51
|
Functional role of PGAM5 multimeric assemblies and their polymerization into filaments. Nat Commun 2019; 10:531. [PMID: 30705304 PMCID: PMC6355839 DOI: 10.1038/s41467-019-08393-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
PGAM5 is a mitochondrial protein phosphatase whose genetic ablation in mice results in mitochondria-related disorders, including neurodegeneration. Functions of PGAM5 include regulation of mitophagy, cell death, metabolism and aging. However, mechanisms regulating PGAM5 activation and signaling are poorly understood. Using electron cryo-microscopy, we show that PGAM5 forms dodecamers in solution. We also present a crystal structure of PGAM5 that reveals the determinants of dodecamer formation. Furthermore, we observe PGAM5 dodecamer assembly into filaments both in vitro and in cells. We find that PGAM5 oligomerization into a dodecamer is not only essential for catalytic activation, but this form also plays a structural role on mitochondrial membranes, which is independent of phosphatase activity. Together, these findings suggest that modulation of the oligomerization of PGAM5 may be a regulatory switch of potential therapeutic interest. PGAM5 is a mitochondrial protein phosphatase whose functions include regulation of mitophagy and cell death. Here, the authors use x-ray crystallography and EM to show that PGAM5 forms dodecameric rings and filaments in solution, and find that PGAM5 rings are essential for catalysis and for a structural effect PGAM5 has on mitochondrial membranes, independently of catalytic activity.
Collapse
|
52
|
Gohla A. Do metabolic HAD phosphatases moonlight as protein phosphatases? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:153-166. [DOI: 10.1016/j.bbamcr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
|
53
|
Jung H, Shin SH, Kee J. Recent Updates on ProteinN‐Phosphoramidate Hydrolases. Chembiochem 2018; 20:623-633. [DOI: 10.1002/cbic.201800566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hoyoung Jung
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Son Hye Shin
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung‐Min Kee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
54
|
Ohya S, Kito H. Ca 2+-Activated K + Channel K Ca3.1 as a Therapeutic Target for Immune Disorders. Biol Pharm Bull 2018; 41:1158-1163. [PMID: 30068864 DOI: 10.1248/bpb.b18-00078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In lymphoid and myeloid cells, membrane hyperpolarization by the opening of K+ channels increases the activity of Ca2+ release-activated Ca2+ (CRAC) channels and transient receptor potential (TRP) Ca2+ channels. The intermediate-conductance Ca2+-activated K+ channel KCa3.1 plays an important role in cell proliferation, differentiation, migration, and cytokine production in innate and adaptive immune systems. KCa3.1 is therefore an attractive therapeutic target for allergic, inflammatory, and autoimmune disorders. In the past several years, studies have provided new insights into 1) KCa3.1 pharmacology and its auxiliary regulators; 2) post-transcriptional and proteasomal regulation of KCa3.1; 3) KCa3.1 as a regulator of immune cell migration, cytokine production, and phenotypic polarization; 4) the role of KCa3.1 in the phosphorylation and nuclear translocation of Smad2/3; and 5) KCa3.1 as a therapeutic target for cancer immunotherapy. In this review, we have assembled a comprehensive overview of current research on the physiological and pathophysiological significance of KCa3.1 in the immune system.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University
| |
Collapse
|
55
|
Matsui M, Terasawa K, Kajikuri J, Kito H, Endo K, Jaikhan P, Suzuki T, Ohya S. Histone Deacetylases Enhance Ca 2+-Activated K⁺ Channel K Ca3.1 Expression in Murine Inflammatory CD4⁺ T Cells. Int J Mol Sci 2018; 19:ijms19102942. [PMID: 30262728 PMCID: PMC6213394 DOI: 10.3390/ijms19102942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The up-regulated expression of the Ca2+-activated K+ channel KCa3.1 in inflammatory CD4+ T cells has been implicated in the pathogenesis of inflammatory bowel disease (IBD) through the enhanced production of inflammatory cytokines, such as interferon-γ (IFN-γ). However, the underlying mechanisms have not yet been elucidated. The objective of the present study is to clarify the involvement of histone deacetylases (HDACs) in the up-regulation of KCa3.1 in the CD4+ T cells of IBD model mice. The expression levels of KCa3.1 and its regulators, such as function-modifying molecules and transcription factors, were quantitated using a real-time polymerase chain reaction (PCR) assay, Western blotting, and depolarization responses, which were induced by the selective KCa3.1 blocker TRAM-34 (1 μM) and were measured using a voltage-sensitive fluorescent dye imaging system. The treatment with 1 μM vorinostat, a pan-HDAC inhibitor, for 24 h repressed the transcriptional expression of KCa3.1 in the splenic CD4+ T cells of IBD model mice. Accordingly, TRAM-34-induced depolarization responses were significantly reduced. HDAC2 and HDAC3 were significantly up-regulated in the CD4+ T cells of IBD model mice. The down-regulated expression of KCa3.1 was observed following treatments with the selective inhibitors of HDAC2 and HDAC3. The KCa3.1 K+ channel regulates inflammatory cytokine production in CD4+ T cells, mediating epigenetic modifications by HDAC2 and HDAC3.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Terasawa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Pattaporn Jaikhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| |
Collapse
|
56
|
Sugo M, Kimura H, Arasaki K, Amemiya T, Hirota N, Dohmae N, Imai Y, Inoshita T, Shiba-Fukushima K, Hattori N, Cheng J, Fujimoto T, Wakana Y, Inoue H, Tagaya M. Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy. EMBO J 2018; 37:embj.201798899. [PMID: 30237312 DOI: 10.15252/embj.201798899] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
PGAM5, a mitochondrial protein phosphatase that is genetically and biochemically linked to PINK1, facilitates mitochondrial division by dephosphorylating the mitochondrial fission factor Drp1. At the onset of mitophagy, PGAM5 is cleaved by PARL, a rhomboid protease that degrades PINK1 in healthy cells, and the cleaved form facilitates the engulfment of damaged mitochondria by autophagosomes by dephosphorylating the mitophagy receptor FUNDC1. Here, we show that the function and localization of PGAM5 are regulated by syntaxin 17 (Stx17), a mitochondria-associated membrane/mitochondria protein implicated in mitochondrial dynamics in fed cells and autophagy in starved cells. In healthy cells, loss of Stx17 causes PGAM5 aggregation within mitochondria and thereby failure of the dephosphorylation of Drp1, leading to mitochondrial elongation. In Parkin-mediated mitophagy, Stx17 is prerequisite for PGAM5 to interact with FUNDC1. Our results reveal that the Stx17-PGAM5 axis plays pivotal roles in mitochondrial division and PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Masashi Sugo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hana Kimura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Toshiki Amemiya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naohiko Hirota
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
57
|
Tipton P, Su T, Hannink M. Assembly of PGAM5 into Multimeric Complexes Provides a Mechanism for Allosteric Regulation of Phosphatase Activity. Methods Enzymol 2018; 607:353-372. [PMID: 30149865 DOI: 10.1016/bs.mie.2018.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphoglycerate mutase family member 5 (PGAM5) is a serine/threonine phosphatase that has been localized to both inner and outer mitochondrial membranes. PGAM5 has been suggested to regulate multiple aspects of mitochondrial dynamics, including fission/fusion and mitophagy, through phosphatase-dependent and phosphatase-independent mechanisms. Understanding how the phosphatase activity of PGAM5 is regulated will provide new insight into signaling mechanisms that link changes in cell physiology with mitochondrial function. In this chapter, we describe methods for obtaining both multimeric and dimeric complexes of PGAM5 and for characterizing their kinetic properties. The ability to purify different PGAM5 complexes and to characterize their kinetic properties will enable detailed biophysical studies of the quaternary structures of the various PGAM5-containing complexes. The phosphatase activity of different PGAM5 complexes varies over three orders of magnitude. We suggest that the ability to generate PGAM5 complexes that have a wide range of phosphatase activities will facilitate screens to identify small molecules that modulate the phosphatase activity of PGAM5.
Collapse
Affiliation(s)
- Peter Tipton
- University of Missouri, Columbia, MO, United States.
| | - Tong Su
- University of Missouri, Columbia, MO, United States
| | - Mark Hannink
- University of Missouri, Columbia, MO, United States
| |
Collapse
|
58
|
Srivastava S, Li Z, Soomro I, Sun Y, Wang J, Bao L, Coetzee WA, Stanley CA, Li C, Skolnik EY. Regulation of K ATP Channel Trafficking in Pancreatic β-Cells by Protein Histidine Phosphorylation. Diabetes 2018; 67:849-860. [PMID: 29440278 PMCID: PMC5909995 DOI: 10.2337/db17-1433] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022]
Abstract
Protein histidine phosphatase 1 (PHPT-1) is an evolutionarily conserved 14-kDa protein that dephosphorylates phosphohistidine. PHPT-1-/- mice were generated to gain insight into the role of PHPT-1 and histidine phosphorylation/dephosphorylation in mammalian biology. PHPT-1-/- mice exhibited neonatal hyperinsulinemic hypoglycemia due to impaired trafficking of KATP channels to the plasma membrane in pancreatic β-cells in response to low glucose and leptin and resembled patients with congenital hyperinsulinism (CHI). The defect in KATP channel trafficking in PHPT-1-/- β-cells was due to the failure of PHPT-1 to directly activate transient receptor potential channel 4 (TRPC4), resulting in decreased Ca2+ influx and impaired downstream activation of AMPK. Thus, these studies demonstrate a critical role for PHPT-1 in normal pancreatic β-cell function and raise the possibility that mutations in PHPT-1 and/or TRPC4 may account for yet to be defined cases of CHI.
Collapse
Affiliation(s)
- Shekhar Srivastava
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Zhai Li
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Irfana Soomro
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Ying Sun
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Jianhui Wang
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Li Bao
- Department of Pediatrics, New York University Langone Medical Center, New York, NY
| | - William A Coetzee
- Department of Pediatrics, New York University Langone Medical Center, New York, NY
| | - Charles A Stanley
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Chonghong Li
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Edward Y Skolnik
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
59
|
McCullough BS, Barrios AM. Facile, Fluorogenic Assay for Protein Histidine Phosphatase Activity. Biochemistry 2018; 57:2584-2589. [DOI: 10.1021/acs.biochem.8b00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Brandon S. McCullough
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
60
|
Lu Z, Hunter T. Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci 2018; 43:301-310. [PMID: 29463470 PMCID: PMC5879014 DOI: 10.1016/j.tibs.2018.01.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases regulate every aspect of cellular activity, whereas metabolic enzymes are responsible for energy production and catabolic and anabolic processes. Emerging evidence demonstrates that some metabolic enzymes, such as pyruvate kinase M2 (PKM2), phosphoglycerate kinase 1 (PGK1), ketohexokinase (KHK) isoform A (KHK-A), hexokinase (HK), and nucleoside diphosphate kinase 1 and 2 (NME1/2), that phosphorylate soluble metabolites can also function as protein kinases and phosphorylate a variety of protein substrates to regulate the Warburg effect, gene expression, cell cycle progression and proliferation, apoptosis, autophagy, exosome secretion, T cell activation, iron transport, ion channel opening, and many other fundamental cellular functions. The elevated protein kinase functions of these moonlighting metabolic enzymes in tumor development make them promising therapeutic targets for cancer.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
61
|
Hindupur SK, Colombi M, Fuhs SR, Matter MS, Guri Y, Adam K, Cornu M, Piscuoglio S, Ng CKY, Betz C, Liko D, Quagliata L, Moes S, Jenoe P, Terracciano LM, Heim MH, Hunter T, Hall MN. The protein histidine phosphatase LHPP is a tumour suppressor. Nature 2018; 555:678-682. [PMID: 29562234 DOI: 10.1038/nature26140] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022]
Abstract
Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.
Collapse
Affiliation(s)
| | - Marco Colombi
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Stephen R Fuhs
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Yakir Guri
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Marion Cornu
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Charlotte K Y Ng
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Charles Betz
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dritan Liko
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Suzette Moes
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Paul Jenoe
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
62
|
Abstract
Nucleoside diphosphate kinases (NDPKs) are multifunctional proteins encoded by the nme (non-metastatic cells) genes, also called NM23. NDPKs catalyze the transfer of γ-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high-energy phosphohistidine intermediate. Growing evidence shows that NDPKs, particularly NDPK-B, can additionally act as a protein histidine kinase. Protein kinases and phosphatases that regulate reversible O-phosphorylation of serine, threonine, and tyrosine residues have been studied extensively in many organisms. Interestingly, other phosphoamino acids histidine, lysine, arginine, aspartate, glutamate, and cysteine exist in abundance but remain understudied due to the paucity of suitable methods and antibodies. The N-phosphorylation of histidine by histidine kinases via the two- or multi-component signaling systems is an important mediator in cellular responses in prokaryotes and lower eukaryotes, like yeast, fungi, and plants. However, in vertebrates knowledge of phosphohistidine signaling has lagged far behind and the identity of the protein kinases and protein phosphatases involved is not well established. This article will therefore provide an overview of our current knowledge on protein histidine phosphorylation particularly the role of nm 23 gene products as protein histidine kinases.
Collapse
Affiliation(s)
- Paul V Attwood
- School of Molecular Sciences, The University of Western Australia (M310), Crawley, WA, Australia
| | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
63
|
Makwana MV, Muimo R, Jackson RF. Advances in development of new tools for the study of phosphohistidine. J Transl Med 2018; 98:291-303. [PMID: 29200202 DOI: 10.1038/labinvest.2017.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 01/04/2023] Open
Abstract
Protein phosphorylation is an important post-translational modification that is an integral part of cellular function. The O-phosphorylated amino-acid residues, such as phosphoserine (pSer), phosphothreonine (pThr) and phosphotyrosine (pTyr), have dominated the literature while the acid labile N-linked phosphorylated amino acids, such as phosphohistidine (pHis), have largely been historically overlooked because of the acidic conditions routinely used in amino-acid detection and analysis. This review highlights some misinterpretations that have arisen in the existing literature, pinpoints outstanding questions and potential future directions to clarify the role of pHis in mammalian signalling systems. Particular emphasis is placed on pHis isomerization and the hybrid functionality for both pHis and pTyr of the proposed τ-pHis analogue bearing the triazole residue.
Collapse
Affiliation(s)
- Mehul V Makwana
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
64
|
The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. J Transl Med 2018; 98:283-290. [PMID: 29200201 DOI: 10.1038/labinvest.2017.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are multifunctional proteins encoded by the nme (non-metastatic cells) genes, also called NM23. NDPKs catalyze the transfer of γ-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high-energy phosphohistidine intermediate. Growing evidence shows that NDPKs, particularly NDPK-B, can additionally act as a protein histidine kinase. Protein kinases and phosphatases that regulate reversible O-phosphorylation of serine, threonine, and tyrosine residues have been studied extensively in many organisms. Interestingly, other phosphoamino acids histidine, lysine, arginine, aspartate, glutamate, and cysteine exist in abundance but remain understudied due to the paucity of suitable methods and antibodies. The N-phosphorylation of histidine by histidine kinases via the two- or multi-component signaling systems is an important mediator in cellular responses in prokaryotes and lower eukaryotes, like yeast, fungi, and plants. However, in vertebrates knowledge of phosphohistidine signaling has lagged far behind and the identity of the protein kinases and protein phosphatases involved is not well established. This article will therefore provide an overview of our current knowledge on protein histidine phosphorylation particularly the role of nm 23 gene products as protein histidine kinases.
Collapse
|
65
|
Bernkopf DB, Jalal K, Brückner M, Knaup KX, Gentzel M, Schambony A, Behrens J. Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling. J Cell Biol 2018; 217:1383-1394. [PMID: 29438981 PMCID: PMC5881504 DOI: 10.1083/jcb.201708191] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial stress induces PARL-mediated cleavage and cytosolic release of the mitochondrial phosphatase Pgam5. In the cytosol, Pgam5 interacts with the Wnt pathway component axin and dephosphorylates axin-bound β-catenin, thereby cell-intrinsically activating Wnt/β-catenin signaling to induce mitochondrial biogenesis. Mitochondrial abundance is dynamically regulated and was previously shown to be increased by Wnt/β-catenin signaling. Pgam5 is a mitochondrial phosphatase which is cleaved by the rhomboid protease presenilin-associated rhomboid-like protein (PARL) and released from membranes after mitochondrial stress. In this study, we show that Pgam5 interacts with the Wnt pathway component axin in the cytosol, blocks axin-mediated β-catenin degradation, and increases β-catenin levels and β-catenin–dependent transcription. Pgam5 stabilized β-catenin by inducing its dephosphorylation in an axin-dependent manner. Mitochondrial stress triggered by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to cytosolic release of endogenous Pgam5 and subsequent dephosphorylation of β-catenin, which was strongly diminished in Pgam5 and PARL knockout cells. Similarly, hypoxic stress generated cytosolic Pgam5 and led to stabilization of β-catenin, which was abolished by Pgam5 knockout. Cells stably expressing cytosolic Pgam5 exhibit elevated β-catenin levels and increased mitochondrial numbers. Our study reveals a novel mechanism by which damaged mitochondria might induce replenishment of the mitochondrial pool by cell-intrinsic activation of Wnt signaling via the Pgam5–β-catenin axis.
Collapse
Affiliation(s)
- Dominic B Bernkopf
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Kowcee Jalal
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Martina Brückner
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Karl X Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
66
|
Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. J Transl Med 2018; 98:233-247. [PMID: 29058706 PMCID: PMC5815933 DOI: 10.1038/labinvest.2017.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is the most common type of post-translational modification in eukaryotes. The phosphoproteome is defined as the complete set of experimentally detectable phosphorylation sites present in a cell's proteome under various conditions. However, we are still far from identifying all the phosphorylation sites in a cell mainly due to the lack of information about phosphorylation events involving residues other than Ser, Thr and Tyr. Four types of phosphate-protein linkage exist and these generate nine different phosphoresidues-pSer, pThr, pTyr, pHis, pLys, pArg, pAsp, pGlu and pCys. Most of the effort in studying protein phosphorylation has been focused on Ser, Thr and Tyr phosphorylation. The recent development of 1- and 3-pHis monoclonal antibodies promises to increase our understanding of His phosphorylation and the kinases and phosphatases involved. Several His kinases are well defined in prokaryotes, especially those involved in two-component system (TCS) signaling. However, in higher eukaryotes, NM23, a protein originally characterized as a nucleoside diphosphate kinase, is the only characterized protein-histidine kinase. This ubiquitous and conserved His kinase autophosphorylates its active site His, and transfers this phosphate either onto a nucleoside diphosphate or onto a protein His residue. Studies of NM23 protein targets using newly developed anti-pHis antibodies will surely help illuminate the elusive His phosphorylation-based signaling pathways. This review discusses the role that the NM23/NME/NDPK phosphotransferase has, how the addition of the pHis phosphoproteome will expand the phosphoproteome and make His phosphorylation part of the global phosphorylation world. It also summarizes why our understanding of phosphorylation is still largely restricted to the acid stable phosphoproteome, and highlights the study of NM23 histidine kinase as an entrée into the world of histidine phosphorylation.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
67
|
Abstract
Nucleoside diphosphate kinases (NDPK) are nucleotide metabolism enzymes encoded by NME genes (also called NM23). Given the fact that not all NME-encoded proteins are catalytically active NDPKs and that NM23 generally refers to clinical studies on metastasis, we use here NME/NDPK to denote the proteins. Since their discovery in the 1950's, NMEs/NDPKs have been shown to be involved in multiple physiological and pathological cellular processes, but the molecular mechanisms have not been fully determined. Recent progress in elucidating these underlying mechanisms has been presented by experts in the field at the 10th International Congress on the NDPK/NME/AWD protein family in October 2016 in Dubrovnik, Croatia, and is summarized in review articles or original research in this and an upcoming issue of Laboratory Investigation. Within this editorial, we discuss three major cellular processes that involve members of the multi-functional NME/NDPK family: (i) cancer and metastasis dissemination, (ii) membrane remodeling and nucleotide channeling, and iii) protein histidine phosphorylation.
Collapse
|
68
|
Abu-Taha IH, Heijman J, Feng Y, Vettel C, Dobrev D, Wieland T. Regulation of heterotrimeric G-protein signaling by NDPK/NME proteins and caveolins: an update. J Transl Med 2018; 98:190-197. [PMID: 29035382 DOI: 10.1038/labinvest.2017.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/17/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G proteins are pivotal mediators of cellular signal transduction in eukaryotic cells and abnormal G-protein signaling plays an important role in numerous diseases. During the last two decades it has become evident that the activation status of heterotrimeric G proteins is both highly localized and strongly regulated by a number of factors, including a receptor-independent activation pathway of heterotrimeric G proteins that does not involve the classical GDP/GTP exchange and relies on nucleoside diphosphate kinases (NDPKs). NDPKs are NTP/NDP transphosphorylases encoded by the nme/nm23 genes that are involved in a variety of cellular events such as proliferation, migration, and apoptosis. They therefore contribute, for example, to tumor metastasis, angiogenesis, retinopathy, and heart failure. Interestingly, NDPKs are translocated and/or upregulated in human heart failure. Here we describe recent advances in the current understanding of NDPK functions and how they have an impact on local regulation of G-protein signaling.
Collapse
Affiliation(s)
- Issam H Abu-Taha
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Christiane Vettel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| |
Collapse
|
69
|
Abu-Taha IH, Heijman J, Feng Y, Vettel C, Dobrev D, Wieland T. Regulation of heterotrimeric G-protein signaling by NDPK/NME proteins and caveolins: an update. J Transl Med 2018. [PMID: 29035382 DOI: 10.38/labinvest.2017.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Heterotrimeric G proteins are pivotal mediators of cellular signal transduction in eukaryotic cells and abnormal G-protein signaling plays an important role in numerous diseases. During the last two decades it has become evident that the activation status of heterotrimeric G proteins is both highly localized and strongly regulated by a number of factors, including a receptor-independent activation pathway of heterotrimeric G proteins that does not involve the classical GDP/GTP exchange and relies on nucleoside diphosphate kinases (NDPKs). NDPKs are NTP/NDP transphosphorylases encoded by the nme/nm23 genes that are involved in a variety of cellular events such as proliferation, migration, and apoptosis. They therefore contribute, for example, to tumor metastasis, angiogenesis, retinopathy, and heart failure. Interestingly, NDPKs are translocated and/or upregulated in human heart failure. Here we describe recent advances in the current understanding of NDPK functions and how they have an impact on local regulation of G-protein signaling.
Collapse
Affiliation(s)
- Issam H Abu-Taha
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Christiane Vettel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| |
Collapse
|
70
|
Saita S, Tatsuta T, Lampe PA, König T, Ohba Y, Langer T. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J 2018; 37:embj.201797909. [PMID: 29301859 DOI: 10.15252/embj.201797909] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Intramembrane-cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain-containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL-mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.
Collapse
Affiliation(s)
- Shotaro Saita
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Takashi Tatsuta
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Philipp A Lampe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim König
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yohsuke Ohba
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas Langer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.,Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
71
|
O'Mealey GB, Plafker KS, Berry WL, Janknecht R, Chan JY, Plafker SM. A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci 2017; 130:3467-3480. [PMID: 28839075 DOI: 10.1242/jcs.203216] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
The Nrf2 transcription factor is a master regulator of the cellular anti-stress response. A population of the transcription factor associates with the mitochondria through a complex with KEAP1 and the mitochondrial outer membrane histidine phosphatase, PGAM5. To determine the function of this mitochondrial complex, we knocked down each component and assessed mitochondrial morphology and distribution. We discovered that depletion of Nrf2 or PGAM5, but not KEAP1, inhibits mitochondrial retrograde trafficking induced by proteasome inhibition. Mechanistically, this disrupted motility results from aberrant degradation of Miro2, a mitochondrial GTPase that links mitochondria to microtubules. Rescue experiments demonstrate that this Miro2 degradation involves the KEAP1-cullin-3 E3 ubiquitin ligase and the proteasome. These data are consistent with a model in which an intact complex of PGAM5-KEAP1-Nrf2 preserves mitochondrial motility by suppressing dominant-negative KEAP1 activity. These data further provide a mechanistic explanation for how age-dependent declines in Nrf2 expression impact mitochondrial motility and induce functional deficits commonly linked to neurodegeneration.
Collapse
Affiliation(s)
- Gary B O'Mealey
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Kendra S Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Jefferson Y Chan
- Department of Pathology, University of Irvine School of Medicine, Irvine, CA 92697, USA
| | - Scott M Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| |
Collapse
|
72
|
Hauser A, Penkert M, Hackenberger CPR. Chemical Approaches to Investigate Labile Peptide and Protein Phosphorylation. Acc Chem Res 2017; 50:1883-1893. [PMID: 28723107 DOI: 10.1021/acs.accounts.7b00170] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation is by far the most abundant and most studied post-translational modification (PTM). For a long time, phosphate monoesters of serine (pSer), threonine (pThr), and tyrosine (pTyr) have been considered as the only relevant forms of phosphorylation in organisms. Recently, several research groups have dedicated their efforts to the investigation of other, less characterized phosphoamino acids as naturally occurring PTMs. Such apparent peculiar phosphorylations include the phosphoramidates of histidine (pHis), arginine (pArg), and lysine (pLys), the phosphorothioate of cysteine (pCys), and the anhydrides of pyrophosphorylated serine (ppSer) and threonine (ppThr). Almost all of these phosphorylated amino acids show higher lability under physiological conditions than those of phosphate monoesters. Furthermore, they are prone to hydrolysis under acidic and sometimes basic conditions as well as at elevated temperatures, which renders their synthetic accessibility and proteomic analysis particularly challenging. In this Account, we illustrate recent chemical approaches to probe the occurrence and function of these labile phosphorylation events. Within these endeavors, the synthesis of site-selectively phosphorylated peptides, in particular in combination with chemoselective phosphorylation strategies, was crucial. With these well-defined standards in hand, the appropriate proteomic mass spectrometry-based analysis protocols for the characterization of labile phosphosites in biological samples could be developed. Another successful approach in this research field includes the design and synthesis of stable analogues of these labile PTMs, which were used for the generation of pHis- and pArg-specific antibodies for the detection and enrichment of endogenous phosphorylated samples. Finally, other selective enrichment techniques are described, which rely for instance on the unique chemical environment of a pyrophosphate or the selective interaction between a phosphoamino acid and its phosphatase. It is worth noting that many of those studies are still in their early stages, which is also reflected in the small number of identified phosphosites compared to that of phosphate monoesters. Thus, many challenges need to be mastered to fully understand the biological role of these poorly characterized and rather uncommon phosphorylations. Taken together, this overview exemplifies recent efforts in a flourishing field of functional proteomic analysis and furthermore manifests the power of modern peptide synthesis to address unmet questions in the life sciences.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| |
Collapse
|
73
|
Dermit M, Dokal A, Cutillas PR. Approaches to identify kinase dependencies in cancer signalling networks. FEBS Lett 2017; 591:2577-2592. [DOI: 10.1002/1873-3468.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Dermit
- Cell Signalling & Proteomics Group; Barts Cancer Institute (CRUK Centre); Queen Mary University of London; UK
| | - Arran Dokal
- Cell Signalling & Proteomics Group; Barts Cancer Institute (CRUK Centre); Queen Mary University of London; UK
| | - Pedro R. Cutillas
- Cell Signalling & Proteomics Group; Barts Cancer Institute (CRUK Centre); Queen Mary University of London; UK
| |
Collapse
|
74
|
Abstract
PGAM5 is a mitochondrial membrane protein that functions as an atypical Ser/Thr phosphatase and is a regulator of oxidative stress response, necroptosis, and autophagy. Here we present several crystal structures of PGAM5 including the activating N-terminal regulatory sequences, providing a model for structural plasticity, dimerization of the catalytic domain, and the assembly into an enzymatically active dodecameric form. Oligomeric states observed in structures were supported by hydrogen exchange mass spectrometry, size-exclusion chromatography, and analytical ultracentrifugation experiments in solution. We report that the catalytically important N-terminal WDPNWD motif acts as a structural integrator assembling PGAM5 into a dodecamer, allosterically activating the phosphatase by promoting an ordering of the catalytic loop. Additionally the observed active site plasticity enabled visualization of essential conformational rearrangements of catalytic elements. The comprehensive biophysical characterization offers detailed structural models of this key mitochondrial phosphatase that has been associated with the development of diverse diseases. PGAM5 catalytic domain shares phosphoglycerate mutase fold and forms stable dimer WDPNWD motif allosterically activates the fully active dodecameric form Crystal structures reveal conformational plasticity of the PGAM5 active site
Collapse
|
75
|
Mills EL, Kelly B, O'Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol 2017; 18:488-498. [PMID: 28418387 DOI: 10.1038/ni.3704] [Citation(s) in RCA: 747] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Recent evidence indicates that mitochondria lie at the heart of immunity. Mitochondrial DNA acts as a danger-associated molecular pattern (DAMP), and the mitochondrial outer membrane is a platform for signaling molecules such as MAVS in RIG-I signaling, and for the NLRP3 inflammasome. Mitochondrial biogenesis, fusion and fission have roles in aspects of immune-cell activation. Most important, Krebs cycle intermediates such as succinate, fumarate and citrate engage in processes related to immunity and inflammation, in both innate and adaptive immune cells. These discoveries are revealing mitochondrial targets that could potentially be exploited for therapeutic gain in inflammation and cancer.
Collapse
Affiliation(s)
- Evanna L Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Beth Kelly
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
76
|
Fuhs SR, Hunter T. pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol 2017; 45:8-16. [PMID: 28129587 DOI: 10.1016/j.ceb.2016.12.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/31/2016] [Indexed: 12/30/2022]
Abstract
Histidine phosphorylation is crucial for prokaryotic signal transduction and as an intermediate for several metabolic enzymes, yet its role in mammalian cells remains largely uncharted. This is primarily caused by difficulties in studying histidine phosphorylation because of the relative instability of phosphohistidine (pHis) and lack of specific antibodies and methods to preserve and detect it. The recent synthesis of stable pHis analogs has enabled development of pHis-specific antibodies and their use has started to shed light onto this important, yet enigmatic posttranslational modification. We are beginning to understand that pHis has broader roles in protein and cellular function including; cell cycle regulation, phagocytosis, regulation of ion channel activity and metal ion coordination. Two mammalian histidine kinases (NME1 and NME2), two pHis phosphatases (PHPT1 and LHPP), and a handful of substrates were previously identified. These new tools have already led to the discovery of an additional phosphatase (PGAM5) and hundreds of putative substrates. New methodologies are also being developed to probe the pHis phosphoproteome and determine functional consequences, including negative ion mode mass spectroscopy and unnatural amino acid incorporation. These new tools and strategies have the potential to overcome the unique challenges that have been holding back our understanding of pHis in cell biology.
Collapse
Affiliation(s)
- Stephen Rush Fuhs
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
77
|
Srivastava S, Panda S, Li Z, Fuhs SR, Hunter T, Thiele DJ, Hubbard SR, Skolnik EY. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. eLife 2016; 5. [PMID: 27542194 PMCID: PMC5005030 DOI: 10.7554/elife.16093] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/14/2016] [Indexed: 12/02/2022] Open
Abstract
KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. DOI:http://dx.doi.org/10.7554/eLife.16093.001
Collapse
Affiliation(s)
- Shekhar Srivastava
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.,Division of Nephrology, New York University School of Medicine, New York, United States.,Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University, New York, United States
| | - Saswati Panda
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.,Division of Nephrology, New York University School of Medicine, New York, United States.,Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University, New York, United States
| | - Zhai Li
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.,Division of Nephrology, New York University School of Medicine, New York, United States.,Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University, New York, United States
| | - Stephen R Fuhs
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, United States.,Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.,Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University, New York, United States
| | - Edward Y Skolnik
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.,Division of Nephrology, New York University School of Medicine, New York, United States.,Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University, New York, United States
| |
Collapse
|