51
|
Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: Emerging opportunities by targeting BRCAs and p53. Biochim Biophys Acta Rev Cancer 2023; 1878:188914. [PMID: 37201730 DOI: 10.1016/j.bbcan.2023.188914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic cancer (PC) is characterized by (epi)genetic and microenvironmental alterations that negatively impact the treatment outcomes. New targeted therapies have been pursued to counteract the therapeutic resistance in PC. Aiming to seek for new therapeutic options for PC, several attempts have been undertaken to exploit BRCA1/2 and TP53 deficiencies as promising actionable targets. The elucidation of the pathogenesis of PC highlighted the high prevalence of p53 mutations and their connection with the aggressiveness and therapeutic resistance of PC. Additionally, PC is associated with dysfunctions in several DNA repair-related genes, including BRCA1/2, which sensitize tumours to DNA-damaging agents. In this context, poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) were approved for mutant BRCA1/2 PC patients. However, acquired drug resistance has become a major drawback of PARPi. This review emphasizes the importance of targeting defective BRCAs and p53 pathways for advancing personalized PC therapy, with particular focus on how this approach may provide an opportunity to tackle PC resistance.
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
52
|
Campos A, Ramos F, Iglesias L, Delgado C, Merino E, Esperilla-Muñoz A, Correa-Bordes J, Clemente-Blanco A. Cdc14 phosphatase counteracts Cdk-dependent Dna2 phosphorylation to inhibit resection during recombinational DNA repair. Nat Commun 2023; 14:2738. [PMID: 37173316 PMCID: PMC10182099 DOI: 10.1038/s41467-023-38417-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cyclin-dependent kinase (Cdk) stimulates resection of DNA double-strand breaks ends to generate single-stranded DNA (ssDNA) needed for recombinational DNA repair. Here we show in Saccharomyces cerevisiae that lack of the Cdk-counteracting phosphatase Cdc14 produces abnormally extended resected tracts at the DNA break ends, involving the phosphatase in the inhibition of resection. Over-resection in the absence of Cdc14 activity is bypassed when the exonuclease Dna2 is inactivated or when its Cdk consensus sites are mutated, indicating that the phosphatase restrains resection by acting through this nuclease. Accordingly, mitotically activated Cdc14 promotes Dna2 dephosphorylation to exclude it from the DNA lesion. Cdc14-dependent resection inhibition is essential to sustain DNA re-synthesis, thus ensuring the appropriate length, frequency, and distribution of the gene conversion tracts. These results establish a role for Cdc14 in controlling the extent of resection through Dna2 regulation and demonstrate that the accumulation of excessively long ssDNA affects the accurate repair of the broken DNA by homologous recombination.
Collapse
Affiliation(s)
- Adrián Campos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Lydia Iglesias
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Celia Delgado
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Eva Merino
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | | - Jaime Correa-Bordes
- Departamento de Ciencias Biomédicas, Universidad de Extremadura, Badajoz, Spain
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain.
| |
Collapse
|
53
|
Saha LK, Saha S, Yang X, Huang SYN, Sun Y, Jo U, Pommier Y. Replication-associated formation and repair of human topoisomerase IIIα cleavage complexes. Nat Commun 2023; 14:1925. [PMID: 37024461 PMCID: PMC10079683 DOI: 10.1038/s41467-023-37498-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
Topoisomerase IIIα (TOP3A) belongs to the conserved Type IA family of DNA topoisomerases. Here we report that human TOP3A is associated with DNA replication forks and that a "self-trapping" TOP3A mutant (TOP3A-R364W) generates cellular TOP3A DNA cleavage complexes (TOP3Accs). We show that trapped TOP3Accs that interfere with replication, induce DNA damage and genome instability. To elucidate how TOP3Accs are repaired, we explored the role of Spartan (SPRTN), the metalloprotease associated with DNA replication, which digests proteins forming DNA-protein crosslinks (DPCs). We find that SPRTN-deficient cells show elevated TOP3Accs, whereas overexpression of SPRTN lowers cellular TOP3Accs. SPRTN is deubiquitinated and epistatic with TDP2 in response to TOP3Accs. In addition, we found that MRE11 can excise TOP3Accs, and that cell cycle determines the preference for the SPRTN-TDP2 vs. the ATM-MRE11 pathways, in S vs. G2, respectively. Our study highlights the prevalence of TOP3Accs repair mechanisms to ensure normal DNA replication.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
54
|
Otahalova B, Volkova Z, Soukupova J, Kleiblova P, Janatova M, Vocka M, Macurek L, Kleibl Z. Importance of Germline and Somatic Alterations in Human MRE11, RAD50, and NBN Genes Coding for MRN Complex. Int J Mol Sci 2023; 24:ijms24065612. [PMID: 36982687 PMCID: PMC10051278 DOI: 10.3390/ijms24065612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The MRE11, RAD50, and NBN genes encode for the nuclear MRN protein complex, which senses the DNA double strand breaks and initiates the DNA repair. The MRN complex also participates in the activation of ATM kinase, which coordinates DNA repair with the p53-dependent cell cycle checkpoint arrest. Carriers of homozygous germline pathogenic variants in the MRN complex genes or compound heterozygotes develop phenotypically distinct rare autosomal recessive syndromes characterized by chromosomal instability and neurological symptoms. Heterozygous germline alterations in the MRN complex genes have been associated with a poorly-specified predisposition to various cancer types. Somatic alterations in the MRN complex genes may represent valuable predictive and prognostic biomarkers in cancer patients. MRN complex genes have been targeted in several next-generation sequencing panels for cancer and neurological disorders, but interpretation of the identified alterations is challenging due to the complexity of MRN complex function in the DNA damage response. In this review, we outline the structural characteristics of the MRE11, RAD50 and NBN proteins, the assembly and functions of the MRN complex from the perspective of clinical interpretation of germline and somatic alterations in the MRE11, RAD50 and NBN genes.
Collapse
Affiliation(s)
- Barbora Otahalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
- Department of Biochemistry, Faculty of Natural Science, Charles University in Prague, 12800 Prague, Czech Republic
| | - Zuzana Volkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine and General University Hospital in Prague, 12853 Prague, Czech Republic
- Correspondence: ; Tel.: +420-22496-4287
| |
Collapse
|
55
|
Mre11-Rad50: the DNA end game. Biochem Soc Trans 2023; 51:527-538. [PMID: 36892213 DOI: 10.1042/bst20220754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The Mre11-Rad50-(Nbs1/Xrs2) complex is an evolutionarily conserved factor for the repair of DNA double-strand breaks and other DNA termini in all kingdoms of life. It is an intricate DNA associated molecular machine that cuts, among other functions, a large variety of free and obstructed DNA termini for DNA repair by end joining or homologous recombination, yet leaves undamaged DNA intact. Recent years have brought progress in both the structural and functional analyses of Mre11-Rad50 orthologs, revealing mechanisms of DNA end recognition, endo/exonuclease activities, nuclease regulation and DNA scaffolding. Here, I review our current understanding and recent progress on the functional architecture Mre11-Rad50 and how this chromosome associated coiled-coil ABC ATPase acts as DNA topology specific endo-/exonuclease.
Collapse
|
56
|
Rinaldi C, Pizzul P, Casari E, Mangiagalli M, Tisi R, Longhese MP. The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase. Nucleic Acids Res 2023; 51:1783-1802. [PMID: 36762474 PMCID: PMC9976877 DOI: 10.1093/nar/gkad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). NHEJ is induced by the binding to DSBs of the Ku70-Ku80 heterodimer, which acts as a hub for the recruitment of downstream NHEJ components. An important issue in DSB repair is the maintenance of the DSB ends in close proximity, a function that in yeast involves the MRX complex and Sae2. Here, we provide evidence that Ku contributes to keep the DNA ends tethered to each other. The ku70-C85Y mutation, which increases Ku affinity for DNA and its persistence very close to the DSB ends, enhances DSB end-tethering and suppresses the end-tethering defect of sae2Δ cells. Impairing histone removal around DSBs either by eliminating Tel1 kinase activity or nucleosome remodelers enhances Ku persistence at DSBs and DSB bridging, suggesting that Tel1 antagonizes the Ku function in supporting end-tethering by promoting nucleosome removal and possibly Ku sliding inwards. As Ku provides a block to DSB resection, this Tel1 function can be important to regulate the mode by which DSBs are repaired.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Marco Mangiagalli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
57
|
Mengoli V, Ceppi I, Sanchez A, Cannavo E, Halder S, Scaglione S, Gaillard P, McHugh PJ, Riesen N, Pettazzoni P, Cejka P. WRN helicase and mismatch repair complexes independently and synergistically disrupt cruciform DNA structures. EMBO J 2023; 42:e111998. [PMID: 36541070 PMCID: PMC9890227 DOI: 10.15252/embj.2022111998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSβ (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.
Collapse
Affiliation(s)
- Valentina Mengoli
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Ilaria Ceppi
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Aurore Sanchez
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Elda Cannavo
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Swagata Halder
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Sarah Scaglione
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Pierre‐Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Nathalie Riesen
- Roche Pharma Research & Early Development pREDRoche Innovation CenterBaselSwitzerland
| | | | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
- Department of Biology, Institute of BiochemistryEidgenössische Technische Hochschule (ETH)ZürichSwitzerland
| |
Collapse
|
58
|
Ceppi I, Cannavo E, Bret H, Camarillo R, Vivalda F, Thakur RS, Romero-Franco A, Sartori AA, Huertas P, Guérois R, Cejka P. PLK1 regulates CtIP and DNA2 interplay in long-range DNA end resection. Genes Dev 2023; 37:119-135. [PMID: 36746606 PMCID: PMC10069449 DOI: 10.1101/gad.349981.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
DNA double-strand break (DSB) repair is initiated by DNA end resection. CtIP acts in short-range resection to stimulate MRE11-RAD50-NBS1 (MRN) to endonucleolytically cleave 5'-terminated DNA to bypass protein blocks. CtIP also promotes the DNA2 helicase-nuclease to accelerate long-range resection downstream from MRN. Here, using AlphaFold2, we identified CtIP-F728E-Y736E as a separation-of-function mutant that is still proficient in conjunction with MRN but is not able to stimulate ssDNA degradation by DNA2. Accordingly, CtIP-F728E-Y736E impairs physical interaction with DNA2. Cellular assays revealed that CtIP-F728E-Y736E cells exhibit reduced DSB-dependent chromatin-bound RPA, impaired long-range resection, and increased sensitivity to DSB-inducing drugs. Previously, CtIP was shown to be targeted by PLK1 to inhibit long-range resection, yet the underlying mechanism was unclear. We show that the DNA2-interacting region in CtIP includes the PLK1 target site at S723. The integrity of S723 in CtIP is necessary for the stimulation of DNA2, and phosphorylation of CtIP by PLK1 in vitro is consequently inhibitory, explaining why PLK1 restricts long-range resection. Our data support a model in which CDK-dependent phosphorylation of CtIP activates resection by MRN in S phase, and PLK1-mediated phosphorylation of CtIP disrupts CtIP stimulation of DNA2 to attenuate long-range resection later at G2/M.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland
| | - Hélène Bret
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Rosa Camarillo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Francesca Vivalda
- Institute of Molecular Cancer Research, University of Zürich, Zürich 8057, Switzerland
| | - Roshan Singh Thakur
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland
| | - Amador Romero-Franco
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, Zürich 8057, Switzerland
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland;
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| |
Collapse
|
59
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
60
|
Patterson-Fortin J, D'Andrea AD. Targeting Polymerase Theta (POLθ) for Cancer Therapy. Cancer Treat Res 2023; 186:285-298. [PMID: 37978141 DOI: 10.1007/978-3-031-30065-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymerase theta (POLθ) is the critical multi-domain enzyme in microhomology-mediated end-joining DNA double-stranded break repair. POLθ is expressed at low levels in normal tissue but is often overexpressed in cancers, especially in DNA repair deficient cancers, such as homologous-recombination cancers, rendering them exquisitely sensitive to POLθ inhibition secondary to synthetic lethality. Development of POLθ inhibitors is an active area of investigation with inhibitors of the N-terminal helicase domain or the C-terminal polymerase domain currently in clinical trial. Here, we review POLθ-mediated microhomology-mediated end-joining, the development of POLθ inhibitors, and the potential clinical uses of POLθ inhibitors.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Center for DNA Damage and Repair, Susan F. Smith Center for Women's Cancers (SFSCWC), The Fuller-American Cancer Society, Dana-Farber Cancer Institute, HIM 243, 450 Brookline Ave., Boston, MA, 02215, USA.
| |
Collapse
|
61
|
Kim H, Kim D, Choi H, Shin G, Lee JK. Deubiquitinase USP2 stabilizes the MRE11-RAD50-NBS1 complex at DNA double-strand break sites by counteracting the ubiquitination of NBS1. J Biol Chem 2022; 299:102752. [PMID: 36436562 PMCID: PMC9758435 DOI: 10.1016/j.jbc.2022.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs.
Collapse
Affiliation(s)
- Hyunsup Kim
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Dongmin Kim
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Hyemin Choi
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Gwangsu Shin
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Joon-Kyu Lee
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea; Department of Biology Education, Seoul National University, Seoul, Korea.
| |
Collapse
|
62
|
Mann A, Ramirez-Otero MA, De Antoni A, Hanthi YW, Sannino V, Baldi G, Falbo L, Schrempf A, Bernardo S, Loizou J, Costanzo V. POLθ prevents MRE11-NBS1-CtIP-dependent fork breakage in the absence of BRCA2/RAD51 by filling lagging-strand gaps. Mol Cell 2022; 82:4218-4231.e8. [PMID: 36400008 DOI: 10.1016/j.molcel.2022.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/16/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
POLθ promotes repair of DNA double-strand breaks (DSBs) resulting from collapsed forks in homologous recombination (HR) defective tumors. Inactivation of POLθ results in synthetic lethality with the loss of HR genes BRCA1/2, which induces under-replicated DNA accumulation. However, it is unclear whether POLθ-dependent DNA replication prevents HR-deficiency-associated lethality. Here, we isolated Xenopus laevis POLθ and showed that it processes stalled Okazaki fragments, directly visualized by electron microscopy, thereby suppressing ssDNA gaps accumulating on lagging strands in the absence of RAD51 and preventing fork reversal. Inhibition of POLθ DNA polymerase activity leaves fork gaps unprotected, enabling their cleavage by the MRE11-NBS1-CtIP endonuclease, which produces broken forks with asymmetric single-ended DSBs, hampering BRCA2-defective cell survival. These results reveal a POLθ-dependent genome protection function preventing stalled forks rupture and highlight possible resistance mechanisms to POLθ inhibitors.
Collapse
Affiliation(s)
- Anjali Mann
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Miguel Angel Ramirez-Otero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Anna De Antoni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Yodhara Wijesekara Hanthi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Vincenzo Sannino
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Giorgio Baldi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Lucia Falbo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Anna Schrempf
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Sara Bernardo
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Joanna Loizou
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Vincenzo Costanzo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
63
|
Kapoor-Vazirani P, Rath SK, Liu X, Shu Z, Bowen NE, Chen Y, Haji-Seyed-Javadi R, Daddacha W, Minten EV, Danelia D, Farchi D, Duong DM, Seyfried NT, Deng X, Ortlund EA, Kim B, Yu DS. SAMHD1 deacetylation by SIRT1 promotes DNA end resection by facilitating DNA binding at double-strand breaks. Nat Commun 2022; 13:6707. [PMID: 36344525 PMCID: PMC9640623 DOI: 10.1038/s41467-022-34578-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) has a dNTPase-independent function in promoting DNA end resection to facilitate DNA double-strand break (DSB) repair by homologous recombination (HR); however, it is not known if upstream signaling events govern this activity. Here, we show that SAMHD1 is deacetylated by the SIRT1 sirtuin deacetylase, facilitating its binding with ssDNA at DSBs, to promote DNA end resection and HR. SIRT1 complexes with and deacetylates SAMHD1 at conserved lysine 354 (K354) specifically in response to DSBs. K354 deacetylation by SIRT1 promotes DNA end resection and HR but not SAMHD1 tetramerization or dNTPase activity. Mechanistically, K354 deacetylation by SIRT1 promotes SAMHD1 recruitment to DSBs and binding to ssDNA at DSBs, which in turn facilitates CtIP ssDNA binding, leading to promotion of genome integrity. These findings define a mechanism governing the dNTPase-independent resection function of SAMHD1 by SIRT1 deacetylation in promoting HR and genome stability.
Collapse
Affiliation(s)
- Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhen Shu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yitong Chen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniela Farchi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
64
|
Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol Rev 2022; 46:fuac035. [PMID: 35810003 PMCID: PMC9779921 DOI: 10.1093/femsre/fuac035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.
Collapse
Affiliation(s)
- Jun Huang
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| | - David E Cook
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| |
Collapse
|
65
|
McCarthy-Leo C, Darwiche F, Tainsky MA. DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers (Basel) 2022; 14:5278. [PMID: 36358700 PMCID: PMC9656488 DOI: 10.3390/cancers14215278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Repair of a DNA double-strand break relies upon a pathway of proteins to identify damage, regulate cell cycle checkpoints, and repair the damage. This process is initiated by a sensor protein complex, the MRN complex, comprised of three proteins-MRE11, RAD50, and NBS1. After a double-stranded break, the MRN complex recruits and activates ATM, in-turn activating other proteins such as BRCA1/2, ATR, CHEK1/2, PALB2 and RAD51. These proteins have been the focus of many studies for their individual roles in hereditary cancer syndromes and are included on several genetic testing panels. These panels have enabled us to acquire large amounts of genetic data, much of which remains a challenge to interpret due to the presence of variants of uncertain significance (VUS). While the primary aim of clinical testing is to accurately and confidently classify variants in order to inform medical management, the presence of VUSs has led to ambiguity in genetic counseling. Pathogenic variants within MRN complex genes have been implicated in breast, ovarian, prostate, colon cancers and gliomas; however, the hundreds of VUSs within MRE11, RAD50, and NBS1 precludes the application of these data in genetic guidance of carriers. In this review, we discuss the MRN complex's role in DNA double-strand break repair, its interactions with other cancer predisposing genes, the variants that can be found within the three MRN complex genes, and the MRN complex's potential as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fatima Darwiche
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
66
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
67
|
Miné-Hattab J, Liu S, Taddei A. Repair Foci as Liquid Phase Separation: Evidence and Limitations. Genes (Basel) 2022; 13:1846. [PMID: 36292731 PMCID: PMC9602295 DOI: 10.3390/genes13101846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 07/26/2023] Open
Abstract
In response to DNA double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less condensates or "foci". The formation of these foci and their disassembly within the proper time window are essential for genome integrity. However, how these membrane-less sub-compartments are formed, maintained and disassembled remains unclear. Recently, several studies across different model organisms proposed that DNA repair foci form via liquid phase separation. In this review, we discuss the current research investigating the physical nature of repair foci. First, we present the different models of condensates proposed in the literature, highlighting the criteria to differentiate them. Second, we discuss evidence of liquid phase separation at DNA repair sites and the limitations of this model to fully describe structures formed in response to DNA damage. Finally, we discuss the origin and possible function of liquid phase separation for DNA repair processes.
Collapse
Affiliation(s)
| | | | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, CEDEX 05, 75248 Paris, France
| |
Collapse
|
68
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
69
|
Gómez-Cabello D, Pappas G, Aguilar-Morante D, Dinant C, Bartek J. CtIP-dependent nascent RNA expression flanking DNA breaks guides the choice of DNA repair pathway. Nat Commun 2022; 13:5303. [PMID: 36085345 PMCID: PMC9463442 DOI: 10.1038/s41467-022-33027-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The RNA world is changing our views about sensing and resolution of DNA damage. Here, we develop single-molecule DNA/RNA analysis approaches to visualize how nascent RNA facilitates the repair of DNA double-strand breaks (DSBs). RNA polymerase II (RNAPII) is crucial for DSB resolution in human cells. DSB-flanking, RNAPII-generated nascent RNA forms RNA:DNA hybrids, guiding the upstream DNA repair steps towards favouring the error-free Homologous Recombination (HR) pathway over Non-Homologous End Joining. Specific RNAPII inhibitor, THZ1, impairs recruitment of essential HR proteins to DSBs, implicating nascent RNA in DNA end resection, initiation and execution of HR repair. We further propose that resection factor CtIP interacts with and helps re-activate RNAPII when paused by the RNA:DNA hybrids, collectively promoting faithful repair of chromosome breaks to maintain genomic integrity. RNA has been implicated in DNA repair. This work shows that the interplay of RNAPII-generated nascent RNA, RNA:DNA hybrids and the resection factor CtIP guide DNA double strand break repair pathway choice towards error-free homologous recombination.
Collapse
Affiliation(s)
- Daniel Gómez-Cabello
- Genome Integrity Group, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark. .,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain. .,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain.
| | - George Pappas
- Genome Integrity Group, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark
| | - Diana Aguilar-Morante
- Genome Integrity Group, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Christoffel Dinant
- Genome Integrity Group, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark. .,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Scheele's vag 2, Stockholm, 17177, Sweden.
| |
Collapse
|
70
|
Zhang T, Yang H, Zhou Z, Bai Y, Wang J, Wang W. Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin. Nat Commun 2022; 13:5133. [PMID: 36050397 PMCID: PMC9436968 DOI: 10.1038/s41467-022-32920-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
DNA end resection is delicately regulated through various types of post-translational modifications to initiate homologous recombination, but the involvement of SUMOylation in this process remains incompletely understood. Here, we show that MRE11 requires SUMOylation to shield it from ubiquitin-mediated degradation when resecting damaged chromatin. Upon DSB induction, PIAS1 promotes MRE11 SUMOylation on chromatin to initiate DNA end resection. Then, MRE11 is deSUMOylated by SENP3 mainly after it has moved away from DSB sites. SENP3 deficiency results in MRE11 degradation failure and accumulation on chromatin, causing genome instability. We further show that cancer-related MRE11 mutants with impaired SUMOylation exhibit compromised DNA repair ability. Thus, we demonstrate that MRE11 SUMOylation in coordination with ubiquitylation is dynamically controlled by PIAS1 and SENP3 to facilitate DNA end resection and maintain genome stability. DNA end resection initiating DNA repair by homologous recombination needs to be delicately regulated. This study shows the interplay between SUMOylation and ubiquitylation maintains MRE11 homeostasis on chromatin, thus facilitating genome stability.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Han Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zenan Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yongtai Bai
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
71
|
Halder S, Sanchez A, Ranjha L, Reginato G, Ceppi I, Acharya A, Anand R, Cejka P. Double-stranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2. Mol Cell 2022; 82:3553-3565.e5. [PMID: 36070766 DOI: 10.1016/j.molcel.2022.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland.
| |
Collapse
|
72
|
Qiu Z, Hao S, Song S, Zhang R, Yan T, Lu Z, Wang H, Jia Z, Zheng J. PLK1-mediated phosphorylation of PPIL2 regulates HR via CtIP. Front Cell Dev Biol 2022; 10:902403. [PMID: 36092721 PMCID: PMC9452783 DOI: 10.3389/fcell.2022.902403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is an error-free DNA double-strand break (DSB) repair pathway, which safeguards genome integrity and cell viability. Human C-terminal binding protein (CtBP)—interacting protein (CtIP) is a central regulator of the pathway which initiates the DNA end resection in HR. Ubiquitination modification of CtIP is known in some cases to control DNA resection and promote HR. However, it remains unclear how cells restrain CtIP activity in unstressed cells. We show that the ubiquitin E3 ligase PPIL2 is recruited to DNA damage sites through interactions with an HR-related protein ZNF830, implying PPIL2’s involvement in DNA repair. We found that PPIL2 interacts with and ubiquitinates CtIP at the K426 site, representing a hereunto unknown ubiquitination site. Ubiquitination of CtIP by PPIL2 suppresses HR and DNA resection. This inhibition of PPIL2 is also modulated by phosphorylation at multiple sites by PLK1, which reduces PPIL2 ubiquitination of CtIP. Our findings reveal new regulatory complexity in CtIP ubiquitination in DSB repair. We propose that the PPIL2-dependent CtIP ubiquitination prevents CtIP from interacting with DNA, thereby inhibiting HR.
Collapse
Affiliation(s)
- Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Shikai Song
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Tingyu Yan
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhifang Lu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- *Correspondence: Zongchao Jia, ; Jimin Zheng,
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China
- *Correspondence: Zongchao Jia, ; Jimin Zheng,
| |
Collapse
|
73
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
74
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
75
|
Kissling VM, Reginato G, Bianco E, Kasaciunaite K, Tilma J, Cereghetti G, Schindler N, Lee SS, Guérois R, Luke B, Seidel R, Cejka P, Peter M. Mre11-Rad50 oligomerization promotes DNA double-strand break repair. Nat Commun 2022; 13:2374. [PMID: 35501303 PMCID: PMC9061753 DOI: 10.1038/s41467-022-29841-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S. cerevisiae Mre11-Rad50 with or without Xrs2 forms higher-order assemblies in solution and on DNA. Rad50 mediates such oligomerization, and mutations in a conserved Rad50 beta-sheet enhance or disrupt oligomerization. We demonstrate that Mre11-Rad50-Xrs2 oligomerization facilitates foci formation, DNA damage signaling, repair, and telomere maintenance in vivo. Mre11-Rad50 oligomerization does not affect its exonuclease activity but drives endonucleolytic cleavage at multiple sites on the 5'-DNA strand near double-strand breaks. Interestingly, mutations in the human RAD50 beta-sheet are linked to hereditary cancer predisposition and our findings might provide insights into their potential role in chemoresistance.
Collapse
Affiliation(s)
- Vera M Kissling
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland
| | - Giordano Reginato
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500, Bellinzona, Switzerland
| | - Eliana Bianco
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Janny Tilma
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland
| | - Gea Cereghetti
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland
| | - Natalie Schindler
- Institute for Developmental and Neurobiology (IDN), Johannes Gutenberg University, 55128, Mainz, Germany
| | - Sung Sik Lee
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland
- Scientific Center for Optical and Electron Microscopy, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Brian Luke
- Institute for Developmental and Neurobiology (IDN), Johannes Gutenberg University, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Petr Cejka
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland.
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500, Bellinzona, Switzerland.
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093, Zürich, Switzerland.
| |
Collapse
|
76
|
Nail AN, McCaffrey LM, Banerjee M, Ferragut Cardoso AP, States JC. Chronic arsenic exposure suppresses ATM pathway activation in human keratinocytes. Toxicol Appl Pharmacol 2022; 446:116042. [DOI: 10.1016/j.taap.2022.116042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023]
|
77
|
Xue C, Salunkhe SJ, Tomimatsu N, Kawale AS, Kwon Y, Burma S, Sung P, Greene EC. Bloom helicase mediates formation of large single-stranded DNA loops during DNA end processing. Nat Commun 2022; 13:2248. [PMID: 35473934 PMCID: PMC9042962 DOI: 10.1038/s41467-022-29937-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Bloom syndrome (BS) is associated with a profoundly increased cancer risk and is caused by mutations in the Bloom helicase (BLM). BLM is involved in the nucleolytic processing of the ends of DNA double-strand breaks (DSBs), to yield long 3' ssDNA tails that serve as the substrate for break repair by homologous recombination (HR). Here, we use single-molecule imaging to demonstrate that BLM mediates formation of large ssDNA loops during DNA end processing. A BLM mutant lacking the N-terminal domain (NTD) retains vigorous in vitro end processing activity but fails to generate ssDNA loops. This same mutant supports DSB end processing in cells, however, these cells do not form RAD51 DNA repair foci and the processed DSBs are channeled into synthesis-dependent strand annealing (SSA) instead of HR-mediated repair, consistent with a defect in RAD51 filament formation. Together, our results provide insights into BLM functions during homologous recombination.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Sameer J Salunkhe
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Nozomi Tomimatsu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ajinkya S Kawale
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
78
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
79
|
Chen X, Zhang Q, Dang X, Fan J, Song T, Li Z, Duan N, Zhang W. The CtIP-CtBP1/2-HDAC1-AP1 transcriptional complex is required for the transrepression of DNA damage modulators in the pathogenesis of osteosarcoma. Transl Oncol 2022; 21:101429. [PMID: 35452995 PMCID: PMC9047009 DOI: 10.1016/j.tranon.2022.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
CtIP couples with CtBP1/2 heterodimer, HDAC1, and two subunits of AP1 transcription factor to assemble a complex. The CtIP-CtBP1/2-HDAC1-AP1 complex is required for the inhibition of MLH1, MSH3, BRCA1, and CDKN1A in osteosarcoma cells. Overexpression of MLH1, MSH3, BRCA1, and CDKN1A in osteosarcoma cells inhibits tumor cell growth in vitro and in vivo.
Most tumors, including osteosarcomas, have deficiencies in DNA damage repair. However, the regulatory mechanisms underlying dysregulation of DNA damage repair genes are still being investigated. In this study, we reveal that C-terminal binding protein (CtBP) interacting protein (CtIP) couples with three transcriptional regulators, CtBP1/2 heterodimer, histone deacetylase 1 (HDAC1), and two subunits of the activating protein 1 (AP1) transcription factor to assemble a transcriptional complex. This complex specifically controls the expression of four genes involved in DNA damage and repair processes: MutL homolog 1 (MLH1), MutS Homolog 3 (MSH3), breast cancer type 1 (BRCA1), and cyclin dependent kinase inhibitor 1A (CDKN1A). Chromatin immunoprecipitation (ChIP) assay results revealed that the CtIP-CtBP1/2-HDAC1-AP1 complex regulated these four genes by binding to their promoters through the TGAT/CTCA consensus sequence. The depletion of CtIP, CtBP1/2, and HDAC1 increased the expression levels of MLH1, MSH3, BRCA1, and CDKN1A and inhibited in vitro and in vivo osteosarcoma cell growth. Overexpression of MLH1, MSH3, BRCA1, or CDKN1A in osteosarcoma cells can reduce cell viability, colony formation, cell migration, and tumor growth. Our findings suggest that the CtIP-CtBP1/2-HDAC1-AP1 complex is required for mediation of DNA damage processes for the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Xun Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China; Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Qian Zhang
- The Department of Surgery Room, Xi'an Daxing Hospital, Xi'an, Shaanxi 710016, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Jinzhu Fan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China
| | - Zhong Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China.
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Rd, Beilin District, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
80
|
Muoio D, Laspata N, Fouquerel E. Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cell Mol Life Sci 2022; 79:215. [PMID: 35348914 PMCID: PMC8964661 DOI: 10.1007/s00018-022-04235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial for maintaining the integrity of telomeres. Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, utilize their unique structure and associated set of proteins to orchestrate the mechanisms necessary for their own protection and replication. While the functions of tankyrases 1 and 2 at telomeres are well known, several studies have also brought PARP1, 2 and 3 to the forefront of telomere protection. The singular quality of the telomeric environment has highlighted protein interactions and molecular pathways distinct from those described throughout the genome. The aim of this review is to provide an overview of the current knowledge on the multiple roles of PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 in the maintenance and preservation of telomere integrity.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th street, Philadelphia, PA, 19107, USA
| | - Elise Fouquerel
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
81
|
Park D, Gharghabi M, Reczek CR, Plow R, Yungvirt C, Aldaz CM, Huebner K. Wwox Binding to the Murine Brca1-BRCT Domain Regulates Timing of Brip1 and CtIP Phospho-Protein Interactions with This Domain at DNA Double-Strand Breaks, and Repair Pathway Choice. Int J Mol Sci 2022; 23:ijms23073729. [PMID: 35409089 PMCID: PMC8999063 DOI: 10.3390/ijms23073729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Wwox-deficient human cells show elevated homologous recombination, leading to resistance to killing by double-strand break-inducing agents. Human Wwox binds to the Brca1 981-PPLF-984 Wwox-binding motif, likely blocking the pChk2 phosphorylation site at Brca1-S988. This phosphorylation site is conserved across mammalian species; the PPLF motif is conserved in primates but not in rodents. We now show that murine Wwox does not bind Brca1 near the conserved mouse Brca1 phospho-S971 site, leaving it open for Chk2 phosphorylation and Brca1 activation. Instead, murine Wwox binds to Brca1 through its BRCT domain, where pAbraxas, pBrip1, and pCtIP, of the A, B, and C binding complexes, interact to regulate double-strand break repair pathway response. In Wwox-deficient mouse cells, the Brca1-BRCT domain is thus accessible for immediate binding of these phospho-proteins. We confirm elevated homologous recombination in Wwox-silenced murine cells, as in human cells. Wwox-deficient murine cells showed increased ionizing radiation-induced Abraxas, Brca1, and CtIP foci and long resected single-strand DNA, early after ionizing radiation. Wwox deletion increased the basal level of Brca1-CtIP interaction and the expression level of the MRN-CtIP protein complex, key players in end-resection, and facilitated Brca1 release from foci. Inhibition of phospho-Chk2 phosphorylation of Brca1-S971 delays the end-resection; the delay of premature end-resection by combining Chk2 inhibition with ionizing radiation or carboplatin treatment restored ionizing radiation and platinum sensitivity in Wwox-deficient murine cells, as in human cells, supporting the use of murine in vitro and in vivo models in preclinical cancer treatment research.
Collapse
Affiliation(s)
- Dongju Park
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Department of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Colleen R. Reczek
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Rebecca Plow
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - Charles Yungvirt
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA;
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| |
Collapse
|
82
|
Fitieh A, Locke AJ, Mashayekhi F, Khaliqdina F, Sharma AK, Ismail IH. BMI-1 regulates DNA end resection and homologous recombination repair. Cell Rep 2022; 38:110536. [PMID: 35320715 DOI: 10.1016/j.celrep.2022.110536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/12/2021] [Accepted: 02/28/2022] [Indexed: 11/03/2022] Open
Abstract
BMI-1 is an essential regulator of transcriptional silencing during development. Recently, the role of BMI-1 in the DNA damage response has gained much attention, but the exact mechanism of how BMI-1 participates in the process is unclear. Here, we establish a role for BMI-1 in the repair of DNA double-strand breaks by homologous recombination (HR), where it promotes DNA end resection. Mechanistically, BMI-1 mediates DNA end resection by facilitating the recruitment of CtIP, thus allowing RPA and RAD51 accumulation at DNA damage sites. Interestingly, treatment with transcription inhibitors rescues the DNA end resection defects of BMI-1-depleted cells, suggesting BMI-1-dependent transcriptional silencing mediates DNA end resection. Moreover, we find that H2A ubiquitylation at K119 (H2AK119ub) promotes end resection. Taken together, our results identify BMI-1-mediated transcriptional silencing and promotion of H2AK119ub deposition as essential regulators of DNA end resection and thus the progression of HR.
Collapse
Affiliation(s)
- Amira Fitieh
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt; Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Andrew J Locke
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fajr Khaliqdina
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ajit K Sharma
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ismail Hassan Ismail
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt; Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
83
|
Yasuhara T, Kato R, Yamauchi M, Uchihara Y, Zou L, Miyagawa K, Shibata A. RAP80 suppresses the vulnerability of R-loops during DNA double-strand break repair. Cell Rep 2022; 38:110335. [PMID: 35108530 DOI: 10.1016/j.celrep.2022.110335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA (ssDNA) arising as an intermediate of cellular processes on DNA is a potential vulnerability of the genome unless it is appropriately protected. Recent evidence suggests that R-loops, consisting of ssDNA and DNA-RNA hybrids, can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. However, how the vulnerability of ssDNA in R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops, chromosome translocations, and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.
Collapse
Affiliation(s)
- Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - Reona Kato
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motohiro Yamauchi
- Hospital Campus Laboratory, Radioisotope Center, Central Institute of Radioisotope Science and Safety Management, Kyushu University, Fukuoka, Japan
| | - Yuki Uchihara
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, Japan
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
84
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
85
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
86
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
87
|
Swan RL, Cowell IG, Austin CA. Mechanisms to Repair Stalled Topoisomerase II-DNA Covalent Complexes. Mol Pharmacol 2022; 101:24-32. [PMID: 34689119 DOI: 10.1124/molpharm.121.000374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biologic processes, such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex through the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes, which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes, facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here, we review recent progress in the understanding of the processing of TOP2 DNA covalent complexes, the basic components and mechanisms, as well as the additional layer of complexity posed by the post-translational modifications that modulate these pathways. SIGNIFICANCE STATEMENT: Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications, such as ubiquitination and SUMOylation, are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post-translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.
Collapse
Affiliation(s)
- Rebecca L Swan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
88
|
Interaction of Wwox with Brca1 and associated complex proteins prevents premature resection at double-strand breaks and aberrant homologous recombination. DNA Repair (Amst) 2021; 110:103264. [PMID: 34998176 DOI: 10.1016/j.dnarep.2021.103264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022]
Abstract
Down regulation of Wwox protein expression occurs in many cancers, contributing to insensitivity to ionizing radiation (IR) and platinum drug treatments. Patients with reduced Wwox expression in their cancer tissue show decreased overall survival following these treatments, in accord with our earlier finding that reduced Wwox protein expression in cancers is associated with changes in choice of DNA double-strand break (DSB) repair pathway. Our current investigation of mechanisms underlying the initial choice of repair by homologous recombination/single-strand annealing (HR/SSA) in Wwox-deficient cells, showed immediate DNA end-resection at DSBs following IR, abrogating initial repair by the expected non-homologous end-joining (NHEJ) pathway. Mechanisms supporting the expected choice of DSB repair by NHEJ in Wwox-sufficient cells are: 1) direct recruitment of Wwox protein binding to Brca1 through the Brca1 981PPLF984 Wwox-binding motif; 2) possible Wwox blocking of Brca1-Rad50 interaction and of Brca1 activation by Chk2 phosphorylation of Brca1 S988; 3) Wwox suppression of Brca1 interaction with the B and C complex proteins, Brip1 and CtIP, thereby delaying the process of DSB end-resection post-IR. Wwox deficiency, instead, leads to early formation of the Brca1-CtIP/MRN complex at induced DSBs, stimulating immediate post-IR end-resection. This premature resection at DNA DSBs leads to inappropriate HR/SSA repair not restricted to late S/G2 cell cycle phases, and increases mutations in genomes of radiation or platinum-resistant colonies. Prevention of premature initiation of end-resection, by combining Chk2 inhibition with IR or carboplatin treatment, successfully sensitized IR and platinum-resistant Wwox-deficient cells by synthetic lethality, but did not alter response of Wwox-sufficient cells. Our results establish Wwox as a biomarker for treatment response and provide potential targets, such as Chk2, for reversal of treatment resistance.
Collapse
|
89
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
90
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
91
|
Feng W, Smith CM, Simpson DA, Gupta GP. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. Semin Radiat Oncol 2021; 32:29-41. [PMID: 34861993 DOI: 10.1016/j.semradonc.2021.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.
Collapse
Affiliation(s)
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program
| | | | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program; Department of Radiation Oncology; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
92
|
Yan S, Gao S, Zhou P. Multi-functions of exonuclease 1 in DNA damage response and cancer susceptibility. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
93
|
Vu TV, Das S, Nguyen CC, Kim J, Kim JY. Single-strand annealing: Molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing. Biotechnol J 2021; 17:e2100413. [PMID: 34846104 DOI: 10.1002/biot.202100413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spontaneous double-stranded DNA breaks (DSBs) frequently occur within the genome of all living organisms and must be well repaired for survival. Recently, more important roles of the DSB repair pathways that were previously thought to be minor pathways, such as single-strand annealing (SSA), have been shown. Nevertheless, the biochemical mechanisms and applications of the SSA pathway in genome editing have not been updated. PURPOSE AND SCOPE Understanding the molecular mechanism of SSA is important to design potential applications in gene editing. This review provides insights into the recent progress of SSA studies and establishes a model for their potential applications in precision genome editing. SUMMARY AND CONCLUSION The SSA mechanism involved in DNA DSB repair appears to be activated by a complex signaling cascade starting with broken end sensing and 5'-3' resection to reveal homologous repeats on the 3' ssDNA overhangs that flank the DSB. Annealing the repeats would help to amend the discontinuous ends and restore the intact genome, resulting in the missing of one repeat and the intervening sequence between the repeats. We proposed a model for CRISPR-Cas-based precision insertion or replacement of DNA fragments to take advantage of the characteristics. The proposed model can add a tool to extend the choice for precision gene editing. Nevertheless, the model needs to be experimentally validated and optimized with SSA-favorable conditions for practical applications.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Bac Tu Liem, Hanoi, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Cam Chau Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
94
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.
Collapse
Affiliation(s)
- Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; .,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
95
|
Chen S, Chen D, Liu B, Haisma HJ. Modulating CRISPR/Cas9 genome-editing activity by small molecules. Drug Discov Today 2021; 27:951-966. [PMID: 34823004 DOI: 10.1016/j.drudis.2021.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genome engineering has become a standard procedure for creating genetic and epigenetic changes of DNA molecules in basic biology, biotechnology, and medicine. However, its versatile applications have been hampered by its overall low precise gene modification efficiency and uncontrollable prolonged Cas9 activity. Therefore, overcoming these problems could broaden the therapeutic use of CRISPR/Cas9-based technologies. Here, we review small molecules with the clinical potential to precisely modulate CRISPR/Cas9-mediated genome-editing activity and discuss their mechanisms of action. Based on these data, we suggest that direct-acting small molecules for Cas9 are more suitable for precisely regulating Cas9 activity. These findings provide useful information for the identification of novel small-molecule enhancers and inhibitors of Cas9 and Cas9-associated endonucleases.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA(1)
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands.
| |
Collapse
|
96
|
Bakr A, Hey J, Sigismondo G, Liu CS, Sadik A, Goyal A, Cross A, Iyer RL, Müller P, Trauernicht M, Breuer K, Lutsik P, Opitz C, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms and its loss confers sensitivity to PARP inhibition. Nucleic Acids Res 2021; 49:11666-11689. [PMID: 34718742 PMCID: PMC8599806 DOI: 10.1093/nar/gkab964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The inhibitor of DNA-binding 3 (ID3) is a transcriptional regulator that limits interaction of basic helix-loop-helix transcription factors with their target DNA sequences. We previously reported that ID3 loss is associated with mutational signatures linked to DNA repair defects. Here we demonstrate that ID3 exhibits a dual role to promote DNA double-strand break (DSB) repair, particularly homologous recombination (HR). ID3 interacts with the MRN complex and RECQL helicase to activate DSB repair and it facilitates RAD51 loading and downstream steps of HR. In addition, ID3 promotes the expression of HR genes in response to ionizing radiation by regulating both chromatin accessibility and activity of the transcription factor E2F1. Consistently, analyses of TCGA cancer patient data demonstrate that low ID3 expression is associated with impaired HR. The loss of ID3 leads to sensitivity of tumor cells to PARP inhibition, offering new therapeutic opportunities in ID3-deficient tumors.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Imperial College London, London, SW7 2AZ, UK
| | - Ramya Lakshmana Iyer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Patrick Müller
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Max Trauernicht
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, INF672, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
97
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
98
|
Sanchez-Bailon MP, Choi SY, Dufficy ER, Sharma K, McNee GS, Gunnell E, Chiang K, Sahay D, Maslen S, Stewart GS, Skehel JM, Dreveny I, Davies CC. Arginine methylation and ubiquitylation crosstalk controls DNA end-resection and homologous recombination repair. Nat Commun 2021; 12:6313. [PMID: 34728620 PMCID: PMC8564520 DOI: 10.1038/s41467-021-26413-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
Cross-talk between distinct protein post-translational modifications is critical for an effective DNA damage response. Arginine methylation plays an important role in maintaining genome stability, but how this modification integrates with other enzymatic activities is largely unknown. Here, we identify the deubiquitylating enzyme USP11 as a previously uncharacterised PRMT1 substrate, and demonstrate that the methylation of USP11 promotes DNA end-resection and the repair of DNA double strand breaks (DSB) by homologous recombination (HR), an event that is independent from another USP11-HR activity, the deubiquitylation of PALB2. We also show that PRMT1 is a ubiquitylated protein that it is targeted for deubiquitylation by USP11, which regulates the ability of PRMT1 to bind to and methylate MRE11. Taken together, our findings reveal a specific role for USP11 during the early stages of DSB repair, which is mediated through its ability to regulate the activity of the PRMT1-MRE11 pathway.
Collapse
Affiliation(s)
- Maria Pilar Sanchez-Bailon
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Soo-Youn Choi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elizabeth R Dufficy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Karan Sharma
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Emma Gunnell
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kelly Chiang
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Debashish Sahay
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Clare C Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
99
|
Benitez EK, Lomova Kaufman A, Cervantes L, Clark DN, Ayoub PG, Senadheera S, Osborne K, Sanchez JM, Crisostomo RV, Wang X, Reuven N, Shaul Y, Hollis RP, Romero Z, Kohn DB. Global and Local Manipulation of DNA Repair Mechanisms to Alter Site-Specific Gene Editing Outcomes in Hematopoietic Stem Cells. Front Genome Ed 2021; 2:601541. [PMID: 34713224 PMCID: PMC8525354 DOI: 10.3389/fgeed.2020.601541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Monogenic disorders of the blood system have the potential to be treated by autologous stem cell transplantation of ex vivo genetically modified hematopoietic stem and progenitor cells (HSPCs). The sgRNA/Cas9 system allows for precise modification of the genome at single nucleotide resolution. However, the system is reliant on endogenous cellular DNA repair mechanisms to mend a Cas9-induced double stranded break (DSB), either by the non-homologous end joining (NHEJ) pathway or by the cell-cycle regulated homology-directed repair (HDR) pathway. Here, we describe a panel of ectopically expressed DNA repair factors and Cas9 variants assessed for their ability to promote gene correction by HDR or inhibit gene disruption by NHEJ at the HBB locus. Although transient global overexpression of DNA repair factors did not improve the frequency of gene correction in primary HSPCs, localization of factors to the DSB by fusion to the Cas9 protein did alter repair outcomes toward microhomology-mediated end joining (MMEJ) repair, an HDR event. This strategy may be useful when predictable gene editing outcomes are imperative for therapeutic success.
Collapse
Affiliation(s)
- Elizabeth K Benitez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anastasia Lomova Kaufman
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lilibeth Cervantes
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Danielle N Clark
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul G Ayoub
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shantha Senadheera
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kyle Osborne
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julie M Sanchez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ralph Valentine Crisostomo
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Roger P Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zulema Romero
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
100
|
van de Kamp G, Heemskerk T, Kanaar R, Essers J. DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation. Front Genet 2021; 12:738230. [PMID: 34659358 PMCID: PMC8514742 DOI: 10.3389/fgene.2021.738230] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023] Open
Abstract
The superior dose distribution of particle radiation compared to photon radiation makes it a promising therapy for the treatment of tumors. However, the cellular responses to particle therapy and especially the DNA damage response (DDR) is not well characterized. Compared to photons, particles are thought to induce more closely spaced DNA lesions instead of isolated lesions. How this different spatial configuration of the DNA damage directs DNA repair pathway usage, is subject of current investigations. In this review, we describe recent insights into induction of DNA damage by particle radiation and how this shapes DNA end processing and subsequent DNA repair mechanisms. Additionally, we give an overview of promising DDR targets to improve particle therapy.
Collapse
Affiliation(s)
- Gerarda van de Kamp
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tim Heemskerk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|