51
|
Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019; 213:1093-1110. [PMID: 31796550 PMCID: PMC6893379 DOI: 10.1534/genetics.119.302661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.
Collapse
Affiliation(s)
- Keriayn N Smith
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah C Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
52
|
Gourvest M, Brousset P, Bousquet M. Long Noncoding RNAs in Acute Myeloid Leukemia: Functional Characterization and Clinical Relevance. Cancers (Basel) 2019; 11:cancers11111638. [PMID: 31653018 PMCID: PMC6896193 DOI: 10.3390/cancers11111638] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is the most common form of leukemia in adults with an incidence of 4.3 per 100,000 cases per year. Historically, the identification of genetic alterations in AML focused on protein-coding genes to provide biomarkers and to understand the molecular complexity of AML. Despite these findings and because of the heterogeneity of this disease, questions as to the molecular mechanisms underlying AML development and progression remained unsolved. Recently, transcriptome-wide profiling approaches have uncovered a large family of long noncoding RNAs (lncRNAs). Larger than 200 nucleotides and with no apparent protein coding potential, lncRNAs could unveil a new set of players in AML development. Originally considered as dark matter, lncRNAs have critical roles to play in the different steps of gene expression and thus affect cellular homeostasis including proliferation, survival, differentiation, migration or genomic stability. Consequently, lncRNAs are found to be differentially expressed in tumors, notably in AML, and linked to the transformation of healthy cells into leukemic cells. In this review, we aim to summarize the knowledge concerning lncRNAs functions and implications in AML, with a particular emphasis on their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Morgane Gourvest
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| | - Pierre Brousset
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| | - Marina Bousquet
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| |
Collapse
|
53
|
Rossi T, Pistoni M, Sancisi V, Gobbi G, Torricelli F, Donati B, Ribisi S, Gugnoni M, Ciarrocchi A. RAIN Is a Novel Enhancer-Associated lncRNA That Controls RUNX2 Expression and Promotes Breast and Thyroid Cancer. Mol Cancer Res 2019; 18:140-152. [PMID: 31624086 DOI: 10.1158/1541-7786.mcr-19-0564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
Enhancer (ENH)-associated long noncoding RNAs (lncRNA) are a peculiar class of RNAs produced by transcriptionally active ENHs, owning potential gene-regulatory function. Here, we characterized RAIN, a novel ENH-associated lncRNA. Analysis of RAIN expression in a retrospective cohort of human thyroid cancers showed that the expression of this lncRNA is restricted to cancer cells and strongly correlates with the expression of the cancer-promoting transcription factor RUNX2. We showed that RAIN, serving as a cis-regulatory element, promotes RUNX2 expression by two mechanisms. Binding WDR5 and facilitating its localization on the RUNX2 promoter, RAIN modifies the transcriptional status of the RUNX2 locus facilitating transcription initiation. In parallel, RAIN acts as decoy for negative elongation factor complex, restraining its inhibitory function on transcription elongation. In both thyroid and breast cancer cells, RAIN promotes oncogenic features. Using RNA-sequencing profiling, we showed that RAIN orchestrates the expression of a network of cancer-promoting transcription regulators, suggesting that RAIN affects cancer cell phenotype by coordinating the expression of a complex transcriptional network. IMPLICATIONS: Our data contribute to understand lncRNA function in gene regulation and to consolidate their role in cancer.
Collapse
Affiliation(s)
- Teresa Rossi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Salvatore Ribisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
54
|
Shuaib M, Parsi KM, Thimma M, Adroub SA, Kawaji H, Seridi L, Ghosheh Y, Fort A, Fallatah B, Ravasi T, Carninci P, Orlando V. Nuclear AGO1 Regulates Gene Expression by Affecting Chromatin Architecture in Human Cells. Cell Syst 2019; 9:446-458.e6. [PMID: 31629687 DOI: 10.1016/j.cels.2019.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
The impact of mammalian RNA interference components, particularly, Argonaute proteins, on chromatin organization is unexplored. Recent reports indicate that AGO1 association with chromatin appears to influence gene expression. To uncover the role of AGO1 in the nucleus, we used a combination of genome-wide approaches in control and AGO1-depleted HepG2 cells. We found that AGO1 strongly associates with active enhancers and RNA being produced at those sites. Hi-C analysis revealed AGO1 enrichment at the boundaries of topologically associated domains (TADs). By Hi-C in AGO1 knockdown cells, we observed changes in chromatin organization, including TADs and A/B compartment mixing, specifically in AGO1-bound regions. Distinct groups of genes and especially eRNA transcripts located within differentially interacting loci showed altered expression upon AGO1 depletion. Moreover, AGO1 association with enhancers is dependent on eRNA transcription. Collectively, our data suggest that enhancer-associated AGO1 contributes to the fine-tuning of chromatin architecture and gene expression in human cells.
Collapse
Affiliation(s)
- Muhammad Shuaib
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Krishna Mohan Parsi
- IRCSS Fondazione, Santa Lucia, Epigenetics and Genome Reprogramming, Rome, Italy
| | - Manjula Thimma
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Sabir Abdu Adroub
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Loqmane Seridi
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Yanal Ghosheh
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Fort
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bodor Fallatah
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Valerio Orlando
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia; IRCSS Fondazione, Santa Lucia, Epigenetics and Genome Reprogramming, Rome, Italy.
| |
Collapse
|
55
|
Barutcu AR, Blencowe BJ, Rinn JL. Differential contribution of steady-state RNA and active transcription in chromatin organization. EMBO Rep 2019; 20:e48068. [PMID: 31448565 PMCID: PMC6776903 DOI: 10.15252/embr.201948068] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Nuclear RNA and the act of transcription have been implicated in nuclear organization. However, their global contribution to shaping fundamental features of higher-order chromatin organization such as topologically associated domains (TADs) and genomic compartments remains unclear. To investigate these questions, we perform genome-wide chromatin conformation capture (Hi-C) analysis in the presence and absence of RNase before and after crosslinking, or a transcriptional inhibitor. TAD boundaries are largely unaffected by RNase treatment, although a subtle disruption of compartmental interactions is observed. In contrast, transcriptional inhibition leads to weaker TAD boundary scores. Collectively, our findings demonstrate differences in the relative contribution of RNA and transcription to the formation of TAD boundaries detected by the widely used Hi-C methodology.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Benjamin J Blencowe
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - John L Rinn
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
- Present address:
Department of BiochemistryBioFrontiersUniversity of ColoradoBoulderCOUSA
| |
Collapse
|
56
|
Abstract
Aging is associated with a progressive decline in cardiovascular structure and function. Accumulating evidence links cardiovascular aging to epigenetic alterations encompassing a complex interplay of DNA methylation, histone posttranslational modifications, and dynamic nucleosome occupancy governed by numerous epigenetic factors. Advances in genomics technology have led to a profound understanding of chromatin reorganization in both cardiovascular aging and diseases. This review summarizes recent discoveries in epigenetic mechanisms involved in cardiovascular aging and diseases and discusses potential therapeutic strategies to retard cardiovascular aging and conquer related diseases through the rejuvenation of epigenetic signatures to a young state.
Collapse
Affiliation(s)
- Weiqi Zhang
- From the Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China (W.Z., G.-H.L.).,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics (W.Z., G.-H.L.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology (M.S.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology (J.Q.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| | - Guang-Hui Liu
- From the Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China (W.Z., G.-H.L.).,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics (W.Z., G.-H.L.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| |
Collapse
|
57
|
Zhu Y, Bian Y, Zhang Q, Hu J, Li L, Yang M, Qian H, Yu L, Liu B, Qian X. LINC00365 promotes colorectal cancer cell progression through the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 121:1260-1272. [PMID: 31544991 DOI: 10.1002/jcb.29359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022]
Abstract
In the past decade, substantial evidence established that long noncoding RNAs are serious about mediating the evolution of malignancies. In previous studies, LINC00365, which has not been reported in colorectal cancer (CRC), was selected using the bioinformatics analysis in GSE109454 and GSE41655 data sets. However, the function and mechanism of LINC00365 are still obscure. In our study, LINC00365 was found upregulated in CRC specimens and intimately connected with the prognosis of patients with CRC. In addition, LINC00365 overexpression enhances the cell abilities of proliferation, migration, and invasion in vitro. Meanwhile, mechanistic studies showed that LINC00365 might involve in CRC cell progression by mediating the Wnt/β-catenin pathway. Furthermore, LINC00365 upregulation increased CDK1 protein expression. In conclusion, this study suggests that LINC00365 acts as a vital part in facilitating CRC progression and might play as a therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Yiping Zhu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yinzhu Bian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Qun Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jing Hu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Li
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Mi Yang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Hanqing Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lixia Yu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
58
|
Schertzer MD, Braceros KCA, Starmer J, Cherney RE, Lee DM, Salazar G, Justice M, Bischoff SR, Cowley DO, Ariel P, Zylka MJ, Dowen JM, Magnuson T, Calabrese JM. lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture, RNA Abundance, and CpG Island DNA. Mol Cell 2019; 75:523-537.e10. [PMID: 31256989 PMCID: PMC6688959 DOI: 10.1016/j.molcel.2019.05.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/10/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) cause Polycomb repressive complexes (PRCs) to spread over broad regions of the mammalian genome. We report that in mouse trophoblast stem cells, the Airn and Kcnq1ot1 lncRNAs induce PRC-dependent chromatin modifications over multi-megabase domains. Throughout the Airn-targeted domain, the extent of PRC-dependent modification correlated with intra-nuclear distance to the Airn locus, preexisting genome architecture, and the abundance of Airn itself. Specific CpG islands (CGIs) displayed characteristics indicating that they nucleate the spread of PRCs upon exposure to Airn. Chromatin environments surrounding Xist, Airn, and Kcnq1ot1 suggest common mechanisms of PRC engagement and spreading. Our data indicate that lncRNA potency can be tightly linked to lncRNA abundance and that within lncRNA-targeted domains, PRCs are recruited to CGIs via lncRNA-independent mechanisms. We propose that CGIs that autonomously recruit PRCs interact with lncRNAs and their associated proteins through three-dimensional space to nucleate the spread of PRCs in lncRNA-targeted domains.
Collapse
Affiliation(s)
- Megan D Schertzer
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Keean C A Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua Starmer
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel E Cherney
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Lee
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan Justice
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven R Bischoff
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Ariel
- Microscopy Services Laboratory and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
59
|
Isoda T, Morio T, Takagi M. Noncoding RNA transcription at enhancers and genome folding in cancer. Cancer Sci 2019; 110:2328-2336. [PMID: 31228211 PMCID: PMC6676135 DOI: 10.1111/cas.14107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Changes of nuclear localization of lineage-specific genes from a transcriptionally inert to permissive environment are a crucial step in establishing the identity of a cell. Noncoding RNA transcription-mediated genome folding and activation of target gene expression have been found in a variety of cell types. Noncoding RNA ThymoD (thymocyte differentiation factor) transcription at superenhancers is essential for mouse T-cell lineage commitment. The cessation of ThymoD transcription abolishes transcription-mediated demethylation, recruiting looping factors such as the cohesin complex, CCCTC-binding factor (CTCF), ultimately leading to the phenotype of severe combined immunodeficiency and T-cell leukemia/lymphoma. In this review, we describe the functional role of RNA polymerase II-mediated transcription at enhancers and in genome folding. We also highlight the involvement of faulty activation or suppression of enhancer transcription and enhancer-promoter interaction in cancer development.
Collapse
Affiliation(s)
- Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
60
|
Kopp F. Molecular functions and biological roles of long non‐coding RNAs in human physiology and disease. J Gene Med 2019; 21:e3104. [DOI: 10.1002/jgm.3104] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Florian Kopp
- Department of Molecular BiologyUniversity of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
61
|
Jiang P, Han X, Zheng Y, Sui J, Bi W. Long non-coding RNA NKILA serves as a biomarker in the early diagnosis and prognosis of patients with colorectal cancer. Oncol Lett 2019; 18:2109-2117. [PMID: 31423284 DOI: 10.3892/ol.2019.10524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-associated mortality worldwide. The prognosis of patients with CRC at an advanced stage is poor. Biomarkers currently used in clinical practice, including carcinoembryonic antigen (CEA) and cancer antigen (CA) 19-9, lack sufficient sensitivity and specificity for early diagnosis and prediction, therefore there remains a requirement to improve the prognosis of patients with CRC. Long non-coding RNAs (lncRNAs) have been revealed to serve fundamental roles in various pathophysiological processes, including cancer initiation and progression. The present study investigated the expression and clinical significance of the lncRNA nuclear factor-κB interacting long non-coding RNA (NKILA) in CRC. It was identified that NKILA was downregulated in six CRC cell lines and tissues (n=173). Low NKILA expression was significantly associated with a poor differentiation grade, larger tumor size and advanced Tumor-Node-Metastases stages. Further statistical analyses revealed that low NKILA expression predicted poor overall survival (OS) rate and progression-free survival (PFS) rate. In addition, low NKILA expression was determined as an independent risk factor for poor OS and PFS. Furthermore, NKILA exhibited a relatively high sensitivity and specificity compared with CEA and CA19-9 in the early diagnosis of CRC. The serum level of NKILA was positively correlated with the level in tissues. In addition, a decreased NKILA level in serum was revealed to be partially restored post-operatively. In conclusion, low NKILA expression has been demonstrated to accelerate CRC progression and NKILA may be a potential novel biomarker in early diagnosis and prognosis of patients with CRC.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Gastroenterology, The Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| | - Xiaoting Han
- Department of General Surgery, The Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| | - Yingnan Zheng
- Department of Gastroenterology, The Central Hospital of Rizhao, Shandong 276800, P.R. China
| | - Jianchao Sui
- Department of Gastroenterology, The Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| | - Weiping Bi
- Department of Gastroenterology, The Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
62
|
Melia T, Waxman DJ. Sex-Biased lncRNAs Inversely Correlate With Sex-Opposite Gene Coexpression Networks in Diversity Outbred Mouse Liver. Endocrinology 2019; 160:989-1007. [PMID: 30840070 PMCID: PMC6449536 DOI: 10.1210/en.2018-00949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Sex differences in liver gene expression are determined by pituitary growth hormone secretion patterns, which regulate sex-dependent liver transcription factors and establish sex-specific chromatin states. Hypophysectomy (hypox) identifies two major classes of liver sex-biased genes, defined by their sex-dependent positive or negative responses to pituitary hormone ablation. However, the mechanisms that underlie each hypox-response class are unknown. We sought to discover candidate, regulatory, long noncoding RNAs (lncRNAs) controlling responsiveness to hypox. We characterized gene structures and expression patterns for 15,558 mouse liver-expressed lncRNAs, including many sex-specific lncRNAs regulated during postnatal development or subject to circadian regulation. Using the high natural allelic variance of Diversity Outbred (DO) mice, we discovered tightly coexpressed clusters of sex-specific protein-coding genes (gene modules) in male and female DO liver. Remarkably, many gene modules were strongly enriched for sex-specific genes within a single hypox-response class, indicating that the genetic heterogeneity of DO mice encompasses responsiveness to hypox. Moreover, several distant gene modules were enriched for gene subsets of the same hypox-response class, highlighting the complex regulation of hypox-responsiveness. Finally, we identified eight sex-specific lncRNAs with strong negative regulatory potential, as indicated by their strong negative correlation of expression across DO mouse livers with that of protein-coding gene modules enriched for genes of the opposite sex bias and inverse hypox-response class. These findings reveal an important role for genetic factors in regulating responsiveness to hypox, and present testable hypotheses for the roles of sex-biased liver lncRNAs in controlling the sex-bias of liver gene expression.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215. E-mail:
| |
Collapse
|
63
|
Abstract
In the postgenomic era, it is clear that the human genome encodes thousands of long noncoding RNAs (lncRNAs). Along the way, RNA imaging (e.g., RNA fluorescence in situ hybridization [RNA-FISH]) has been instrumental in identifying powerful roles for lncRNAs based on their subcellular localization patterns. Here, we explore how RNA imaging technologies have shed new light on how, when, and where lncRNAs may play functional roles. Specifically, we will synthesize the underlying principles of RNA imaging techniques by exploring several landmark lncRNA imaging studies that have illuminated key insights into lncRNA biology.
Collapse
Affiliation(s)
- Arjun Raj
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder and BioFrontiers Institute, Boulder, Colorado 80303
| |
Collapse
|
64
|
Michieletto D, Gilbert N. Role of nuclear RNA in regulating chromatin structure and transcription. Curr Opin Cell Biol 2019; 58:120-125. [PMID: 31009871 PMCID: PMC6694202 DOI: 10.1016/j.ceb.2019.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
The importance of three-dimensional chromatin organisation in genome regulation has never been clearer. But in spite of the enormous technological advances to probe chromatin organisation in vivo, there is still a lack of mechanistic understanding of how such an arrangement is achieved. Here we review emerging evidence pointing to an intriguing role of nuclear RNA in shaping large-scale chromatin structure and regulating genome function. We suggest this role may be achieved through the formation of a dynamic nuclear mesh that can exploit ATP-driven processes and phase separation of RNA-binding proteins to tune its assembly and material properties.
Collapse
Affiliation(s)
- Davide Michieletto
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; School of Physics and Astronomy, University of Edinburgh, EH9 3FD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
65
|
Delás MJ, Jackson BT, Kovacevic T, Vangelisti S, Munera Maravilla E, Wild SA, Stork EM, Erard N, Knott SRV, Hannon GJ. lncRNA Spehd Regulates Hematopoietic Stem and Progenitor Cells and Is Required for Multilineage Differentiation. Cell Rep 2019; 27:719-729.e6. [PMID: 30995471 PMCID: PMC6484780 DOI: 10.1016/j.celrep.2019.03.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/02/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) show patterns of tissue- and cell type-specific expression that are very similar to those of protein coding genes and consequently have the potential to control stem and progenitor cell fate decisions along a differentiation trajectory. To understand the roles that lncRNAs may play in hematopoiesis, we selected a subset of mouse lncRNAs with potentially relevant expression patterns and refined our candidate list using evidence of conserved expression in human blood lineages. For each candidate, we assessed its possible role in hematopoietic differentiation in vivo using competitive transplantation. Our studies identified two lncRNAs that were required for hematopoiesis. One of these, Spehd, showed defective multilineage differentiation, and its silencing yielded common myeloid progenitors that are deficient in their oxidative phosphorylation pathway. This effort not only suggests that lncRNAs can contribute to differentiation decisions during hematopoiesis but also provides a path toward the identification of functional lncRNAs in other differentiation hierarchies.
Collapse
Affiliation(s)
- M Joaquina Delás
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Benjamin T Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Tatjana Kovacevic
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Silvia Vangelisti
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ester Munera Maravilla
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Eva Maria Stork
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Nicolas Erard
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Simon R V Knott
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; New York Genome Center, New York, NY 10013, USA.
| |
Collapse
|
66
|
Epigenetic therapies in heart failure. J Mol Cell Cardiol 2019; 130:197-204. [PMID: 30991033 DOI: 10.1016/j.yjmcc.2019.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a dominant cause of morbidity and mortality in the developed world, with available pharmacotherapies limited by high rates of residual mortality and a failure to directly target the changes in cell state that drive adverse cardiac remodeling. Pathologic cardiac remodeling is driven by stress-activated cardiac signaling cascades that converge on defined components of the chromatin regulatory apparatus in the nucleus, triggering broad shifts in transcription and cell state. Thus, studies focusing on how cytosolic signaling pathways couple to the nuclear gene control machinery has been an area of therapeutic interest in HF. In this review, we discuss current concepts pertaining to the role of chromatin regulators in HF pathogenesis, with a focus on specific proteins and RNA-containing macromolecular complexes that have shown promise as druggable targets in the experimental setting.
Collapse
|
67
|
Being in a loop: how long non-coding RNAs organise genome architecture. Essays Biochem 2019; 63:177-186. [DOI: 10.1042/ebc20180057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Chromatin architecture has a significant impact on gene expression. Evidence in the last two decades support RNA as an important component of chromatin structure [Genes Dev. (2005) 19, 1635–1655; PLoS ONE (2007) 2, e1182; Nat. Genet. (2002) 30, 329–334]. Long non-coding RNAs (lncRNAs) are able to control chromatin structure through nucleosome positioning, interaction with chromatin re-modellers and chromosome looping. These functions are carried out in cis at the site of lncRNAs transcription or in trans at distant loci. While the evidence for a role in lncRNAs in regulating gene expression through chromatin interactions is increasing, there is still very little conclusive evidence for a potential role in looping organisation. Here, we review models for the involvement of lncRNAs in genome architecture and the experimental evidence to support them.
Collapse
|
68
|
Giraud G, Terrone S, Bourgeois CF. Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation. BMB Rep 2019. [PMID: 30293550 PMCID: PMC6330936 DOI: 10.5483/bmbrep.2018.51.12.234] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Guillaume Giraud
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Sophie Terrone
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| |
Collapse
|
69
|
Nozawa RS, Gilbert N. RNA: Nuclear Glue for Folding the Genome. Trends Cell Biol 2019; 29:201-211. [DOI: 10.1016/j.tcb.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
|
70
|
Fok ET, Davignon L, Fanucchi S, Mhlanga MM. The lncRNA Connection Between Cellular Metabolism and Epigenetics in Trained Immunity. Front Immunol 2019; 9:3184. [PMID: 30761161 PMCID: PMC6361822 DOI: 10.3389/fimmu.2018.03184] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 11/13/2022] Open
Abstract
Trained immunity describes the ability of innate immune cells to form immunological memories of prior encounters with pathogens. Recollection of these memories during a secondary encounter manifests a broadly enhanced inflammatory response characterized by the increased transcription of innate immune genes. Despite this phenomenon having been described over a decade ago, our understanding of the molecular mechanisms responsible for this phenotype is still incomplete. Here we present an overview of the molecular events that lead to training. For the first time, we highlight the mechanistic role of a novel class of long non-coding RNAs (lncRNAs) in the establishment and maintenance of discrete, long lasting epigenetic modifications that are causal to the trained immune response. This recent insight fills in significant gaps in our understanding of trained immunity and reveals novel ways to exploit trained immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Ezio T Fok
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Gene Expression and Biophysics Group, ERA, CSIR Biosciences, Pretoria, South Africa
| | - Laurianne Davignon
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Stephanie Fanucchi
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Gene Expression and Biophysics Group, ERA, CSIR Biosciences, Pretoria, South Africa
| | - Musa M Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
71
|
Zhang W, Hu T, Song X. The function of lncRNAs in aging-related diseases and 3D genome. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
72
|
SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc Natl Acad Sci U S A 2018; 116:546-555. [PMID: 30584103 DOI: 10.1073/pnas.1810729116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.
Collapse
|
73
|
Pecrix Y, Staton SE, Sallet E, Lelandais-Brière C, Moreau S, Carrère S, Blein T, Jardinaud MF, Latrasse D, Zouine M, Zahm M, Kreplak J, Mayjonade B, Satgé C, Perez M, Cauet S, Marande W, Chantry-Darmon C, Lopez-Roques C, Bouchez O, Bérard A, Debellé F, Muños S, Bendahmane A, Bergès H, Niebel A, Buitink J, Frugier F, Benhamed M, Crespi M, Gouzy J, Gamas P. Whole-genome landscape of Medicago truncatula symbiotic genes. NATURE PLANTS 2018; 4:1017-1025. [PMID: 30397259 DOI: 10.1038/s41477-018-0286-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/21/2018] [Indexed: 05/07/2023]
Abstract
Advances in deciphering the functional architecture of eukaryotic genomes have been facilitated by recent breakthroughs in sequencing technologies, enabling a more comprehensive representation of genes and repeat elements in genome sequence assemblies, as well as more sensitive and tissue-specific analyses of gene expression. Here we show that PacBio sequencing has led to a substantially improved genome assembly of Medicago truncatula A17, a legume model species notable for endosymbiosis studies1, and has enabled the identification of genome rearrangements between genotypes at a near-base-pair resolution. Annotation of the new M. truncatula genome sequence has allowed for a thorough analysis of transposable elements and their dynamics, as well as the identification of new players involved in symbiotic nodule development, in particular 1,037 upregulated long non-coding RNAs (lncRNAs). We have also discovered that a substantial proportion (~35% and 38%, respectively) of the genes upregulated in nodules or expressed in the nodule differentiation zone colocalize in genomic clusters (270 and 211, respectively), here termed symbiotic islands. These islands contain numerous expressed lncRNA genes and display differentially both DNA methylation and histone marks. Epigenetic regulations and lncRNAs are therefore attractive candidate elements for the orchestration of symbiotic gene expression in the M. truncatula genome.
Collapse
Affiliation(s)
- Yann Pecrix
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Erika Sallet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Christine Lelandais-Brière
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | - Sandra Moreau
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Thomas Blein
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | | | - David Latrasse
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | - Mohamed Zouine
- GBF, Université de Toulouse, INPT, ENSAT, Castanet-Tolosan, France
| | - Margot Zahm
- GBF, Université de Toulouse, INPT, ENSAT, Castanet-Tolosan, France
| | | | | | - Carine Satgé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- CNRGV, INRA, Castanet-Tolosan, France
| | - Magali Perez
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | | | | | | | | | | | - Aurélie Bérard
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Abdelhafid Bendahmane
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | | | - Andreas Niebel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Julia Buitink
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, Beaucouzé, France
| | - Florian Frugier
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | - Moussa Benhamed
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | - Martin Crespi
- IPS2, CNRS, INRA, Universities of Paris Diderot and Sorbonne Paris Cité, Gif sur Yvette, France
- IPS2, CNRS, INRA, Universities of Paris Diderot, Paris Sud, Evry and Paris-Saclay, Gif sur Yvette, France
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
| | - Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
74
|
Abstract
SIGNIFICANCE The emerging connections between an increasing number of long noncoding RNAs (lncRNAs) and oncogenic hallmarks provide a new twist to tumor complexity. Recent Advances: In the present review, we highlight specific lncRNAs that have been studied in relation to tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to microenvironmental conditions such as hypoxia. CRITICAL ISSUES Among these transcripts are lncRNAs sufficiently divergent between mouse and human genomes that may contribute to biological differences between species. FUTURE DIRECTIONS From a translational standpoint, knowledge about primate-specific lncRNAs may help explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based systems. Antioxid. Redox Signal. 29, 922-935.
Collapse
Affiliation(s)
- Xue Wu
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Oana M Tudoran
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I. Chiricuta," Cluj-Napoca, Romania
| | - George A Calin
- 4 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, Texas.,5 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Mircea Ivan
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
75
|
Doğan ES, Liu C. Three-dimensional chromatin packing and positioning of plant genomes. NATURE PLANTS 2018; 4:521-529. [PMID: 30061747 DOI: 10.1038/s41477-018-0199-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Information and function of a genome are not only decorated with epigenetic marks in the linear DNA sequence but also in their non-random spatial organization in the nucleus. Recent research has revealed that three-dimensional (3D) chromatin organization is highly correlated with the functionality of the genome, contributing to many cellular processes. Driven by the improvements in chromatin conformation capture methods and visualization techniques, the past decade has been an exciting period for the study of plants' 3D genome structures, and our knowledge in this area has been substantially advanced. This Review describes our current understanding of plant chromatin organization and positioning beyond the nucleosomal level, and discusses future directions.
Collapse
Affiliation(s)
- Ezgi Süheyla Doğan
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
76
|
Chen J, Wan J, Ye J, Xia L, Lu N. Emerging role of lncRNAs in the normal and diseased intestinal barrier. Inflamm Res 2018; 67:757-764. [PMID: 30008030 DOI: 10.1007/s00011-018-1170-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE A significant effort has been made to understand the intestinal barrier, but the effective means to prevent, reduce, and restore intestinal mucosal damage remains unclear. Recently, a few of studies have explained the mechanism of the intestinal barrier in long noncoding RNAs (lncRNAs). This review aims to summarize recent views on the function of lncRNAs in the intestinal barrier and discuss the emerging role of lncRNAs in intestinal barrier diseases caused by inflammatory diseases. METHODS Observations led us to believe that lncRNAs participate in inflammatory responses, cell proliferation, and control microbial susceptibility. In view of these, lncRNAs have been proved to involve in the intestinal barrier. RESULTS lncRNAs directly or indirectly affect TJ mRNA translation and intestinal epithelial cells (IECs) paracellular permeability, as well as IECs proliferation and susceptibility to apoptosis, to modulate the function of the intestinal barrier. miRNAs play a pivotal role in this process. CONCLUSIONS lncRNAs have been shown to be fundamentally involved in intestinal mucosal regeneration, protection, and epithelial barrier function. It may emerge as new and potential factors to be evaluated in the intestinal barrier diseases caused by acute pancreatitis, inflammatory bowel diseases, and imbalance of intestinal flora.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jianhua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jianfang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liang Xia
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
77
|
Yan F, Wang X, Zeng Y. 3D genomic regulation of lncRNA and Xist in X chromosome. Semin Cell Dev Biol 2018; 90:174-180. [PMID: 30017906 DOI: 10.1016/j.semcdb.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/19/2023]
Abstract
Long noncoding RNAs (lncRNAs) act as important regulators in cardiovascular diseases, neural degenerative disease, or cancers, by localizing and spreading across chromatins. lncRNA can regulate the 3D architecture of the enhancer cluster at the target gene locus, relevant to analogous lncRNA-protein coding gene pairs. X inactive specific transcript (Xist) plays a critical role in the process and biological function of lncRNAs. The lncRNA Jpx, Xist activator, is a nonprotein-coding RNA transcribed from a gene within the X-inactivation center and acts as a numerator element to control X-chromosome number and activate Xist transcription by interacting with CCCTC-binding factor. Up-regulated lncRNA Xist initiates X chromosome inactivation process and attracts specific chromatin modifiers. A number of chromatin-modified factors interact with lncRNAs modify 3D genome architecture and mediate Xist function in embryo development. Thus, the regulation of lncRNAs in 3D genome progresses is the key mechanism of Xist, as a therapeutic potential for Xist associated diseases.
Collapse
Affiliation(s)
- Furong Yan
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiangdong Wang
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, China.
| |
Collapse
|
78
|
Dumbović G, Biayna J, Banús J, Samuelsson J, Roth A, Diederichs S, Alonso S, Buschbeck M, Perucho M, Forcales SV. A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res 2018; 46:5504-5524. [PMID: 29912433 PMCID: PMC6009586 DOI: 10.1093/nar/gky263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/19/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Josep Biayna
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Carrer de Baldiri Reixac, 10–12, Barcelona 08028, Spain
| | - Jordi Banús
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | | | - Anna Roth
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg & Faculty of Medicine, University of Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Marcus Buschbeck
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona, Barcelona 08916, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonia-V Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Carrer de la Feixa Llarga, s/n, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
79
|
Gaiti F, Degnan BM, Tanurdžić M. Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biol 2018; 15:696-702. [PMID: 29616867 PMCID: PMC6152434 DOI: 10.1080/15476286.2018.1460166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023] Open
Abstract
How animals evolved from a single-celled ancestor over 700 million years ago is poorly understood. Recent transcriptomic and chromatin analyses in the sponge Amphimedon queenslandica, a morphologically-simple representative of one of the oldest animal phyletic lineages, have shed light on what innovations in the genome and its regulation underlie the emergence of animal multicellularity. Comparisons of the regulatory genome of this sponge with those of more complex bilaterian model species and even simpler unicellular relatives have revealed that fundamental changes in genome regulatory complexity accompanied the evolution of animal multicellularity. Here, we review and discuss the results of these recent investigations by specifically focusing on the contribution of long non-coding RNAs to the evolution of the animal regulatory genome.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
80
|
Long Non-Coding RNAs in Neuronal Aging. Noncoding RNA 2018; 4:ncrna4020012. [PMID: 29670042 PMCID: PMC6027360 DOI: 10.3390/ncrna4020012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
The expansion of long non-coding RNAs (lncRNAs) in organismal genomes has been associated with the emergence of sophisticated regulatory networks that may have contributed to more complex neuronal processes, such as higher-order cognition. In line with the important roles of lncRNAs in the normal functioning of the human brain, dysregulation of lncRNA expression has been implicated in aging and age-related neurodegenerative disorders. In this paper, we discuss the function and expression of known neuronal-associated lncRNAs, their impact on epigenetic changes, the contribution of transposable elements to lncRNA expression, and the implication of lncRNAs in maintaining the 3D nuclear architecture in neurons. Moreover, we discuss how the complex molecular processes that are orchestrated by lncRNAs in the aged brain may contribute to neuronal pathogenesis by promoting protein aggregation and neurodegeneration. Finally, this review explores the possibility that age-related disturbances of lncRNA expression change the genomic and epigenetic regulatory landscape of neurons, which may affect neuronal processes such as neurogenesis and synaptic plasticity.
Collapse
|
81
|
Barutcu AR, Maass PG, Lewandowski JP, Weiner CL, Rinn JL. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat Commun 2018; 9:1444. [PMID: 29654311 PMCID: PMC5899154 DOI: 10.1038/s41467-018-03614-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/27/2018] [Indexed: 12/22/2022] Open
Abstract
The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Philipp G Maass
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Catherine L Weiner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Biochemistry, University of Colorado, BioFrontiers Institute, Boulder, CO, 80301, USA.
| |
Collapse
|
82
|
Zarkou V, Galaras A, Giakountis A, Hatzis P. Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. Noncoding RNA Res 2018; 3:42-53. [PMID: 30159439 PMCID: PMC6096407 DOI: 10.1016/j.ncrna.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
The WNT/β-catenin signaling pathway controls a plethora of biological processes throughout animal development and adult life. Because of its fundamental role during animal lifespan, the WNT pathway is subject to strict positive and negative multi-layered regulation, while its aberrant activity causes a wide range of pathologies, including cancer. At present, despite the inroads into the molecules involved in WNT-mediated transcriptional responses, the fine-tuning of WNT pathway activity and the totality of its target genes have not been fully elucidated. Over the past few years, long non-coding RNAs (lncRNAs), RNA transcripts longer that 200nt that do not code for proteins, have emerged as significant transcriptional regulators. Recent studies show that lncRNAs can modulate WNT pathway outcome by affecting gene expression through diversified mechanisms, from the transcriptional to post-translational level. In this review, we selectively discuss those lncRNA-mediated mechanisms we believe the most important to WNT pathway modulation.
Collapse
Affiliation(s)
- Vasiliki Zarkou
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Galaras
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Department of Medicine, National and Kapodistrian University of Athens, 11527 Goudi, Greece
| | - Antonis Giakountis
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Pantelis Hatzis
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Corresponding author.
| |
Collapse
|
83
|
Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting CC, Alexanian M, Maric D, Maison D, Nemir M, Young RA, Schroen B, González A, Ounzain S, Pedrazzini T. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 2018. [PMID: 28637928 DOI: 10.1126/scitranslmed.aai9118] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of cardiac development and disease. However, our understanding of the importance of these molecules in cardiac fibrosis is limited. Using an integrated genomic screen, we identified Wisper (Wisp2 super-enhancer-associated RNA) as a cardiac fibroblast-enriched lncRNA that regulates cardiac fibrosis after injury. Wisper expression was correlated with cardiac fibrosis both in a murine model of myocardial infarction (MI) and in heart tissue from human patients suffering from aortic stenosis. Loss-of-function approaches in vitro using modified antisense oligonucleotides (ASOs) demonstrated that Wisper is a specific regulator of cardiac fibroblast proliferation, migration, and survival. Accordingly, ASO-mediated silencing of Wisper in vivo attenuated MI-induced fibrosis and cardiac dysfunction. Functionally, Wisper regulates cardiac fibroblast gene expression programs critical for cell identity, extracellular matrix deposition, proliferation, and survival. In addition, its association with TIA1-related protein allows it to control the expression of a profibrotic form of lysyl hydroxylase 2, implicated in collagen cross-linking and stabilization of the matrix. Together, our findings identify Wisper as a cardiac fibroblast-enriched super-enhancer-associated lncRNA that represents an attractive therapeutic target to reduce the pathological development of cardiac fibrosis in response to MI and prevent adverse remodeling in the damaged heart.
Collapse
Affiliation(s)
- Rudi Micheletti
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Isabelle Plaisance
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Ching-Chia Ting
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Michael Alexanian
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Daniel Maric
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Damien Maison
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blanche Schroen
- Center for Heart Failure Research, Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Arantxa González
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain.,National Institute of Health Carlos III, Madrid, Spain
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| |
Collapse
|
84
|
Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R, Büscher M, Pandolfini L, Zhang A, Pluchino S, Maracaja-Coutinho V, Nakaya HI, Hemberg M, Shiekhattar R, Enright AJ, Kouzarides T. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol 2018; 19:32. [PMID: 29540241 PMCID: PMC5853149 DOI: 10.1186/s13059-018-1405-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. RESULTS We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. CONCLUSIONS This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.
Collapse
Affiliation(s)
- Paulo P. Amaral
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Tommaso Leonardi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Namshik Han
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Present address: The Milner Therapeutics Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Emmanuelle Viré
- Present address: MRC Prion Unit, UCL Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG UK
| | - Dennis K. Gascoigne
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Raúl Arias-Carrasco
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Magdalena Büscher
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Luca Pandolfini
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Anda Zhang
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Miami, FL 33136 USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Vinicius Maracaja-Coutinho
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508 Brazil
| | - Martin Hemberg
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Miami, FL 33136 USA
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
85
|
A transcribed enhancer dictates mesendoderm specification in pluripotency. Nat Commun 2017; 8:1806. [PMID: 29180618 PMCID: PMC5703900 DOI: 10.1038/s41467-017-01804-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
Enhancers and long noncoding RNAs (lncRNAs) are key determinants of lineage specification during development. Here, we evaluate remodeling of the enhancer landscape and modulation of the lncRNA transcriptome during mesendoderm specification. We sort mesendodermal progenitors from differentiating embryonic stem cells (ESCs) according to Eomes expression, and find that enhancer usage is coordinated with mesendoderm-specific expression of key lineage-determining transcription factors. Many of these enhancers are associated with the expression of lncRNAs. Examination of ESC-specific enhancers interacting in three-dimensional space with mesendoderm-specifying transcription factor loci identifies MesEndoderm Transcriptional Enhancer Organizing Region (Meteor). Genetic and epigenetic manipulation of the Meteor enhancer reveal its indispensable role during mesendoderm specification and subsequent cardiogenic differentiation via transcription-independent and -dependent mechanisms. Interestingly, Meteor-deleted ESCs are epigenetically redirected towards neuroectodermal lineages. Loci, topologically associating a transcribed enhancer and its cognate protein coding gene, appear to represent therefore a class of genomic elements controlling developmental competence in pluripotency. Long noncoding RNAs (lncRNAs) are key regulators of lineage specification during development. Here, the authors investigate remodeling of enhancers and regulation of the lncRNA transcriptome during mesendoderm specification, and identify a pluripotent stage-specific transcribed enhancer controlling adoption of the mesendodermal cell fate.
Collapse
|
86
|
Antisense Long Non-Coding RNAs Are Deregulated in Skin Tissue of Patients with Systemic Sclerosis. J Invest Dermatol 2017; 138:826-835. [PMID: 29179949 DOI: 10.1016/j.jid.2017.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/31/2017] [Accepted: 09/23/2017] [Indexed: 01/02/2023]
Abstract
Systemic sclerosis is an autoimmune disease characterized by fibrosis of skin and multiple organs of which the pathogenesis is poorly understood. We studied differentially expressed coding and non-coding genes in relation to systemic sclerosis pathogenesis with a specific focus on antisense non-coding RNAs. Skin biopsy-derived RNAs from 14 early systemic sclerosis patients and six healthy individuals were sequenced with ion-torrent and analyzed using DEseq2. Overall, 4,901 genes with a fold change >1.5 and a false discovery rate <5% were detected in patients versus controls. Upregulated genes clustered in immunologic, cell adhesion, and keratin-related processes. Interestingly, 676 deregulated non-coding genes were detected, 257 of which were classified as antisense genes. Sense genes expressed opposite of these antisense genes were also deregulated in 42% of the observed sense-antisense gene pairs. The majority of the antisense genes had a similar effect sizes in an independent North American dataset with three genes (CTBP1-AS2, OTUD6B-AS1, and AGAP2-AS1) exceeding the study-wide Bonferroni-corrected P-value (PBonf < 0.0023, Pcombined = 1.1 × 10-9, 1.4 × 10-8, 1.7 × 10-6, respectively). In this study, we highlight that together with coding genes, (antisense) long non-coding RNAs are deregulated in skin tissue of systemic sclerosis patients suggesting a novel class of genes involved in pathogenesis of systemic sclerosis.
Collapse
|
87
|
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2017; 19:143-157. [PMID: 29138516 DOI: 10.1038/nrm.2017.104] [Citation(s) in RCA: 964] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.
Collapse
Affiliation(s)
- Julia D Ransohoff
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Yuning Wei
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA
| |
Collapse
|
88
|
Abstract
A major shift in our understanding of genome regulation has emerged recently. It is now apparent that the majority of cellular transcripts do not code for proteins, and many of them are long noncoding RNAs (lncRNAs). Increasingly, studies suggest that lncRNAs regulate gene expression through diverse mechanisms. We review emerging mechanistic views of lncRNAs in gene regulation in the cell nucleus. We discuss the functional interactions that lncRNAs establish with other molecules as well as the relationship between lncRNA transcription and function. While some of these mechanisms are specific to lncRNAs, others might be shared with other types of genes.
Collapse
Affiliation(s)
- Francesco P Marchese
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Ivan Raimondi
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Maite Huarte
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain. .,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain.
| |
Collapse
|
89
|
Firmin FF, Oger F, Gheeraert C, Dubois-Chevalier J, Vercoutter-Edouart AS, Alzaid F, Mazuy C, Dehondt H, Alexandre J, Derudas B, Dhalluin Q, Ploton M, Berthier A, Woitrain E, Lefebvre T, Venteclef N, Pattou F, Staels B, Eeckhoute J, Lefebvre P. The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ. Sci Rep 2017; 7:14087. [PMID: 29075020 PMCID: PMC5658386 DOI: 10.1038/s41598-017-14570-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 02/03/2023] Open
Abstract
Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors. Using an unbiased genome-wide approach, we identified and characterized a novel long intergenic non-coding RNA (lincRNA) strongly induced during adipocyte differentiation. This lincRNA favors adipocyte differentiation and coactivates the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARγ) through interaction with the paraspeckle component and hnRNP-like RNA binding protein 14 (RBM14/NCoAA), and was therefore called PPARγ-activator RBM14-associated lncRNA (Paral1). Paral1 expression is restricted to adipocytes and decreased in humans with increasing body mass index. A decreased expression was also observed in diet-induced or genetic mouse models of obesity and this down-regulation was mimicked in vitro by TNF treatment. In conclusion, we have identified a novel component of the adipogenic transcriptional regulatory network defining the lincRNA Paral1 as an obesity-sensitive regulator of adipocyte differentiation and function.
Collapse
Affiliation(s)
- François F Firmin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Frederik Oger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Fawaz Alzaid
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - Claire Mazuy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Hélène Dehondt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jeremy Alexandre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Quentin Dhalluin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Maheul Ploton
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eloise Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Tony Lefebvre
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Nicolas Venteclef
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190- EGID, F-59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
90
|
|
91
|
Isoda T, Moore AJ, He Z, Chandra V, Aida M, Denholtz M, Piet van Hamburg J, Fisch KM, Chang AN, Fahl SP, Wiest DL, Murre C. Non-coding Transcription Instructs Chromatin Folding and Compartmentalization to Dictate Enhancer-Promoter Communication and T Cell Fate. Cell 2017; 171:103-119.e18. [PMID: 28938112 DOI: 10.1016/j.cell.2017.09.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/24/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.
Collapse
Affiliation(s)
- Takeshi Isoda
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amanda J Moore
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhaoren He
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vivek Chandra
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Masatoshi Aida
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Denholtz
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jan Piet van Hamburg
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Institute for Genomic Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aaron N Chang
- Center for Computational Biology & Bioinformatics, Institute for Genomic Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shawn P Fahl
- Blood Cell Development and Function, Fox Chase Cancer Center, 333 Cottman Avenue, PA, Philadelphia, PA 19111, USA
| | - David L Wiest
- Blood Cell Development and Function, Fox Chase Cancer Center, 333 Cottman Avenue, PA, Philadelphia, PA 19111, USA
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
92
|
Abstract
Eukaryotic genomes are rich in transcription units encoding "long noncoding RNAs" (lncRNAs). The purpose of all this transcription is unclear since most lncRNAs are quickly targeted for destruction during synthesis or shortly thereafter. As debates continue over the functional significance of many specific lncRNAs, support grows for the notion that the act of transcription rather than the RNA product itself is functionally important in many cases. Indeed, this alternative mechanism might better explain how low-abundance lncRNAs transcribed from noncoding DNA function in organisms. Here, we highlight some of the recently emerging features that distinguish coding from noncoding transcription and discuss how these differences might have important implications for the functional consequences of noncoding transcription.
Collapse
|
93
|
Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? SCIENCE ADVANCES 2017; 3:eaao2110. [PMID: 28959731 PMCID: PMC5617379 DOI: 10.1126/sciadv.aao2110] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/12/2017] [Indexed: 05/11/2023]
Abstract
It has recently become apparent that RNA, itself the product of transcription, is a major regulator of the transcriptional process. In particular, long noncoding RNAs (lncRNAs), which are so numerous in eukaryotes, function in many cases as transcriptional regulators. These RNAs function through binding to histone-modifying complexes, to DNA binding proteins (including transcription factors), and even to RNA polymerase II. In other cases, it is the act of lncRNA transcription rather than the lncRNA product that appears to be regulatory. We review recent progress in elucidating the molecular mechanisms by which lncRNAs modulate gene expression and future opportunities in this research field.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Xueyin Wang
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Daniel T. Youmans
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
- Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas R. Cech
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
- Corresponding author.
| |
Collapse
|
94
|
|
95
|
High-Throughput Methods to Detect Long Non-Coding RNAs. High Throughput 2017; 6:ht6030012. [PMID: 29485610 PMCID: PMC5734189 DOI: 10.3390/ht6030012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that the numbers of long non-coding RNAs (lncRNAs) are more than those of protein-coding genes in various organisms. Although the detection methods for lncRNAs are being increasingly established, there are advantages and disadvantages that exist for each method. In this opinion article, I highlight the differences between microarrays and RNA sequencing (RNA-seq) for the detection of lncRNAs. Compared to RNA-seq, microarrays are limited to the known sequences. However, the detection method as well as data analysis workflow is more established, which makes it easier to analyze the data for bench scientists without extensive knowledge about computer programming. In order to highlight the usage of microarrays over RNA-seq for the detection of lncRNAs, we are organizing a special issue for High-Throughput called “Microarrays in Non-Coding RNAs Profiling”, which will include the specific usages of microarrays for lncRNAs.
Collapse
|
96
|
Abstract
How eukaryotic chromosomes fold inside the nucleus is an age-old question that remains unanswered today. Early biochemical and microscopic studies revealed the existence of chromatin domains and loops as a pervasive feature of interphase chromosomes, but the biological implications of such organizational features were obscure. Genome-wide analysis of pair-wise chromatin interactions using chromatin conformation capture (3C)-based techniques has shed new light on the organization of chromosomes in interphase nuclei. Particularly, the finding of cell-type invariant, evolutionarily conserved topologically associating domains (TADs) in a broad spectrum of cell types has provided a new molecular framework for the study of animal development and human diseases. Here, we review recent progress in characterization of such chromatin domains and delineation of mechanisms of their formation in animal cells.
Collapse
Affiliation(s)
- Jesse R Dixon
- Peptide Biology Lab and the Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - David U Gorkin
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, and Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA.
| |
Collapse
|
97
|
The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochem J 2017; 474:2925-2935. [PMID: 28801479 PMCID: PMC5553131 DOI: 10.1042/bcj20170280] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as critical regulators of various biological processes and human diseases. The mechanisms of action involve their interactions with proteins, RNA and genomic DNA. Most lncRNAs display strong nuclear localization. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large family of RNA-binding proteins that are important for multiple aspects of nucleic acid metabolism. hnRNPs are also predominantly expressed in the nucleus. This review discusses the interactions of lncRNAs and hnRNPs in regulating gene expression at transcriptional and post-transcriptional levels or by changing genomic structure, highlighting their involvements in glucose and lipid metabolism, immune response, DNA damage response, and other cellular functions. Toward the end, several techniques that are used to identify lncRNA binding partners are summarized. There are still many questions that need to be answered in this relatively new research area, which might provide novel targets to control the biological outputs of cells in response to different stimuli.
Collapse
|
98
|
Nozawa RS, Boteva L, Soares DC, Naughton C, Dun AR, Buckle A, Ramsahoye B, Bruton PC, Saleeb RS, Arnedo M, Hill B, Duncan RR, Maciver SK, Gilbert N. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell 2017. [PMID: 28622508 PMCID: PMC5473940 DOI: 10.1016/j.cell.2017.05.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.
Collapse
Affiliation(s)
- Ryu-Suke Nozawa
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lora Boteva
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dinesh C Soares
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alison R Dun
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Bernard Ramsahoye
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Peter C Bruton
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Rebecca S Saleeb
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Maria Arnedo
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Bill Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Rory R Duncan
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Sutherland K Maciver
- Centre for Integrative Physiology, Edinburgh Medical School, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
99
|
Delás MJ, Hannon GJ. lncRNAs in development and disease: from functions to mechanisms. Open Biol 2017; 7:170121. [PMID: 28747406 PMCID: PMC5541349 DOI: 10.1098/rsob.170121] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Differential expression of long non-coding RNAs (lncRNAs) during differentiation and their misregulation in cancer highlight their potential as cell fate regulators. While some example lncRNAs have been characterized in great detail, the functional in vivo relevance of others has been called into question. Finding functional lncRNAs will most probably require a combination of complementary approaches that will greatly vary depending on their mode of action. In this review, we discuss the different tools available to dissect genetically lncRNA requirements and how each is best suited to studies in particular contexts. Moreover, we review different strategies used to select candidate lncRNAs and give an overview of lncRNAs described to regulate development and cancer through different mechanisms.
Collapse
Affiliation(s)
- M Joaquina Delás
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY 11724, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY 11724, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- New York Genome Center, 101 6th Ave, New York, NY 10013, USA
| |
Collapse
|
100
|
Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat Struct Mol Biol 2017. [PMID: 28628087 PMCID: PMC5682930 DOI: 10.1038/nsmb.3424] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We recently described a new class of long noncoding RNA defined by especially tight chromatin association, whose presence is strongly correlated with expression of nearby genes in HEK293 cells. Here we critically examine the generality and cis-enhancer mechanism of this class of chromatin enriched RNA (cheRNA). CheRNA are largely cell-type specific, and remain the most effective chromatin signature for predicting cis-gene transcription in all cell types examined. Targeted depletion of three cheRNAs decreases gene expression of their neighbors, indicating potential co-activator function. Single-molecule FISH of one cheRNA-distal target gene pair suggests spatial overlap consistent with a role in chromosome looping. In another example, the cheRNA HIDALGO stimulates the fetal hemoglobin HBG1 gene during erythroid differentiation by promoting contacts to a downstream enhancer. Our results suggest that many cheRNAs activate proximal, lineage-specific gene transcription.
Collapse
|