nutrient-sensing pathways. Nutrient flux into the hexosamine biosynthesis pathway triggers covalent protein modification by O-linked β-D-N-acetylglucosamine (O-GlcNAc). Here we show that the hexosamine/O-GlcNAc pathway modulates peripheral clock oscillation. O-GlcNAc transferase (OGT) promotes expression of BMAL1/CLOCK target genes and affects circadian oscillation of clock genes in vitro and in vivo. Both BMAL1 and CLOCK are rhythmically O-GlcNAcylated, and this protein modification stabilizes BMAL1 and CLOCK by inhibiting their ubiquitination. In vivo analysis of genetically modified mice with perturbed hepatic OGT expression shows aberrant circadian rhythms of glucose homeostasis. These results establish the counteraction between O-GlcNAcylation and ubiquitination as a key mechanism that regulates the circadian clock and suggest a crucial role for O-GlcNAc signaling in transducing nutritional signals to the core circadian timing machinery.
Collapse
Affiliation(s)
- Min-Dian Li
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Rey G, Reddy AB. Connecting cellular metabolism to circadian clocks. Trends Cell Biol 2013; 23:234-41. [PMID: 23391694 DOI: 10.1016/j.tcb.2013.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/31/2022]
Abstract
The circadian clock is a cellular timekeeping mechanism that helps organisms to organize their behaviour and physiology around daily alternations of days and nights. In humans, misalignment of an individual's internal clock with its environment is associated with adverse health consequences, including metabolic disorders and cancers. In current models of the eukaryotic circadian oscillator, transcription/translation feedback loops (TTFLs) are considered the prime mechanism sustaining intracellular rhythms. The discovery of many cytosolic loops has extended the TTFL model by embedding it in cellular physiology. Recently, however, several studies have revealed metabolic rhythms that are independent of transcription, questioning the TTFL model as the sole cellular timekeeping mechanism. Thus, the time has come to carefully reassess these models of the clockwork in a broad cellular context to integrate its genetic, cytosolic, and metabolic components.
Collapse
Affiliation(s)
- Guillaume Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
85
|
Luo W, Li Y, Tang CHA, Abruzzi KC, Rodriguez J, Pescatore S, Rosbash M. CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila. Genes Dev 2013; 26:2536-49. [PMID: 23154984 DOI: 10.1101/gad.200584.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A conserved transcriptional feedback loop underlies animal circadian rhythms. In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) activate the transcription of direct target genes like period (per) and timeless (tim). They encode the proteins PER and TIM, respectively, which repress CLK/CYC activity. Previous work indicates that repression is due to a direct PER-CLK/CYC interaction as well as CLK/CYC phosphorylation. We describe here the role of ubiquitin-specific protease 8 (USP8) in circadian transcriptional repression as well as the importance of CLK ubiquitylation in CLK/CYC transcription activity. usp8 loss of function (RNAi) or expression of a dominant-negative form of the protein (USP8-DN) enhances CLK/CYC transcriptional activity and alters fly locomotor activity rhythms. Clock protein and mRNA molecular oscillations are virtually absent within circadian neurons of USP8-DN flies. Furthermore, CLK ubiquitylation cycles robustly in wild-type flies and peaks coincident with maximal CLK/CYC transcription. As USP8 interacts with CLK and expression of USP8-DN increases CLK ubiquitylation, the data indicate that USP8 deubiquitylates CLK, which down-regulates CLK/CYC transcriptional activity. Taken together with the facts that usp8 mRNA cycles and that its transcription is activated directly by CLK/CYC, USP8, like PER and TIM, contributes to the transcriptional feedback loop cycle that underlies circadian rhythms.
Collapse
|
86
|
Raduwan H, Isola AL, Belden WJ. Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression. J Biol Chem 2013; 288:8380-8390. [PMID: 23319591 PMCID: PMC3605655 DOI: 10.1074/jbc.m112.359935] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The circadian oscillator controls time-of-day gene expression by a network of interconnected feedback loops and is reset by light. The requisite for chromatin regulation in eukaryotic transcription necessitates temporal regulation of histone-modifying and chromatin-remodeling enzymes for proper clock function. CHD1 is known to bind H3K4me3 in mammalian cells, and Neurospora CHD1 is required for proper regulation of the frequency (frq) gene. Based on this, we examined a strain lacking SET1 to determine the role of H3K4 methylation in clock- and light-mediated frq regulation. Expression of frq was altered in strains lacking set1 under both circadian- and light-regulated gene expression. There is a delay in the phasing of H3K4me3 relative to the peak in frq expression. White Collar 2 (WC-2) association with the frq promoter persists longer in Δset1, suggesting a more permissible chromatin state. Surprisingly, SET1 is required for DNA methylation in the frq promoter, indicating a dependence on H3K4me for DNA methylation. The data support a model where SET1 is needed for proper regulation by modulating chromatin at frq.
Collapse
Affiliation(s)
- Hamidah Raduwan
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Allison L Isola
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - William J Belden
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901.
| |
Collapse
|
87
|
Fu L, Kettner NM. The circadian clock in cancer development and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:221-82. [PMID: 23899600 PMCID: PMC4103166 DOI: 10.1016/b978-0-12-396971-2.00009-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, with the industrialization of the world, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to an increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function, and aging, which are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism, and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anticancer therapies.
Collapse
Affiliation(s)
- Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nicole M. Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|