51
|
Abstract
Chromosomes underlie a dynamic organization that fulfills functional roles in processes like transcription, DNA repair, nuclear envelope stability, and cell division. Chromosome dynamics depend on chromosome structure and cannot freely diffuse. Furthermore, chromosomes interact closely with their surrounding nuclear environment, which further constrains chromosome dynamics. Recently, several studies enlighten that cytoskeletal proteins regulate dynamic chromosome organization. Cytoskeletal polymers that include actin filaments, microtubules and intermediate filaments can connect to the nuclear envelope via Linker of the Nucleoskeleton and Cytoskeleton (LINC) complexes and transfer forces onto chromosomes inside the nucleus. Monomers of these cytoplasmic polymers and related proteins can also enter the nucleus and play different roles in the interior of the nucleus than they do in the cytoplasm. Nuclear cytoskeletal proteins can act as chromatin remodelers alone or in complexes with other nuclear proteins. They can also act as transcription factors. Many of these mechanisms have been conserved during evolution, indicating that the cytoskeletal regulation of chromosome dynamics is an essential process. In this review, we discuss the different influences of cytoskeletal proteins on chromosome dynamics by focusing on the well-studied model organism budding yeast.
Collapse
Affiliation(s)
- Maya Spichal
- Department of Genetics, University of North Carolina, Chapel HillNC, United States
| | - Emmanuelle Fabre
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, CNRS UMR 7212, INSERM U944, Hôpital St. Louis 1Paris, France
| |
Collapse
|
52
|
Surovtsev IV, Campos M, Jacobs-Wagner C. DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc Natl Acad Sci U S A 2016; 113:E7268-E7276. [PMID: 27799522 PMCID: PMC5135302 DOI: 10.1073/pnas.1616118113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spatial ordering of macromolecular components inside cells is important for cellular physiology and replication. In bacteria, ParA/B systems are known to generate various intracellular patterns that underlie the transport and partitioning of low-copy-number cargos such as plasmids. ParA/B systems consist of ParA, an ATPase that dimerizes and binds DNA upon ATP binding, and ParB, a protein that binds the cargo and stimulates ParA ATPase activity. Inside cells, ParA is asymmetrically distributed, forming a propagating wave that is followed by the ParB-rich cargo. These correlated dynamics lead to cargo oscillation or equidistant spacing over the nucleoid depending on whether the cargo is in single or multiple copies. Currently, there is no model that explains how these different spatial patterns arise and relate to each other. Here, we test a simple DNA-relay model that has no imposed asymmetry and that only considers the ParA/ParB biochemistry and the known fluctuating and elastic dynamics of chromosomal loci. Stochastic simulations with experimentally derived parameters demonstrate that this model is sufficient to reproduce the signature patterns of ParA/B systems: the propagating ParA gradient correlated with the cargo dynamics, the single-cargo oscillatory motion, and the multicargo equidistant patterning. Stochasticity of ATP hydrolysis breaks the initial symmetry in ParA distribution, resulting in imbalance of elastic force acting on the cargo. Our results may apply beyond ParA/B systems as they reveal how a minimal system of two players, one binding to DNA and the other modulating this binding, can transform directionally random DNA fluctuations into directed motion and intracellular patterning.
Collapse
Affiliation(s)
- Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06517;
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
- Department of Microbial Pathogenesis, Yale Medical School, New Haven, CT 06516
| |
Collapse
|
53
|
Seeber A, Gasser SM. Chromatin organization and dynamics in double-strand break repair. Curr Opin Genet Dev 2016; 43:9-16. [PMID: 27810555 DOI: 10.1016/j.gde.2016.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023]
Abstract
Chromatin is organized and segmented into a landscape of domains that serve multiple purposes. In contrast to transcription, which is controlled by defined sequences at distinct sites, DNA damage can occur anywhere. Repair accordingly must occur everywhere, yet it is inevitably affected by its chromatin environment. In this review, we summarize recent work investigating how changes in chromatin organization facilitate and/or guide DNA double-strand break repair. In addition, we examine new live cell studies on the dynamics of chromatin and the mechanisms that regulate its movement.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
54
|
Lampo TJ, Kennard AS, Spakowitz AJ. Physical Modeling of Dynamic Coupling between Chromosomal Loci. Biophys J 2016; 110:338-347. [PMID: 26789757 DOI: 10.1016/j.bpj.2015.11.3520] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 11/15/2022] Open
Abstract
The motion of chromosomal DNA is essential to many biological processes, including segregation, transcriptional regulation, recombination, and packaging. Physical understanding of these processes would be dramatically enhanced through predictive, quantitative modeling of chromosome dynamics of multiple loci. Using a polymer dynamics framework, we develop a prediction for the correlation in the velocities of two loci on a single chromosome or otherwise connected by chromatin. These predictions reveal that the signature of correlated motion between two loci can be identified by varying the lag time between locus position measurements. In general, this theory predicts that as the lag time interval increases, the dual-loci dynamic behavior transitions from being completely uncorrelated to behaving as an effective single locus. This transition corresponds to the timescale of the stress communication between loci through the intervening segment. This relatively simple framework makes quantitative predictions based on a single timescale fit parameter that can be directly compared to the in vivo motion of fluorescently labeled chromosome loci. Furthermore, this theoretical framework enables the detection of dynamically coupled chromosome regions from the signature of their correlated motion.
Collapse
Affiliation(s)
- Thomas J Lampo
- Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Chemical Engineering, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
55
|
Belagal P, Normand C, Shukla A, Wang R, Léger-Silvestre I, Dez C, Bhargava P, Gadal O. Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III-transcribed genes in budding yeast. Mol Biol Cell 2016; 27:3164-3177. [PMID: 27559135 PMCID: PMC5063623 DOI: 10.1091/mbc.e16-03-0145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
In budding yeast, RNA polymerase III–transcribed genes preferentially associate with the nucleolar and nuclear periphery when permitted by the Rabl-like orientation of interphase chromosomes. The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III–transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements—centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III–transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III–transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III–dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III–transcribed genes required active transcription. We conclude that the association of Pol III–transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization.
Collapse
Affiliation(s)
- Praveen Belagal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Christophe Normand
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Ashutosh Shukla
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500007, India
| | - Renjie Wang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500007, India
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
56
|
Abstract
Broken ends of a budding yeast chromosome exhibit increased mobility, presumably to facilitate repair by recombination. A new study reports that increased mobility reflects the untethering of the broken chromosome, triggered by a DNA damage response that phosphorylates the Cep3 kinetochore protein and weakens the association between the centromere and the spindle pole body.
Collapse
Affiliation(s)
- Yuko Nakajima
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
57
|
Vasquez PA, Hult C, Adalsteinsson D, Lawrimore J, Forest MG, Bloom K. Entropy gives rise to topologically associating domains. Nucleic Acids Res 2016; 44:5540-9. [PMID: 27257057 PMCID: PMC4937343 DOI: 10.1093/nar/gkw510] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022] Open
Abstract
We investigate chromosome organization within the nucleus using polymer models whose formulation is closely guided by experiments in live yeast cells. We employ bead-spring chromosome models together with loop formation within the chains and the presence of nuclear bodies to quantify the extent to which these mechanisms shape the topological landscape in the interphase nucleus. By investigating the genome as a dynamical system, we show that domains of high chromosomal interactions can arise solely from the polymeric nature of the chromosome arms due to entropic interactions and nuclear confinement. In this view, the role of bio-chemical related processes is to modulate and extend the duration of the interacting domains.
Collapse
Affiliation(s)
- Paula A Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29808, USA
| | - Caitlin Hult
- Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Adalsteinsson
- Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Josh Lawrimore
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark G Forest
- Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
58
|
Kinney NA, Onufriev AV, Sharakhov IV. Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes. Nucleus 2016; 6:212-24. [PMID: 26068134 DOI: 10.1080/19491034.2015.1056441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We use a combined experimental and computational approach to study the effects of chromosome-nuclear envelope (Chr-NE) attachments on the 3D genome organization of Drosophila melanogaster (fruit fly) salivary gland nuclei. We consider 3 distinct models: a Null model - without specific Chr-NE attachments, a 15-attachment model - with 15 previously known Chr-NE attachments, and a 48-attachment model - with 15 original and 33 recently identified Chr-NE attachments. The radial densities of chromosomes in the models are compared to the densities observed in 100 experimental images of optically sectioned salivary gland nuclei forming "z-stacks." Most of the experimental z-stacks support the Chr-NE 48-attachment model suggesting that as many as 48 chromosome loci with appreciable affinity for the NE are necessary to reproduce the experimentally observed distribution of chromosome density in fruit fly nuclei. Next, we investigate if and how the presence and the number of Chr-NE attachments affect several key characteristics of 3D genome organization: chromosome territories and gene-gene contacts. This analysis leads to novel insight about the possible role of Chr-NE attachments in regulating the genome architecture. Specifically, we find that model nuclei with more numerous Chr-NE attachments form more distinct chromosome territories and their chromosomes intertwine less frequently. Intra-chromosome and intra-arm contacts are more common in model nuclei with Chr-NE attachments compared to the Null model (no specific attachments), while inter-chromosome and inter-arm contacts are less common in nuclei with Chr-NE attachments. We demonstrate that Chr-NE attachments increase the specificity of long-range inter-chromosome and inter-arm contacts. The predicted effects of Chr-NE attachments are rationalized by intuitive volume vs. surface accessibility arguments.
Collapse
Affiliation(s)
- Nicholas Allen Kinney
- a Genomics Bioinformatics and Computational Biology; Virginia Tech ; Blacksburg , VA , USA
| | | | | |
Collapse
|
59
|
Marshall WF, Fung JC. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion. Phys Biol 2016; 13:026003. [PMID: 27046097 DOI: 10.1088/1478-3975/13/2/026003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, USA
| | | |
Collapse
|
60
|
How the kinetochore couples microtubule force and centromere stretch to move chromosomes. Nat Cell Biol 2016; 18:382-92. [PMID: 26974660 PMCID: PMC4814359 DOI: 10.1038/ncb3323] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
The Ndc80 complex (Ndc80, Nuf2, Spc24 and Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule- and MAP-binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule-binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule-binding interactions with the Ndc80 and Dam1 complexes.
Collapse
|
61
|
DNA damage signalling targets the kinetochore to promote chromatin mobility. Nat Cell Biol 2016; 18:281-90. [PMID: 26829389 DOI: 10.1038/ncb3308] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
In budding yeast, chromatin mobility increases after a DNA double-strand break (DSB). This increase is dependent on Mec1, the yeast ATR kinase, but the targets responsible for this phenomenon are unknown. Here we report that the Mec1-dependent phosphorylation of Cep3, a kinetochore component, is required to stimulate chromatin mobility after DNA breaks. Cep3 phosphorylation counteracts a constraint on chromosome movement imposed by the attachment of centromeres to the spindle pole body. A second constraint, imposed by the tethering of telomeres to the nuclear periphery, is also relieved after chromosome breakage. A non-phosphorylatable Cep3 mutant that impairs DSB-induced chromatin mobility is proficient in DSB repair, suggesting that break-induced chromatin mobility may be dispensable for homology search. Rather, we propose that the relief of centromeric constraint promotes cell cycle arrest and faithful chromosome segregation through the engagement of the spindle assembly checkpoint.
Collapse
|
62
|
Spichal M, Brion A, Herbert S, Cournac A, Marbouty M, Zimmer C, Koszul R, Fabre E. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast. J Cell Sci 2016; 129:681-92. [PMID: 26763908 DOI: 10.1242/jcs.175745] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/05/2016] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic chromosomes undergo movements that are involved in the regulation of functional processes such as DNA repair. To better understand the origin of these movements, we used fluorescence microscopy, image analysis and chromosome conformation capture to quantify the actin contribution to chromosome movements and interactions in budding yeast. We show that both the cytoskeletal and nuclear actin drive local chromosome movements, independently of Csm4, a putative LINC protein. Inhibition of actin polymerization reduces subtelomere dynamics, resulting in more confined territories and enrichment in subtelomeric contacts. Artificial tethering of actin to nuclear pores increased both nuclear pore complex (NPC) and subtelomere motion. Chromosome loci that were positioned away from telomeres exhibited reduced motion in the presence of an actin polymerization inhibitor but were unaffected by the lack of Csm4. We further show that actin was required for locus mobility that was induced by targeting the chromatin-remodeling protein Ino80. Correlated with this, DNA repair by homologous recombination was less efficient. Overall, interphase chromosome dynamics are modulated by the additive effects of cytoskeletal actin through forces mediated by the nuclear envelope and nuclear actin, probably through the function of actin in chromatin-remodeling complexes.
Collapse
Affiliation(s)
- Maya Spichal
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France Sorbonne Universités, UPMC Université Paris 6, Paris 75005, France
| | - Alice Brion
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France
| | - Sébastien Herbert
- Institut Pasteur, Unité Imagerie et Modélisation, Paris 75015, France CNRS, URA 2582, Paris 75015, France
| | - Axel Cournac
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Martial Marbouty
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Christophe Zimmer
- Institut Pasteur, Unité Imagerie et Modélisation, Paris 75015, France CNRS, URA 2582, Paris 75015, France
| | - Romain Koszul
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Emmanuelle Fabre
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| |
Collapse
|
63
|
Lawrimore J, Aicher JK, Hahn P, Fulp A, Kompa B, Vicci L, Falvo M, Taylor RM, Bloom K. ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin. Mol Biol Cell 2016; 27:153-66. [PMID: 26538024 PMCID: PMC4694754 DOI: 10.1091/mbc.e15-08-0575] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Abstract
ChromoShake is a three-dimensional simulator designed to find the thermodynamically favored states for given chromosome geometries. The simulator has been applied to a geometric model based on experimentally determined positions and fluctuations of DNA and the distribution of cohesin and condensin in the budding yeast centromere. Simulations of chromatin in differing initial configurations reveal novel principles for understanding the structure and function of a eukaryotic centromere. The entropic position of DNA loops mirrors their experimental position, consistent with their radial displacement from the spindle axis. The barrel-like distribution of cohesin complexes surrounding the central spindle in metaphase is a consequence of the size of the DNA loops within the pericentromere to which cohesin is bound. Linkage between DNA loops of different centromeres is requisite to recapitulate experimentally determined correlations in DNA motion. The consequences of radial loops and cohesin and condensin binding are to stiffen the DNA along the spindle axis, imparting an active function to the centromere in mitosis.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Joseph K Aicher
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Patrick Hahn
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Alyona Fulp
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Ben Kompa
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Leandra Vicci
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Michael Falvo
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Russell M Taylor
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
64
|
Lawrimore J, Vasquez PA, Falvo MR, Taylor RM, Vicci L, Yeh E, Forest MG, Bloom K. DNA loops generate intracentromere tension in mitosis. J Cell Biol 2015; 210:553-64. [PMID: 26283798 PMCID: PMC4539978 DOI: 10.1083/jcb.201502046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The geometry and arrangement of DNA loops in the pericentric region of the budding yeast centromere create a DNA-based molecular shock absorber that serves as the basis for how tension is generated between sister centromeres in mitosis. The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Paula A Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29208
| | - Michael R Falvo
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
| | - Russell M Taylor
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599
| | - Leandra Vicci
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599
| | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - M Gregory Forest
- Department of Mathematics and Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
65
|
Calderon CP, Bloom K. Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments. PLoS One 2015; 10:e0137633. [PMID: 26384324 PMCID: PMC4575198 DOI: 10.1371/journal.pone.0137633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022] Open
Abstract
Understanding the basis for intracellular motion is critical as the field moves toward a deeper understanding of the relation between Brownian forces, molecular crowding, and anisotropic (or isotropic) energetic forcing. Effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study discusses limitations in currently popular analysis methods (e.g., mean square displacement-based analyses) and how new techniques can be used to systematically analyze Single Particle Tracking (SPT) data experiencing abrupt state changes in time or space. The approach is to track GFP tagged chromatids in metaphase in live yeast cells and quantitatively probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes can be induced by various sources including: microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, and DNA-based molecular machines including polymerases and protein exchange complexes such as chaperones and chromatin remodeling complexes. Simulations aiming to show the relevance of the approach to more general SPT data analyses are also studied. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and/or subjective information.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
66
|
Abstract
Clear organizational patterns on the genome have emerged from the statistics of population studies of fixed cells. However, how these results translate into the dynamics of individual living cells remains unexplored. We use statistical mechanics models derived from polymer physics to inquire into the effects that chromosome properties and dynamics have in the temporal and spatial behavior of the genome. Overall, changes in the properties of individual chains affect the behavior of all other chains in the domain. We explore two modifications of chain behavior: single chain motion and chain-chain interactions. We show that there is not a direct relation between these effects, as increase in motion, doesn't necessarily translate into an increase on chain interaction.
Collapse
Affiliation(s)
- Paula A Vasquez
- a Department of Mathematics; University of South Carolina; Columbia, SC USA
| | | |
Collapse
|
67
|
Amitai A, Toulouze M, Dubrana K, Holcman D. Analysis of Single Locus Trajectories for Extracting In Vivo Chromatin Tethering Interactions. PLoS Comput Biol 2015; 11:e1004433. [PMID: 26317360 PMCID: PMC4552938 DOI: 10.1371/journal.pcbi.1004433] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022] Open
Abstract
Is it possible to extract tethering forces applied on chromatin from the statistics of a single locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces cannot be directly measured in vivo. However, they impact chromatin dynamics and should be reflected in particular in the motion of a single locus. We present here a method based on polymer models and statistics of single trajectories to extract the force characteristics and in particular when they are generated by the gradient of a quadratic potential well. Using numerical simulations of a Rouse polymer and live cell imaging of the MAT-locus located on the yeast Saccharomyces cerevisiae chromosome III, we recover the amplitude and the distance between the observed and the interacting monomer. To conclude, the confined trajectories we observed in vivo reflect local interaction on chromatin.
Collapse
Affiliation(s)
- Assaf Amitai
- Institute for Medical Engineering & Science, The Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Mathias Toulouze
- Laboratory of genetic instability and nuclear organization, CEA, Fontenay-aux-Roses, France
| | - Karine Dubrana
- Laboratory of genetic instability and nuclear organization, CEA, Fontenay-aux-Roses, France
| | - David Holcman
- IBENS, Ecole Normale Supérieure, Paris, France and Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
68
|
Wang R, Mozziconacci J, Bancaud A, Gadal O. Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics. Curr Opin Cell Biol 2015; 34:54-60. [PMID: 25956973 DOI: 10.1016/j.ceb.2015.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/17/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
Abstract
Nuclear organization can impact on all aspects of the genome life cycle. This organization is thoroughly investigated by advanced imaging and chromosome conformation capture techniques, providing considerable amount of datasets describing the spatial organization of chromosomes. In this review, we will focus on polymer models to describe chromosome statics and dynamics in the yeast Saccharomyces cerevisiae. We suggest that the equilibrium configuration of a polymer chain tethered at both ends and placed in a confined volume is consistent with the current literature, implying that local chromatin interactions play a secondary role in yeast nuclear organization. Future challenges are to reach an integrated multi-scale description of yeast chromosome organization, which is crucially needed to improve our understanding of the regulation of genomic transaction.
Collapse
Affiliation(s)
- Renjie Wang
- LBME du CNRS, France; Laboratoire de Biologie Moleculaire Eucaryote, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France
| | - Julien Mozziconacci
- Laboratory for Theoretical Physics of Condensed Matter UMR7600, Sorbonne University, UPMC, 75005 Paris, France; Groupement de recherche Architecture et Dynamique Nucléaire (GDR ADN), France
| | - Aurélien Bancaud
- Groupement de recherche Architecture et Dynamique Nucléaire (GDR ADN), France; CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Univ de Toulouse, LAAS, F-31400 Toulouse, France
| | - Olivier Gadal
- LBME du CNRS, France; Laboratoire de Biologie Moleculaire Eucaryote, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France; Groupement de recherche Architecture et Dynamique Nucléaire (GDR ADN), France.
| |
Collapse
|
69
|
Bozler J, Nguyen HQ, Rogers GC, Bosco G. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster. G3 (BETHESDA, MD.) 2014; 5:341-52. [PMID: 25552604 PMCID: PMC4349088 DOI: 10.1534/g3.114.015685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/22/2014] [Indexed: 01/03/2023]
Abstract
Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology.
Collapse
Affiliation(s)
- Julianna Bozler
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Huy Q Nguyen
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724
| | - Giovanni Bosco
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
70
|
Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K. Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. ACTA ACUST UNITED AC 2014; 207:189-99. [PMID: 25332162 PMCID: PMC4210444 DOI: 10.1083/jcb.201405028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pericentric enrichment of condensin on budding yeast chromosomes, which contributes to chromatin compaction and mitotic spindle structure and integrity, is mediated by condensin interaction with tRNA genes and the tRNA-interacting protein dyskerin. Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew D Stephens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jacob G Kirkland
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Omar Hamdani
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
71
|
Abstract
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280;
| |
Collapse
|
72
|
Chacón JM, Mukherjee S, Schuster BM, Clarke DJ, Gardner MK. Pericentromere tension is self-regulated by spindle structure in metaphase. ACTA ACUST UNITED AC 2014; 205:313-24. [PMID: 24821839 PMCID: PMC4018788 DOI: 10.1083/jcb.201312024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pericentromere tension in yeast is substantial and is tightly self-regulated by the metaphase mitotic spindle through adjustments in spindle structure. During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known whether the mitotic spindle actively maintains a set point tension magnitude for properly attached sister chromosomes to facilitate robust mechanochemical checkpoint signaling. By imaging and tracking the thermal movements of pericentromeric fluorescent markers in Saccharomyces cerevisiae, we measured pericentromere stiffness and then used the stiffness measurements to quantitatively evaluate the tension generated by pericentromere stretch during metaphase in wild-type cells and in mutants with disrupted chromosome structure. We found that pericentromere tension in yeast is substantial (4–6 pN) and is tightly self-regulated by the mitotic spindle: through adjustments in spindle structure, the cell maintains wild-type tension magnitudes even when pericentromere stiffness is disrupted.
Collapse
Affiliation(s)
- Jeremy M Chacón
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | | |
Collapse
|
73
|
Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 2014; 3:e02758. [PMID: 24859756 PMCID: PMC4067530 DOI: 10.7554/elife.02758] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
The widely conserved ParABS system plays a major role in bacterial chromosome segregation. How the components of this system work together to generate translocation force and directional motion remains uncertain. Here, we combine biochemical approaches, quantitative imaging and mathematical modeling to examine the mechanism by which ParA drives the translocation of the ParB/parS partition complex in Caulobacter crescentus. Our experiments, together with simulations grounded on experimentally-determined biochemical and cellular parameters, suggest a novel 'DNA-relay' mechanism in which the chromosome plays a mechanical function. In this model, DNA-bound ParA-ATP dimers serve as transient tethers that harness the elastic dynamics of the chromosome to relay the partition complex from one DNA region to another across a ParA-ATP dimer gradient. Since ParA-like proteins are implicated in the partitioning of various cytoplasmic cargos, the conservation of their DNA-binding activity suggests that the DNA-relay mechanism may be a general form of intracellular transport in bacteria.DOI: http://dx.doi.org/10.7554/eLife.02758.001.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States Microbial Diversity Institute, Yale University, West Haven, United States
| | - Ivan Vladimirovich Surovtsev
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Bruno Gabriel Beltran
- Department of Mathematics, Louisiana State University, Baton Rouge, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Fang Huang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Jörg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, United States Department of Biomedical Engineering, Yale University, New Haven, United States
| | - Christine Jacobs-Wagner
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States
| |
Collapse
|