51
|
The sRNA MicC downregulates hilD translation to control the SPI1 T3SS in Salmonella enterica serovar Typhimurium. J Bacteriol 2021; 204:e0037821. [PMID: 34694902 DOI: 10.1128/jb.00378-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium invades the intestinal epithelium and induces inflammatory diarrhea using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Expression of the SPI1 T3SS is controlled by three AraC-like regulators, HilD, HilC and RtsA, which form a feed-forward regulatory loop that leads to activation of hilA, encoding the main transcriptional regulator of the T3SS structural genes. This complex system is affected by numerous regulatory proteins and environmental signals, many of which act at the level of hilD mRNA translation or HilD protein function. Here, we show that the sRNA MicC blocks translation of the hilD mRNA by base pairing near the ribosome binding site. MicC does not induce degradation of the hilD message. Our data indicate that micC is transcriptionally activated by SlyA, and SlyA feeds into the SPI1 regulatory network solely through MicC. Transcription of micC is negatively regulated by the OmpR/EnvZ two-component system, but this regulation is dependent on SlyA. OmpR/EnvZ control SPI1 expression partially through MicC, but also affect expression through other pathways, including an EnvZ-dependent, OmpR-independent mechanism. MicC-mediated regulation plays a role during infection, as evidenced by a SPI1 T3SS-dependent increase in Salmonella fitness in the intestine in the micC deletion mutant. These results further elucidate the complex regulatory network controlling SPI1 expression and add to the list of sRNAs that control this primary virulence factor. IMPORTANCE The Salmonella SPI1 T3SS is the primary virulence factor required for causing intestinal disease and initiating systemic infection. The system is regulated in response to a large variety of environmental and physiological factors such that the T3SS is expressed at only the appropriate time and place in the host during infection. Here we show how the sRNA MicC affects expression of the system. This work adds to our detailed mechanistic studies aimed at a complete understanding of the regulatory circuit.
Collapse
|
52
|
Goldberger O, Livny J, Bhattacharyya R, Amster-Choder O. Wisdom of the crowds: A suggested polygenic plan for small-RNA-mediated regulation in bacteria. iScience 2021; 24:103096. [PMID: 34622151 PMCID: PMC8479692 DOI: 10.1016/j.isci.2021.103096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
The omnigenic/polygenic theory, which states that complex traits are not shaped by single/few genes, but by situation-specific large networks, offers an explanation for a major enigma in microbiology: deletion of specific small RNAs (sRNAs) playing key roles in various aspects of bacterial physiology, including virulence and antibiotic resistance, results in surprisingly subtle phenotypes. A recent study uncovered polar accumulation of most sRNAs upon osmotic stress, the majority not known to be involved in the applied stress. Here we show that cells deleted for a handful of pole-enriched sRNAs exhibit fitness defect in several stress conditions, as opposed to single, double, or triple sRNA-knockouts, implying that regulation by sRNA relies on sets of genes. Moreover, analysis of RNA-seq data of Escherichia coli and Salmonella typhimurium exposed to antibiotics and/or infection-relevant conditions reveals the involvement of multiple sRNAs in all cases, in line with the existence of a polygenic plan for sRNA-mediated regulation.
Collapse
Affiliation(s)
- Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Roby Bhattacharyya
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
53
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
54
|
Rizvanovic A, Kjellin J, Söderbom F, Holmqvist E. Saturation mutagenesis charts the functional landscape of Salmonella ProQ and reveals a gene regulatory function of its C-terminal domain. Nucleic Acids Res 2021; 49:9992-10006. [PMID: 34450657 PMCID: PMC8464044 DOI: 10.1093/nar/gkab721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The global RNA-binding protein ProQ has emerged as a central player in post-transcriptional regulatory networks in bacteria. While the N-terminal domain (NTD) of ProQ harbors the major RNA-binding activity, the role of the ProQ C-terminal domain (CTD) has remained unclear. Here, we have applied saturation mutagenesis coupled to phenotypic sorting and long-read sequencing to chart the regulatory capacity of Salmonella ProQ. Parallel monitoring of thousands of ProQ mutants allowed mapping of critical residues in both the NTD and the CTD, while the linker separating these domains was tolerant to mutations. Single amino acid substitutions in the NTD associated with abolished regulatory capacity strongly align with RNA-binding deficiency. An observed cellular instability of ProQ associated with mutations in the NTD suggests that interaction with RNA protects ProQ from degradation. Mutation of conserved CTD residues led to overstabilization of RNA targets and rendered ProQ inert in regulation, without affecting protein stability in vivo. Furthermore, ProQ lacking the CTD, although binding competent, failed to protect an mRNA target from degradation. Together, our data provide a comprehensive overview of residues important for ProQ-dependent regulation and reveal an essential role for the enigmatic ProQ CTD in gene regulation.
Collapse
Affiliation(s)
- Alisa Rizvanovic
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, S-75124, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, S-75124, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, S-75124, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, S-75124, Sweden
| |
Collapse
|
55
|
Basu P, Altuvia S. RelA binding of mRNAs modulates translation or sRNA-mRNA basepairing depending on the position of the GGAG site. Mol Microbiol 2021; 117:143-159. [PMID: 34523176 DOI: 10.1111/mmi.14812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
Previously, we reported that RelA protein facilitates Hfq-mediated mRNA-sRNA regulation by binding sRNAs carrying a Shine-Dalgarno-like GGAG sequence. In turn, sRNA-Hfq monomers are stabilized, enabling the attachment of more Hfq subunits to form a functional hexamer. Here, using CLIP-seq, we present a global analysis of RelA-bound RNAs showing that RelA interacts with sRNAs as well as with mRNAs carrying a GGAG motif. RelA binding of mRNAs carrying GGAG at position -7 relative to the initiation codon (AUG) inhibits translation by interfering with the binding of 30S ribosomes. The extent of inhibition depends on the distance of GGAG relative to the AUG, as shortening the spacing between GGAG and AUG abrogates RelA-mediated inhibition. Interestingly, RelA binding of target mRNAs carrying GGAG in the coding sequence or close to AUG facilitates target gene regulation by sRNA partners that lack GGAG. However, translation inhibition caused by RelA binding of mRNAs carrying GGAG at position -7 relative to the AUG renders sRNA-mRNA basepairing regulation ineffective. Our study indicates that by binding RNAs carrying GGAG the ribosome-associated RelA protein inhibits translation of specific newly synthesized incoming mRNAs or enables basepairing regulation by their respective sRNA partners, thereby introducing a new regulatory concept for the bacterial response.
Collapse
Affiliation(s)
- Pallabi Basu
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
56
|
Burning the Candle at Both Ends: Have Exoribonucleases Driven Divergence of Regulatory RNA Mechanisms in Bacteria? mBio 2021; 12:e0104121. [PMID: 34372700 PMCID: PMC8406224 DOI: 10.1128/mbio.01041-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regulatory RNAs have emerged as ubiquitous gene regulators in all bacterial species studied to date. The combination of sequence-specific RNA interactions and malleable RNA structure has allowed regulatory RNA to adopt different mechanisms of gene regulation in a diversity of genetic backgrounds. In the model GammaproteobacteriaEscherichia coli and Salmonella, the regulatory RNA chaperone Hfq appears to play a global role in gene regulation, directly controlling ∼20 to 25% of the entire transcriptome. While the model FirmicutesBacillus subtilis and Staphylococcus aureus encode a Hfq homologue, its role has been significantly depreciated. These bacteria also have marked differences in RNA turnover. E. coli and Salmonella degrade RNA through internal endonucleolytic and 3′→5′ exonucleolytic cleavage that appears to allow transient accumulation of mRNA 3′ UTR cleavage fragments that contain stabilizing 3′ structures. In contrast, B. subtilis and S. aureus are able to exonucleolytically attack internally cleaved RNA from both the 5′ and 3′ ends, efficiently degrading mRNA 3′ UTR fragments. Here, we propose that the lack of 5′→3′ exoribonuclease activity in Gammaproteobacteria has allowed the accumulation of mRNA 3′ UTR ends as the “default” setting. This in turn may have provided a larger pool of unconstrained RNA sequences that has fueled the expansion of Hfq function and small RNA (sRNA) regulation in E. coli and Salmonella. Conversely, the exoribonuclease RNase J may be a significant barrier to the evolution of 3′ UTR sRNAs in B. subtilis and S. aureus that has limited the pool of RNA ligands available to Hfq and other sRNA chaperones, depreciating their function in these model Firmicutes.
Collapse
|
57
|
Robledo M, García-Tomsig NI, Matia-González AM, García-Rodríguez FM, Jiménez-Zurdo JI. Synthetase of the methyl donor S-adenosylmethionine from nitrogen-fixing α-rhizobia can bind functionally diverse RNA species. RNA Biol 2021; 18:1111-1123. [PMID: 33043803 PMCID: PMC8244774 DOI: 10.1080/15476286.2020.1829365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Function of bacterial small non-coding RNAs (sRNAs) and overall RNA metabolism is largely shaped by a vast diversity of RNA-protein interactions. However, in non-model bacteria with defined non-coding transcriptomes the sRNA interactome remains almost unexplored. We used affinity chromatography to capture proteins associated in vivo with MS2-tagged trans-sRNAs that regulate nutrient uptake (AbcR2 and NfeR1) and cell cycle (EcpR1) mRNAs by antisense-based translational inhibition in the nitrogen-fixing α-rhizobia Sinorhizobium meliloti. The three proteomes were rather distinct, with that of EcpR1 particularly enriched in cell cycle-related enzymes, whilst sharing several transcription/translation-related proteins recurrently identified associated with sRNAs. Strikingly, MetK, the synthetase of the major methyl donor S-adenosylmethionine, was reliably recovered as a binding partner of the three sRNAs, which reciprocally co-immunoprecipitated with a FLAG-tagged MetK variant. Induced (over)expression of the trans-sRNAs and MetK depletion did not influence canonical riboregulatory traits, `for example, protein titration or sRNA stability, respectively. An in vitro filter assay confirmed binding of AbcR2, NfeR1 and EcpR1 to MetK and further revealed interaction of the protein with other non-coding and coding transcripts but not with the 5S rRNA. These findings uncover a broad specificity for RNA binding as an unprecedented feature of this housekeeping prokaryotic enzyme.
Collapse
MESH Headings
- Gene Expression Regulation, Bacterial
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Nitrogen Fixation/physiology
- Plant Root Nodulation/physiology
- Plants/microbiology
- Protein Binding
- Protein Interaction Mapping
- RNA, Bacterial/classification
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/classification
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/classification
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- S-Adenosylmethionine/metabolism
- Sinorhizobium meliloti/enzymology
- Sinorhizobium meliloti/genetics
- Symbiosis/physiology
- Transcriptome
Collapse
Affiliation(s)
- Marta Robledo
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Natalia I. García-Tomsig
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Ana M. Matia-González
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Fernando M. García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José I. Jiménez-Zurdo
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
58
|
Roux C, Etienne TA, Hajnsdorf E, Ropers D, Carpousis AJ, Cocaign-Bousquet M, Girbal L. The essential role of mRNA degradation in understanding and engineering E. coli metabolism. Biotechnol Adv 2021; 54:107805. [PMID: 34302931 DOI: 10.1016/j.biotechadv.2021.107805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.
Collapse
Affiliation(s)
- Charlotte Roux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Thibault A Etienne
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; Univ. Grenoble Alpes, Inria, 38000 Grenoble, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | - A J Carpousis
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; LMGM, Université de Toulouse, CNRS, UPS, CBI, 31062 Toulouse, France.
| | | | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France.
| |
Collapse
|
59
|
Stenum TS, Holmqvist E. CsrA enters Hfq's territory: Regulation of a base-pairing small RNA. Mol Microbiol 2021; 117:4-9. [PMID: 34245186 DOI: 10.1111/mmi.14785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Post-transcriptional regulatory networks in Gammaproteobacteria are to a large extent built around the two globally acting RNA-binding proteins (RBPs) CsrA and Hfq. Both RBPs interact with small regulatory RNAs (sRNAs), but the functional outcomes of these interactions are generally distinct. Whereas Hfq both stabilizes sRNAs and promotes their base-pairing to target mRNAs, the sRNAs bound by CsrA act as sequestering molecules that titrate the RBP away from its mRNA targets. In this issue of Molecular Microbiology, Lai et al. reveal that CsrA interacts with the Hfq-associated and base-pairing sRNA Spot 42. In this case, CsrA increases Spot 42 stability by masking a cleavage site for endoribonuclease RNase E, thereby promoting Spot 42-dependent regulation of srlA mRNA. Interestingly, the effect of CsrA on srlA expression is two-fold. In addition to affecting Spot 42-dependent regulation, CsrA directly inhibits translation of SrlM, an activator of srlA transcription. Together, this study reveals a new function for CsrA and indicates more intricate connections between the CsrA and Hfq networks than previously anticipated. Several recent studies have identified additional RBPs that interact with sRNAs. With new RBP identification methods at hand, it will be intriguing to see how many more sRNA-binding proteins will be uncovered.
Collapse
Affiliation(s)
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
60
|
El Mouali Y, Gerovac M, Mineikaitė R, Vogel J. In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid. Nucleic Acids Res 2021; 49:5319-5335. [PMID: 33939833 PMCID: PMC8136791 DOI: 10.1093/nar/gkab281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.
Collapse
Affiliation(s)
- Youssef El Mouali
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Raminta Mineikaitė
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
61
|
Leonard S, Villard C, Nasser W, Reverchon S, Hommais F. RNA Chaperones Hfq and ProQ Play a Key Role in the Virulence of the Plant Pathogenic Bacterium Dickeya dadantii. Front Microbiol 2021; 12:687484. [PMID: 34248909 PMCID: PMC8264596 DOI: 10.3389/fmicb.2021.687484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 12/01/2022] Open
Abstract
Dickeya dadantii is an important pathogenic bacterium that infects a number of crops including potato and chicory. While extensive works have been carried out on the control of the transcription of its genes encoding the main virulence functions, little information is available on the post-transcriptional regulation of these functions. We investigated the involvement of the RNA chaperones Hfq and ProQ in the production of the main D. dadantii virulence functions. Phenotypic assays on the hfq and proQ mutants showed that inactivation of hfq resulted in a growth defect, a modified capacity for biofilm formation and strongly reduced motility, and in the production of degradative extracellular enzymes (proteases, cellulase, and pectate lyases). Accordingly, the hfq mutant failed to cause soft rot on chicory leaves. The proQ mutant had reduced resistance to osmotic stress, reduced extracellular pectate lyase activity compared to the wild-type strain, and reduced virulence on chicory leaves. Most of the phenotypes of the hfq and proQ mutants were related to the low amounts of mRNA of the corresponding virulence factors. Complementation of the double mutant hfq-proQ by each individual protein and cross-complementation of each chaperone suggested that they might exert their effects via partially overlapping but different sets of targets. Overall, it clearly appeared that the two Hfq and ProQ RNA chaperones are important regulators of pathogenicity in D. dadantii. This underscores that virulence genes are regulated post-transcriptionally by non-coding RNAs.
Collapse
Affiliation(s)
- Simon Leonard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Camille Villard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| |
Collapse
|
62
|
Chihara K, Barquist L, Takasugi K, Noda N, Tsuneda S. Global identification of RsmA/N binding sites in Pseudomonas aeruginosa by in vivo UV CLIP-seq. RNA Biol 2021; 18:2401-2416. [PMID: 33866926 DOI: 10.1080/15476286.2021.1917184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Pseudomonas aeruginosa harbours two redundant RNA-binding proteins RsmA/RsmN (RsmA/N), which play a critical role in balancing acute and chronic infections. However, in vivo binding sites on target transcripts and the overall impact on the physiology remains unclear. In this study, we applied in vivo UV crosslinking immunoprecipitation followed by RNA-sequencing (UV CLIP-seq) to detect RsmA/N-binding sites at single-nucleotide resolution and mapped more than 500 binding sites to approximately 400 genes directly bound by RsmA/N in P. aeruginosa. This also verified the ANGGA sequence in apical loops skewed towards 5'UTRs as a consensus motif for RsmA/N binding. Genetic analysis combined with CLIP-seq results suggested previously unrecognized RsmA/N targets involved in LPS modification. Moreover, the RsmA/N-titrating RNAs RsmY/RsmZ may be positively regulated by the RsmA/N-mediated translational repression of their upstream regulators, thus providing a possible mechanistic explanation for homoeostasis of the Rsm system. Thus, our study provides a detailed view of RsmA/N-RNA interactions and a resource for further investigation of the pleiotropic effects of RsmA/N on gene expression in P. aeruginosa.
Collapse
Affiliation(s)
- Kotaro Chihara
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Kenichi Takasugi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
63
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
64
|
Critical Role of 3'-Downstream Region of pmrB in Polymyxin Resistance in Escherichia coli BL21(DE3). Microorganisms 2021; 9:microorganisms9030655. [PMID: 33809968 PMCID: PMC8004244 DOI: 10.3390/microorganisms9030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/05/2022] Open
Abstract
Polymyxins, such as colistin and polymyxin B, are the drugs used as a last resort to treat multidrug-resistant Gram-negative bacterial infections in humans. Increasing colistin resistance has posed a serious threat to human health, warranting in-depth mechanistic research. In this study, using a functional cloning approach, we examined the molecular basis of colistin resistance in Escherichia coli BL21(DE3). Five transformants with inserts ranging from 3.8 to 10.7 kb displayed significantly increased colistin resistance, three of which containing pmrB locus and two containing pmrD locus. Stepwise subcloning indicated that both the pmrB with a single G361A mutation and at least a 103 bp downstream region of pmrB are essential for conferring colistin resistance. Analysis of the mRNA level and stability showed that the length of the downstream region drastically affected the pmrB mRNA level but not its half-life. Lipid A analysis, by mass spectrometry, revealed that the constructs containing pmrB with a longer downstream region (103 or 126 bp) have charge-altering l-4-aminoarabinose (Ara4N) and phosphoethanolamine (pEtN) modifications in lipid A, which were not observed in both vector control and the construct containing pmrB with an 86 bp downstream region. Together, the findings from this study indicate that the 3′-downstream region of pmrB is critical for the PmrB-mediated lipid A modifications and colistin resistance in E. coli BL21(DE3), suggesting a novel regulatory mechanism of PmrB-mediated colistin resistance in E. coli.
Collapse
|
65
|
A Grad-seq View of RNA and Protein Complexes in Pseudomonas aeruginosa under Standard and Bacteriophage Predation Conditions. mBio 2021; 12:mBio.03454-20. [PMID: 33563827 PMCID: PMC8545117 DOI: 10.1128/mbio.03454-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73% of all transcripts and ∼40% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell.
Collapse
|
66
|
Raad N, Luidalepp H, Fasnacht M, Polacek N. Transcriptome-Wide Analysis of Stationary Phase Small ncRNAs in E. coli. Int J Mol Sci 2021; 22:1703. [PMID: 33567722 PMCID: PMC7914890 DOI: 10.3390/ijms22041703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Almost two-thirds of the microbiome's biomass has been predicted to be in a non-proliferating, and thus dormant, growth state. It is assumed that dormancy goes hand in hand with global downregulation of gene expression. However, it remains largely unknown how bacteria manage to establish this resting phenotype at the molecular level. Recently small non-protein-coding RNAs (sRNAs or ncRNAs) have been suggested to be involved in establishing the non-proliferating state in bacteria. Here, we have deep sequenced the small transcriptome of Escherichia coli in the exponential and stationary phases and analyzed the resulting reads by a novel biocomputational pipeline STARPA (Stable RNA Processing Product Analyzer). Our analysis reveals over 12,000 small transcripts enriched during both growth stages. Differential expression analysis reveals distinct sRNAs enriched in the stationary phase that originate from various genomic regions, including transfer RNA (tRNA) fragments. Furthermore, expression profiling by Northern blot and RT-qPCR analyses confirms the growth phase-dependent expression of several enriched sRNAs. Our study adds to the existing repertoire of bacterial sRNAs and suggests a role for some of these small molecules in establishing and maintaining stationary phase as well as the bacterial stress response. Functional characterization of these detected sRNAs has the potential of unraveling novel regulatory networks central for stationary phase biology.
Collapse
Affiliation(s)
- Nicole Raad
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (N.R.); (H.L.); (M.F.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Hannes Luidalepp
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (N.R.); (H.L.); (M.F.)
| | - Michel Fasnacht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (N.R.); (H.L.); (M.F.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (N.R.); (H.L.); (M.F.)
| |
Collapse
|
67
|
Correia Santos S, Bischler T, Westermann AJ, Vogel J. MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT. Cell Rep 2021; 34:108722. [PMID: 33535041 DOI: 10.1016/j.celrep.2021.108722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/25/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.
Collapse
Affiliation(s)
- Sara Correia Santos
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| |
Collapse
|
68
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
69
|
Menendez-Gil P, Toledo-Arana A. Bacterial 3'UTRs: A Useful Resource in Post-transcriptional Regulation. Front Mol Biosci 2021; 7:617633. [PMID: 33490108 PMCID: PMC7821165 DOI: 10.3389/fmolb.2020.617633] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial messenger RNAs (mRNAs) are composed of 5′ and 3′ untranslated regions (UTRs) that flank the coding sequences (CDSs). In eukaryotes, 3′UTRs play key roles in post-transcriptional regulatory mechanisms. Shortening or deregulation of these regions is associated with diseases such as cancer and metabolic disorders. Comparatively, little is known about the functions of 3′UTRs in bacteria. Over the past few years, 3′UTRs have emerged as important players in the regulation of relevant bacterial processes such as virulence, iron metabolism, and biofilm formation. This MiniReview is an update for the different 3′UTR-mediated mechanisms that regulate gene expression in bacteria. Some of these include 3′UTRs that interact with the 5′UTR of the same transcript to modulate translation, 3′UTRs that are targeted by specific ribonucleases, RNA-binding proteins and small RNAs (sRNAs), and 3′UTRs that act as reservoirs of trans-acting sRNAs, among others. In addition, recent findings regarding a differential evolution of bacterial 3′UTRs and its impact in the species-specific expression of orthologous genes are also discussed.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
70
|
Population-scale genetic control of alternative polyadenylation and its association with human diseases. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Immer C, Hacker C, Wöhnert J. Solution structure and RNA-binding of a minimal ProQ-homolog from Legionella pneumophila (Lpp1663). RNA (NEW YORK, N.Y.) 2020; 26:2031-2043. [PMID: 32989045 PMCID: PMC7668265 DOI: 10.1261/rna.077354.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 05/04/2023]
Abstract
Small regulatory RNAs (sRNAs) play an important role for posttranscriptional gene regulation in bacteria. sRNAs recognize their target messenger RNAs (mRNAs) by base-pairing, which is often facilitated by interactions with the bacterial RNA-binding proteins Hfq or ProQ. The FinO/ProQ RNA-binding protein domain was first discovered in the bacterial repressor of conjugation, FinO. Since then, the functional role of FinO/ProQ-like proteins in posttranscriptional gene regulation was extensively studied in particular in the enterobacteria E. coli and Salmonella enterica and a wide range of sRNA-targets was identified for these proteins. In addition, enterobacterial ProQ homologs also recognize and protect the 3'-ends of a number of mRNAs from exonucleolytic degradation. However, the RNA-binding properties of FinO/ProQ proteins with regard to the recognition of different RNA targets are not yet fully understood. Here, we present the solution NMR structure of the so far functionally uncharacterized ProQ homolog Lpp1663 from Legionella pneumophila as a newly confirmed member and a minimal model system of the FinO/ProQ protein family. In addition, we characterize the RNA-binding preferences of Lpp1663 with high resolution NMR spectroscopy and isothermal titration calorimetry (ITC). Our results suggest a binding preference for single-stranded uridine-rich RNAs in the vicinity of stable stem-loop structures. According to chemical shift perturbation experiments, the single-stranded U-rich RNAs interact mainly with a conserved RNA-binding surface on the concave site of Lpp1663.
Collapse
Affiliation(s)
- Carina Immer
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt 60438, Germany
| | - Carolin Hacker
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt 60438, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt 60438, Germany
| |
Collapse
|
72
|
Li S, Edelmann D, Berghoff BA, Georg J, Evguenieva-Hackenberg E. Bioinformatic prediction reveals posttranscriptional regulation of the chromosomal replication initiator gene dnaA by the attenuator sRNA rnTrpL in Escherichia coli. RNA Biol 2020; 18:1324-1338. [PMID: 33164661 DOI: 10.1080/15476286.2020.1846388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DnaA is the initiator protein of chromosome replication, but the regulation of its homoeostasis in enterobacteria is not well understood. The DnaA level remains stable at different growth rates, suggesting a link between metabolism and dnaA expression. In a bioinformatic prediction, which we made to unravel targets of the sRNA rnTrpL in Enterobacteriaceae, the dnaA mRNA was the most conserved target candidate. The sRNA rnTrpL is derived from the transcription attenuator of the tryptophan biosynthesis operon. In Escherichia coli, its level is higher in minimal than in rich medium due to derepressed transcription without external tryptophan supply. Overexpression and deletion of the rnTrpL gene decreased and increased, respectively, the levels of dnaA mRNA. The decrease of the dnaA mRNA level upon rnTrpL overproduction was dependent on hfq and rne. Base pairing between rnTrpL and dnaA mRNA in vivo was validated. In minimal medium, the oriC level was increased in the ΔtrpL mutant, in line with the expected DnaA overproduction and increased initiation of chromosome replication. In line with this, chromosomal rnTrpL mutation abolishing the interaction with dnaA increased both the dnaA mRNA and the oriC level. Moreover, upon addition of tryptophan to minimal medium cultures, the oriC level in the wild type was increased. Thus, rnTrpL is a base-pairing sRNA that posttranscriptionally regulates dnaA in E. coli. Furthermore, our data suggest that rnTrpL contributes to the DnaA homoeostasis in dependence on the nutrient availability, which is represented by the tryptophan level in the cell.
Collapse
Affiliation(s)
- Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Daniel Edelmann
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Bork A Berghoff
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
73
|
Bathke J, Gauernack AS, Rupp O, Weber L, Preusser C, Lechner M, Rossbach O, Goesmann A, Evguenieva-Hackenberg E, Klug G. iCLIP analysis of RNA substrates of the archaeal exosome. BMC Genomics 2020; 21:797. [PMID: 33198623 PMCID: PMC7667871 DOI: 10.1186/s12864-020-07200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3′-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging. Results To determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17–19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5′ parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3′-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5′-ends of RNAs was detected. Conclusions In this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5′-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3′-5′ direction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07200-x.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany.,Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - A Susann Gauernack
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Oliver Rupp
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Lennart Weber
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Christian Preusser
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology & Department of Pharmaceutical Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Alexander Goesmann
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| |
Collapse
|
74
|
The Small Toxic Salmonella Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR. mBio 2020; 11:mBio.01659-20. [PMID: 33172998 PMCID: PMC7667032 DOI: 10.1128/mbio.01659-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has enabled the revelation of a vast number of genomes from organisms spanning all domains of life. To reduce complexity when new genome sequences are annotated, open reading frames (ORFs) shorter than 50 codons in length are generally omitted. However, it has recently become evident that this procedure sorts away ORFs encoding small proteins of high biological significance. For instance, tailored small protein identification approaches have shown that bacteria encode numerous small proteins with important physiological functions. As the number of predicted small ORFs increase, it becomes important to characterize the corresponding proteins. In this study, we discovered a conserved but previously overlooked small enterobacterial protein. We show that this protein, which we dubbed TimP, is a potent toxin that inhibits bacterial growth by targeting the cell membrane. Toxicity is relieved by a small regulatory RNA, which binds the toxin mRNA to inhibit toxin synthesis. Small proteins are gaining increased attention due to their important functions in major biological processes throughout the domains of life. However, their small size and low sequence conservation make them difficult to identify. It is therefore not surprising that enterobacterial ryfA has escaped identification as a small protein coding gene for nearly 2 decades. Since its identification in 2001, ryfA has been thought to encode a noncoding RNA and has been implicated in biofilm formation in Escherichia coli and pathogenesis in Shigella dysenteriae. Although a recent ribosome profiling study suggested ryfA to be translated, the corresponding protein product was not detected. In this study, we provide evidence that ryfA encodes a small toxic inner membrane protein, TimP, overexpression of which causes cytoplasmic membrane leakage. TimP carries an N-terminal signal sequence, indicating that its membrane localization is Sec-dependent. Expression of TimP is repressed by the small RNA (sRNA) TimR, which base pairs with the timP mRNA to inhibit its translation. In contrast to overexpression, endogenous expression of TimP upon timR deletion permits cell growth, possibly indicating a toxicity-independent function in the bacterial membrane.
Collapse
|
75
|
Gross J, Avrani S, Katz S, Hilau S, Hershberg R. Culture Volume Influences the Dynamics of Adaptation under Long-Term Stationary Phase. Genome Biol Evol 2020; 12:2292-2301. [PMID: 33283867 DOI: 10.1093/gbe/evaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli and many other bacterial species, which are incapable of sporulation, can nevertheless survive within resource exhausted media by entering a state termed long-term stationary phase (LTSP). We have previously shown that E. coli populations adapt genetically under LTSP in an extremely convergent manner. Here, we examine how the dynamics of LTSP genetic adaptation are influenced by varying a single parameter of the experiment-culture volume. We find that culture volume affects survival under LTSP, with viable counts decreasing as volumes increase. Across all volumes, mutations accumulate with time, and the majority of mutations accumulated demonstrate signals of being adaptive. However, positive selection appears to affect mutation accumulation more strongly at higher, compared with lower volumes. Finally, we find that several similar genes are likely involved in adaptation across volumes. However, the specific mutations within these genes that contribute to adaptation can vary in a consistent manner. Combined, our results demonstrate how varying a single parameter of an evolutionary experiment can substantially influence the dynamics of observed adaptation.
Collapse
Affiliation(s)
- Jonathan Gross
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sarit Avrani
- The Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sabrin Hilau
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
76
|
Hör J, Di Giorgio S, Gerovac M, Venturini E, Förstner KU, Vogel J. Grad-seq shines light on unrecognized RNA and protein complexes in the model bacterium Escherichia coli. Nucleic Acids Res 2020; 48:9301-9319. [PMID: 32813020 PMCID: PMC7498339 DOI: 10.1093/nar/gkaa676] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Silvia Di Giorgio
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Elisa Venturini
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Konrad U Förstner
- ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany.,TH Köln, Faculty of Information Science and Communication Studies, D-50678 Cologne, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
77
|
Ng Kwan Lim E, Sasseville C, Carrier MC, Massé E. Keeping Up with RNA-Based Regulation in Bacteria: New Roles for RNA Binding Proteins. Trends Genet 2020; 37:86-97. [PMID: 33077249 DOI: 10.1016/j.tig.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
RNA binding proteins (RBPs) are ubiquitously found in all kingdoms of life. They are involved in a plethora of regulatory events, ranging from direct regulation of gene expression to guiding modification of RNA molecules. As bacterial regulators, RBPs can act alone or in concert with RNA-based regulators, such as small regulatory RNAs (sRNAs), riboswitches, or clustered regularly interspaced short palindromic repeats (CRISPR) RNAs. Various functions of RBPs, whether dependent or not on an RNA regulator, have been described in the past. However, the past decade has been a fertile ground for the development of novel high-throughput methods. These methods acted as stepping-stones for the discovery of new functions of RBPs and helped in the understanding of the molecular mechanisms behind previously described regulatory events. Here, we present an overview of the recently identified roles of major bacterial RBPs from different model organisms. Moreover, the tight relationship between RBPs and RNA-based regulators will be explored.
Collapse
Affiliation(s)
- Evelyne Ng Kwan Lim
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Charles Sasseville
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Marie-Claude Carrier
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Eric Massé
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada.
| |
Collapse
|
78
|
Iosub IA, Marchioretto M, van Nues RW, McKellar S, Viero G, Granneman S. The mRNA derived MalH sRNA contributes to alternative carbon source utilization by tuning maltoporin expression in E. coli. RNA Biol 2020; 18:914-931. [PMID: 33043783 PMCID: PMC8081044 DOI: 10.1080/15476286.2020.1827784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous high-throughput studies in Gram-negative bacteria identified a large number of 3ʹUTR fragments that potentially function as sRNAs. Here we extensively characterize the MalH sRNA. We show that MalH is a stable degradation intermediate derived from the 3ʹ end of malG, which is part of the maltose uptake operon transcript malEFG. Unlike the majority of bacterial sRNAs, MalH is transiently expressed during the transition from the exponential to the stationary growth phase, suggesting that it contributes to adaptation to changes in nutrient availability. Over-expression of MalH reduces expression of general outer membrane porins and MicA, a repressor of the high-affinity maltose/maltodextrin transporter LamB. Disrupting MalH production and function significantly reduces lamB accumulation when maltose is the only available carbon source, presumably due to the accumulation of the MicA repressor. We propose that MalH is part of a regulatory network that, during the transition phase, directly or indirectly promotes accumulation of high-affinity maltose transporters in the outer membrane by dampening competing pathways.
Collapse
Affiliation(s)
- Ira A Iosub
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh0, UK
| | | | - Rob W van Nues
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Stuart McKellar
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh0, UK
| | | | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh0, UK
| |
Collapse
|
79
|
Gerovac M, El Mouali Y, Kuper J, Kisker C, Barquist L, Vogel J. Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. RNA (NEW YORK, N.Y.) 2020; 26:1448-1463. [PMID: 32646969 PMCID: PMC7491321 DOI: 10.1261/rna.076992.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins (RBPs) play important roles in bacterial gene expression and physiology but their true number and functional scope remain little understood even in model microbes. To advance global RBP discovery in bacteria, we here establish glycerol gradient sedimentation with RNase treatment and mass spectrometry (GradR). Applied to Salmonella enterica, GradR confirms many known RBPs such as CsrA, Hfq, and ProQ by their RNase-sensitive sedimentation profiles, and discovers the FopA protein as a new member of the emerging family of FinO/ProQ-like RBPs. FopA, encoded on resistance plasmid pCol1B9, primarily targets a small RNA associated with plasmid replication. The target suite of FopA dramatically differs from the related global RBP ProQ, revealing context-dependent selective RNA recognition by FinO-domain RBPs. Numerous other unexpected RNase-induced changes in gradient profiles suggest that cellular RNA helps to organize macromolecular complexes in bacteria. By enabling poly(A)-independent generic RBP discovery, GradR provides an important element in the quest to build a comprehensive catalog of microbial RBPs.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Youssef El Mouali
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| |
Collapse
|
80
|
Stein EM, Kwiatkowska J, Basczok MM, Gravel CM, Berry KE, Olejniczak M. Determinants of RNA recognition by the FinO domain of the Escherichia coli ProQ protein. Nucleic Acids Res 2020; 48:7502-7519. [PMID: 32542384 PMCID: PMC7367173 DOI: 10.1093/nar/gkaa497] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
The regulation of gene expression by small RNAs in Escherichia coli depends on RNA binding proteins Hfq and ProQ, which bind mostly distinct RNA pools. To understand how ProQ discriminates between RNA substrates, we compared its binding to six different RNA molecules. Full-length ProQ bound all six RNAs similarly, while the isolated N-terminal FinO domain (NTD) of ProQ specifically recognized RNAs with Rho-independent terminators. Analysis of malM 3′-UTR mutants showed that tight RNA binding by the ProQ NTD required a terminator hairpin of at least 2 bp preceding an 3′ oligoU tail of at least four uridine residues. Substitution of an A-rich sequence on the 5′ side of the terminator to uridines strengthened the binding of several ProQ-specific RNAs to the Hfq protein, but not to the ProQ NTD. Substitution of the motif in the malM-3′ and cspE-3′ RNAs also conferred the ability to bind Hfq in E. coli cells, as measured using a three-hybrid assay. In summary, these data suggest that the ProQ NTD specifically recognizes 3′ intrinsic terminators of RNA substrates, and that the discrimination between RNA ligands by E. coli ProQ and Hfq depends both on positive determinants for binding to ProQ and negative determinants against binding to Hfq.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Joanna Kwiatkowska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Maciej M Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.,Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
81
|
McQuail J, Switzer A, Burchell L, Wigneshweraraj S. The RNA-binding protein Hfq assembles into foci-like structures in nitrogen starved Escherichia coli. J Biol Chem 2020; 295:12355-12367. [PMID: 32532816 PMCID: PMC7458820 DOI: 10.1074/jbc.ra120.014107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
The initial adaptive responses to nutrient depletion in bacteria often occur at the level of gene expression. Hfq is an RNA-binding protein present in diverse bacterial lineages that contributes to many different aspects of RNA metabolism during gene expression. Using photoactivated localization microscopy and single-molecule tracking, we demonstrate that Hfq forms a distinct and reversible focus-like structure in Escherichia coli specifically experiencing long-term nitrogen starvation. Using the ability of T7 phage to replicate in nitrogen-starved bacteria as a biological probe of E. coli cell function during nitrogen starvation, we demonstrate that Hfq foci have a role in the adaptive response of E. coli to long-term nitrogen starvation. We further show that Hfq foci formation does not depend on gene expression once nitrogen starvation has set in and occurs indepen-dently of the transcription factor N-regulatory protein C, which activates the initial adaptive response to N starvation in E. coli These results serve as a paradigm to demonstrate that bacterial adaptation to long-term nutrient starvation can be spatiotemporally coordinated and can occur independently of de novo gene expression during starvation.
Collapse
Affiliation(s)
- Josh McQuail
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Amy Switzer
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Lynn Burchell
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sivaramesh Wigneshweraraj
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
82
|
Pandey S, Gravel CM, Stockert OM, Wang CD, Hegner CL, LeBlanc H, Berry KE. Genetic identification of the functional surface for RNA binding by Escherichia coli ProQ. Nucleic Acids Res 2020; 48:4507-4520. [PMID: 32170306 PMCID: PMC7192607 DOI: 10.1093/nar/gkaa144] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5′ and 3′ untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ’s interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ’s NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.
Collapse
Affiliation(s)
- Smriti Pandey
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Oliver M Stockert
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Clara D Wang
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Courtney L Hegner
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.,Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
83
|
Holmqvist E, Berggren S, Rizvanovic A. RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194596. [PMID: 32565402 DOI: 10.1016/j.bbagrm.2020.194596] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
Regulatory small RNAs (sRNAs) ubiquitously impact bacterial physiology through antisense-mediated control of mRNA translation and stability. In Gram negative bacteria, sRNAs often associate with RNA-binding proteins (RBPs), both to gain cellular stability and to enable regulatory efficiency. The Hfq and CsrA proteins were for long the only known global RBPs implicated in sRNA biology. During the last five years, the FinO domain-containing protein ProQ has emerged as another global RBP with a broad spectrum of sRNA and mRNA ligands. This review provides a summary of the current knowledge of enterobacterial ProQ, with a special focus on RNA binding activity, RNA ligand preferences, influence on RNA stability and gene expression, and impact on bacterial physiology. Considering that characterization of ProQ is still in its infancy, we highlight aspects that, when addressed, will provide important clues to the physiological functions and regulatory mechanisms of this globally acting RBP.
Collapse
MESH Headings
- Gene Expression Regulation, Bacterial
- Ligands
- Protein Binding
- Protein Interaction Domains and Motifs
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden.
| | - Sofia Berggren
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| | - Alisa Rizvanovic
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| |
Collapse
|
84
|
The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition. Nat Commun 2020; 11:2823. [PMID: 32499480 PMCID: PMC7272453 DOI: 10.1038/s41467-020-16650-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.
Collapse
|
85
|
Quendera AP, Seixas AF, Dos Santos RF, Santos I, Silva JPN, Arraiano CM, Andrade JM. RNA-Binding Proteins Driving the Regulatory Activity of Small Non-coding RNAs in Bacteria. Front Mol Biosci 2020; 7:78. [PMID: 32478092 PMCID: PMC7237705 DOI: 10.3389/fmolb.2020.00078] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are critical post-transcriptional regulators of gene expression. Distinct RNA-binding proteins (RBPs) influence the processing, stability and activity of bacterial small RNAs. The vast majority of bacterial sRNAs interact with mRNA targets, affecting mRNA stability and/or its translation rate. The assistance of RNA-binding proteins facilitates and brings accuracy to sRNA-mRNA basepairing and the RNA chaperones Hfq and ProQ are now recognized as the most prominent RNA matchmakers in bacteria. These RBPs exhibit distinct high affinity RNA-binding surfaces, promoting RNA strand interaction between a trans-encoding sRNA and its mRNA target. Nevertheless, some organisms lack ProQ and/or Hfq homologs, suggesting the existence of other RBPs involved in sRNA function. Along this line of thought, the global regulator CsrA was recently shown to facilitate the access of an sRNA to its target mRNA and may represent an additional factor involved in sRNA function. Ribonucleases (RNases) can be considered a class of RNA-binding proteins with nucleolytic activity that are responsible for RNA maturation and/or degradation. Presently RNase E, RNase III, and PNPase appear to be the main players not only in sRNA turnover but also in sRNA processing. Here we review the current knowledge on the most important bacterial RNA-binding proteins affecting sRNA activity and sRNA-mediated networks.
Collapse
Affiliation(s)
- Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
86
|
Hör J, Garriss G, Di Giorgio S, Hack LM, Vanselow JT, Förstner KU, Schlosser A, Henriques-Normark B, Vogel J. Grad-seq in a Gram-positive bacterium reveals exonucleolytic sRNA activation in competence control. EMBO J 2020; 39:e103852. [PMID: 32227509 PMCID: PMC7196914 DOI: 10.15252/embj.2019103852] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
RNA–protein interactions are the crucial basis for many steps of bacterial gene expression, including post‐transcriptional control by small regulatory RNAs (sRNAs). In stark contrast to recent progress in the analysis of Gram‐negative bacteria, knowledge about RNA–protein complexes in Gram‐positive species remains scarce. Here, we used the Grad‐seq approach to draft a comprehensive landscape of such complexes in Streptococcus pneumoniae, in total determining the sedimentation profiles of ~ 88% of the transcripts and ~ 62% of the proteins of this important human pathogen. Analysis of in‐gradient distributions and subsequent tag‐based protein capture identified interactions of the exoribonuclease Cbf1/YhaM with sRNAs that control bacterial competence for DNA uptake. Unexpectedly, the nucleolytic activity of Cbf1 stabilizes these sRNAs, thereby promoting their function as repressors of competence. Overall, these results provide the first RNA/protein complexome resource of a Gram‐positive species and illustrate how this can be utilized to identify new molecular factors with functions in RNA‐based regulation of virulence‐relevant pathways.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Geneviève Garriss
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Di Giorgio
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,ZB MED-Information Centre for Life Sciences, Cologne, Germany
| | - Lisa-Marie Hack
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- ZB MED-Information Centre for Life Sciences, Cologne, Germany.,Faculty of Information Science and Communication Studies, TH Köln, Cologne, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,SCELSE and LKC, Nanyang Technological University, NTU, Singapore, Singapore
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
87
|
New sequencing methodologies reveal interplay between multiple RNA-binding proteins and their RNAs. Curr Genet 2020; 66:713-717. [PMID: 32193580 DOI: 10.1007/s00294-020-01066-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 01/18/2023]
Abstract
It is now established that base-pairing regulatory RNAs are key players in post-transcriptional regulatory networks where they affect the translation and/or stability of their target RNAs. In many cases, the base-pairing between two RNAs is facilitated by an RNA-binding protein (RBP) that serves as an RNA chaperone. Recent advances in sequencing methods have revealed the RNA populations bound by the RBPs, yielding insights valuable into regulatory networks. Further analyses of these networks can improve our understanding of the roles played by RBPs in the regulation of gene expression by regulatory RNAs, especially when multiple RBPs are involved. For example, using an RNA sequencing-based methodology that captures RNA-RNA pairs on RBP, an interplay between two RBPs in bacteria that compete on the same RNA-RNA pair was revealed. In this case, one protein promotes negative regulation of the target RNA, while the second protein can block this regulation. In this mini-review, I outline the exciting future directions that can be taken to deepen our understanding of the roles played by RBPs in post-transcriptional regulation, and discuss how the different sequencing methods can assist in deciphering the relationships among RBPs, and between the RBPs and the RNAs they bind. Having a more detailed picture of the RBPs-RNAs network will elucidate how bacteria can have nuanced control of gene expression, critical for survival in the varied environments in which bacteria live.
Collapse
|
88
|
Abstract
Hfq (host factor for phage Q beta) is key for posttranscriptional gene regulation in many bacteria. Hfq's function is to stabilize sRNAs and to facilitate base-pairing with trans-encoded target mRNAs. Loss of Hfq typically results in pleiotropic phenotypes, and, in the major human pathogen Vibrio cholerae, Hfq inactivation has been linked to reduced virulence, failure to produce biofilms, and impaired intercellular communication. However, the RNA ligands of Hfq in V. cholerae are currently unknown. Here, we used RIP-seq (RNA immunoprecipitation followed by high-throughput sequencing) analysis to identify Hfq-bound RNAs in V. cholerae Our work revealed 603 coding and 85 noncoding transcripts associated with Hfq, including 44 sRNAs originating from the 3' end of mRNAs. Detailed investigation of one of these latter transcripts, named FarS (fatty acid regulated sRNA), showed that this sRNA is produced by RNase E-mediated maturation of the fabB 3'UTR, and, together with Hfq, inhibits the expression of two paralogous fadE mRNAs. The fabB and fadE genes are antagonistically regulated by the major fatty acid transcription factor, FadR, and we show that, together, FadR, FarS, and FadE constitute a mixed feed-forward loop regulating the transition between fatty acid biosynthesis and degradation in V. cholerae Our results provide the molecular basis for studies on Hfq in V. cholerae and highlight the importance of a previously unrecognized sRNA for fatty acid metabolism in this major human pathogen.
Collapse
|
89
|
Wang C, Chao Y, Matera G, Gao Q, Vogel J. The conserved 3' UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration. Nucleic Acids Res 2020; 48:2126-2143. [PMID: 31863581 PMCID: PMC7038943 DOI: 10.1093/nar/gkz1168] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Small noncoding RNAs (sRNAs) from mRNA 3′ UTRs seem to present a previously unrecognized layer of bacterial post-transcriptional control whereby mRNAs influence each other's expression, independently of transcriptional control. Studies in Escherichia coli and Salmonella enterica showed that such sRNAs are natural products of RNase E-mediated mRNA decay and associate with major RNA-binding proteins (RBPs) such as Hfq and ProQ. If so, there must be additional sRNAs from mRNAs that accumulate only under specific physiological conditions. We test this prediction by characterizing candidate NarS that represents the 3′ UTR of nitrate transporter NarK whose gene is silent during standard aerobic growth. We find that NarS acts by Hfq-dependent base pairing to repress the synthesis of the nitrite transporter, NirC, resulting in mRNA cross-regulation of nitrate and nitrite transporter genes. Interestingly, the NarS-mediated repression selectively targets the nirC cistron of the long nirBDC-cysG operon, an observation that we rationalize as a mechanism to protect the bacterial cytoplasm from excessive nitrite toxicity during anaerobic respiration with abundant nitrate. Our successful functional assignment of a 3′ UTR sRNA from a non-standard growth condition supports the notion that mRNA crossregulation is more pervasive than currently appreciated.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, PR China.,Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Yanjie Chao
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Gianluca Matera
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, PR China
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
90
|
Khan MA, Durica‐Mitic S, Göpel Y, Heermann R, Görke B. Small RNA-binding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli. EMBO J 2020; 39:e103848. [PMID: 32065419 PMCID: PMC7073468 DOI: 10.15252/embj.2019103848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 11/24/2022] Open
Abstract
The RNA-binding protein RapZ cooperates with small RNAs (sRNAs) GlmY and GlmZ to regulate the glmS mRNA in Escherichia coli. Enzyme GlmS synthesizes glucosamine-6-phosphate (GlcN6P), initiating cell envelope biosynthesis. GlmZ activates glmS expression by base-pairing. When GlcN6P is ample, GlmZ is bound by RapZ and degraded through ribonuclease recruitment. Upon GlcN6P depletion, the decoy sRNA GlmY accumulates through a previously unknown mechanism and sequesters RapZ, suppressing GlmZ decay. This circuit ensures GlcN6P homeostasis and thereby envelope integrity. In this work, we identify RapZ as GlcN6P receptor. GlcN6P-free RapZ stimulates phosphorylation of the two-component system QseE/QseF by interaction, which in turn activates glmY expression. Elevated GlmY levels sequester RapZ into stable complexes, which prevents GlmZ decay, promoting glmS expression. Binding of GlmY also prevents RapZ from activating QseE/QseF, generating a negative feedback loop limiting the response. When GlcN6P is replenished, GlmY is released from RapZ and rapidly degraded. We reveal a multifunctional sRNA-binding protein that dynamically engages into higher-order complexes for metabolite signaling.
Collapse
Affiliation(s)
- Muna A Khan
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| | - Svetlana Durica‐Mitic
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| | - Ralf Heermann
- Microbiology and Wine ResearchInstitute for Molecular PhysiologyJohannes Gutenberg‐University MainzMainzGermany
| | - Boris Görke
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| |
Collapse
|
91
|
Jørgensen MG, Pettersen JS, Kallipolitis BH. sRNA-mediated control in bacteria: An increasing diversity of regulatory mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194504. [PMID: 32061884 DOI: 10.1016/j.bbagrm.2020.194504] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Small regulatory RNAs (sRNAs) act as post-transcriptional regulators controlling bacterial adaptation to environmental changes. Our current understanding of the mechanisms underlying sRNA-mediated control is mainly based on studies in Escherichia coli and Salmonella. Ever since the discovery of sRNAs decades ago, these Gram-negative species have served as excellent model organisms in the field of sRNA biology. More recently, the role of sRNAs in gene regulation has become the center of attention in a broader range of species, including Gram-positive model organisms. Here, we highlight some of the most apparent similarities and differences between Gram-negative and Gram-positive bacteria with respect to the mechanisms underlying sRNA-mediated control. Although key aspects of sRNA regulation appear to be highly conserved, novel themes are arising from studies in Gram-positive species, such as a clear abundance of sRNAs acting through multiple C-rich motifs, and an apparent lack of RNA-binding proteins with chaperone activity.
Collapse
Affiliation(s)
- Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
92
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
93
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
94
|
Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of Burkholderia cenocepacia J2315 and Other Members of the B. cepacia Complex. Genes (Basel) 2020; 11:genes11020231. [PMID: 32098200 PMCID: PMC7074383 DOI: 10.3390/genes11020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of cellular functions, playing critical roles on the survival of bacteria and in the case of pathogens, on their interaction with the host. RBPs are involved in transcriptional, post-transcriptional, and translational processes. However, except for model organisms like Escherichia coli, there is little information about the identification or characterization of RBPs in other bacteria, namely in members of the Burkholderia cepacia complex (Bcc). Bcc is a group of bacterial species associated with a poor clinical prognosis in cystic fibrosis patients. These species have some of the largest bacterial genomes, and except for the presence of two-distinct Hfq-like proteins, their RBP repertoire has not been analyzed so far. Using in silico approaches, we identified 186 conventional putative RBPs in Burkholderia cenocepacia J2315, an epidemic and multidrug resistant pathogen of cystic fibrosis patients. Here we describe the comparative genomics and phylogenetic analysis of RBPs present in multiple copies and predicted to play a role in transcription, protein synthesis, and RNA decay in Bcc bacteria. In addition to the two different Hfq chaperones, five cold shock proteins phylogenetically close to E. coli CspD protein and three distinct RhlE-like helicases could be found in the B. cenocepacia J2315 genome. No RhlB, SrmB, or DeaD helicases could be found in the genomes of these bacteria. These results, together with the multiple copies of other proteins generally involved in RNA degradation, suggest the existence, in B. cenocepacia and in other Bcc bacteria, of some extra and unexplored functions for the mentioned RBPs, as well as of alternative mechanisms involved in RNA regulation and metabolism in these bacteria.
Collapse
|
95
|
Biochemical Methods for the Study of the FinO Family of Bacterial RNA Chaperones. Methods Mol Biol 2020. [PMID: 31889248 DOI: 10.1007/978-1-0716-0231-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The FinO family of proteins constitutes a group of RNA chaperones that interacts with small RNAs (sRNAs) to regulate gene expression in many bacterial species. Here we describe detailed protocols for the biochemical analysis of the RNA chaperone activity of these proteins. Methods are described for preparation of RNA, RNA 5' end labeling with radioisotope and modified EMSA protocols to test the ability of these proteins to catalyze RNA strand exchange and RNA duplex formation.
Collapse
|
96
|
Melamed S, Adams PP, Zhang A, Zhang H, Storz G. RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles. Mol Cell 2020; 77:411-425.e7. [DOI: 10.1016/j.molcel.2019.10.022] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023]
|
97
|
Cameron TA, Matz LM, Sinha D, De Lay NR. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments. Nucleic Acids Res 2019; 47:8821-8837. [PMID: 31329973 PMCID: PMC7145675 DOI: 10.1093/nar/gkz616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023] Open
Abstract
In many Gram-negative and some Gram-positive bacteria, small regulatory RNAs (sRNAs) that bind the RNA chaperone Hfq have a pivotal role in modulating virulence, stress responses, metabolism and biofilm formation. These sRNAs recognize transcripts through base-pairing, and sRNA–mRNA annealing consequently alters the translation and/or stability of transcripts leading to changes in gene expression. We have previously found that the highly conserved 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) has an indispensable role in paradoxically stabilizing Hfq-bound sRNAs and promoting their function in gene regulation in Escherichia coli. Here, we report that PNPase contributes to the degradation of specific short mRNA fragments, the majority of which bind Hfq and are derived from targets of sRNAs. Specifically, we found that these mRNA-derived fragments accumulate in the absence of PNPase or its exoribonuclease activity and interact with PNPase. Additionally, we show that mutations in hfq or in the seed pairing region of some sRNAs eliminated the requirement of PNPase for their stability. Altogether, our results are consistent with a model that PNPase degrades mRNA-derived fragments that could otherwise deplete cells of Hfq-binding sRNAs through pairing-mediated decay.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
98
|
Conditional Hfq Association with Small Noncoding RNAs in Pseudomonas aeruginosa Revealed through Comparative UV Cross-Linking Immunoprecipitation Followed by High-Throughput Sequencing. mSystems 2019; 4:4/6/e00590-19. [PMID: 31796567 PMCID: PMC6890931 DOI: 10.1128/msystems.00590-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-negative bacterium P. aeruginosa is ubiquitously distributed in diverse environments and can cause severe biofilm-related infections in at-risk individuals. Although the presence of a large number of putative sRNAs and widely conserved RNA chaperones in this bacterium implies the importance of posttranscriptional regulatory networks for environmental fluctuations, limited information is available regarding the global role of RNA chaperones such as Hfq in the P. aeruginosa transcriptome, especially under different environmental conditions. Here, we characterize Hfq-dependent differences in gene expression and biological processes in two physiological states: the planktonic and biofilm forms. A combinatorial comparative CLIP-seq and total RNA-seq approach uncovered condition-dependent association of RNAs with Hfq in vivo and expands the potential direct regulatory targets of Hfq in the P. aeruginosa transcriptome. Bacterial small noncoding RNAs (sRNAs) play posttranscriptional regulatory roles in cellular responses to changing environmental cues and in adaptation to harsh conditions. Generally, the RNA-binding protein Hfq helps sRNAs associate with target mRNAs to modulate their translation and to modify global RNA pools depending on physiological state. Here, a combination of in vivo UV cross-linking immunoprecipitation followed by high-throughput sequencing (CLIP-seq) and total RNA-seq showed that Hfq interacts with different regions of the Pseudomonas aeruginosa transcriptome under planktonic versus biofilm conditions. In the present approach, P. aeruginosa Hfq preferentially interacted with repeats of the AAN triplet motif at mRNA 5′ untranslated regions (UTRs) and sRNAs and U-rich sequences at rho-independent terminators. Further transcriptome analysis suggested that the association of sRNAs with Hfq is primarily a function of their expression levels, strongly supporting the notion that the pool of Hfq-associated RNAs is equilibrated by RNA concentration-driven cycling on and off Hfq. Overall, our combinatorial CLIP-seq and total RNA-seq approach highlights conditional sRNA associations with Hfq as a novel aspect of posttranscriptional regulation in P. aeruginosa. IMPORTANCE The Gram-negative bacterium P. aeruginosa is ubiquitously distributed in diverse environments and can cause severe biofilm-related infections in at-risk individuals. Although the presence of a large number of putative sRNAs and widely conserved RNA chaperones in this bacterium implies the importance of posttranscriptional regulatory networks for environmental fluctuations, limited information is available regarding the global role of RNA chaperones such as Hfq in the P. aeruginosa transcriptome, especially under different environmental conditions. Here, we characterize Hfq-dependent differences in gene expression and biological processes in two physiological states: the planktonic and biofilm forms. A combinatorial comparative CLIP-seq and total RNA-seq approach uncovered condition-dependent association of RNAs with Hfq in vivo and expands the potential direct regulatory targets of Hfq in the P. aeruginosa transcriptome.
Collapse
|
99
|
Langlete P, Krabberød AK, Winther-Larsen HC. Vesicles From Vibrio cholerae Contain AT-Rich DNA and Shorter mRNAs That Do Not Correlate With Their Protein Products. Front Microbiol 2019; 10:2708. [PMID: 31824470 PMCID: PMC6883915 DOI: 10.3389/fmicb.2019.02708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles secreted by Gram-negative bacteria have proven to be important in bacterial defense, communication and host–pathogen relationships. They resemble smaller versions of the bacterial mother cell, with similar contents of proteins, LPS, DNA, and RNA. Vesicles can elicit a protective immune response in a range of hosts, and as vaccine candidates, it is of interest to properly characterize their cargo. Genetic sequencing data is already available for vesicles from several bacterial strains, but it is not yet clear how the genetic makeup of vesicles differ from that of their parent cells, and which properties may characterize enriched genetic material. The present study provides evidence for DNA inside vesicles from Vibrio cholerae O395, and key characteristics of their genetic and proteomic content are compared to that of whole cells. DNA analysis reveals enrichment of fragments containing ToxR binding sites, as well as a positive correlation between AT-content and enrichment. Some mRNAs were highly enriched in the vesicle fraction, such as membrane protein genes ompV, ompK, and ompU, DNA-binding protein genes hupA, hupB, ihfB, fis, and ssb, and a negative correlation was found between mRNA enrichment and transcript length, suggesting mRNA inclusion in vesicles may be a size-dependent process. Certain non-coding and functional RNAs were found to be enriched, such as VrrA, GcvB, tmRNA, RNase P, CsrB2, and CsrB3. Mass spectrometry revealed enrichment of outer membrane proteins, known virulence factors, phage components, flagella and extracellular proteins in the vesicle fraction, and a low, negative correlation was found between transcript-, and protein enrichment. This result opposes the hypothesis that a significant degree of protein translation occurs in vesicles after budding. The abundance of viral-, and flagellar proteins in the vesicle fraction underlines the importance of purification during vesicle isolation.
Collapse
Affiliation(s)
- Petter Langlete
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders Kristian Krabberød
- Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway.,Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne Cecilie Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
100
|
Babitzke P, Lai YJ, Renda AJ, Romeo T. Posttranscription Initiation Control of Gene Expression Mediated by Bacterial RNA-Binding Proteins. Annu Rev Microbiol 2019; 73:43-67. [PMID: 31100987 PMCID: PMC9404307 DOI: 10.1146/annurev-micro-020518-115907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.
Collapse
Affiliation(s)
- Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Andrew J Renda
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| |
Collapse
|