51
|
Kumar P, Kundu D, Mondal AK, Nain V, Puria R. Inhibition of TOR signalling in lea1 mutant induces apoptosis in Saccharomyces cerevisiae. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1422-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
52
|
Chao LH, Avruch J. Cryo-EM insight into the structure of MTOR complex 1 and its interactions with Rheb and substrates. F1000Res 2019; 8. [PMID: 30647914 PMCID: PMC6325617 DOI: 10.12688/f1000research.16109.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The mechanistic target of rapamycin (MTOR) is a giant protein kinase that, together with the accessory proteins Raptor and mLst8, forms a complex of over 1 MDa known as MTOR complex 1 (MTORC1). MTORC1, through its protein kinase activity, controls the accretion of cell mass through the regulation of gene transcription, mRNA translation, and protein turnover. MTORC1 is activated in an interdependent manner by insulin/growth factors and nutrients, especially amino acids, and is inhibited by stressors such as hypoxia and by the drug rapamycin. The action of insulin/growth factors converges on the small GTPase Rheb, which binds directly to the MTOR polypeptide in MTORC1 and, in its GTP-bound state, initiates kinase activation. Biochemical studies established that MTORC1 exists as a dimer of the MTOR/Raptor/mLst8 trimer, and progressive refinements in cryo-electron microscopy (cryo-EM) have enabled an increasingly clear picture of the architecture of MTORC1, culminating in a deep understanding of how MTORC1 interacts with and phosphorylates its best-known substrates-the eIF-4E binding protein/4E-BP, the p70 S6 kinase/S6K1B, and PRAS40/AKT1S1-and how this is inhibited by rapamycin. Most recently, Rheb-GTP has been shown to bind to MTORC1 in a cooperative manner at an allosteric site remote from the kinase domain that twists the latter into a catalytically competent configuration. Herein, we review the recent cryo-EM and associated biochemical studies of MTORC1 and seek to integrate these new results with the known physiology of MTORC1 regulation and signaling.
Collapse
Affiliation(s)
- Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
53
|
Boutouja F, Stiehm CM, Platta HW. mTOR: A Cellular Regulator Interface in Health and Disease. Cells 2019; 8:cells8010018. [PMID: 30609721 PMCID: PMC6356367 DOI: 10.3390/cells8010018] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/25/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of Rapamycin (mTOR) is a ubiquitously-conserved serine/threonine kinase, which has a central function in integrating growth signals and orchestrating their physiologic effects on cellular level. mTOR is the core component of differently composed signaling complexes that differ in protein composition and molecular targets. Newly identified classes of mTOR inhibitors are being developed to block autoimmune diseases and transplant rejections but also to treat obesity, diabetes, and different types of cancer. Therefore, the selective and context-dependent inhibition of mTOR activity itself might come into the focus as molecular target to prevent severe diseases and possibly to extend life span. This review provides a general introduction to the molecular composition and physiologic function of mTOR complexes as part of the Special Issue “2018 Select Papers by Cells’ Editorial Board Members”.
Collapse
Affiliation(s)
- Fahd Boutouja
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Christian M Stiehm
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
54
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
55
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
56
|
Decrease in plasma membrane tension triggers PtdIns(4,5)P 2 phase separation to inactivate TORC2. Nat Cell Biol 2018; 20:1043-1051. [PMID: 30154550 PMCID: PMC6237274 DOI: 10.1038/s41556-018-0150-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
The target of rapamycin complex 2 (TORC2) plays a key role in maintaining the homeostasis of plasma membrane (PM) tension. TORC2 activation following increased PM tension involves redistribution of the Slm1 and 2 paralogues from PM invaginations known as eisosomes into membrane compartments containing TORC2. How Slm1/2 relocalization is triggered, and if/how this plays a role in TORC2 inactivation with decreased PM tension, is unknown. Using osmotic shocks and palmitoylcarnitine as orthogonal tools to manipulate PM tension, we demonstrate that decreased PM tension triggers spontaneous, energy-independent reorganization of pre-existing phosphatidylinositol-4,5-bisphosphate into discrete invaginated membrane domains, which cluster and inactivate TORC2. These results demonstrate that increased and decreased membrane tension are sensed through different mechanisms, highlighting a role for membrane lipid phase separation in mechanotransduction.
Collapse
|
57
|
Bourgoint C, Rispal D, Berti M, Filipuzzi I, Helliwell SB, Prouteau M, Loewith R. Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae. J Biol Chem 2018; 293:12043-12053. [PMID: 29895620 PMCID: PMC6078453 DOI: 10.1074/jbc.ra117.001615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.
Collapse
Affiliation(s)
- Clélia Bourgoint
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Delphine Rispal
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Marina Berti
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Ireos Filipuzzi
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Manoël Prouteau
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| | - Robbie Loewith
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
58
|
Busto JV, Elting A, Haase D, Spira F, Kuhlman J, Schäfer-Herte M, Wedlich-Söldner R. Lateral plasma membrane compartmentalization links protein function and turnover. EMBO J 2018; 37:embj.201899473. [PMID: 29976762 DOI: 10.15252/embj.201899473] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/09/2022] Open
Abstract
Biological membranes organize their proteins and lipids into nano- and microscale patterns. In the yeast plasma membrane (PM), constituents segregate into a large number of distinct domains. However, whether and how this intricate patchwork contributes to biological functions at the PM is still poorly understood. Here, we reveal an elaborate interplay between PM compartmentalization, physiological function, and endocytic turnover. Using the methionine permease Mup1 as model system, we demonstrate that this transporter segregates into PM clusters. Clustering requires sphingolipids, the tetraspanner protein Nce102, and signaling through TORC2. Importantly, we show that during substrate transport, a simple conformational change in Mup1 mediates rapid relocation into a unique disperse network at the PM Clustered Mup1 is protected from turnover, whereas relocated Mup1 actively recruits the endocytic machinery thereby initiating its own turnover. Our findings suggest that lateral compartmentalization provides an important regulatory link between function and turnover of PM proteins.
Collapse
Affiliation(s)
- Jon V Busto
- Institute of Cell Dynamics and Imaging, Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Münster, Germany.,Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, Spain
| | - Annegret Elting
- Institute of Cell Dynamics and Imaging, Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Münster, Germany
| | - Daniel Haase
- Institute of Cell Dynamics and Imaging, Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Münster, Germany
| | - Felix Spira
- Institute of Cell Dynamics and Imaging, Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Münster, Germany
| | - Julian Kuhlman
- Institute of Cell Dynamics and Imaging, Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Münster, Germany
| | - Marco Schäfer-Herte
- Institute of Cell Dynamics and Imaging, Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Münster, Germany
| |
Collapse
|
59
|
Hill A, Niles B, Cuyegkeng A, Powers T. Redesigning TOR Kinase to Explore the Structural Basis for TORC1 and TORC2 Assembly. Biomolecules 2018; 8:biom8020036. [PMID: 29865216 PMCID: PMC6023025 DOI: 10.3390/biom8020036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
TOR is a serine/threonine protein kinase that assembles into distinct TOR Complexes 1 and 2 (TORC1 or TORC2) to regulate cell growth. In mammalian cells, a single mTOR incorporates stably into mTORC1 and mTORC2. By contrast, in Saccharomyces cerevisiae, two highly similar Tor1 and Tor2 proteins exist, where Tor1 assembles exclusively into TORC1 and Tor2 assembles preferentially into TORC2. To gain insight into TOR complex assembly, we used this bifurcation in yeast to identify structural elements within Tor1 and Tor2 that govern their complex specificity. We have identified a concise region of ~500 amino acids within the N-terminus of Tor2, which we term the Major Assembly Specificity (MAS) domain, that is sufficient to confer significant TORC2 activity when placed into an otherwise Tor1 protein. Consistently, introduction of the corresponding MAS domain from Tor1 into an otherwise Tor2 is sufficient to confer stable association with TORC1-specific components. Remarkably, much like mTOR, this latter chimera also retains stable interactions with TORC2 components, indicating that determinants throughout Tor1/Tor2 contribute to complex specificity. Our findings are in excellent agreement with recent ultrastructural studies of TORC1 and TORC2, where the MAS domain is involved in quaternary interactions important for complex formation and/or stability.
Collapse
Affiliation(s)
- Andrew Hill
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| | - Brad Niles
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| | - Andrew Cuyegkeng
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
60
|
Brown AL, Fluitt MB, Ecelbarger CM. Mechanistic target of rapamycin: integrating growth factor and nutrient signaling in the collecting duct. Am J Physiol Renal Physiol 2018; 315:F413-F416. [PMID: 29846113 DOI: 10.1152/ajprenal.00170.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The renal collecting duct and other postmacula densa sites are the primary tubular regions for fine-tuning of electrolyte homeostasis in the body. A role for the mechanistic target of rapamycin (mTOR), a serine-threonine kinase, has recently been appreciated in this regulation. mTOR exists in two distinct multiprotein functional complexes, i.e., mTORC1 and mTORC2. Upregulation of mTORC1, by growth factors and amino acids, is associated with cell cycle regulation and hypertrophic changes. In contrast, mTORC2 has been demonstrated to have a role in regulating Na+ and K+ reabsorptive processes, including those downstream of insulin and serum- and glucocorticoid-regulated kinase (SGK). In addition, mTORC2 can upregulate mTORC1. A number of elegant in vitro and in vivo studies using cell systems and genetically modified mice have revealed mechanisms underlying activation of the epithelial Na+ channel (ENaC) and the renal outer medullary K+ channel (ROMK) by mTORC2. Overall, mTOR in its systematic integration of phosphorylative signaling facilitates the delicate balance of whole body electrolyte homeostasis in the face of changes in metabolic status. Thus, inappropriate regulation of renal mTOR has the potential to result in electrolyte disturbances, such as acidosis/alkalosis, hyponatremia, and hypertension. The goal of this minireview is to highlight the physiological role of mTOR in its complexes in regulating electrolyte homeostasis in the aldosterone-sensitive distal nephron.
Collapse
Affiliation(s)
- Aaron L Brown
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Maurice B Fluitt
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Carolyn M Ecelbarger
- Department of Medicine, Georgetown University , Washington, District of Columbia
| |
Collapse
|
61
|
Who does TORC2 talk to? Biochem J 2018; 475:1721-1738. [PMID: 29794170 DOI: 10.1042/bcj20180130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The target of rapamycin (TOR) is a protein kinase that, by forming complexes with partner proteins, governs diverse cellular signalling networks to regulate a wide range of processes. TOR thus plays central roles in maintaining normal cellular functions and, when dysregulated, in diverse diseases. TOR forms two distinct types of multiprotein complexes (TOR complexes 1 and 2, TORC1 and TORC2). TORC1 and TORC2 differ in their composition, their control and their substrates, so that they play quite distinct roles in cellular physiology. Much effort has been focused on deciphering the detailed regulatory links within the TOR pathways and the structure and control of TOR complexes. In this review, we summarize recent advances in understanding mammalian (m) TORC2, its structure, its regulation, and its substrates, which link TORC2 signalling to the control of cell functions. It is now clear that TORC2 regulates several aspects of cell metabolism, including lipogenesis and glucose transport. It also regulates gene transcription, the cytoskeleton, and the activity of a subset of other protein kinases.
Collapse
|
62
|
Role of mTOR Complexes in Neurogenesis. Int J Mol Sci 2018; 19:ijms19051544. [PMID: 29789464 PMCID: PMC5983636 DOI: 10.3390/ijms19051544] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Collapse
|
63
|
Rodríguez-Escudero I, Fernández-Acero T, Cid VJ, Molina M. Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae. Sci Rep 2018; 8:7732. [PMID: 29769614 PMCID: PMC5955888 DOI: 10.1038/s41598-018-25717-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/26/2018] [Indexed: 01/21/2023] Open
Abstract
The Akt protein kinase is the main transducer of phosphatidylinositol-3,4,5-trisphosphate (PtdIns3,4,5P3) signaling in higher eukaryotes, controlling cell growth, motility, proliferation and survival. By co-expression of mammalian class I phosphatidylinositol 3-kinase (PI3K) and Akt in the Saccharomyces cerevisiae heterologous model, we previously described an inhibitory effect on yeast growth that relied on Akt kinase activity. Here we report that PI3K-Akt expression in yeast triggers the formation of large plasma membrane (PM) invaginations that were marked by actin patches, enriched in PtdIns4,5P2 and associated to abnormal intracellular cell wall deposits. These effects of Akt were mimicked by overproduction of the PtdIns4,5P2 effector Slm1, an adaptor of the Ypk1 and Ypk2 kinases in the TORC2 pathway. Although Slm1 was phosphorylated in vivo by Akt, TORC2-dependent Ypk1 activation did not occur. However, PI3K-activated Akt suppressed the lethality derived from inactivation of either TORC2 or Ypk protein kinases. Thus, heterologous co-expression of PI3K and Akt in yeast short-circuits PtdIns4,5P2- and TORC2-signaling at the level of the Slm-Ypk complex, overriding some of its functions. Our results underscore the importance of phosphoinositide-dependent kinases as key actors in the homeostasis and dynamics of the PM.
Collapse
Affiliation(s)
- Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain.
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain
| |
Collapse
|
64
|
Ahamad N, Sharma T, Khan S, Siddiqi MI, Ahmed S. Phosphorylation of Wat1, human Lst8 homolog is critical for the regulation of TORC2 –Gad8 dependent pathway in fission yeast Schizosacchromyces pombe. Eur J Cell Biol 2018; 97:300-307. [DOI: 10.1016/j.ejcb.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
|
65
|
Imseng S, Aylett CHS, Maier T. Architecture and activation of phosphatidylinositol 3-kinase related kinases. Curr Opin Struct Biol 2018; 49:177-189. [DOI: 10.1016/j.sbi.2018.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
|
66
|
Baroni MD, Colombo S, Martegani E. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:344-356. [PMID: 29992130 PMCID: PMC6035838 DOI: 10.15698/mic2018.07.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. S. cerevisiae cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications.
Collapse
Affiliation(s)
| | - Sonia Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| | - Enzo Martegani
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| |
Collapse
|
67
|
Chen X, Liu M, Tian Y, Li J, Qi Y, Zhao D, Wu Z, Huang M, Wong CCL, Wang HW, Wang J, Yang H, Xu Y. Cryo-EM structure of human mTOR complex 2. Cell Res 2018; 28:518-528. [PMID: 29567957 DOI: 10.1038/s41422-018-0029-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/02/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) plays an essential role in regulating cell proliferation through phosphorylating AGC protein kinase family members, including AKT, PKC and SGK1. The functional core complex consists of mTOR, mLST8, and two mTORC2-specific components, Rictor and mSin1. Here we investigated the intermolecular interactions within mTORC2 complex and determined its cryo-electron microscopy structure at 4.9 Å resolution. The structure reveals a hollow rhombohedral fold with a 2-fold symmetry. The dimerized mTOR serves as a scaffold for the complex assembly. The N-terminal half of Rictor is composed of helical repeat clusters and binds to mTOR through multiple contacts. mSin1 is located close to the FRB domain and catalytic cavity of mTOR. Rictor and mSin1 together generate steric hindrance to inhibit binding of FKBP12-rapamycin to mTOR, revealing the mechanism for rapamycin insensitivity of mTORC2. The mTOR dimer in mTORC2 shows more compact conformation than that of mTORC1 (rapamycin sensitive), which might result from the interaction between mTOR and Rictor-mSin1. Structural comparison shows that binding of Rictor and Raptor (mTORC1-specific component) to mTOR is mutually exclusive. Our study provides a basis for understanding the assembly of mTORC2 and a framework to further characterize the regulatory mechanism of mTORC2 pathway.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Mengjie Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yuan Tian
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Min Huang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China.,Center for Precision Medicine Multi-Omics Research (CPMMOR), Peking University Health Science Center, Beijing, 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiawei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
68
|
Abstract
Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity in vitro Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.
Collapse
|
69
|
Fang Y, Hill CM, Darcy J, Reyes-Ordoñez A, Arauz E, McFadden S, Zhang C, Osland J, Gao J, Zhang T, Frank SJ, Javors MA, Yuan R, Kopchick JJ, Sun LY, Chen J, Bartke A. Effects of rapamycin on growth hormone receptor knockout mice. Proc Natl Acad Sci U S A 2018; 115:E1495-E1503. [PMID: 29378959 PMCID: PMC5816183 DOI: 10.1073/pnas.1717065115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is well documented that inhibition of mTORC1 (defined by Raptor), a complex of mechanistic target of rapamycin (mTOR), extends life span, but less is known about the mechanisms by which mTORC2 (defined by Rictor) impacts longevity. Here, rapamycin (an inhibitor of mTOR) was used in GHR-KO (growth hormone receptor knockout) mice, which have suppressed mTORC1 and up-regulated mTORC2 signaling, to determine the effect of concurrently decreased mTORC1 and mTORC2 signaling on life span. We found that rapamycin extended life span in control normal (N) mice, whereas it had the opposite effect in GHR-KO mice. In the rapamycin-treated GHR-KO mice, mTORC2 signaling was reduced without further inhibition of mTORC1 in the liver, muscle, and s.c. fat. Glucose and lipid homeostasis were impaired, and old GHR-KO mice treated with rapamycin lost functional immune cells and had increased inflammation. In GHR-KO MEF cells, knockdown of Rictor, but not Raptor, decreased mTORC2 signaling. We conclude that drastic reduction of mTORC2 plays important roles in impaired longevity in GHR-KO mice via disruption of whole-body homeostasis.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702;
| | - Cristal M Hill
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - Adriana Reyes-Ordoñez
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Edwin Arauz
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - Chi Zhang
- Institute of Cardiovascular Research, University of South China, Hunan 421001, China
| | - Jared Osland
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - John Gao
- Department of Pathology & Laboratory Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - Tian Zhang
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - Stuart J Frank
- Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Martin A Javors
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Rong Yuan
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Liou Y Sun
- Department of Biology, University of Alabama, Birmingham, AL 35294
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702
| |
Collapse
|
70
|
Stuttfeld E, Aylett CH, Imseng S, Boehringer D, Scaiola A, Sauer E, Hall MN, Maier T, Ban N. Architecture of the human mTORC2 core complex. eLife 2018; 7:33101. [PMID: 29424687 PMCID: PMC5837792 DOI: 10.7554/elife.33101] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a key protein kinase controlling cellular metabolism and growth. It is part of the two structurally and functionally distinct multiprotein complexes mTORC1 and mTORC2. Dysregulation of mTOR occurs in diabetes, cancer and neurological disease. We report the architecture of human mTORC2 at intermediate resolution, revealing a conserved binding site for accessory proteins on mTOR and explaining the structural basis for the rapamycin insensitivity of the complex. To grow and multiply, a living cell must take a variety of factors into account, such as its own energy levels and the availability of nutrients. A protein called mTOR sits at the core of a signaling pathway that integrates these and other sources information. Problems with the mTOR pathway contribute to several diseases including diabetes and cancer. The mTOR protein occurs in two distinct protein complexes, called mTORC1 and mTORC2. These complexes contain a mix of other proteins – known as accessory proteins. They also sense different cues and act upon distinct targets in the cell. Recent research reported the structure of mTORC1, which provided clues about how this complex works. Yet, much less was known about the mTORC2 complex. Stuttfeld, Aylett et al. have now used a technique called cryo-electron microscopy to reveal the three-dimensional architecture of the human version of mTORC2. Comparing the new mTORC2 structure to the existing one for mTORC1 showed that they have many features in common but important differences too. The overall shape of both complexes is similar and each complex contains two copies of mTOR arranged in a similar way. Also, the main accessory proteins in each complex interact with almost the exact same parts of mTOR, but the accessory proteins in mTORC2 are organized differently from those of mTORC1. The different accessory proteins also have distinct shapes. These differences could help to explain why the complexes respond to different cues and recognize different targets. These new findings provide an entry point for further studies on how mTORC2 works in cells. The next step is to get a higher resolution image of the structure of this complex to see the finer details of all the components. This may in the future help scientists to develop drugs that inhibit mTORC2 to treat cancer and other diseases.
Collapse
Affiliation(s)
| | | | | | | | - Alain Scaiola
- Institute for Molecular Biology and Biophysics, Zürich, Switzerland
| | - Evelyn Sauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland.,Institute for Molecular Biology and Biophysics, Zürich, Switzerland
| | - Nenad Ban
- Institute for Molecular Biology and Biophysics, Zürich, Switzerland
| |
Collapse
|
71
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
72
|
Tsoli M, Liu J, Franshaw L, Shen H, Cheng C, Jung M, Joshi S, Ehteda A, Khan A, Montero-Carcabosso A, Dilda PJ, Hogg P, Ziegler DS. Dual targeting of mitochondrial function and mTOR pathway as a therapeutic strategy for diffuse intrinsic pontine glioma. Oncotarget 2018; 9:7541-7556. [PMID: 29484131 PMCID: PMC5800923 DOI: 10.18632/oncotarget.24045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022] Open
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPG) are the most devastating of all pediatric brain tumors. They mostly affect young children and, as there are no effective treatments, almost all patients with DIPG will die of their tumor within 12 months of diagnosis. A key feature of this devastating tumor is its intrinsic resistance to all clinically available therapies. It has been shown that glioma development is associated with metabolic reprogramming, redox state disruption and resistance to apoptotic pathways. The mitochondrion is an attractive target as a key organelle that facilitates these critical processes. PENAO is a novel anti-cancer compound that targets mitochondrial function by inhibiting adenine nucleotide translocase (ANT). Here we found that DIPG neurosphere cultures express high levels of ANT2 protein and are sensitive to the mitochondrial inhibitor PENAO through oxidative stress, while its apoptotic effects were found to be further enhanced upon co-treatment with mTOR inhibitor temsirolimus. This combination therapy was found to act through inhibition of PI3K/AKT/mTOR pathway, HSP90 and activation of AMPK. In vivo experiments employing an orthotopic model of DIPG showed a marginal anti-tumour effect likely due to poor penetration of the inhibitors into the brain. Further testing of this anti-DIPG strategy with compounds that penetrate the BBB is warranted.
Collapse
Affiliation(s)
- Maria Tsoli
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jie Liu
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Laura Franshaw
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Han Shen
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia Cheng
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - MoonSun Jung
- Experimental Therapeutics Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Swapna Joshi
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Anahid Ehteda
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Aaminah Khan
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Angel Montero-Carcabosso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Philip Hogg
- ACRF Centenary Cancer Research Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - David S Ziegler
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney's Children Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
73
|
Influence of the Novel ATP-Competitive Dual mTORC1/2 Inhibitor AZD2014 on Immune Cell Populations and Heart Allograft Rejection. Transplantation 2017; 101:2830-2840. [PMID: 28885497 DOI: 10.1097/tp.0000000000001933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Little is known about how new-generation adenosine triphosphate-competitive mechanistic target of rapamycin (mTOR) kinase inhibitors affect immunity and allograft rejection. METHODS mTOR complex (C) 1 and 2 signaling in dendritic cells and T cells was analyzed by Western blotting, whereas immune cell populations in normal and heart allograft recipient mice were analyzed by flow cytometry. Alloreactive T cell proliferation was quantified in mixed leukocyte reaction; intracellular cytokine production and serum antidonor IgG levels were determined by flow analysis and immunofluorescence staining used to detect IgG in allografts. RESULTS The novel target of rapamycin kinase inhibitor AZD2014 impaired dendritic cell differentiation and T cell proliferation in vitro and depressed immune cells and allospecific T cell responses in vivo. A 9-day course of AZD2014 (10 mg/kg, intraperitoneally, twice daily) or rapamycin (RAPA) (1 mg/kg, intraperitoneally, daily) prolonged median heart allograft survival time significantly (25 days for AZD2014, 100 days for RAPA, 9.5 days for control). Like RAPA, AZD2014 suppressed graft mononuclear cell infiltration, increased regulatory T cell to effector memory T cell ratios and reduced T follicular helper and B cells 7 days posttransplant. By 21 days (10 days after drug withdrawal), however, T follicular helper and B cells and donor-specific IgG1 and IgG2c antibody titers were significantly lower in RAPA-treated compared with AZD2014-treated mice. Elevated regulatory T cell to effector memory T cell ratios were maintained after RAPA, but not AZD2014 withdrawal. CONCLUSIONS Immunomodulatory effects of AZD2014, unlike those of RAPA, were not sustained after drug withdrawal, possibly reflecting distinct pharmacokinetics or/and inhibitory effects of AZD2014 on mTORC2.
Collapse
|
74
|
Wilson LJ, Linley A, Hammond DE, Hood FE, Coulson JM, MacEwan DJ, Ross SJ, Slupsky JR, Smith PD, Eyers PA, Prior IA. New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome. Cancer Res 2017; 78:15-29. [DOI: 10.1158/0008-5472.can-17-2291] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 10/31/2017] [Indexed: 11/16/2022]
|
75
|
Karuppasamy M, Kusmider B, Oliveira TM, Gaubitz C, Prouteau M, Loewith R, Schaffitzel C. Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nat Commun 2017; 8:1729. [PMID: 29170376 PMCID: PMC5700991 DOI: 10.1038/s41467-017-01862-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
The target of rapamycin (TOR) kinase assembles into two distinct multiprotein complexes, conserved across eukaryote evolution. In contrast to TOR complex 1 (TORC1), TORC2 kinase activity is not inhibited by the macrolide rapamycin. Here, we present the structure of Saccharomyces cerevisiae TORC2 determined by electron cryo-microscopy. TORC2 contains six subunits assembling into a 1.4 MDa rhombohedron. Tor2 and Lst8 form the common core of both TOR complexes. Avo3/Rictor is unique to TORC2, but interacts with the same HEAT repeats of Tor2 that are engaged by Kog1/Raptor in mammalian TORC1, explaining the mutual exclusivity of these two proteins. Density, which we conclude is Avo3, occludes the FKBP12-rapamycin-binding site of Tor2’s FRB domain rendering TORC2 rapamycin insensitive and recessing the kinase active site. Although mobile, Avo1/hSin1 further restricts access to the active site as its conserved-region-in-the-middle (CRIM) domain is positioned along an edge of the TORC2 active-site-cleft, consistent with a role for CRIM in substrate recruitment. Target of rapamycin (TOR) kinase operates within two distinct multiprotein complexes named TORC1 and TORC2. Here the authors report a cryo-EM structure of TORC2, establish its subunit organization, providing a rationale for TORC2’s rapamycin insensitivity and the mutually exclusive inclusion of Avo3/Rictor or Raptor within their respective TOR complex.
Collapse
Affiliation(s)
- Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Beata Kusmider
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christl Gaubitz
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Manoel Prouteau
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland. .,Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, 30 Quai Ernest-Ansermet, Bristol, CH1211 Geneva, Switzerland.
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France. .,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
76
|
Evolutionary Conservation of the Components in the TOR Signaling Pathways. Biomolecules 2017; 7:biom7040077. [PMID: 29104218 PMCID: PMC5745459 DOI: 10.3390/biom7040077] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that TOR forms two structurally and physiologically distinct protein complexes; TOR complex 1 (TORC1) is ubiquitous among eukaryotes including animals, yeast, protozoa, and plants, while TOR complex 2 (TORC2) is conserved in diverse eukaryotic species other than plants. The studies have also identified two crucial regulators of mammalian TORC1 (mTORC1), Ras homolog enriched in brain (RHEB) and RAG GTPases. Of these, RAG regulates TORC1 in yeast as well and is conserved among eukaryotes with the green algae and land plants as apparent exceptions. RHEB is present in various eukaryotes but sporadically missing in multiple taxa. RHEB, in the budding yeast Saccharomyces cerevisiae, appears to be extremely divergent with concomitant loss of its function as a TORC1 regulator. In this review, we summarize the evolutionarily conserved functions of the key regulatory subunits of TORC1 and TORC2, namely RAPTOR, RICTOR, and SIN1. We also delve into the evolutionary conservation of RHEB and RAG and discuss the conserved roles of these GTPases in regulating TORC1.
Collapse
|
77
|
TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity. Nature 2017; 550:265-269. [PMID: 28976958 PMCID: PMC5640987 DOI: 10.1038/nature24021] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
The Target of Rapamycin (TOR) is a eukaryotic serine/threonine protein kinase that functions in two distinct complexes, TORC1 and TORC2, to regulate growth and metabolism1,2. GTPases, responding to signals generated by abiotic stressors, nutrients, and, in metazoans, growth factors, play an important3, but poorly understood role in TORC1 regulation. Here, we report that, in budding yeast, glucose withdrawal, which leads to an acute loss of TORC1 kinase activity4, triggers a similarly rapid Rag GTPase-dependent redistribution of TORC1 from being semi-uniform around the vacuolar membrane to a single, vacuole-associated cylindrical structure visible by super-resolution optical microscopy. 3D reconstructions of cryo-electron micrograph images of these purified cylinders demonstrate that TORC1 oligomerizes into a higher-level hollow helical assembly which we name a TOROID (TORC1 Organised in Inhibited Domain). Fitting of the recently described mammalian TORC1 structure into our helical map revealed that oligomerisation leads to steric occlusion of the active site. Guided by the implications from our reconstruction, we present a TOR1 allele that prevents both TOROID formation and TORC1 inactivation in response to glucose withdrawal demonstrating that oligomerisation is necessary for TORC1 inactivation. Our results reveal a novel mechanism by which Rag-GTPases regulate TORC1 activity and suggest that the reversible assembly/disassembly of higher-level structure may be a new paradigm for the regulation of protein kinases.
Collapse
|
78
|
Rajarajacholan UK, Thalappilly S, Riabowol K. ING1 regulates rRNA levels by altering nucleolar chromatin structure and mTOR localization. Nucleic Acids Res 2017; 45:1776-1792. [PMID: 27903908 PMCID: PMC5389678 DOI: 10.1093/nar/gkw1161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 11/10/2016] [Indexed: 01/31/2023] Open
Abstract
Epigenetic, transcriptional and signaling processes in the nucleolus regulate rRNA transcription and cell growth. We report here that the tumor suppressor ING1b binds rDNA, regulates rDNA chromatin modifications and affects nucleolar localization of mTOR to modulate rRNA levels. ING1 represses rDNA transcription by recruiting HDAC1 to rDNA loci, increasing its association with the NoRC complex and deacetylating the histone H3K9 and H3K27 marks of active transcription. Loss of ING1 enhances nucleolar localization of phospho-mTOR and its association with Raptor and GβL, even during rapamycin treatment. ING1 inhibits rDNA transcription by inhibiting UBF activity and its interaction with mTOR. Regulation of rDNA heterochromatin and rRNA synthesis by ING1 is also apparent during normal cell growth and during cell stress. Moreover, this function was also important during PMA induced differentiation of THP1 cells, since knocking down ING1 affected the process by inhibiting rRNA transcriptional repression. These observations show that ING1 regulates the nucleolar epigenome and rDNA transcription suggesting that regulation of protein synthesis might serve as the basis for ING1 function as a type II tumor suppressor.
Collapse
Affiliation(s)
- Uma Karthika Rajarajacholan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Subhash Thalappilly
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
79
|
Talaia G, Gournas C, Saliba E, Barata-Antunes C, Casal M, André B, Diallinas G, Paiva S. The α-Arrestin Bul1p Mediates Lactate Transporter Endocytosis in Response to Alkalinization and Distinct Physiological Signals. J Mol Biol 2017; 429:3678-3695. [PMID: 28965784 DOI: 10.1016/j.jmb.2017.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic α-arrestins connect environmental or stress signaling pathways to the endocytosis of plasma membrane transporters or receptors. The Saccharomyces cerevisiae lactate transporter Jen1p has been used as a model cargo for elucidating the mechanisms underlying endocytic turnover in response to carbon sources. Here, we discover a novel pathway of Jen1p endocytosis mediated by the α-arrestin Bul1p in response to the presence of cycloheximide or rapamycin, or prolonged growth in lactate. While cycloheximide or rapamycin modify cells pleiotropically, the major effect of prolonged growth in lactate was shown to be external pH alkalinization. Importantly, employment of specific inactive Jen1p versions showed that Bul1p-dependent endocytosis requires lactate transport, according to the signal imposed. Our results support a model where conformational changes of Jen1p, associated with substrate/H+ symport, are critical for the efficiency of Bul1p-dependent Jen1p turnover.
Collapse
Affiliation(s)
- Gabriel Talaia
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal
| | - Christos Gournas
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), IBMM, Gosselies, Belgium
| | - Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), IBMM, Gosselies, Belgium
| | - Cláudia Barata-Antunes
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), IBMM, Gosselies, Belgium
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis 15784, Athens, Greece
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
80
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
81
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
82
|
Pérez-Hidalgo L, Moreno S. Coupling TOR to the Cell Cycle by the Greatwall-Endosulfine-PP2A-B55 Pathway. Biomolecules 2017; 7:biom7030059. [PMID: 28777780 PMCID: PMC5618240 DOI: 10.3390/biom7030059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Cell growth and division are two processes tightly coupled in proliferating cells. While Target of Rapamycin (TOR) is the master regulator of growth, the cell cycle is dictated by the activity of the cyclin-dependent kinases (CDKs). A long-standing question in cell biology is how these processes may be connected. Recent work has highlighted that regulating the phosphatases that revert CDK phosphorylations is as important as regulating the CDKs for cell cycle progression. At mitosis, maintaining a low level of protein phosphatase 2A (PP2A)-B55 activity is essential for CDK substrates to achieve the correct level of phosphorylation. The conserved Greatwall–Endosulfine pathway has been shown to be required for PP2A-B55 inhibition at mitosis in yeasts and multicellular organisms. Interestingly, in yeasts, the Greatwall–Endosulfine pathway is negatively regulated by TOR Complex 1 (TORC1). Moreover, Greatwall–Endosulfine activation upon TORC1 inhibition has been shown to regulate the progression of the cell cycle at different points: the G1 phase in budding yeast, the G2/M transition and the differentiation response in fission yeast, and the entry into quiescence in both budding and fission yeasts. In this review, we discuss the recent findings on how the Greatwall–Endosulfine pathway may provide a connection between cell growth and the cell cycle machinery.
Collapse
Affiliation(s)
- Livia Pérez-Hidalgo
- Institute of Functional Biology and Genomics (IBFG), CSIC/University of Salamanca, 37007 Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain.
| | - Sergio Moreno
- Institute of Functional Biology and Genomics (IBFG), CSIC/University of Salamanca, 37007 Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
83
|
The Stress-Sensing TORC2 Complex Activates Yeast AGC-Family Protein Kinase Ypk1 at Multiple Novel Sites. Genetics 2017; 207:179-195. [PMID: 28739659 PMCID: PMC5586371 DOI: 10.1534/genetics.117.1124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/16/2017] [Indexed: 01/18/2023] Open
Abstract
Yeast (Saccharomyces cerevisiae) target of rapamycin (TOR) complex 2 (TORC2) is a multi-subunit plasma membrane-associated protein kinase and vital growth regulator. Its essential functions are exerted via phosphorylation and stimulation of downstream protein kinase Ypk1 (and its paralog Ypk2). Ypk1 phosphorylates multiple substrates to regulate plasma membrane lipid and protein composition. Ypk1 function requires phosphorylation of Thr504 in its activation loop by eisosome-associated Pkh1 (and its paralog Pkh2). For cell survival under certain stresses, however, Ypk1 activity requires further stimulation by TORC2-mediated phosphorylation at C-terminal sites, dubbed the “turn” (Ser644) and “hydrophobic” (Thr662) motifs. Here we show that four additional C-terminal sites are phosphorylated in a TORC2-dependent manner, collectively defining a minimal consensus. We found that the newly identified sites are as important for Ypk1 activity, stability, and biological function as Ser644 and Thr662. Ala substitutions at the four new sites abrogated the ability of Ypk1 to rescue the phenotypes of Ypk1 deficiency, whereas Glu substitutions had no ill effect. Combining the Ala substitutions with an N-terminal mutation (D242A), which has been demonstrated to bypass the need for TORC2-mediated phosphorylation, restored the ability to complement a Ypk1-deficient cell. These findings provide new insights about the molecular basis for TORC2-dependent activation of Ypk1.
Collapse
|
84
|
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Biomolecules 2017; 7:biom7030054. [PMID: 28704927 PMCID: PMC5618235 DOI: 10.3390/biom7030054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
Collapse
|
85
|
Yao Y, Jones E, Inoki K. Lysosomal Regulation of mTORC1 by Amino Acids in Mammalian Cells. Biomolecules 2017; 7:biom7030051. [PMID: 28686218 PMCID: PMC5618232 DOI: 10.3390/biom7030051] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth in eukaryotic cells. The active mTORC1 promotes cellular anabolic processes including protein, pyrimidine, and lipid biosynthesis, and inhibits catabolic processes such as autophagy. Consistent with its growth-promoting functions, hyper-activation of mTORC1 signaling is one of the important pathomechanisms underlying major human health problems including diabetes, neurodegenerative disorders, and cancer. The mTORC1 receives multiple upstream signals such as an abundance of amino acids and growth factors, thus it regulates a wide range of downstream events relevant to cell growth and proliferation control. The regulation of mTORC1 by amino acids is a fast-evolving field with its detailed mechanisms currently being revealed as the precise picture emerges. In this review, we summarize recent progress with respect to biochemical and biological findings in the regulation of mTORC1 signaling on the lysosomal membrane by amino acids.
Collapse
Affiliation(s)
- Yao Yao
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| | - Edith Jones
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical enter Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
86
|
Liu YC, Gao XX, Zhang ZG, Lin ZH, Zou QL. PPAR Gamma Coactivator 1 Beta (PGC-1β) Reduces Mammalian Target of Rapamycin (mTOR) Expression via a SIRT1-Dependent Mechanism in Neurons. Cell Mol Neurobiol 2017; 37:879-887. [PMID: 27631411 PMCID: PMC11482222 DOI: 10.1007/s10571-016-0425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/03/2016] [Indexed: 11/27/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. Since decreased mTOR activity has been found to slow aging in many species, the aim of this study was to examine the activity of mTOR and its phosphorylated form in in vitro and in vivo models mimicking Alzheimer's disease (AD), and investigate the potential pathway of PGC-1β in regulating mTOR expression. Primary neurons and N2a cells were treated with Aβ25-35, while untreated cells served as controls. The expression of mTOR, p-mTOR (Ser2448), and PGC-1β was determined with Western blotting and RT-PCR assay, and the translocation of mTOR was detected using confocal microscopy. Aβ25-35 treatment stimulated the translocation of mTOR from cytoplasm to nucleus, and resulted in elevated expression of mTOR and p-mTOR (Ser2448) and reduced PGC-1β expression. In addition, overexpression of PGC-1β was found to decrease mTOR expression. The results of this study demonstrate that Aβ increases the expression of mTOR and p-mTOR at the site of Ser2448, and the stimulation of Aβ is likely to depend on sirtuin 1, PPARγ, and PGC-1β pathway in regulating mTOR expression.
Collapse
Affiliation(s)
- Ying-Chun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Xiao-Xiao Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Zhi-Guang Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Zhao-Hua Lin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Qi-Lian Zou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
87
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
88
|
Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 2017; 36:2191-2201. [PMID: 27748764 PMCID: PMC5393956 DOI: 10.1038/onc.2016.363] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a crucial signaling node that integrates environmental cues to regulate cell survival, proliferation and metabolism, and is often deregulated in human cancer. mTOR kinase acts in two functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), whose activities and substrate specificities are regulated by complex co-factors. Deregulation of this centralized signaling pathway has been associated with a variety of human diseases including diabetes, neurodegeneration and cancer. Although mTORC1 signaling has been extensively studied in cancer, recent discoveries indicate a subset of human cancers harboring amplifications in mTORC2-specific genes as the only actionable genomic alterations, suggesting a distinct role for mTORC2 in cancer as well. This review will summarize recent advances in dissecting the relative contributions of mTORC1 versus mTORC2 in cancer, their role in tumor-associated blood vessels and tumor immunity, and provide an update on mTOR inhibitors.
Collapse
Affiliation(s)
- Laura C. Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Rebecca S. Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
89
|
TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol 2017; 37:MCB.00627-16. [PMID: 28069741 PMCID: PMC5359421 DOI: 10.1128/mcb.00627-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis.
Collapse
|
90
|
Robinson GC, Vegunta Y, Gabus C, Gaubitz C, Thore S. Cloning, expression, purification, and characterisation of the HEAT-repeat domain of TOR from the thermophilic eukaryote Chaetomium thermophilum. Protein Expr Purif 2017; 133:90-95. [PMID: 28284995 DOI: 10.1016/j.pep.2017.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/29/2022]
Abstract
The Target of Rapamycin Complex is a central controller of cell growth and differentiation in eukaryotes. Its global architecture has been described by cryoelectron microscopy, and regions of its central TOR protein have been described by X-ray crystallography. However, the N-terminal region of this protein, which consists of a series of HEAT repeats, remains uncharacterised at high resolution, most likely due to the absence of a suitable purification procedure. Here, we present a robust method for the preparation of the HEAT-repeat domain, utilizing the thermophilic fungus Chaetomium thermophilum as a source organism. We describe construct design and stable expression in insect cells. An efficient two-step purification procedure is presented, and the purified product is characterised by SEC and MALDI-TOF MS. The methods described pave the way for a complete high-resolution characterisation of this elusive region of the TOR protein.
Collapse
Affiliation(s)
- Graham C Robinson
- Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Yogesh Vegunta
- Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Caroline Gabus
- Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Christl Gaubitz
- Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland; INSERM U-1212, CNRS UMR-5320, Université de Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
91
|
Fan Q, Aksoy O, Wong RA, Ilkhanizadeh S, Novotny CJ, Gustafson WC, Truong AYQ, Cayanan G, Simonds EF, Haas-Kogan D, Phillips JJ, Nicolaides T, Okaniwa M, Shokat KM, Weiss WA. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell 2017; 31:424-435. [PMID: 28292440 PMCID: PMC5386178 DOI: 10.1016/j.ccell.2017.01.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 08/19/2016] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
Abstract
Although signaling from phosphatidylinositol 3-kinase (PI3K) and AKT to mechanistic target of rapamycin (mTOR) is prominently dysregulated in high-grade glial brain tumors, blockade of PI3K or AKT minimally affects downstream mTOR activity in glioma. Allosteric mTOR inhibitors, such as rapamycin, incompletely block mTORC1 compared with mTOR kinase inhibitors (TORKi). Here, we compared RapaLink-1, a TORKi linked to rapamycin, with earlier-generation mTOR inhibitors. Compared with rapamycin and Rapalink-1, TORKi showed poor durability. RapaLink-1 associated with FKBP12, an abundant mTOR-interacting protein, enabling accumulation of RapaLink-1. RapaLink-1 showed better efficacy than rapamycin or TORKi, potently blocking cancer-derived, activating mutants of mTOR. Our study re-establishes mTOR as a central target in glioma and traces the failure of existing drugs to incomplete/nondurable inhibition of mTORC1.
Collapse
Affiliation(s)
- QiWen Fan
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Ozlem Aksoy
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Robyn A Wong
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Chris J Novotny
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - William C Gustafson
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Albert Yi-Que Truong
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Geraldine Cayanan
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Erin F Simonds
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Joanna J Phillips
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Theodore Nicolaides
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Masanori Okaniwa
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
92
|
Bracharz F, Redai V, Bach K, Qoura F, Brück T. The effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus. BMC Biotechnol 2017; 17:27. [PMID: 28270203 PMCID: PMC5341401 DOI: 10.1186/s12896-017-0348-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oleaginous organisms are a promising, renewable source of single cell oil. Lipid accumulation is mainly induced by limitation of nutrients such as nitrogen, phosphorus or sulfur. The oleaginous yeast Trichosporon oleaginosus accumulates up to 70% w/w lipid under nitrogen stress, while cultivation in non-limiting media only yields 9% w/w lipid. Uncoupling growth from lipid accumulation is key for the industrial process applicability of oleaginous yeasts. This study evaluates the effects of rapamycin on TOR specific signaling pathways associated with lipogenesis in Trichosporon oleaginosus for the first time. RESULTS Supplementation of rapamycin to nutrient rich cultivation medium led to an increase in lipid yield of up to 38% g/L. This effect plateaued at 40 μM rapamycin. Interestingly, the fatty acid spectrum resembled that observed with cultivation under nitrogen limitation. Significant changes in growth characteristics included a 19% increase in maximum cell density and a 12% higher maximum growth rate. T. oleaginosus only has one Tor gene much like the oleaginous yeast Rhodosporidium toruloides. Consequently, we analyzed the effect of rapamycin on T. oleaginosus specific TORC signaling using bioinformatic methodologies. CONCLUSIONS We confirm, that target of rapamycin complex 1 (TORC1) is involved in control of lipid production and cell proliferation in T. oleaginosus and present a homology based signaling network. Signaling of lipid induction by TORC1 and response to carbon depletion to this complex appear to be conserved, whereas response to nitrogen limitation and autophagy are not. This work serves as a basis for further investigation regarding the control and induction of lipid accumulation in oil yeasts.
Collapse
Affiliation(s)
- Felix Bracharz
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Veronika Redai
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kathrin Bach
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Farah Qoura
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Brück
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
93
|
Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. Sci Rep 2017; 7:42835. [PMID: 28230163 PMCID: PMC5322334 DOI: 10.1038/srep42835] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/16/2017] [Indexed: 01/19/2023] Open
Abstract
The target of Rapamycin (TOR) present in all eukaryotes is a multifunctional protein, regulating growth, development, protein translation, ribosome biogenesis, nutrient, and energy signaling. In the present study, ectopic expression of TOR gene of Arabidopsis thaliana in a widely cultivated indica rice resulted in enhanced plant growth under water-limiting conditions conferring agronomically important water-use efficiency (WUE) trait. The AtTOR high expression lines of rice exhibited profuse tillering, increased panicle length, increased plant height, high photosynthetic efficiency, chlorophyll content and low ∆13C. Δ13C, which is inversely related to high WUE, was as low as 17‰ in two AtTOR high expression lines. These lines were also insensitive to the ABA-mediated inhibition of seed germination. The significant upregulation of 15 stress-specific genes in high expression lines indicates their contribution to abiotic stress tolerance. The constitutive expression of AtTOR is also associated with significant transcriptional upregulation of putative TOR complex-1 components, OsRaptor and OsLST8. Glucose-mediated transcriptional activation of AtTOR gene enhanced lateral root formation. Taken together, our findings indicate that TOR, in addition to its multiple cellular functions, also plays an important role in response to abiotic stress and potentially enhances WUE and yield related attributes.
Collapse
|
94
|
A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci U S A 2017; 114:E1158-E1167. [PMID: 28154131 DOI: 10.1073/pnas.1614364114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.
Collapse
|
95
|
Ebner M, Sinkovics B, Szczygieł M, Ribeiro DW, Yudushkin I. Localization of mTORC2 activity inside cells. J Cell Biol 2017; 216:343-353. [PMID: 28143890 PMCID: PMC5294791 DOI: 10.1083/jcb.201610060] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
mTORC2 integrates extracellular cues with pathways controlling growth and proliferation, but the spatial control of mTORC2 activity is unclear. Using a new reporter, Ebner et al. show that endogenous mTORC2 activity localizes to plasma membrane, mitochondrial, and endosomal pools, which display distinct sensitivity to growth factors. Activation of protein kinase Akt via its direct phosphorylation by mammalian target of rapamycin (mTOR) complex 2 (mTORC2) couples extracellular growth and survival cues with pathways controlling cell growth and proliferation, yet how growth factors target the activity of mTORC2 toward Akt is unknown. In this study, we examine the localization of the obligate mTORC2 component, mSin1, inside cells and report the development of a reporter to examine intracellular localization and regulation by growth factors of the endogenous mTORC2 activity. Using a combination of imaging and biochemical approaches, we demonstrate that inside cells, mTORC2 activity localizes to the plasma membrane, mitochondria, and a subpopulation of endosomal vesicles. We show that unlike the endosomal pool, the activity and localization of mTORC2 via the Sin1 pleckstrin homology domain at the plasma membrane is PI3K and growth factor independent. Furthermore, we show that membrane recruitment is sufficient for Akt phosphorylation in response to growth factors. Our results indicate the existence of spatially separated mTORC2 populations with distinct sensitivity to PI3K inside cells and suggest that intracellular localization could contribute to regulation of mTORC2 activity toward Akt.
Collapse
Affiliation(s)
- Michael Ebner
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, Vienna BioCenter, 1030 Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - Benjamin Sinkovics
- Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria.,Center for Molecular Biology, Student Services, University of Vienna, 1030 Vienna, Austria
| | - Magdalena Szczygieł
- Vienna BioCenter Summer School Program, Division of Systems Biology of Signal Transduction, 69120 Heidelberg, Germany
| | | | - Ivan Yudushkin
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, Vienna BioCenter, 1030 Vienna, Austria .,Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
96
|
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is an evolutionarily conserved genuine protein kinase, which phosphorylates serine/threonine in response to growth factors and nutrients. It functions as a catalytic core in two distinct multiprotein complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes cell growth and proliferation by positively regulating translation, transcription, and lipid biosynthesis in response to growth factors and amino acids, whereas it inhibits autophagy, an essential degradation and recycling pathway. mTORC2 regulates cell survival and cytoskeleton organization. Mechanistic insights into the function and regulation of mTOR complexes have been provided in various experimental settings and monitoring mTOR activity has been a most valuable way to judge whether levels of environmental cues such nutrients and growth factors can satisfy cellular needs for cell growth, proliferation, and autophagic response. Here, we describe useful methods to access mTOR activity in different experimental settings.
Collapse
Affiliation(s)
- S Hong
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - K Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
97
|
Rivera-Santiago R, Harper SL, Sriswasdi S, Hembach P, Speicher DW. Full-Length Anion Exchanger 1 Structure and Interactions with Ankyrin-1 Determined by Zero Length Crosslinking of Erythrocyte Membranes. Structure 2016; 25:132-145. [PMID: 27989623 DOI: 10.1016/j.str.2016.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/02/2016] [Accepted: 11/18/2016] [Indexed: 11/26/2022]
Abstract
Anion exchanger 1 (AE1) is a critical transporter and the primary structural scaffold for large macromolecular complexes responsible for erythrocyte membrane flexibility and integrity. We used zero-length crosslinking and mass spectrometry to probe AE1 structures and interactions in intact erythrocyte membranes. An experimentally verified full-length model of AE1 dimers was developed by combining crosslink-defined distance constraints with homology modeling. Previously unresolved cytoplasmic loops in the AE1 C-terminal domain are packed at the domain-domain interface on the cytoplasmic face of the membrane where they anchor the N-terminal domain's location and prevent it from occluding the ion channel. Crosslinks between AE1 dimers and ankyrin-1 indicate the likely topology for AE1 tetramers and suggest that ankyrin-1 wraps around AE1 tetramers, which may stabilize this oligomer state. This interaction and interactions of AE1 with other major erythrocyte membrane proteins show that protein-protein contacts are often substantially more extensive than previously reported.
Collapse
Affiliation(s)
- Roland Rivera-Santiago
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sandra L Harper
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Peter Hembach
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David W Speicher
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
98
|
Guri Y, Hall MN. mTOR Signaling Confers Resistance to Targeted Cancer Drugs. Trends Cancer 2016; 2:688-697. [PMID: 28741507 DOI: 10.1016/j.trecan.2016.10.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy.
Collapse
Affiliation(s)
- Yakir Guri
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
99
|
Inoki K. mTOR: Pumping Nutrients into Tubules. J Am Soc Nephrol 2016; 28:3-5. [PMID: 27789606 DOI: 10.1681/asn.2016080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Ken Inoki
- Life Sciences Institute, Department of Molecular and Integrative Physiology, Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
100
|
The role of mechanistic target of rapamycin in maintenance of glomerular epithelial cells. Curr Opin Nephrol Hypertens 2016; 25:28-34. [PMID: 26625863 DOI: 10.1097/mnh.0000000000000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Recent studies have emerged to reveal the pivotal roles of mechanistic target of rapamycin (mTOR) signaling not only in the maintenance of the physiological functions of renal cells but also in the pathogenesis of renal cell dysfunctions and kidney diseases. We introduce the current understanding of mTOR signaling, and its crucial roles in glomerular epithelial cell biology and the pathophysiology related to kidney diseases. RECENT FINDINGS mTOR, a Ser/Thr kinase, forms two distinct functional complexes, mTORC1 and mTORC2. Recent studies revealed that physiologic levels of mTORC1 and mTORC2 activity play key roles in maintaining podocyte and glomerular functions. However, aberrant activation of mTORC1 or loss of mTORC2 activity in podocytes may underlie the pathogenesis of glomerular disorders, including diabetic kidney disease. SUMMARY An effective treatment for mTORC1-associated podocyte and glomerular dysfunction may require the attenuation of mTORC1 activity in the setting of both an intact mTORC2 pathway and normal basal mTORC1 activity in order to preserve physiologic podocyte functions.
Collapse
|