51
|
BRD4S interacts with viral E2 protein to limit human papillomavirus late transcription. J Virol 2021; 95:JVI.02032-20. [PMID: 33731454 PMCID: PMC8139696 DOI: 10.1128/jvi.02032-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The E2 protein encoded by human papillomaviruses (HPV) is a sequence-specific DNA-binding protein that recruits viral and cellular proteins. Bromodomain-containing protein 4 (BRD4) is a highly conserved interactor for E2 proteins that has been linked to E2's functions as transcription modulator, activator of viral replication and segregation factor for viral genomes. In addition to BRD4, a short form of BRD4 (BRD4S) is expressed from the BRD4 gene which lacks the C-terminal domain of BRD4. E2 proteins interact with the C-terminal motif (CTM) of BRD4, but a recent study suggested that the phospho-dependent interaction domain (PDID) and the basic interaction domain (BID) in BRD4 also bind to E2. These domains are also present in BRD4S. We now find that HPV31 E2 interacts with the isolated PDID domain in living cells and also with BRD4S which is present in detectable amounts in HPV-positive cell lines and is recruited into HPV31 E1 and E2 induced replication foci. Overexpression and knockdown experiments surprisingly indicate that BRD4S inhibits activities of E2. In line with that, the specific knockdown of BRD4S in the HPV31-positive CIN612-9E cell line induces mainly late viral transcripts. This occurs only in undifferentiated but not differentiated cells in which the productive viral replication cycle is induced. These data suggest that the BRD4S-E2 interaction is important to prevent HPV late gene expression in undifferentiated keratinocytes which may contribute to immune evasion and HPV persistence.ImportanceHuman papillomaviruses (HPV) have coevolved with their host by using cellular factors like bromodomain-containing protein 4 (BRD4) to control viral processes such as genome maintenance, gene expression and replication. We here show that, in addition to the C-terminal motif in BRD4, the phospho-dependent interaction domain in BRD4 interacts with E2 proteins which enable the recruitment of BRD4S, the short isoform of BRD4, to E2. Knock-down and overexpression of BRD4S reveals that BRD4S is a negative regulator of E2 activities. Importantly, the knockdown of BRD4S induces mainly L1 transcripts in undifferentiated CIN612-9E cells, which maintain replicating HPV31 genomes. Our study reveals an inhibitory role of BRD4S on HPV transcription, which may serve as an immune escape mechanism by the suppression of L1 transcripts and thus contribute to the establishment of persistent HPV infections.
Collapse
|
52
|
Svensson JP. Targeting Epigenetics to Cure HIV-1: Lessons From (and for) Cancer Treatment. Front Cell Infect Microbiol 2021; 11:668637. [PMID: 34026665 PMCID: PMC8137950 DOI: 10.3389/fcimb.2021.668637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) integrates in the host genome as a provirus resulting in a long-lived reservoir of infected CD4 cells. As a provirus, HIV-1 has several aspects in common with an oncogene. Both the HIV-1 provirus and oncogenes only cause disease when expressed. A successful cure of both cancer and HIV-1 includes elimination of all cells with potential to regenerate the disease. For over two decades, epigenetic drugs developed against cancer have been used in the HIV-1 field to modulate the state of the proviral chromatin. Cells with an intact HIV-1 provirus exist in three states of infection: productive, inducible latent, and non-inducible latent. Here focus is on HIV-1, transcription control and chromatin structure; how the inducible proviruses are maintained in a chromatin structure that allows reactivation of transcription; and how transcription switches between different stages to allow for an abundance of different transcripts from a single promoter. Recently it was shown that a functional cure of HIV can be achieved by encapsulating all intact HIV-1 proviruses in heterochromatin, giving hope that epigenetic interventions may be used to end the HIV-1 epidemic.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Huddinge, Sweden
| |
Collapse
|
53
|
Li KC, Girardi E, Kartnig F, Grosche S, Pemovska T, Bigenzahn JW, Goldmann U, Sedlyarov V, Bensimon A, Schick S, Lin JMG, Gürtl B, Reil D, Klavins K, Kubicek S, Sdelci S, Superti-Furga G. Cell-surface SLC nucleoside transporters and purine levels modulate BRD4-dependent chromatin states. Nat Metab 2021; 3:651-664. [PMID: 33972798 PMCID: PMC7612075 DOI: 10.1038/s42255-021-00386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.
Collapse
Affiliation(s)
- Kai-Chun Li
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Enrico Girardi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Kartnig
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sarah Grosche
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tea Pemovska
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Goldmann
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sandra Schick
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jung-Ming G Lin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Gürtl
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Reil
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sara Sdelci
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
54
|
Rouka E, Gourgoulianis KI, Zarogiannis SG. In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1057-L1063. [PMID: 33822639 PMCID: PMC8203416 DOI: 10.1152/ajplung.00443.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Viroporins, integral viral membrane ion channel proteins, interact with host-cell proteins deregulating physiological processes and activating inflammasomes. Severity of COVID-19 might be associated with hyperinflammation, thus we aimed at the complete immunoinformatic analysis of the SARS-CoV-2 viroporin E, P0DTC4. We also identified the human proteins interacting with P0DTC4 and the enriched molecular functions of the corresponding genes. The complete sequence of P0DTC4 in FASTA format was processed in 10 databases relative to secondary and tertiary protein structure analyses and prediction of optimal vaccine epitopes. Three more databases were accessed for the retrieval and the molecular functional characterization of the P0DTC4 human interactors. The immunoinformatics analysis resulted in the identification of 4 discontinuous B-cell epitopes along with 1 linear B-cell epitope and 11 T-cell epitopes which were found to be antigenic, immunogenic, nonallergen, nontoxin, and unable to induce autoimmunity thus fulfilling prerequisites for vaccine design. The functional enrichment analysis showed that the predicted host interactors of P0DTC4 target the cellular acetylation network. Two of the identified host-cell proteins – BRD2 and BRD4 – have been shown to be promising targets for antiviral therapy. Thus, our findings have implications for COVID-19 therapy and indicate that viroporin E could serve as a promising vaccine target against SARS-CoV-2. Validation experiments are required to complement these in silico results.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
55
|
Feng Z, Chen A, Shi J, Zhou D, Shi W, Qiu Q, Liu X, Huang W, Li J, Qian H, Zhang W. Design, synthesis, and biological activity evaluation of a series of novel sulfonamide derivatives as BRD4 inhibitors against acute myeloid leukemia. Bioorg Chem 2021; 111:104849. [PMID: 33798846 DOI: 10.1016/j.bioorg.2021.104849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Accumulating researches have contributed much effect to discover novel chemotherapeutic drug for leukemia with expeditious curative effect, of which bromodomain-containing protein 4 (BRD4) inhibitor is considered as a eutherapeutic drug which has presented efficient cell proliferation suppression effect. In this study, we disclosed a series of phenylisoxazole sulfonamide derivatives as potent BRD4 inhibitors. Especially, compound 58 exhibited robust inhibitory potency toward BRD4-BD1 and BRD4-BD2 with IC50 values of 70 and 140 nM, respectively. In addition, compound 58 significantly suppressed cell proliferation of leukemia cell lines HL-60 and MV4-11 with IC50 values of 1.21 and 0.15 μM. In-depth study of the biological mechanism of compound 58 exerted its tumor suppression effect via down-regulating the level of oncogene c-myc. Moreover, in vivo pharmacokinetics (PK) study was conducted and the results demonstrated better pharmacokinetics features versus (+)-JQ1. In summary, our study discovers that compound 58 represents as a novel BRD4 inhibitor for further investigation in development of leukemia inhibitor with potentiality.
Collapse
Affiliation(s)
- Ziying Feng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Aiping Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, PR China; Center for Drug Evaluation, NMPA, 128 Jianguo Road, Beijing 100022, PR China
| | - Jing Shi
- Center for Drug Evaluation, NMPA, 128 Jianguo Road, Beijing 100022, PR China
| | - Daoguang Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xinhong Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jieming Li
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Wenjie Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
56
|
Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM. A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent HIV-1 Cure. Curr HIV Res 2021; 19:14-26. [PMID: 32819259 PMCID: PMC8573729 DOI: 10.2174/1570162x18999200819172009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Background During the past 35 years, highly effective ART has saved the lives of millions of people worldwide by suppressing viruses to undetectable levels. However, this does not translate to the absence of viruses in the body as HIV persists in latent reservoirs. Indeed, rebounded HIV has been recently observed in the Mississippi and California infants previously thought to have been cured. Hence, much remains to be learned about HIV latency, and the search for the best strategy to eliminate the reservoir is the direction current research is taking. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and is applicable in human therapy is prudent for HIV eradication to be more feasible. Objectives The main barriers preventing the cure of HIV with antiretroviral therapy have been identified, progress has been made in the understanding of the therapeutic targets to which potentially eradicating drugs could be directed, integrative strategies have been proposed, and clinical trials with various alternatives are underway. The aim of this review is to provide an update on the main advances in HIV eradication, with particular emphasis on the obstacles and the different strategies proposed. The core challenges of each strategy are highlighted and the most promising strategy and new research avenues in HIV eradication strategies are proposed. Methods A systematic literature search of all English-language articles published between 2015 and 2019, was conducted using MEDLINE (PubMed) and Google scholar. Where available, medical subject headings (MeSH) were used as search terms and included: HIV, HIV latency, HIV reservoir, latency reactivation, and HIV cure. Additional search terms consisted of suppression, persistence, establishment, generation, and formation. A total of 250 articles were found using the above search terms. Out of these, 89 relevant articles related to HIV-1 latency establishment and eradication strategies were collected and reviewed, with no limitation of study design. Additional studies (commonly referenced and/or older and more recent articles of significance) were selected from bibliographies and references listed in the primary resources. Results In general, when exploring the literature, there are four main strategies heavily researched that provide promising strategies to the elimination of latent HIV: Haematopoietic Stem-Cell Transplantation, Shock and Kill Strategy, Gene-specific transcriptional activation using RNA-guided CRISPR-Cas9 system, and Block and Lock strategy. Most of the studies of these strategies are applicable in vitro, leaving many questions about the extent to which, or if any, these strategies are applicable to complex picture In vivo. However, the success of these strategies at least shows, in part, that HIV-1 can be cured, though some strategies are too invasive and expensive to become a standard of care for all HIV-infected patients. Conclusion Recent advances hold promise for the ultimate cure of HIV infection. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and applicable in human therapy is prudent for HIV eradication to be more feasible. Future studies aimed at achieving a prolonged HIV remission state are more likely to be successful if they focus on a combination strategy, including the block and kill, and stem cell approaches. These strategies propose a functional cure with minimal toxicity for patients. It is believed that the cure of HIV infection will be attained in the short term if a strategy based on purging the reservoirs is complemented with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Edward K Maina
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Asma A Adan
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Haddison Mureithi
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Joseph Muriuki
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Raphael M Lwembe
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
57
|
Latif AL, Newcombe A, Li S, Gilroy K, Robertson NA, Lei X, Stewart HJS, Cole J, Terradas MT, Rishi L, McGarry L, McKeeve C, Reid C, Clark W, Campos J, Kirschner K, Davis A, Lopez J, Sakamaki JI, Morton JP, Ryan KM, Tait SWG, Abraham SA, Holyoake T, Higgins B, Huang X, Blyth K, Copland M, Chevassut TJT, Keeshan K, Adams PD. BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat Commun 2021; 12:241. [PMID: 33431824 PMCID: PMC7801601 DOI: 10.1038/s41467-020-20378-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a typically lethal molecularly heterogeneous disease, with few broad-spectrum therapeutic targets. Unusually, most AML retain wild-type TP53, encoding the pro-apoptotic tumor suppressor p53. MDM2 inhibitors (MDM2i), which activate wild-type p53, and BET inhibitors (BETi), targeting the BET-family co-activator BRD4, both show encouraging pre-clinical activity, but limited clinical activity as single agents. Here, we report enhanced toxicity of combined MDM2i and BETi towards AML cell lines, primary human blasts and mouse models, resulting from BETi's ability to evict an unexpected repressive form of BRD4 from p53 target genes, and hence potentiate MDM2i-induced p53 activation. These results indicate that wild-type TP53 and a transcriptional repressor function of BRD4 together represent a potential broad-spectrum synthetic therapeutic vulnerability for AML.
Collapse
Affiliation(s)
| | - Ashley Newcombe
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sha Li
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Kathryn Gilroy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Neil A Robertson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Xue Lei
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Helen J S Stewart
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - John Cole
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Loveena Rishi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Claire McKeeve
- West of Scotland Genomics Services (Laboratories), Queen Elizabeth University Hospital, Glasgow, UK
| | - Claire Reid
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Joana Campos
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Andrew Davis
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jonathan Lopez
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Stephen W G Tait
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sheela A Abraham
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department Of Biomedical And Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tessa Holyoake
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brian Higgins
- Pharma Research and Early Development, Roche Innovation Center-New York, New York, USA
| | - Xu Huang
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Karen Keeshan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
| |
Collapse
|
58
|
Alamer E, Zhong C, Hajnik R, Soong L, Hu H. Modulation of BRD4 in HIV epigenetic regulation: implications for finding an HIV cure. Retrovirology 2021; 18:3. [PMID: 33413475 PMCID: PMC7792063 DOI: 10.1186/s12977-020-00547-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Following reverse transcription, HIV viral DNA is integrated into host cell genomes and establishes a stable latent infection, which has posed a major obstacle for obtaining a cure for HIV. HIV proviral transcription is regulated in cellular reservoirs by complex host epigenetic and transcriptional machineries. The Bromodomain (BD) and Extra-Terminal Domain (ET) protein, BRD4, is an important epigenetic reader that interacts with acetyl-histones and a variety of chromatin and transcriptional regulators to control gene expression, including HIV. Modulation of BRD4 by a pan BET inhibitor (JQ1) has been shown to activate HIV transcription. Recent studies by my group and others indicate that the function of BRD4 is versatile and its effects on HIV transcription may depend on the partner proteins or pathways engaged by BRD4. Our studies have reported a novel class of small-molecule modulators that are distinct from JQ1 but induce HIV transcriptional suppression through BRD4. Herein, we reviewed recent research on the modulation of BRD4 in HIV epigenetic regulation and discussed their potential implications for finding an HIV cure.
Collapse
Affiliation(s)
- Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Medical Research Center, Jazan University, Jazan, 45142, Saudi Arabia
| | - Chaojie Zhong
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA
| | - Renee Hajnik
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA. .,Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
59
|
Epigenetic Compound Screening Uncovers Small Molecules for Reactivation of Latent HIV-1. Antimicrob Agents Chemother 2020; 65:AAC.01815-20. [PMID: 33139279 DOI: 10.1128/aac.01815-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
During infection with the human immunodeficiency virus type 1 (HIV-1), latent reservoirs are established that circumvent full eradication of the virus by antiretroviral therapy (ART) and are the source for viral rebound after cessation of therapy. As these reservoirs are phenotypically indistinguishable from infected cells, current strategies aim to reactivate these reservoirs, followed by pharmaceutical and immunological destruction of the cells. Here, we employed a simple and convenient cell-based reporter system, which enables sample handling under biosafety level (BSL)-1 conditions, to screen for compounds that were able to reactivate latent HIV-1. The assay showed a high dynamic signal range and reproducibility with an average Z-factor of 0.77, classifying the system as robust. The assay was used for high-throughput screening (HTS) of an epigenetic compound library in combination with titration and cell-toxicity studies and revealed several potential new latency-reversing agents (LRAs). Further validation in well-known latency model systems verified earlier studies and identified two novel compounds with very high reactivation efficiencies and low toxicity. Both drugs, namely, N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB) and 2',3'-difluoro-[1,1'-biphenyl]-4-carboxylic acid, 2-butylhydrazide (SR-4370), showed comparable performances to other already known LRAs, did not activate CD4+ T cells, and did not cause changes in the composition of peripheral blood mononuclear cells (PBMCs), as shown by flow cytometry analyses. Both compounds may represent effective new treatment possibilities for reversal of latency in HIV-1-infected individuals.
Collapse
|
60
|
Moranguinho I, Valente ST. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020; 12:v12121443. [PMID: 33334019 PMCID: PMC7765451 DOI: 10.3390/v12121443] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
Collapse
|
61
|
Kim SY, Zhang X, Schiattarella GG, Altamirano F, Ramos TAR, French KM, Jiang N, Szweda PA, Evers BM, May HI, Luo X, Li H, Szweda LI, Maracaja-Coutinho V, Lavandero S, Gillette TG, Hill JA. Epigenetic Reader BRD4 (Bromodomain-Containing Protein 4) Governs Nucleus-Encoded Mitochondrial Transcriptome to Regulate Cardiac Function. Circulation 2020; 142:2356-2370. [PMID: 33113340 PMCID: PMC7736324 DOI: 10.1161/circulationaha.120.047239] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND BET (bromodomain and extraterminal) epigenetic reader proteins, in particular BRD4 (bromodomain-containing protein 4), have emerged as potential therapeutic targets in a number of pathological conditions, including cancer and cardiovascular disease. Small-molecule BET protein inhibitors such as JQ1 have demonstrated efficacy in reversing cardiac hypertrophy and heart failure in preclinical models. Yet, genetic studies elucidating the biology of BET proteins in the heart have not been conducted to validate pharmacological findings and to unveil potential pharmacological side effects. METHODS By engineering a cardiomyocyte-specific BRD4 knockout mouse, we investigated the role of BRD4 in cardiac pathophysiology. We performed functional, transcriptomic, and mitochondrial analyses to evaluate BRD4 function in developing and mature hearts. RESULTS Unlike pharmacological inhibition, loss of BRD4 protein triggered progressive declines in myocardial function, culminating in dilated cardiomyopathy. Transcriptome analysis of BRD4 knockout mouse heart tissue identified early and specific disruption of genes essential to mitochondrial energy production and homeostasis. Functional analysis of isolated mitochondria from these hearts confirmed that BRD4 ablation triggered significant changes in mitochondrial electron transport chain protein expression and activity. Computational analysis identified candidate transcription factors participating in the BRD4-regulated transcriptome. In particular, estrogen-related receptor α, a key nuclear receptor in metabolic gene regulation, was enriched in promoters of BRD4-regulated mitochondrial genes. CONCLUSIONS In aggregate, we describe a previously unrecognized role for BRD4 in regulating cardiomyocyte mitochondrial homeostasis, observing that its function is indispensable to the maintenance of normal cardiac function.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Electron Transport Chain Complex Proteins/genetics
- Electron Transport Chain Complex Proteins/metabolism
- Energy Metabolism/genetics
- Epigenesis, Genetic
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Gene Expression Profiling
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Mice, Knockout
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptome
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/genetics
Collapse
Affiliation(s)
- Soo Young Kim
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Xin Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Gabriele G. Schiattarella
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Francisco Altamirano
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX
| | - Thais A. R. Ramos
- Advanced Center for Chronic Disease, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kristin M. French
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Nan Jiang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Pamela A. Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Bret M. Evers
- Department of Pathology, University of Texas Southwestern, Dallas, TX, USA
| | - Herman I. May
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Hongliang Li
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Luke I. Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Disease, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sergio Lavandero
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Advanced Center for Chronic Disease, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
62
|
Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020; 12:v12121385. [PMID: 33287435 PMCID: PMC7761857 DOI: 10.3390/v12121385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.
Collapse
|
63
|
Chory EJ, Kirkland JG, Chang CY, D'Andrea VD, Gourisankar S, Dykhuizen EC, Crabtree GR. Chemical Inhibitors of a Selective SWI/SNF Function Synergize with ATR Inhibition in Cancer Cell Killing. ACS Chem Biol 2020; 15:1685-1696. [PMID: 32369697 PMCID: PMC8273930 DOI: 10.1021/acschembio.0c00312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SWI/SNF (BAF) complexes are a diverse family of ATP-dependent chromatin remodelers produced by combinatorial assembly that are mutated in and thought to contribute to 20% of human cancers and a large number of neurologic diseases. The gene-activating functions of BAF complexes are essential for viability of many cell types, limiting the development of small molecule inhibitors. To circumvent the potential toxicity of SWI/SNF inhibition, we identified small molecules that inhibit the specific repressive function of these complexes but are relatively nontoxic and importantly synergize with ATR inhibitors in killing cancer cells. Our studies suggest an avenue for therapeutic enhancement of ATR/ATM inhibition and provide evidence for chemical synthetic lethality of BAF complexes as a therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Emma J Chory
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jacob G Kirkland
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chiung-Ying Chang
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Vincent D D'Andrea
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Sai Gourisankar
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gerald R Crabtree
- Departments of Developmental Biology and Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
64
|
Wu SY, Lee CF, Lai HT, Yu CT, Lee JE, Zuo H, Tsai SY, Tsai MJ, Ge K, Wan Y, Chiang CM. Opposing Functions of BRD4 Isoforms in Breast Cancer. Mol Cell 2020; 78:1114-1132.e10. [PMID: 32446320 DOI: 10.1016/j.molcel.2020.04.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chien-Fei Lee
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hsien-Tsung Lai
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Tai Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hao Zuo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yihong Wan
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
65
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
66
|
Epigenetic Suppression of HIV in Myeloid Cells by the BRD4-Selective Small Molecule Modulator ZL0580. J Virol 2020; 94:JVI.01880-19. [PMID: 32188727 DOI: 10.1128/jvi.01880-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/08/2020] [Indexed: 01/06/2023] Open
Abstract
Brain-resident microglia and myeloid cells (perivascular macrophages) are important HIV reservoirs in vivo, especially in the central nervous system (CNS). Despite antiretroviral therapy (ART), low-level persistent HIV replication in these reservoirs remains detectable, which contributes to neuroinflammation and neurological disorders in HIV-infected patients. New approaches complementary to ART to repress residual HIV replication in CNS reservoirs are needed. Our group has recently identified a BRD4-selective small molecule modulator (ZL0580) that induces the epigenetic suppression of HIV. Here, we examined the effects of this compound on HIV in human myeloid cells. We found that ZL0580 induces potent and durable suppression of both induced and basal HIV transcription in microglial cells (HC69) and monocytic cell lines (U1 and OM10.1). Pretreatment of microglia with ZL0580 renders them more refractory to latent HIV reactivation, indicating an epigenetic reprogramming effect of ZL0580 on HIV long terminal repeat (LTR) in microglia. We also demonstrate that ZL0580 induces repressive effect on HIV in human primary monocyte-derived macrophages (MDMs) by promoting HIV suppression during ART treatment. Mechanistically, ZL0580 inhibits Tat transactivation in microglia by disrupting binding of Tat to CDK9, a process key to HIV transcription elongation. High-resolution micrococcal nuclease mapping showed that ZL0580 induces a repressive chromatin structure at the HIV LTR. Taken together, our data suggest that ZL0580 represents a potential approach that could be used in combination with ART to suppress residual HIV replication and/or latent HIV reactivation in CNS reservoirs, thereby reducing HIV-associated neuroinflammation.IMPORTANCE Brain-resident microglia and perivascular macrophages are important HIV reservoirs in the CNS. Persistent viral replication and latent HIV reactivation in the CNS, even under ART, are believed to occur, causing neuroinflammation and neurological disorders in HIV-infected patients. It is critical to identify new approaches that can control residual HIV replication and/or latent HIV reactivation in these reservoirs. We here report that the BRD4-selective small molecule modulator, ZL0580, induces potent and durable suppression of HIV in human microglial and monocytic cell lines. Using an in vitro HIV-infected, ART-treated MDM model, we show that ZL0580 also induces suppressive effect on HIV in human primary macrophages. The significance of our research is that it suggests a potential new approach that has utility in combination with ART to suppress residual HIV replication and/or HIV reactivation in CNS reservoirs, thereby reducing neuroinflammation and neurological disorders in HIV-infected individuals.
Collapse
|
67
|
Mori L, Valente ST. Key Players in HIV-1 Transcriptional Regulation: Targets for a Functional Cure. Viruses 2020; 12:E529. [PMID: 32403278 PMCID: PMC7291152 DOI: 10.3390/v12050529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation. Latency is also influenced by the availability of host transcription factors, integration site, and the surrounding chromatin environment. The latent reservoir is established in the first few days of infection and serves as the source of viral rebound upon treatment interruption. Despite effective suppression of HIV-1 replication by antiretroviral therapy (ART), to below the detection limit, ART is ineffective at reducing the latent reservoir size. Elimination of this reservoir has become a major goal of the HIV-1 cure field. However, aside from the ideal total HIV-1 eradication from the host genome, an HIV-1 remission or functional cure is probably more realistic. The "block-and-lock" approach aims at the transcriptional silencing of the viral reservoir, to render suppressed HIV-1 promoters extremely difficult to reactivate from latency. There are unfortunately no clinically available HIV-1 specific transcriptional inhibitors. Understanding the mechanisms that regulate latency is expected to provide novel targets to be explored in cure approaches.
Collapse
Affiliation(s)
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA;
| |
Collapse
|
68
|
Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev 2020; 40:881-908. [PMID: 31608481 PMCID: PMC7216841 DOI: 10.1002/med.21638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The latency phenomenon produced by human immunodeficiency virus (HIV-1) prevents viral clearance by current therapies, and consequently development of a cure for HIV-1 disease represents a formidable challenge. Research over the past decade has resulted in identification of small molecules that are capable of exposing HIV-1 latent reservoirs, by reactivation of viral transcription, which is intended to render these infected cells sensitive to elimination by immune defense recognition or apoptosis. Molecules with this capability, known as latency-reversing agents (LRAs) could lead to realization of proposed HIV-1 cure strategies collectively termed "shock and kill," which are intended to eliminate the latently infected population by forced reactivation of virus replication in combination with additional interventions that enhance killing by the immune system or virus-mediated apoptosis. Here, we review efforts to discover novel LRAs via low- and high-throughput small molecule screens, and summarize characteristics and biochemical properties of chemical structures with this activity. We expect this analysis will provide insight toward further research into optimized designs for new classes of more potent LRAs.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
69
|
Margolis DM, Archin NM, Cohen MS, Eron JJ, Ferrari G, Garcia JV, Gay CL, Goonetilleke N, Joseph SB, Swanstrom R, Turner AMW, Wahl A. Curing HIV: Seeking to Target and Clear Persistent Infection. Cell 2020; 181:189-206. [PMID: 32220311 PMCID: PMC7896558 DOI: 10.1016/j.cell.2020.03.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC 27599, USA.
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah B Joseph
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ronald Swanstrom
- Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Anne-Marie W Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
70
|
Roles of the BRD4 short isoform in phase separation and active gene transcription. Nat Struct Mol Biol 2020; 27:333-341. [PMID: 32203489 DOI: 10.1038/s41594-020-0394-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023]
Abstract
BRD4, a major tandem-bromodomain-containing transcription regulator, has two isoforms. The long isoform (BRD4L) has an extended C terminus that binds transcription cofactors, while the short isoform (BRD4S) lacks this C-terminal extension. Unlike BRD4L, the role of BRD4S in gene transcription remains unclear. Here, we report that, in human cancer cells, BRD4S forms nuclear puncta that possess liquid-like properties and that colocalize with BRD4L, MED1 and sites of histone H3 lysine 27 acetylation. BRD4 puncta are correlated with BRD4S but not BRD4L expression levels. BRD4S knockdown reduces BRD4S condensation, and ectopic expression promotes puncta formation and target gene transcription. BRD4S nuclear condensation is mediated by its intrinsically disordered regions and binding of its bromodomains to DNA and acetylated chromatin, respectively, and BRD4S phosphorylation diminishes BRD4 condensation. Our study illuminates a previously unappreciated role of BRD4S in organizing chromatin and transcription factors through phase separation to sustain gene transcription in chromatin for cancer cell proliferation.
Collapse
|
71
|
Werner MT, Wang H, Hamagami N, Hsu SC, Yano JA, Stonestrom AJ, Behera V, Zong Y, Mackay JP, Blobel GA. Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. J Biol Chem 2020; 295:1898-1914. [PMID: 31792058 PMCID: PMC7029111 DOI: 10.1074/jbc.ra119.010679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Indexed: 11/06/2022] Open
Abstract
The widely expressed bromodomain and extraterminal motif (BET) proteins bromodomain-containing protein 2 (BRD2), BRD3, and BRD4 are multifunctional transcriptional regulators that bind acetylated chromatin via their conserved tandem bromodomains. Small molecules that target BET bromodomains are being tested for various diseases but typically do not discern between BET family members. Genomic distributions and protein partners of BET proteins have been described, but the basis for differences in BET protein function within a given lineage remains unclear. By establishing a gene knockout-rescue system in a Brd2-null erythroblast cell line, here we compared a series of mutant and chimeric BET proteins for their ability to modulate cell growth, differentiation, and gene expression. We found that the BET N-terminal halves bearing the bromodomains convey marked differences in protein stability but do not account for specificity in BET protein function. Instead, when BET proteins were expressed at comparable levels, their specificity was largely determined by the C-terminal half. Remarkably, a chimeric BET protein comprising the N-terminal half of the structurally similar short BRD4 isoform (BRD4S) and the C-terminal half of BRD2 functioned similarly to intact BRD2. We traced part of the BRD2-specific activity to a previously uncharacterized short segment predicted to harbor a coiled-coil (CC) domain. Deleting the CC segment impaired BRD2's ability to restore growth and differentiation, and the CC region functioned in conjunction with the adjacent ET domain to impart BRD2-like activity onto BRD4S. In summary, our results identify distinct BET protein domains that regulate protein turnover and biological activities.
Collapse
Affiliation(s)
- Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Hongxin Wang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Sarah C Hsu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jennifer A Yano
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Vivek Behera
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yichen Zong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
72
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
73
|
Olson A, Basukala B, Wong WW, Henderson AJ. Targeting HIV-1 proviral transcription. Curr Opin Virol 2019; 38:89-96. [PMID: 31473372 PMCID: PMC6854310 DOI: 10.1016/j.coviro.2019.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Despite the success of antiretroviral therapies, there is no cure for HIV-1 infection due to the establishment of a long-lived latent reservoir that fuels viral rebound upon treatment interruption. 'Shock-and-kill' strategies to diminish the latent reservoir have had modest impact on the reservoir leading to considerations of alternative approaches to target HIV-1 proviruses. This review explores approaches to target HIV-1 transcription as a way to block the provirus expression.
Collapse
Affiliation(s)
- Alex Olson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States
| | - Binita Basukala
- Cell & Molecular Biology, Biology, Boston University, United States
| | - Wilson W Wong
- Biomedical Engineering, Boston University, United States
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States.
| |
Collapse
|
74
|
Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration. Nat Commun 2019; 10:4059. [PMID: 31492853 PMCID: PMC6731298 DOI: 10.1038/s41467-019-12046-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4+ T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus. We further show that these gene clusters acquire their location during the activation of T cells. The clustering of these genes along with their transcriptional activity are the major determinants of HIV-1 integration in T cells. Our results provide evidence of the relevance of the spatial compartmentalization of the genome for HIV-1 integration, thus further strengthening the role of nuclear architecture in viral infection.
Collapse
|
75
|
J de Castro I, Lusic M. Navigating through the nucleus with a virus. Curr Opin Genet Dev 2019; 55:100-105. [PMID: 31479982 DOI: 10.1016/j.gde.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 01/17/2023]
Abstract
In each cell, the hierarchical organisation of the ∼2m DNA fibre ensures different nuclear functions, particularly proper gene expression. Chromosomes are non-randomly positioned occupying specific chromosome territories in the 3D nuclear space and circumventing several nuclear landmarks the Nuclear Envelope with embedded Nuclear Pore Complexes, Splicing Speckles, PML bodies and many others. At a higher level of organisation, similarly regulated chromatin regions cluster together in so called Topologically Associated Domains, TADs, while on a smaller scale, DNA sequences wrapped around histones dictate binding of transcription factors or inhibitors that determine the level of chromatin compaction. As intracellular pathogens, viruses explore different cellular structures and functions to either promote their lytic infection or control the latent state of their replication cycles. Here we highlight the most recent discoveries on how different levels of nuclear architecture and genome are exploited by various human viruses.
Collapse
Affiliation(s)
| | - Marina Lusic
- Heidelberg University Hospital, Heidelberg, 69120, Germany; German Center for Infection Research, Heidelberg, 69120, Germany.
| |
Collapse
|
76
|
Stratton MS, Bagchi RA, Felisbino MB, Hirsch RA, Smith HE, Riching AS, Enyart BY, Koch KA, Cavasin MA, Alexanian M, Song K, Qi J, Lemieux ME, Srivastava D, Lam MPY, Haldar SM, Lin CY, McKinsey TA. Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation. Circ Res 2019; 125:662-677. [PMID: 31409188 DOI: 10.1161/circresaha.119.315125] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Small molecule inhibitors of the acetyl-histone binding protein BRD4 have been shown to block cardiac fibrosis in preclinical models of heart failure (HF). However, since the inhibitors target BRD4 ubiquitously, it is unclear whether this chromatin reader protein functions in cell type-specific manner to control pathological myocardial fibrosis. Furthermore, the molecular mechanisms by which BRD4 stimulates the transcriptional program for cardiac fibrosis remain unknown. OBJECTIVE We sought to test the hypothesis that BRD4 functions in a cell-autonomous and signal-responsive manner to control activation of cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. METHODS AND RESULTS RNA-sequencing, mass spectrometry, and cell-based assays employing primary adult rat ventricular fibroblasts demonstrated that BRD4 functions as an effector of TGF-β (transforming growth factor-β) signaling to stimulate conversion of quiescent cardiac fibroblasts into Periostin (Postn)-positive cells that express high levels of extracellular matrix. These findings were confirmed in vivo through whole-transcriptome analysis of cardiac fibroblasts from mice subjected to transverse aortic constriction and treated with the small molecule BRD4 inhibitor, JQ1. Chromatin immunoprecipitation-sequencing revealed that BRD4 undergoes stimulus-dependent, genome-wide redistribution in cardiac fibroblasts, becoming enriched on a subset of enhancers and super-enhancers, and leading to RNA polymerase II activation and expression of downstream target genes. Employing the Sertad4 (SERTA domain-containing protein 4) locus as a prototype, we demonstrate that dynamic chromatin targeting of BRD4 is controlled, in part, by p38 MAPK (mitogen-activated protein kinase) and provide evidence of a critical function for Sertad4 in TGF-β-mediated cardiac fibroblast activation. CONCLUSIONS These findings define BRD4 as a central regulator of the pro-fibrotic cardiac fibroblast phenotype, establish a p38-dependent signaling circuit for epigenetic reprogramming in heart failure, and uncover a novel role for Sertad4. The work provides a mechanistic foundation for the development of BRD4 inhibitors as targeted anti-fibrotic therapies for the heart.
Collapse
Affiliation(s)
- Matthew S Stratton
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Rushita A Bagchi
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Marina B Felisbino
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Rachel A Hirsch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Harrison E Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Andrew S Riching
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Blake Y Enyart
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Keith A Koch
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Maria A Cavasin
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.)
| | - Kunhua Song
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jun Qi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA (J.Q.)
| | | | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.)
| | - Maggie P Y Lam
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.).,Cardiovascular Research Institute and Department of Medicine, Division of Cardiology UCSF School of Medicine, San Francisco, CA (S.M.H.).,Cardiometabolic Disorders, Amgen, San Francisco, CA (S.M.H.)
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Timothy A McKinsey
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
77
|
Abstract
Latency is the primary barrier to the development of a long-sought cure for HIV-1. In this issue of Cell Chemical Biology, Marian et al., (2018) describe the development of novel compounds targeting the BAF chromatin remodeling complex to reverse HIV latency, with the potential to provide a functional cure.
Collapse
Affiliation(s)
- Sakshi Tomar
- J. David Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Ibraheem Ali
- J. David Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA.
| |
Collapse
|
78
|
Niu Q, Liu Z, Alamer E, Fan X, Chen H, Endsley J, Gelman BB, Tian B, Kim JH, Michael NL, Robb ML, Ananworanich J, Zhou J, Hu H. Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. J Clin Invest 2019; 129:3361-3373. [PMID: 31329163 PMCID: PMC6668673 DOI: 10.1172/jci120633] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
HIV integrates its provirus into the host genome and establishes latent infection. Antiretroviral therapy (ART) can control HIV viremia, but cannot eradicate or cure the virus. Approaches targeting host epigenetic machinery to repress HIV, leading to an aviremic state free of ART, are needed. Bromodomain and extraterminal (BET) family protein BRD4 is an epigenetic reader involved in HIV transcriptional regulation. Using structure-guided drug design, we identified a small molecule (ZL0580) that induced epigenetic suppression of HIV via BRD4. We showed that ZL0580 induced HIV suppression in multiple in vitro and ex vivo cell models. Combination treatment of cells of aviremic HIV-infected individuals with ART and ZL0580 revealed that ZL0580 accelerated HIV suppression during ART and delayed viral rebound after ART cessation. Mechanistically different from the BET/BRD4 pan-inhibitor JQ1, which nonselectively binds to BD1 and BD2 domains of all BET proteins, ZL0580 selectively bound to BD1 domain of BRD4. We further demonstrate that ZL0580 induced HIV suppression by inhibiting Tat transactivation and transcription elongation as well as by inducing repressive chromatin structure at the HIV promoter. Our findings establish a proof of concept for modulation of BRD4 to epigenetically suppress HIV and provide a promising chemical scaffold for the development of probes and/or therapeutic agents for HIV epigenetic silencing.
Collapse
Affiliation(s)
- Qingli Niu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Janice Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | | | - Bing Tian
- Department of Internal Medicine, Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, USA
| | - Jerome H. Kim
- International Vaccine Institute, Gwanak-gu, Seoul, South Korea
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Global Health, The University of Amsterdam, Amsterdam, Netherlands
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| |
Collapse
|
79
|
Stoszko M, Ne E, Abner E, Mahmoudi T. A broad drug arsenal to attack a strenuous latent HIV reservoir. Curr Opin Virol 2019; 38:37-53. [PMID: 31323521 DOI: 10.1016/j.coviro.2019.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
HIV cure is impeded by the persistence of a strenuous reservoir of latent but replication competent infected cells, which remain unsusceptible to c-ART and unrecognized by the immune system for elimination. Ongoing progress in understanding the molecular mechanisms that control HIV transcription and latency has led to the development of strategies to either permanently inactivate the latent HIV infected reservoir of cells or to stimulate the virus to emerge out of latency, coupled to either induction of death in the infected reactivated cell or its clearance by the immune system. This review focuses on the currently explored and non-exclusive pharmacological strategies and their molecular targets that 1. stimulate reversal of HIV latency in infected cells by targeting distinct steps in the HIV-1 gene expression cycle, 2. exploit mechanisms that promote cell death and apoptosis to render the infected cell harboring reactivated virus more susceptible to death and/or elimination by the immune system, and 3. permanently inactivate any remaining latently infected cells such that c-ART can be safely discontinued.
Collapse
Affiliation(s)
- Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Erik Abner
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
80
|
Sánchez-Ventura J, Amo-Aparicio J, Navarro X, Penas C. BET protein inhibition regulates cytokine production and promotes neuroprotection after spinal cord injury. J Neuroinflammation 2019; 16:124. [PMID: 31186006 PMCID: PMC6560758 DOI: 10.1186/s12974-019-1511-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) usually causes a devastating lifelong disability for patients. After a traumatic lesion, disruption of the blood-spinal cord barrier induces the infiltration of macrophages into the lesion site and the activation of resident glial cells, which release cytokines and chemokines. These events result in a persistent inflammation, which has both detrimental and beneficial effects, but eventually limits functional recovery and contributes to the appearance of neuropathic pain. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that regulate the expression of inflammatory genes by interacting with acetylated lysine residues. While BET inhibitors are a promising therapeutic strategy for cancer, little is known about their implication after SCI. Thus, the current study was aimed to investigate the anti-inflammatory role of BET inhibitors in this pathologic condition. METHODS We evaluated the effectiveness of the BET inhibitor JQ1 to modify macrophage reactivity in vitro and to modulate inflammation in a SCI mice model. We analyzed the effects of BET inhibition in pro-inflammatory and anti-inflammatory cytokine production in vitro and in vivo. We determined the effectiveness of BET inhibition in tissue sparing, inflammation, neuronal protection, and behavioral outcome after SCI. RESULTS We have found that the BET inhibitor JQ1 reduced the levels of pro-inflammatory mediators and increased the expression of anti-inflammatory cytokines. A prolonged treatment with JQ1 also decreased reactivity of microglia/macrophages, enhanced neuroprotection and functional recovery, and acutely reduced neuropathic pain after SCI. CONCLUSIONS BET protein inhibition is an effective treatment to regulate cytokine production and promote neuroprotection after SCI. These novel results demonstrate for the first time that targeting BET proteins is an encouraging approach for SCI repair and a potential strategy to treat other inflammatory pathologies.
Collapse
Affiliation(s)
- Judith Sánchez-Ventura
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jesús Amo-Aparicio
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Navarro
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Clara Penas
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
81
|
A novel bromodomain inhibitor, CPI-203, serves as an HIV-1 latency-reversing agent by activating positive transcription elongation factor b. Biochem Pharmacol 2019; 164:237-251. [DOI: 10.1016/j.bcp.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2019] [Indexed: 01/12/2023]
|
82
|
Li C, Mousseau G, Valente ST. Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 2019; 12:23. [PMID: 30992052 PMCID: PMC6466689 DOI: 10.1186/s13072-019-0267-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcription from the integrated HIV-1 promoter is directly governed by its chromatin environment, and the nucleosome-1 downstream from the transcription start site directly impedes transcription from the HIV-1 promoter. The HIV-1 Tat protein regulates the passage from viral latency to active transcription by binding to the viral mRNA hairpin (TAR) and recruiting transcriptional factors to promote transcriptional elongation. The Tat inhibitor didehydro-Cortistatin A (dCA) inhibits transcription and overtime, the lack of low-grade transcriptional events, triggers epigenetic changes at the latent loci that "lock" HIV transcription in a latent state. RESULTS Here we investigated those epigenetic changes using multiple cell line models of HIV-1 latency and active transcription. We demonstrated that dCA treatment does not alter the classic nucleosome positioning at the HIV-1 promoter, but promotes tighter nucleosome/DNA association correlating with increased deacetylated H3 occupancy at nucleosome-1. Recruitment of the SWI/SNF chromatin remodeling complex PBAF, necessary for Tat-mediated transactivation, is also inhibited, while recruitment of the repressive BAF complex is enhanced. These results were supported by loss of RNA polymerase II recruitment on the HIV genome, even during strong stimulation with latency-reversing agents. No epigenetic changes were detected in cell line models of latency with Tat-TAR incompetent proviruses confirming the specificity of dCA for Tat. CONCLUSIONS We characterized the dCA-mediated epigenetic signature on the HIV genome, which translates into potent blocking effects on HIV expression, further strengthening the potential of Tat inhibitors in "block-and-lock" functional cure approaches.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Guillaume Mousseau
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
83
|
Yang CY, Qin C, Bai L, Wang S. Small-molecule PROTAC degraders of the Bromodomain and Extra Terminal (BET) proteins - A review. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:43-51. [PMID: 31200858 DOI: 10.1016/j.ddtec.2019.04.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
The PROteolysis TArgeting Chimeric (PROTAC) concept has provided an opportunity for the discovery and development of a completely new type of therapy involving induction of protein degradation. The BET proteins, comprised of BRD2, BRD3, BRD4 and the testis-specific BRDT protein, are epigenetic readers and master transcription coactivators. Extremely potent and efficacious small-molecule PROTAC degraders of the BET proteins, based on available, potent and selective BET inhibitors, have been reported. BET degraders differ from BET inhibitors in their cellular potency, phenotypic effects, pharmacokinetic properties and toxicity profiles. Herein, we provide a review of BET degraders and the differential outcome observed in the cellular and animal models for BET degraders in comparison to BET inhibitors.
Collapse
Affiliation(s)
- Chao-Yie Yang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Chong Qin
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Longchuan Bai
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
84
|
Roy M, Winkler S, Hughes SJ, Whitworth C, Galant M, Farnaby W, Rumpel K, Ciulli A. SPR-Measured Dissociation Kinetics of PROTAC Ternary Complexes Influence Target Degradation Rate. ACS Chem Biol 2019; 14:361-368. [PMID: 30721025 PMCID: PMC6423499 DOI: 10.1021/acschembio.9b00092] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/30/2022]
Abstract
Bifunctional degrader molecules, known as proteolysis-targeting chimeras (PROTACs), function by recruiting a target to an E3 ligase, forming a target/PROTAC/ligase ternary complex. Despite the importance of this key intermediate species, no detailed validation of a method to directly determine binding parameters for ternary complex kinetics has been reported, and it remains to be addressed whether tuning the kinetics of PROTAC ternary complexes may be an effective strategy to improve the efficiency of targeted protein degradation. Here, we develop an SPR-based assay to quantify the stability of PROTAC-induced ternary complexes by measuring for the first time the kinetics of their formation and dissociation in vitro using purified proteins. We benchmark our assay using four PROTACs that target the bromodomains (BDs) of bromodomain and extraterminal domain proteins Brd2, Brd3, and Brd4 to the von Hippel-Lindau E3 ligase (VHL). We reveal marked differences in ternary complex off-rates for different PROTACs that exhibit either positive or negative cooperativity for ternary complex formation relative to binary binding. The positively cooperative degrader MZ1 forms comparatively stable and long-lived ternary complexes with either Brd4BD2 or Brd2BD2 and VHL. Equivalent complexes with Brd3BD2 are destabilized due to a single amino acid difference (Glu/Gly swap) present in the bromodomain. We observe that this difference in ternary complex dissociative half-life correlates to a greater initial rate of intracellular degradation of Brd2 and Brd4 relative to Brd3. These findings establish a novel assay to measure the kinetics of PROTAC ternary complexes and elucidate the important kinetic parameters that drive effective target degradation.
Collapse
Affiliation(s)
- Michael
J. Roy
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United
Kingdom
| | - Sandra Winkler
- Boehringer
Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Scott J. Hughes
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United
Kingdom
| | - Claire Whitworth
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United
Kingdom
| | - Michael Galant
- Boehringer
Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - William Farnaby
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United
Kingdom
| | - Klaus Rumpel
- Boehringer
Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Alessio Ciulli
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United
Kingdom
| |
Collapse
|
85
|
Marian CA, Stoszko M, Wang L, Leighty MW, de Crignis E, Maschinot CA, Gatchalian J, Carter BC, Chowdhury B, Hargreaves DC, Duvall JR, Crabtree GR, Mahmoudi T, Dykhuizen EC. Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal. Cell Chem Biol 2018; 25:1443-1455.e14. [PMID: 30197195 PMCID: PMC6404985 DOI: 10.1016/j.chembiol.2018.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The persistence of a pool of latently HIV-1-infected cells despite combination anti-retroviral therapy treatment is the major roadblock for a cure. The BAF (mammalian SWI/SNF) chromatin remodeling complex is involved in establishing and maintaining viral latency, making it an attractive drug target for HIV-1 latency reversal. Here we report a high-throughput screen for inhibitors of BAF-mediated transcription in cells and the subsequent identification of a 12-membered macrolactam. This compound binds ARID1A-specific BAF complexes, prevents nucleosomal positioning, and relieves transcriptional repression of HIV-1. Through this mechanism, these compounds are able to reverse HIV-1 latency in an in vitro T cell line, an ex vivo primary cell model of HIV-1 latency, and in patient CD4+ T cells without toxicity or T cell activation. These macrolactams represent a class of latency reversal agents with unique mechanism of action, and can be combined with other latency reversal agents to improve reservoir targeting.
Collapse
Affiliation(s)
- Christine A Marian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Lili Wang
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Matthew W Leighty
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Elisa de Crignis
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Chad A Maschinot
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Jovylyn Gatchalian
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Diana C Hargreaves
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeremy R Duvall
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Gerald R Crabtree
- HHMI and the Departments of Developmental Biology and Pathology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands.
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
86
|
Tzelepis K, De Braekeleer E, Aspris D, Barbieri I, Vijayabaskar MS, Liu WH, Gozdecka M, Metzakopian E, Toop HD, Dudek M, Robson SC, Hermida-Prado F, Yang YH, Babaei-Jadidi R, Garyfallos DA, Ponstingl H, Dias JML, Gallipoli P, Seiler M, Buonamici S, Vick B, Bannister AJ, Rad R, Prinjha RK, Marioni JC, Huntly B, Batson J, Morris JC, Pina C, Bradley A, Jeremias I, Bates DO, Yusa K, Kouzarides T, Vassiliou GS. SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nat Commun 2018; 9:5378. [PMID: 30568163 PMCID: PMC6300607 DOI: 10.1038/s41467-018-07620-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.
Collapse
Affiliation(s)
- Konstantinos Tzelepis
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Etienne De Braekeleer
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Demetrios Aspris
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Karaiskakio Foundation, Nicosia, Cyprus
| | - Isaia Barbieri
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, CB2 0QQ, Cambridge, UK
| | - M S Vijayabaskar
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Wen-Hsin Liu
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 81377, Munich, Germany
| | - Malgorzata Gozdecka
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, University of Cambridge, Hills Rd, Cambridge, CB2 0AH, UK
| | - Hamish D Toop
- School of Chemistry, University of New South Wales, Sydney, Australia
- Exonate Ltd, Milton Science Park, Cambridge, UK
| | - Monika Dudek
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Francisco Hermida-Prado
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Yu Hsuen Yang
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Dimitrios A Garyfallos
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hannes Ponstingl
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Joao M L Dias
- Cancer Molecular Diagnosis Laboratory, National Institute for Health Research, Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Paolo Gallipoli
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | | | | | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 81377, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center, Technical University of Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, & German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rab K Prinjha
- Epigenetics DPU, Immunoinflammation and Oncology TA Unit, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
- Stem Cell Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Brian Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | | | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, Australia
- Exonate Ltd, Milton Science Park, Cambridge, UK
| | - Cristina Pina
- Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 81377, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, & German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University München, 80337, Munich, Germany
| | - David O Bates
- Exonate Ltd, Milton Science Park, Cambridge, UK
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG2 7UH, UK
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - George S Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK.
- Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK.
| |
Collapse
|
87
|
Chen M, Li W, Zhang ZP, Pan J, Sun Y, Zhang X, Zhang XE, Cui Z. Three-Fragment Fluorescence Complementation for Imaging of Ternary Complexes under Physiological Conditions. Anal Chem 2018; 90:13299-13305. [DOI: 10.1021/acs.analchem.8b02661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minghai Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
88
|
Lusic M. Coloring hidden viruses. eLife 2018; 7:37732. [PMID: 29809152 PMCID: PMC5973827 DOI: 10.7554/elife.37732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
An improved dual-color reporter reveals how the fate of latent HIV-1 depends on where it integrates in the human genome.
Collapse
Affiliation(s)
- Marina Lusic
- Center for Integrative Infectious Disease Research, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
89
|
Leonard B, Brand TM, O'Keefe RA, Lee ED, Zeng Y, Kemmer JD, Li H, Grandis JR, Bhola NE. BET Inhibition Overcomes Receptor Tyrosine Kinase-Mediated Cetuximab Resistance in HNSCC. Cancer Res 2018; 78:4331-4343. [PMID: 29792310 DOI: 10.1158/0008-5472.can-18-0459] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023]
Abstract
Cetuximab, the FDA-approved anti-EGFR antibody for head and neck squamous cell carcinoma (HNSCC), has displayed limited efficacy due to the emergence of intrinsic and acquired resistance. We and others have demonstrated that cetuximab resistance in HNSCC is driven by alternative receptor tyrosine kinases (RTK), including HER3, MET, and AXL. In an effort to overcome cetuximab resistance and circumvent toxicities associated with the administration of multiple RTK inhibitors, we sought to identify a common molecular target that regulates expression of multiple RTK. Bromodomain-containing protein-4 (BRD4) has been shown to regulate the transcription of various RTK in the context of resistance to PI3K and HER2 inhibition in breast cancer models. We hypothesized that, in HNSCC, targeting BRD4 could overcome cetuximab resistance by depleting alternative RTK expression. We generated independent models of cetuximab resistance in HNSCC cell lines and interrogated their RTK and BRD4 expression profiles. Cetuximab-resistant clones displayed increased expression and activation of several RTK, such as MET and AXL, as well as an increased percentage of BRD4-expressing cells. Both genetic and pharmacologic inhibition of BRD4 abrogated cell viability in models of acquired and intrinsic cetuximab resistance and was associated with a robust decrease in alternative RTK expression by cetuximab. Combined treatment with cetuximab and bromodomain inhibitor JQ1 significantly delayed acquired resistance and RTK upregulation in patient-derived xenograft models of HNSCC. These findings indicate that the combination of cetuximab and bromodomain inhibition may be a promising therapeutic strategy for patients with HNSCC.Significance: Inhibition of bromodomain protein BRD4 represents a potential therapeutic strategy to circumvent the toxicities and financial burden of targeting the multiple receptor tyrosine kinases that drive cetuximab resistance in HNSCC and NSCLC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4331/F1.large.jpg Cancer Res; 78(15); 4331-43. ©2018 AACR.
Collapse
Affiliation(s)
- Brandon Leonard
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Toni M Brand
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Rachel A O'Keefe
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Eliot D Lee
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jacquelyn D Kemmer
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Neil E Bhola
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
90
|
Khoury G, Mota TM, Li S, Tumpach C, Lee MY, Jacobson J, Harty L, Anderson JL, Lewin SR, Purcell DFJ. HIV latency reversing agents act through Tat post translational modifications. Retrovirology 2018; 15:36. [PMID: 29751762 PMCID: PMC5948896 DOI: 10.1186/s12977-018-0421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Different classes of latency reversing agents (LRAs) are being evaluated to measure their effects in reactivating HIV replication from latently infected cells. A limited number of studies have demonstrated additive effects of LRAs with the viral protein Tat in initiating transcription, but less is known about how LRAs interact with Tat, particularly through basic residues that may be post-translationally modified to alter the behaviour of Tat for processive transcription and co-transcriptional RNA processing. Results Here we show that various lysine and arginine mutations reduce the capacity of Tat to induce both transcription and mRNA splicing. The lysine 28 and lysine 50 residues of Tat, or the acetylation and methylation modifications of these basic amino acids, were essential for Tat transcriptional control, and also for the proviral expression effects elicited by histone deacetylase inhibitors (HDACi) or the bromodomain inhibitor JQ1. We also found that JQ1 was the only LRA tested that could induce HIV mRNA splicing in the absence of Tat, or rescue splicing for Tat lysine mutants in a BRD4-dependent manner. Conclusions Our data provide evidence that Tat activities in both co-transcriptional RNA processing together with transcriptional initiation and processivity are crucial during reactivation of latent HIV infection. The HDACi and JQ1 LRAs act with Tat to increase transcription, but JQ1 also enables post-transcriptional mRNA splicing. Tat residues K28 and K50, or their modifications through acetylation or methylation, are critical for LRAs that function in conjunction with Tat. Electronic supplementary material The online version of this article (10.1186/s12977-018-0421-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Talia M Mota
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Shuang Li
- School of Life Sciences, Peking University, Beijing, China
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Michelle Y Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jonathan Jacobson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leigh Harty
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
91
|
Megaridis MR, Lu Y, Tevonian EN, Junger KM, Moy JM, Bohn-Wippert K, Dar RD. Fine-tuning of noise in gene expression with nucleosome remodeling. APL Bioeng 2018; 2:026106. [PMID: 31069303 PMCID: PMC6481717 DOI: 10.1063/1.5021183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Engineering stochastic fluctuations of gene expression (or “noise”) is integral to precisely bias cellular-fate decisions and statistical phenotypes in both single-cell and multi-cellular systems. Epigenetic regulation has been shown to constitute a large source of noise, and thus, engineering stochasticity is deeply intertwined with epigenetics. Here, utilizing chromatin remodeling, we report that Caffeic acid phenethyl ester (CA) and Pyrimethamine (PYR), two inhibitors of BAF250a, a subunit of the Brahma-associated factor (BAF) nucleosome remodeling complex, enable differential and tunable control of noise in transcription and translation from the human immunodeficiency virus long terminal repeat promoter in a dose and time-dependent manner. CA conserves noise levels while increasing mean abundance, resulting in direct tuning of the transcriptional burst size, while PYR strictly increases transcriptional initiation frequency while conserving a constant transcriptional burst size. Time-dependent treatment with CA reveals non-continuous tuning with noise oscillating at a constant mean abundance at early time points and the burst size increasing for treatments after 5 h. Treatments combining CA and Protein Kinase C agonists result in an even larger increase of abundance while conserving noise levels with a highly non-linear increase in variance of up to 63× untreated controls. Finally, drug combinations provide non-antagonistic combinatorial tuning of gene expression noise and map a noise phase space for future applications with viral and synthetic gene vectors. Active remodeling of nucleosomes and BAF-mediated control of gene expression noise expand a toolbox for the future design and engineering of stochasticity in living systems.
Collapse
Affiliation(s)
- Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kendall M Junger
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer M Moy
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
92
|
Li Z, Mbonye U, Feng Z, Wang X, Gao X, Karn J, Zhou Q. The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency. PLoS Pathog 2018; 14:e1007012. [PMID: 29684085 PMCID: PMC5933813 DOI: 10.1371/journal.ppat.1007012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/03/2018] [Accepted: 04/09/2018] [Indexed: 11/23/2022] Open
Abstract
The bromodomain protein Brd4 promotes HIV-1 latency by competitively inhibiting P-TEFb-mediated transcription induced by the virus-encoded Tat protein. Brd4 is recruited to the HIV LTR by interactions with acetyl-histones3 (AcH3) and AcH4. However, the precise modification pattern that it reads and the writer for generating this pattern are unknown. By examining a pool of latently infected proviruses with diverse integration sites, we found that the LTR characteristically has low AcH3 but high AcH4 content. This unusual acetylation profile attracts Brd4 to suppress the interaction of Tat with the host super elongation complex (SEC) that is essential for productive HIV transcription and latency reversal. KAT5 (lysine acetyltransferase 5), but not its paralogs KAT7 and KAT8, is found to promote HIV latency through acetylating H4 on the provirus. Antagonizing KAT5 removes AcH4 and Brd4 from the LTR, enhances the SEC loading, and reverses as well as delays, the establishment of latency. The pro-latency effect of KAT5 is confirmed in a primary CD4+ T cell latency model as well as cells from ART-treated patients. Our data thus indicate the KAT5-AcH4-Brd4 axis as a key regulator of latency and a potential therapeutic target to reactivate latent HIV reservoirs for eradication. A major impediment to the cure of HIV/AIDS is the viral latency. Previous studies have identified the bromodomain protein Brd4 as a promoter of HIV latency by binding to the viral LTR to inhibit Tat-induced transcription. Here, we discover that the LTR of latent HIV has low acetylated histone H3 (AcH3) but high AcH4 content, which recruits Brd4 to inhibit Tat-transactivation. Furthermore, the lysine acetyltransferase KAT5 but not the paralogs KAT7 and KAT8 promotes latency through acetylating H4 on the provirus. Antagonizing KAT5 removes AcH4 and Brd4 from the LTR, enhances loading of the Super Elongation Complex, and interferes with the establishment of latency. Thus, the KAT5-AcH4-Brd4 axis is a key regulator of HIV latency and a potential therapeutic target for eradicating latent HIV reservoirs.
Collapse
Affiliation(s)
- Zichong Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Zeming Feng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
93
|
Ou J, Liu H, Yu J, Kelliher MA, Castilla LH, Lawson ND, Zhu LJ. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. BMC Genomics 2018; 19:169. [PMID: 29490630 PMCID: PMC5831847 DOI: 10.1186/s12864-018-4559-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND ATAC-seq (Assays for Transposase-Accessible Chromatin using sequencing) is a recently developed technique for genome-wide analysis of chromatin accessibility. Compared to earlier methods for assaying chromatin accessibility, ATAC-seq is faster and easier to perform, does not require cross-linking, has higher signal to noise ratio, and can be performed on small cell numbers. However, to ensure a successful ATAC-seq experiment, step-by-step quality assurance processes, including both wet lab quality control and in silico quality assessment, are essential. While several tools have been developed or adopted for assessing read quality, identifying nucleosome occupancy and accessible regions from ATAC-seq data, none of the tools provide a comprehensive set of functionalities for preprocessing and quality assessment of aligned ATAC-seq datasets. RESULTS We have developed a Bioconductor package, ATACseqQC, for easily generating various diagnostic plots to help researchers quickly assess the quality of their ATAC-seq data. In addition, this package contains functions to preprocess aligned ATAC-seq data for subsequent peak calling. Here we demonstrate the utilities of our package using 25 publicly available ATAC-seq datasets from four studies. We also provide guidelines on what the diagnostic plots should look like for an ideal ATAC-seq dataset. CONCLUSIONS This software package has been used successfully for preprocessing and assessing several in-house and public ATAC-seq datasets. Diagnostic plots generated by this package will facilitate the quality assessment of ATAC-seq data, and help researchers to evaluate their own ATAC-seq experiments as well as select high-quality ATAC-seq datasets from public repositories such as GEO to avoid generating hypotheses or drawing conclusions from low-quality ATAC-seq experiments. The software, source code, and documentation are freely available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/ATACseqQC.html .
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Lucio H. Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Nathan D. Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
- Department of Molecular Medicine, Program in Bioinformatics and Integrative Biology, Worcester, MA 01655 USA
| |
Collapse
|
94
|
BI-2536 and BI-6727, dual Polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Sci Rep 2018; 8:3521. [PMID: 29476067 PMCID: PMC5824842 DOI: 10.1038/s41598-018-21942-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/07/2018] [Indexed: 11/23/2022] Open
Abstract
HIV-1 latent reservoirs harbouring silenced but replication-competent proviruses are a major obstacle against viral eradication in infected patients. The “shock and kill” strategy aims to reactivate latent provirus with latency reversing agents (LRAs) in the presence of antiretroviral drugs, necessitating the development of effective and efficient LRAs. We screened a chemical library for potential LRAs and identified two dual Polo-like kinase (PLK)/bromodomain inhibitors, BI-2536 and BI-6727 (volasertib), which are currently undergoing clinical trials against various cancers. BI-2536 and BI-6727 significantly reactivated silenced HIV-1 provirus at both the mRNA and protein level in two latently infected model cell lines (ACH2 and U1). BI-2536 dramatically reactivated transcription of latent HIV-1 provirus in peripheral blood mononuclear cells derived from infected patients. Long terminal repeat activation by the inhibitors was associated with bromodomain rather than PLK inhibition. We also found that BI-2536 synergistically activates the latent provirus in combination with SAHA, a histone deacetylase inhibitor, or the non-tumour-promoting phorbol ester prostratin. Our findings strongly suggest that BI-2536 and BI-6727 are potent LRAs for the “shock and kill” HIV-1 eradication strategy.
Collapse
|
95
|
Alpsoy A, Dykhuizen EC. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem 2018; 293:3892-3903. [PMID: 29374058 DOI: 10.1074/jbc.ra117.001065] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian SWI/SNF chromatin remodeling complex is a heterogeneous collection of related protein complexes required for gene regulation and genome integrity. It contains a central ATPase (BRM or BRG1) and various combinations of 10-14 accessory subunits (BAFs for BRM/BRG1 Associated Factors). Two distinct complexes differing in size, BAF and the slightly larger polybromo-BAF (PBAF), share many of the same core subunits but are differentiated primarily by having either AT-rich interaction domain 1A/B (ARID1A/B in BAF) or ARID2 (in PBAF). Using density gradient centrifugation and immunoprecipitation, we have identified and characterized a third and smaller SWI/SNF subcomplex. We termed this complex GBAF because it incorporates two mutually exclusive paralogs, GLTSCR1 (glioma tumor suppressor candidate region gene 1) or GLTSCR1L (GLTSCR1-like), instead of an ARID protein. In addition to GLTSCR1 or GLTSCR1L, the GBAF complex contains BRD9 (bromodomain-containing 9) and the BAF subunits BAF155, BAF60, SS18, BAF53a, and BRG1/BRM. We observed that GBAF does not contain the core BAF subunits BAF45, BAF47, or BAF57. Even without these subunits, GBAF displayed in vitro ATPase activity and bulk chromatin affinity comparable to those of BAF. GBAF associated with BRD4, but, unlike BRD4, the GBAF component GLTSCR1 was not required for the viability of the LNCaP prostate cancer cell line. In contrast, GLTSCR1 or GLTSCR1L knockouts in the metastatic prostate cancer cell line PC3 resulted in a loss in proliferation and colony-forming ability. Taken together, our results provide evidence for a compositionally novel SWI/SNF subcomplex with cell type-specific functions.
Collapse
Affiliation(s)
- Aktan Alpsoy
- From the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Emily C Dykhuizen
- From the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|