51
|
Nordenskiöld L, Shi X, Korolev N, Zhao L, Zhai Z, Lindman B. Liquid-liquid phase separation (LLPS) in DNA and chromatin systems from the perspective of colloid physical chemistry. Adv Colloid Interface Sci 2024; 326:103133. [PMID: 38547652 DOI: 10.1016/j.cis.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
DNA is a highly charged polyelectrolyte and is prone to associative phase separation driven by the presence of multivalent cations, charged surfactants, proteins, polymers and colloids. The process of DNA phase separation induced by positively charged species is often called DNA condensation. Generally, it refers to either intramolecular DNA compaction (coil-globule transition) or intermolecular DNA aggregation with macroscopic phase separation, but the formation of a DNA liquid crystalline system is also displayed. This has traditionally been described by polyelectrolyte theory and qualitative (Flory-Huggins-based) polymer theory approaches. DNA in the cell nucleus is packed into chromatin wound around the histone octamer (a protein complex comprising two copies each of the four histone proteins H2A, H2B, H3 and H4) to form nucleosomes separated by linker DNA. During the last decade, the phenomenon of the formation of biomolecular condensates (dynamic droplets) by liquid-liquid phase separation (LLPS) has emerged as a generally important mechanism for the formation of membraneless organelles from proteins, nucleic acids and their complexes. DNA and chromatin droplet formation through LLPS has recently received much attention by in vitro as well as in vivo studies that established the importance of this for compartmentalisation in the cell nucleus. Here, we review DNA and chromatin LLPS from a general colloid physical chemistry perspective. We start with a general discussion of colloidal phase separation in aqueous solutions and review the original (pre-LLPS era) work on DNA (macroscopic) phase separation for simpler systems with DNA in the presence of multivalent cations and well-defined surfactants and colloids. Following that, we discuss and illustrate the similarities of such macroscopic phase separation with the general behaviour of LLPS droplet formation by associative phase separation for DNA-protein systems, including chromatin; we also note cases of segregative association. The review ends with a discussion of chromatin LLPS in vivo and its physiological significance.
Collapse
Affiliation(s)
- Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Björn Lindman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Physical Chemistry, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
52
|
Sun J, Qu J, Zhao C, Zhang X, Liu X, Wang J, Wei C, Liu X, Wang M, Zeng P, Tang X, Ling X, Qing L, Jiang S, Chen J, Chen TSR, Kuang Y, Gao J, Zeng X, Huang D, Yuan Y, Fan L, Yu H, Ding J. Precise prediction of phase-separation key residues by machine learning. Nat Commun 2024; 15:2662. [PMID: 38531854 DOI: 10.1038/s41467-024-46901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding intracellular phase separation is crucial for deciphering transcriptional control, cell fate transitions, and disease mechanisms. However, the key residues, which impact phase separation the most for protein phase separation function have remained elusive. We develop PSPHunter, which can precisely predict these key residues based on machine learning scheme. In vivo and in vitro validations demonstrate that truncating just 6 key residues in GATA3 disrupts phase separation, enhancing tumor cell migration and inhibiting growth. Glycine and its motifs are enriched in spacer and key residues, as revealed by our comprehensive analysis. PSPHunter identifies nearly 80% of disease-associated phase-separating proteins, with frequent mutated pathological residues like glycine and proline often residing in these key residues. PSPHunter thus emerges as a crucial tool to uncover key residues, facilitating insights into phase separation mechanisms governing transcriptional control, cell fate transitions, and disease development.
Collapse
Affiliation(s)
- Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiale Qu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cai Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyao Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Liu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Wang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mulan Wang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoru Ling
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Qing
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahao Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tara S R Chen
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yalan Kuang
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Jinhang Gao
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Xiaoxi Zeng
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yong Yuan
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Haopeng Yu
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Junjun Ding
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
53
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. Commun Biol 2024; 7:251. [PMID: 38429335 PMCID: PMC10907630 DOI: 10.1038/s42003-024-05920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S Abasi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
54
|
Yan X, Zhang M, Wang D. Interplay between posttranslational modifications and liquid‒liquid phase separation in tumors. Cancer Lett 2024; 584:216614. [PMID: 38246226 DOI: 10.1016/j.canlet.2024.216614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Liquid‒liquid phase separation (LLPS) is a general phenomenon recently recognized to be critically involved in the regulation of a variety of cellular biological processes, such as transcriptional regulation, heterochromatin formation and signal transduction, through the compartmentalization of proteins or nucleic acids into droplet-like condensates. These processes are directly or indirectly related to tumor initiation and treatment. Posttranslational modifications (PTMs), which represent a rapid and reversible mechanism involved in the functional regulation of proteins, have emerged as key events in modulating LLPS under physiological or pathophysiological conditions, including tumorigenesis and antitumor therapy. In this review, we introduce the biological functions participated in cancer-associated LLPS, discuss the potential roles of LLPS during tumor onset or therapy, and emphasize the mechanistic characteristics of LLPS regulated by PTMs and its effects on tumor progression. We then provide a perspective on further studies on LLPS and its regulation by PTMs in cancer research. This review aims to broaden the understanding of the functions of LLPS and its regulation by PTMs under normal or aberrant cellular conditions.
Collapse
Affiliation(s)
- Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
55
|
Delshad M, Davoodi-Moghaddam Z, Pourbagheri-Sigaroodi A, Faranoush M, Abolghasemi H, Bashash D. Translating mechanisms into therapeutic strategies for immune thrombocytopenia (ITP): Lessons from clinical trials. Thromb Res 2024; 235:125-147. [PMID: 38335568 DOI: 10.1016/j.thromres.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder that causes a significant reduction in peripheral blood platelet count. Fortunately, due to an increased understanding of ITP, there have been significant improvements in the diagnosis and treatment of these patients. Over the past decade, there have been a variety of proven therapeutic options available for ITP patients, including intravenous immunoglobulins (IVIG), Rituximab, corticosteroids, and thrombopoietin receptor agonists (TPO-RAs). Although the effectiveness of current therapies in treating more than two-thirds of patients, still some patients do not respond well to conventional therapies or fail to achieve long-term remission. Recently, a significant advancement has been made in identifying various mechanisms involved in the pathogenesis of ITP, leading to the development of novel treatments targeting these pathways. It seems that new agents that target plasma cells, Bruton tyrosine kinase, FcRn, platelet desialylation, splenic tyrosine kinase, and classical complement pathways are opening new ways to treat ITP. In this study, we reviewed the pathophysiology of ITP and summarized updates in this population's management and treatment options. We also took a closer look at the 315 ongoing trials to investigate their progress status and compare the effectiveness of interventions. May our comprehensive view of ongoing clinical trials serve as a guiding beacon, illuminating the path towards future trials of different drugs in the treatment of ITP patients.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
56
|
Li S, Zhang Y, Chen J. Backbone interactions and secondary structures in phase separation of disordered proteins. Biochem Soc Trans 2024; 52:319-329. [PMID: 38348795 PMCID: PMC11742187 DOI: 10.1042/bst20230618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Intrinsically disordered proteins (IDPs) are one of the major drivers behind the formation and characteristics of biomolecular condensates. Due to their inherent flexibility, the backbones of IDPs are significantly exposed, rendering them highly influential and susceptible to biomolecular phase separation. In densely packed condensates, exposed backbones have a heightened capacity to interact with neighboring protein chains, which might lead to strong coupling between the secondary structures and phase separation and further modulate the subsequent transitions of the condensates, such as aging and fibrillization. In this mini-review, we provide an overview of backbone-mediated interactions and secondary structures within biomolecular condensates to underscore the importance of protein backbones in phase separation. We further focus on recent advances in experimental techniques and molecular dynamics simulation methods for probing and exploring the roles of backbone interactions and secondary structures in biomolecular phase separation involving IDPs.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
57
|
Ingersoll S, Trouth A, Luo X, Espinoza A, Wen J, Tucker J, Astatike K, Phiel CJ, Kutateladze TG, Wu TP, Ramachandran S, Ren X. Sparse CBX2 nucleates many Polycomb proteins to promote facultative heterochromatinization of Polycomb target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578969. [PMID: 38370615 PMCID: PMC10871256 DOI: 10.1101/2024.02.05.578969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Facultative heterochromatinization of genomic regulators by Polycomb repressive complex (PRC) 1 and 2 is essential in development and differentiation; however, the underlying molecular mechanisms remain obscure. Using genetic engineering, molecular approaches, and live-cell single-molecule imaging, we quantify the number of proteins within condensates formed through liquid-liquid phase separation (LLPS) and find that in mouse embryonic stem cells (mESCs), approximately 3 CBX2 proteins nucleate many PRC1 and PRC2 subunits to form one non-stoichiometric condensate. We demonstrate that sparse CBX2 prevents Polycomb proteins from migrating to constitutive heterochromatin, demarcates the spatial boundaries of facultative heterochromatin, controls the deposition of H3K27me3, regulates transcription, and impacts cellular differentiation. Furthermore, we show that LLPS of CBX2 is required for the demarcation and deposition of H3K27me3 and is essential for cellular differentiation. Our findings uncover new functional roles of LLPS in the formation of facultative heterochromatin and unravel a new mechanism by which low-abundant proteins nucleate many other proteins to form compartments that enable them to execute their functions.
Collapse
Affiliation(s)
- Steven Ingersoll
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Axel Espinoza
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Joey Wen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Joseph Tucker
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Kalkidan Astatike
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Christopher J. Phiel
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tao P. Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| |
Collapse
|
58
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
59
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
60
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
61
|
Wang F, Zhang Y. Physiology and pharmacological targeting of phase separation. J Biomed Sci 2024; 31:11. [PMID: 38245749 PMCID: PMC10800077 DOI: 10.1186/s12929-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) in biology describes a process by which proteins form membraneless condensates within a cellular compartment when conditions are met, including the concentration and posttranslational modifications of the protein components, the condition of the aqueous solution (pH, ionic strength, pressure, and temperature), and the existence of assisting factors (such as RNAs or other proteins). In these supramolecular liquid droplet-like inclusion bodies, molecules are held together through weak intermolecular and/or intramolecular interactions. With the aid of LLPS, cells can assemble functional sub-units within a given cellular compartment by enriching or excluding specific factors, modulating cellular function, and rapidly responding to environmental or physiological cues. Hence, LLPS is emerging as an important means to regulate biology and physiology. Yet, excessive inclusion body formation by, for instance, higher-than-normal concentrations or mutant forms of the protein components could result in the conversion from dynamic liquid condensates into more rigid gel- or solid-like aggregates, leading to the disruption of the organelle's function followed by the development of human disorders like neurodegenerative diseases. In summary, well-controlled formation and de-formation of LLPS is critical for normal biology and physiology from single cells to individual organisms, whereas abnormal LLPS is involved in the pathophysiology of human diseases. In turn, targeting these aggregates or their formation represents a promising approach in treating diseases driven by abnormal LLPS including those neurodegenerative diseases that lack effective therapies.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA.
| |
Collapse
|
62
|
Ji D, Shao C, Yu J, Hou Y, Gao X, Wu Y, Wang L, Chen P. FOXA1 forms biomolecular condensates that unpack condensed chromatin to function as a pioneer factor. Mol Cell 2024; 84:244-260.e7. [PMID: 38101414 DOI: 10.1016/j.molcel.2023.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.
Collapse
Affiliation(s)
- Dengyu Ji
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Changrong Shao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyao Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao Gao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Yichuan Wu
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Liang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
63
|
Wang J, Chen Y, Xiao Z, Liu X, Liu C, Huang K, Chen H. Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations. Curr Protein Pept Sci 2024; 25:553-566. [PMID: 38551058 DOI: 10.2174/0113892037296216240301074253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 07/25/2024]
Abstract
Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.
Collapse
Affiliation(s)
- Jiao Wang
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zixuan Xiao
- ISA Wenhua Wuhan High School, Fenglin Road, Junshan New Town, Wuhan Economics & Technological Development Zone, Wuhan, Hubei 430119, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyu Liu
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
64
|
Salomone J, Farrow E, Gebelein B. Homeodomain complex formation and biomolecular condensates in Hox gene regulation. Semin Cell Dev Biol 2024; 152-153:93-100. [PMID: 36517343 PMCID: PMC10258226 DOI: 10.1016/j.semcdb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Hox genes are a family of homeodomain transcription factors that regulate specialized morphological structures along the anterior-posterior axis of metazoans. Over the past few decades, researchers have focused on defining how Hox factors with similar in vitro DNA binding activities achieve sufficient target specificity to regulate distinct cell fates in vivo. In this review, we highlight how protein interactions with other transcription factors, many of which are also homeodomain proteins, result in the formation of transcription factor complexes with enhanced DNA binding specificity. These findings suggest that Hox-regulated enhancers utilize distinct combinations of homeodomain binding sites, many of which are low-affinity, to recruit specific Hox complexes. However, low-affinity sites can only yield reproducible responses with high transcription factor concentrations. To overcome this limitation, recent studies revealed how transcription factors, including Hox factors, use intrinsically disordered domains (IDRs) to form biomolecular condensates that increase protein concentrations. Moreover, Hox factors with altered IDRs have been associated with altered transcriptional activity and human disease states, demonstrating the importance of IDRs in mediating essential Hox output. Collectively, these studies highlight how Hox factors use their DNA binding domains, protein-protein interaction domains, and IDRs to form specific transcription factor complexes that yield accurate gene expression.
Collapse
Affiliation(s)
- Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward Farrow
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
65
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572911. [PMID: 38187700 PMCID: PMC10769318 DOI: 10.1101/2023.12.21.572911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease (AD). Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. Models of tau depletion or pathology show loss of genetically silent heterochromatin, aberrant expression of heterochromatic genes, and transposable element activation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA, while magic angle spinning (MAS) solid-state NMR experiments show that tau binding does not drastically alter nucleosome structure and dynamics. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S. Abasi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
66
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
67
|
Ukmar-Godec T, Cima-Omori MS, Yerkesh Z, Eswara K, Yu T, Ramesh R, Riviere G, Ibanez de Opakua A, Fischle W, Zweckstetter M. Multimodal interactions drive chromatin phase separation and compaction. Proc Natl Acad Sci U S A 2023; 120:e2308858120. [PMID: 38048471 PMCID: PMC10723116 DOI: 10.1073/pnas.2308858120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023] Open
Abstract
Gene silencing is intimately connected to DNA condensation and the formation of transcriptionally inactive heterochromatin by Heterochromatin Protein 1α (HP1α). Because heterochromatin foci are dynamic and HP1α can promote liquid-liquid phase separation, HP1α-mediated phase separation has been proposed as a mechanism of chromatin compaction. The molecular basis of HP1α-driven phase separation and chromatin compaction and the associated regulation by trimethylation of lysine 9 in histone 3 (H3K9me3), which is the hallmark of constitutive heterochromatin, is however largely unknown. Using a combination of chromatin compaction and phase separation assays, site-directed mutagenesis, and NMR-based interaction analysis, we show that human HP1α can compact chromatin in the absence of liquid-liquid phase separation. We further demonstrate that H3K9-trimethylation promotes compaction of chromatin arrays through multimodal interactions. The results provide molecular insights into HP1α-mediated chromatin compaction and thus into the role of human HP1α in the regulation of gene silencing.
Collapse
Affiliation(s)
- Tina Ukmar-Godec
- German Center for Neurodegenerative Diseases, Translational Structural Biology, Göttingen37075, Germany
| | - Maria-Sol Cima-Omori
- German Center for Neurodegenerative Diseases, Translational Structural Biology, Göttingen37075, Germany
| | - Zhadyra Yerkesh
- Bioscience Program, Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Karthik Eswara
- Bioscience Program, Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Taekyung Yu
- German Center for Neurodegenerative Diseases, Translational Structural Biology, Göttingen37075, Germany
| | - Reshma Ramesh
- German Center for Neurodegenerative Diseases, Translational Structural Biology, Göttingen37075, Germany
| | - Gwladys Riviere
- German Center for Neurodegenerative Diseases, Translational Structural Biology, Göttingen37075, Germany
| | - Alain Ibanez de Opakua
- German Center for Neurodegenerative Diseases, Translational Structural Biology, Göttingen37075, Germany
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases, Translational Structural Biology, Göttingen37075, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| |
Collapse
|
68
|
Park S, Athreya A, Carrizo GE, Benning NA, Mitchener MM, Bhanu NV, Garcia BA, Zhang B, Muir TW, Pearce EL, Ha T. Electrostatic encoding of genome organization principles within single native nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570828. [PMID: 38106048 PMCID: PMC10723453 DOI: 10.1101/2023.12.08.570828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The eukaryotic genome, first packed into nucleosomes of about 150 bp around the histone core, is organized into euchromatin and heterochromatin, corresponding to the A and B compartments, respectively. Here, we asked if individual nucleosomes in vivo know where to go. That is, do mono-nucleosomes by themselves contain A/B compartment information, associated with transcription activity, in their biophysical properties? We purified native mono-nucleosomes to high monodispersity and used physiological concentrations of biological polyamines to determine their condensability. The chromosomal regions known to partition into A compartments have low condensability and vice versa. In silico chromatin polymer simulations using condensability as the only input showed that biophysical information needed to form compartments is all contained in single native nucleosomes and no other factors are needed. Condensability is also strongly anticorrelated with gene expression, and especially so near the promoter region and in a cell type dependent manner. Therefore, individual nucleosomes in the promoter know whether the gene is on or off, and that information is contained in their biophysical properties. Comparison with genetic and epigenetic features suggest that nucleosome condensability is a very meaningful axis onto which to project the high dimensional cellular chromatin state. Analysis of condensability using various condensing agents including those that are protein-based suggests that genome organization principle encoded into individual nucleosomes is electrostatic in nature. Polyamine depletion in mouse T cells, by either knocking out ornithine decarboxylase (ODC) or inhibiting ODC, results in hyperpolarized condensability, suggesting that when cells cannot rely on polyamines to translate biophysical properties of nucleosomes to control gene expression and 3D genome organization, they accentuate condensability contrast, which may explain dysfunction known to occur with polyamine deficiency.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Advait Athreya
- Computational and Systems Biology Program, MIT, Cambridge, MA, 02139, USA
| | - Gustavo Ezequiel Carrizo
- Department of Oncology, The Bloomberg–Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nils A. Benning
- Department of Biology, Johns Hopkins University. Baltimore, MD 21218, USA
| | | | - Natarajan V. Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO 63110, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO 63110, USA
| | - Bin Zhang
- Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Erika L. Pearce
- Department of Oncology, The Bloomberg–Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
69
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542535. [PMID: 37398008 PMCID: PMC10312469 DOI: 10.1101/2023.05.28.542535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M. Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
70
|
Zhou ZK, Narlikar GJ. Understanding how genetically encoded tags affect phase separation by Heterochromatin Protein HP1α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569983. [PMID: 38106110 PMCID: PMC10723358 DOI: 10.1101/2023.12.04.569983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Liquid-liquid phase separation (LLPS) is driven by weak multi-valent interactions. Such interactions can result in the formation of puncta in cells and droplets in vitro . The heterochromatin protein HP1α forms droplets with chromatin in vitro and is found in puncta in cells. A common approach to visualize the dynamics of HP1α in cells is to genetically encode fluorescent tags on the protein. HP1α modified with tags such as GFP has been shown to localize to dynamic puncta in vivo . However, whether tagged HP1α retains its intrinsic phase separation properties has not been systematically studied. Here, using different C-terminal tags (AID-sfGFP, mEGFP, and UnaG), we assessed how tag size and linker length affected the phase separation ability of HP1α with DNA in vitro . We found that the AID-sfGFP tag (52 kDa) promoted HP1α phase-separation, possibly driven by the highly disordered AID degron. The mEGFP tag (27 kDa) inhibited phase-separation by HP1α, whereas an UnaG tag (13 kDa) with a 16 amino acid linker showed minimal perturbation. The UnaG tag can thus be used in cellular studies of HP1α to better correlate in vitro and in vivo studies. To test if cellular crowding overcomes the negative effects of large tags in vivo , we used polyethylene glycol (PEG) to mimic crowding in vitro . We found that addition of 10% PEG8000 or PEG4000 enables phase separation by GFP-tagged HP1α at comparable concentrations as untagged HP1α. However, these crowding agents also substantially dampened the differences in phase-separation between wild-type and mutant HP1α proteins. PEG further drove phase-separation of Maltose Binding Protein (MBP), a tag often used to solubilize other proteins. These results suggest that phase-separation of biological macromolecules with PEG should be interpreted with caution as PEG-based crowding agents may change the types of interactions made within the phases.
Collapse
|
71
|
Han MH, Issagulova D, Park M. Interplay between epigenome and 3D chromatin structure. BMB Rep 2023; 56:633-644. [PMID: 38052424 PMCID: PMC10761748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Epigenetic mechanisms, primarily mediated through histone and DNA modifications, play a pivotal role in orchestrating the functional identity of a cell and its response to environmental cues. Similarly, the spatial arrangement of chromatin within the threedimensional (3D) nucleus has been recognized as a significant factor influencing genomic function. Investigating the relationship between epigenetic regulation and 3D chromatin structure has revealed correlation and causality between these processes, from the global alignment of average chromatin structure with chromatin marks to the nuanced correlations at smaller scales. This review aims to dissect the biological significance and the interplay between the epigenome and 3D chromatin structure, while also exploring the underlying molecular mechanisms. By synthesizing insights from both experimental and modeling perspectives, we seek to provide a comprehensive understanding of cellular functions. [BMB Reports 2023; 56(12): 633-644].
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dariya Issagulova
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Minhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
72
|
Abstract
The eukaryotic nucleus displays a variety of membraneless compartments with distinct biomolecular composition and specific cellular activities. Emerging evidence indicates that protein-based liquid-liquid phase separation (LLPS) plays an essential role in the formation and dynamic regulation of heterochromatin compartmentalization. This feature is especially conspicuous at the pericentric heterochromatin domains. In this review, we will describe our understanding of heterochromatin organization and LLPS. In addition, we will highlight the increasing importance of multivalent weak homo- and heteromolecular interactions in LLPS-mediated heterochromatin compartmentalization in the complex environment inside living cells.
Collapse
Affiliation(s)
- Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Human Biology and Bioimaging, Faculty of Biology, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Hector Romero
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Faculty of Biology, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany,CONTACT M. Cristina Cardoso Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287Darmstadt, Germany
| |
Collapse
|
73
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 PMCID: PMC10155639 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
74
|
Cai L, Wang GG. Through the lens of phase separation: intrinsically unstructured protein and chromatin looping. Nucleus 2023; 14:2179766. [PMID: 36821650 PMCID: PMC9980480 DOI: 10.1080/19491034.2023.2179766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The establishment, maintenance and dynamic regulation of three-dimensional (3D) chromatin structures provide an important means for partitioning of genome into functionally distinctive domains, which helps to define specialized gene expression programs associated with developmental stages and cell types. Increasing evidence supports critical roles for intrinsically disordered regions (IDRs) harbored within transcription factors (TFs) and chromatin-modulatory proteins in inducing phase separation, a phenomenon of forming membrane-less condensates through partitioning of biomolecules. Such a process is also critically involved in the establishment of high-order chromatin structures and looping. IDR- and phase separation-driven 3D genome (re)organization often goes wrong in disease such as cancer. This review discusses about recent advances in understanding how phase separation of intrinsically disordered proteins (IDPs) modulates chromatin looping and gene expression.
Collapse
Affiliation(s)
- Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Ling Cai Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,CONTACT Gang Greg Wang Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC27599, USA
| |
Collapse
|
75
|
Vittoria MA, Quinton RJ, Ganem NJ. Whole-genome doubling in tissues and tumors. Trends Genet 2023; 39:954-967. [PMID: 37714734 PMCID: PMC10840902 DOI: 10.1016/j.tig.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The overwhelming majority of proliferating somatic human cells are diploid, and this genomic state is typically maintained across successive cell divisions. However, failures in cell division can induce a whole-genome doubling (WGD) event, in which diploid cells transition to a tetraploid state. While some WGDs are developmentally programmed to produce nonproliferative tetraploid cells with specific cellular functions, unscheduled WGDs can be catastrophic: erroneously arising tetraploid cells are ill-equipped to cope with their doubled cellular and chromosomal content and quickly become genomically unstable and tumorigenic. Deciphering the genetics that underlie the genesis, physiology, and evolution of whole-genome doubled (WGD+) cells may therefore reveal therapeutic avenues to selectively eliminate pathological WGD+ cells.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Ryan J Quinton
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neil J Ganem
- Department of Medicine, Division of Hematology and Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
76
|
Lu G, Li P. PHF1 compartmentalizes PRC2 via phase separation. Biochem J 2023; 480:1833-1844. [PMID: 37888776 DOI: 10.1042/bcj20230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Polycomb repressive complex 2 (PRC2) is central to polycomb repression as it trimethylates lysine 27 on histone H3 (H3K27me3). How PRC2 is recruited to its targets to deposit H3K27me3 remains an open question. Polycomb-like (PCL) proteins, a group of conserved PRC2 accessory proteins, can direct PRC2 to its targets. In this report, we demonstrate that a PCL protein named PHF1 forms phase-separated condensates at H3K27me3 loci that recruit PRC2. Combining cellular observation and biochemical reconstitution, we show that the N-terminal domains of PHF1 cooperatively mediate target recognition, the chromo-like domain recruits PRC2, and the intrinsically disordered region (IDR) drives phase separation. Moreover, we reveal that the condensates compartmentalize PRC2, DNA, and nucleosome arrays by phase separation. Luciferase reporter assays confirm that PHF1 phase separation promotes transcription repression, further supporting a role of the condensates in polycomb repression. Based on our findings, we propose that these condensates create favorable microenvironments at the target loci for PRC2 to function.
Collapse
Affiliation(s)
- Genzhe Lu
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
- Tsinghua Xuetang Life Science Program, Tsinghua University, Beijing 100084, China
| | - Pilong Li
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
77
|
Elathram N, Ackermann BE, Clark ET, Dunn SR, Debelouchina GT. Phosphorylated HP1α-Nucleosome Interactions in Phase Separated Environments. J Am Chem Soc 2023; 145:23994-24004. [PMID: 37870432 PMCID: PMC10636758 DOI: 10.1021/jacs.3c06481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
In the nucleus, transcriptionally silent genes are sequestered into heterochromatin compartments comprising nucleosomes decorated with histone H3 Lys9 trimethylation and a protein called HP1α. This protein can form liquid-liquid droplets in vitro and potentially organize heterochromatin through a phase separation mechanism that is promoted by phosphorylation. Elucidating the molecular interactions that drive HP1α phase separation and its consequences on nucleosome structure and dynamics has been challenging due to the viscous and heterogeneous nature of such assemblies. Here, we tackle this problem by a combination of solution and solid-state NMR spectroscopy, which allows us to dissect the interactions of phosphorylated HP1α with nucleosomes in the context of phase separation. Our experiments indicate that phosphorylated human HP1α does not cause any major rearrangements to the nucleosome core, in contrast to the yeast homologue Swi6. Instead, HP1α interacts specifically with the methylated H3 tails and slows the dynamics of the H4 tails. Our results shed light on how phosphorylated HP1α proteins may regulate the heterochromatin landscape, while our approach provides an atomic resolution view of a heterogeneous and dynamic biological system regulated by a complex network of interactions and post-translational modifications.
Collapse
Affiliation(s)
- Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Evan T. Clark
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shelby R. Dunn
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
78
|
Robert F, Jeronimo C. Transcription-coupled nucleosome assembly. Trends Biochem Sci 2023; 48:978-992. [PMID: 37657993 DOI: 10.1016/j.tibs.2023.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Eukaryotic transcription occurs on chromatin, where RNA polymerase II encounters nucleosomes during elongation. These nucleosomes must unravel for the DNA to enter the active site. However, in most transcribed genes, nucleosomes remain intact due to transcription-coupled chromatin assembly mechanisms. These mechanisms primarily involve the local reassembly of displaced nucleosomes to prevent (epi)genomic instability and the emergence of cryptic transcription. As a fail-safe mechanism, cells can assemble nucleosomes de novo, particularly in highly transcribed genes, but this may result in the loss of epigenetic information. This review examines transcription-coupled chromatin assembly, with an emphasis on studies in yeast and recent structural studies. These studies shed light on how elongation factors and histone chaperones coordinate to enable nucleosome recycling during transcription.
Collapse
Affiliation(s)
- François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada.
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
79
|
Hamali B, Amine AAA, Al-Sady B. Regulation of the heterochromatin spreading reaction by trans-acting factors. Open Biol 2023; 13:230271. [PMID: 37935357 PMCID: PMC10645111 DOI: 10.1098/rsob.230271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Heterochromatin is a gene-repressive protein-nucleic acid ultrastructure that is initially nucleated by DNA sequences. However, following nucleation, heterochromatin can then propagate along the chromatin template in a sequence-independent manner in a reaction termed spreading. At the heart of this process are enzymes that deposit chemical information on chromatin, which attracts the factors that execute chromatin compaction and transcriptional or co/post-transcriptional gene silencing. Given that these enzymes deposit guiding chemical information on chromatin they are commonly termed 'writers'. While the processes of nucleation and central actions of writers have been extensively studied and reviewed, less is understood about how the spreading process is regulated. We discuss how the chromatin substrate is prepared for heterochromatic spreading, and how trans-acting factors beyond writer enzymes regulate it. We examine mechanisms by which trans-acting factors in Suv39, PRC2, SETDB1 and SIR writer systems regulate spreading of the respective heterochromatic marks across chromatin. While these systems are in some cases evolutionarily and mechanistically quite distant, common mechanisms emerge which these trans-acting factors exploit to tune the spreading reaction.
Collapse
Affiliation(s)
- Bulut Hamali
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ahmed A A Amine
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| |
Collapse
|
80
|
Niekamp S, Marr SK, Oei TA, Subramanian R, Kingston RE. Modularity of PRC1 Composition and Chromatin Interaction define Condensate Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564217. [PMID: 37961190 PMCID: PMC10634914 DOI: 10.1101/2023.10.26.564217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Polycomb repressive complexes (PRC) play a key role in gene repression and are indispensable for proper development. Canonical PRC1 forms condensates in vitro and in cells and the ability of PRC1 to form condensates has been proposed to contribute to maintenance of repression. However, how chromatin and the various subunits of PRC1 contribute to condensation is largely unexplored. Using single-molecule imaging, we demonstrate that nucleosomal arrays and PRC1 act synergistically, reducing the critical concentration required for condensation by more than 20-fold. By reconstituting and imaging PRC1 with various subunit compositions, we find that the exact combination of PHC and CBX subunits determine the initiation, morphology, stability, and dynamics of condensates. In particular, the polymerization activity of PHC2 strongly influences condensate dynamics to promote formation of structures with distinct domains that adhere to each other but do not coalesce. Using live cell imaging, we confirmed that CBX properties are critical for condensate initiation and that PHC polymerization is important to maintain stable condensates. Together, we propose that PRC1 can fine-tune the degree and type of condensation by altering its composition which might offer important flexibility of regulatory function during different stages of development.
Collapse
|
81
|
Wang Y, He S, Fang X. Emerging roles of phase separation in plant transcription and chromatin organization. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102387. [PMID: 37311366 DOI: 10.1016/j.pbi.2023.102387] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Transcription is a core step in gene expression. Regulation of transcription is achieved at the level of transcription machinery, local chromatin environment as well as higher-order chromatin organization. Our understanding of transcriptional regulation was advanced by recent introduction of transcription and chromatin-associated condensates, which typically arise via phase separation of proteins and nucleic acids. While studies from mammalian cells are unveiling the mechanisms of phase separation in transcription regulation, those in plants further broaden and deepen our understanding of this process. In this review, we discuss recent progress in plants how phase separation operates in RNA-mediated chromatin silencing, transcription activity, and chromatin compartmentalization.
Collapse
Affiliation(s)
- Yunhe Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
82
|
Canat A, Veillet A, Batrin R, Dubourg C, Lhoumaud P, Arnau-Romero P, Greenberg MVC, Bonhomme F, Arimondo PB, Illingworth R, Fabre E, Therizols P. DAXX safeguards heterochromatin formation in embryonic stem cells. J Cell Sci 2023; 136:jcs261092. [PMID: 37655670 DOI: 10.1242/jcs.261092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.
Collapse
Affiliation(s)
- Antoine Canat
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Adeline Veillet
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Renaud Batrin
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Clara Dubourg
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | | | - Pol Arnau-Romero
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Robert Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Emmanuelle Fabre
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Pierre Therizols
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| |
Collapse
|
83
|
Feng Y, Guo L, Yang C, Zheng H, Xiao X, Ma H. The local density of H3K9me3 dictates the stability of HP1α condensates-mediated genomic interactions. J Genet Genomics 2023; 50:776-785. [PMID: 37116579 DOI: 10.1016/j.jgg.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The human genome can be demarcated into domains based on distinct epigenetic states. The trimethylation of histone H3 lysine 9 (H3K9me3) is essential for the formation of constitutive heterochromatin nanodomains. However, the extent to which genomic regions require specific densities or degrees of H3K9me3 for stable interactions remains unclear. Here, we utilize CRISPR-based DNA imaging to investigate the role of endogenous or ectopic H3K9me3 in chromatin dynamics and genomic interactions. We select three loci (IDR3, TCF3, and PR1) with distinct levels of H3K9me3 to examine the genomic interactions and association with endogenous Heterochromatin Protein 1 (HP1α) condensates. Our results demonstrate a positive correlation between the levels of H3K9me3 at the loci and their association with HP1α condensates. By dual-color labeling and long-term tracking of IDR3 and PR1 loci, we find a periodical association between the two ranging from one to three hours. Epigenetic perturbation-induced Genome organization (EpiGo)-KRAB introduces ∼20 kilobases of H3K9me3 at the TCF3 locus, which is sufficient to establish a stable association between TCF3 and HP1α condensates. In addition, EpiGo-mediated H3K9me3 also leads to stable genomic interaction between IDR3 and TCF3. Briefly, these data suggest that the density of H3K9me3 could dictate the stability of interactions between genomic loci and HP1α condensates.
Collapse
Affiliation(s)
- Ying Feng
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen Yang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Zheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Xiao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
84
|
Zhu P, Hou C, Liu M, Chen T, Li T, Wang L. Investigating phase separation properties of chromatin-associated proteins using gradient elution of 1,6-hexanediol. BMC Genomics 2023; 24:493. [PMID: 37641002 PMCID: PMC10464338 DOI: 10.1186/s12864-023-09600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Chromatin-associated phase separation proteins establish various biomolecular condensates via liquid-liquid phase separation (LLPS), which regulates vital biological processes spatially and temporally. However, the widely used methods to characterize phase separation proteins are still based on low-throughput experiments, which consume time and could not be used to explore protein LLPS properties in bulk. RESULTS By combining gradient 1,6-hexanediol (1,6-HD) elution and quantitative proteomics, we developed chromatin enriching hexanediol separation coupled with liquid chromatography-mass spectrometry (CHS-MS) to explore the LLPS properties of different chromatin-associated proteins (CAPs). First, we found that CAPs were enriched more effectively in the 1,6-HD treatment group than in the isotonic solution treatment group. Further analysis showed that the 1,6-HD treatment group could effectively enrich CAPs prone to LLPS. Finally, we compared the representative proteins eluted by different gradients of 1,6-HD and found that the representative proteins of the 2% 1,6-HD treatment group had the highest percentage of IDRs and LCDs, whereas the 10% 1,6-HD treatment group had the opposite trend. CONCLUSION This study provides a convenient high-throughput experimental method called CHS-MS. This method can efficiently enrich proteins prone to LLPS and can be extended to explore LLPS properties of CAPs in different biological systems.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Manlin Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Taoyu Chen
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China.
| | - Likun Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
85
|
Li R, Wang T, Marquardt RM, Lydon JP, Wu SP, DeMayo FJ. TRIM28 modulates nuclear receptor signaling to regulate uterine function. Nat Commun 2023; 14:4605. [PMID: 37528140 PMCID: PMC10393996 DOI: 10.1038/s41467-023-40395-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ryan M Marquardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
86
|
Olan I, Handa T, Narita M. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence. Curr Opin Cell Biol 2023; 83:102206. [PMID: 37451177 DOI: 10.1016/j.ceb.2023.102206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
Cellular senescence, a persistent form of cell cycle arrest, has been linked to the formation of heterochromatic foci, accompanied by additional concentric epigenetic layers. However, senescence is a highly heterogeneous phenotype, and the formation of these structures is context dependent. Recent developments in the understanding of the high-order chromatin organization have opened new avenues for contextualizing the nuclear and chromatin phenotypes of senescence. Oncogene-induced senescence displays prominent foci and typically exhibits increased chromatin compartmentalization, based on the chromosome conformation assays, as marked by increased transcompaction and segregation of the heterochromatin and euchromatin. However, other types of senescence (e.g., replicative senescence) exhibit comparatively lower levels of compartmentalization. Thus, a more integrative view of the global rearrangement of the chromatin architecture that occurs during senescence is emerging, with potential functional implications for the heterogeneity of the senescence phenotype.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| | - Tetsuya Handa
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
87
|
He Y, Wang S, Liu S, Qin D, Liu Z, Wang L, Chen X, Zhang L. MSL1 Promotes Liver Regeneration by Driving Phase Separation of STAT3 and Histone H4 and Enhancing Their Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301094. [PMID: 37279389 PMCID: PMC10427353 DOI: 10.1002/advs.202301094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Male-specific lethal 1 (MSL1) is critical for the formation of MSL histone acetyltransferase complex which acetylates histone H4 Lys16 (H4K16ac) to activate gene expression. However, the role of MSL1 in liver regeneration is poorly understood. Here, this work identifies MSL1 as a key regulator of STAT3 and histone H4 (H4) in hepatocytes. MSL1 forms condensates with STAT3 or H4 through liquid-liquid phase separation to enrich acetyl-coenzyme A (Ac-CoA), and Ac-CoA in turn enhances MSL1 condensate formation, synergetically promoting the acetylation of STAT3 K685 and H4K16, thus stimulating liver regeneration after partial hepatectomy (PH). Additionally, increasing Ac-CoA level can enhance STAT3 and H4 acetylation, thus promoting liver regeneration in aged mice. The results demonstrate that MSL1 condensate-mediated STAT3 and H4 acetylation play an important role in liver regeneration. Thus, promoting the phase separation of MSL1 and increasing Ac-CoA level may be a novel therapeutic strategy for acute liver diseases and transplantation.
Collapse
Affiliation(s)
- Yucheng He
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shichao Wang
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shenghui Liu
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Dan Qin
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Zhangmei Liu
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Liqiang Wang
- Department of NephrologyChinese PLA General HospitalChinese PLA Institute of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney Diseases28th Fuxing RoadBeijing100853China
| | - Xiangmei Chen
- Department of NephrologyChinese PLA General HospitalChinese PLA Institute of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney Diseases28th Fuxing RoadBeijing100853China
| | - Lisheng Zhang
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
88
|
Yin Z, Cui S, Xue S, Xie Y, Wang Y, Zhao C, Zhang Z, Wu T, Hou G, Wang W, Xie SQ, Wu Y, Guo Y. Identification of Two Subsets of Subcompartment A1 Associated with High Transcriptional Activity and Frequent Loop Extrusion. BIOLOGY 2023; 12:1058. [PMID: 37626945 PMCID: PMC10451812 DOI: 10.3390/biology12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Three-dimensional genome organization has been increasingly recognized as an important determinant of the precise regulation of gene expression in mammalian cells, yet the relationship between gene transcriptional activity and spatial subcompartment positioning is still not fully comprehended. Here, we first utilized genome-wide Hi-C data to infer eight types of subcompartment (labeled A1, A2, A3, A4, B1, B2, B3, and B4) in mouse embryonic stem cells and four primary differentiated cell types, including thymocytes, macrophages, neural progenitor cells, and cortical neurons. Transitions of subcompartments may confer gene expression changes in different cell types. Intriguingly, we identified two subsets of subcompartments defined by higher gene density and characterized by strongly looped contact domains, named common A1 and variable A1, respectively. We revealed that common A1, which includes highly expressed genes and abundant housekeeping genes, shows a ~2-fold higher gene density than the variable A1, where cell type-specific genes are significantly enriched. Thus, our study supports a model in which both types of genomic loci with constitutive and regulatory high transcriptional activity can drive the subcompartment A1 formation. Special chromatin subcompartment arrangement and intradomain interactions may, in turn, contribute to maintaining proper levels of gene expression, especially for regulatory non-housekeeping genes.
Collapse
Affiliation(s)
- Zihang Yin
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Shuang Cui
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Song Xue
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yufan Xie
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Yefan Wang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Chengling Zhao
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Zhiyu Zhang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Tao Wu
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200001, China;
| | - Wuming Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Sheila Q. Xie
- MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Yue Wu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ya Guo
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| |
Collapse
|
89
|
Lee S, Abini-Agbomson S, Perry DS, Goodman A, Rao B, Huang MY, Diedrich JK, Moresco JJ, Yates JR, Armache KJ, Madhani HD. Intrinsic mesoscale properties of a Polycomb protein underpin heterochromatin fidelity. Nat Struct Mol Biol 2023; 30:891-901. [PMID: 37217653 PMCID: PMC11935295 DOI: 10.1038/s41594-023-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Little is understood about how the two major types of heterochromatin domains (HP1 and Polycomb) are kept separate. In the yeast Cryptococcus neoformans, the Polycomb-like protein Ccc1 prevents deposition of H3K27me3 at HP1 domains. Here we show that phase separation propensity underpins Ccc1 function. Mutations of the two basic clusters in the intrinsically disordered region or deletion of the coiled-coil dimerization domain alter phase separation behavior of Ccc1 in vitro and have commensurate effects on formation of Ccc1 condensates in vivo, which are enriched for PRC2. Notably, mutations that alter phase separation trigger ectopic H3K27me3 at HP1 domains. Supporting a direct condensate-driven mechanism for fidelity, Ccc1 droplets efficiently concentrate recombinant C. neoformans PRC2 in vitro whereas HP1 droplets do so only weakly. These studies establish a biochemical basis for chromatin regulation in which mesoscale biophysical properties play a key functional role.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniela S Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Allen Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Manning Y Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
90
|
Chen F, Shen S, Cao X, Zhang L, Liu L, Yang D, Shi Y, He W, Yao X, Liu D. Predicting assembly mode of membraneless organelles by a FRET-based crowding sensor. Signal Transduct Target Ther 2023; 8:227. [PMID: 37302992 DOI: 10.1038/s41392-023-01435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Siyuan Shen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xu Cao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Liang Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lunxu Liu
- Department of Thoracic Surgery/Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Daoke Yang
- Cancer Hospital of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wei He
- Department of Thoracic Surgery/Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
91
|
Li S, Shen X. Long interspersed nuclear element 1 and B1/Alu repeats blueprint genome compartmentalization. Curr Opin Genet Dev 2023; 80:102049. [PMID: 37229928 DOI: 10.1016/j.gde.2023.102049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
The organization of the genome into euchromatin and heterochromatin has been known for almost 100 years [1]. More than 50% of mammalian genomes contain repetitive sequences [2,3]. Recently, a functional link between the genome and its folding has been identified [4,5]. Homotypic clustering of long interspersed nuclear element 1 (LINE1 or L1) and B1/Alu retrotransposons forms grossly exclusive nuclear domains that characterize and predict heterochromatin and euchromatin, respectively. The spatial segregation of L1 and B1/Alu-rich compartments is conserved in mammalian cells and can be rebuilt during the cell cycle and established de novo in early embryogenesis. Inhibition of L1 RNA drastically weakened homotypic repeat contacts and compartmental segregation, indicating that L1 plays a more significant role than just being a compartmental marker. This simple and inclusive genetic coding model of L1 and B1/Alu in shaping the macroscopic structure of the genome provides a plausible explanation for the remarkable conservation and robustness of its folding in mammalian cells. It also proposes a conserved core structure on which subsequent dynamic regulation takes place.
Collapse
Affiliation(s)
- Siyang Li
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
92
|
Rang FJ, Kind J, Guerreiro I. The role of heterochromatin in 3D genome organization during preimplantation development. Cell Rep 2023; 42:112248. [PMID: 37059092 DOI: 10.1016/j.celrep.2023.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023] Open
Abstract
During the early stages of mammalian development, the epigenetic state of the parental genome is completely reprogrammed to give rise to the totipotent embryo. An important aspect of this remodeling concerns the heterochromatin and the spatial organization of the genome. While heterochromatin and genome organization are intricately linked in pluripotent and somatic systems, little is known about their relationship in the totipotent embryo. In this review, we summarize the current knowledge on the reprogramming of both regulatory layers. In addition, we discuss available evidence on their relationship and put this in the context of findings in other systems.
Collapse
Affiliation(s)
- Franka J Rang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands.
| | - Isabel Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, the Netherlands.
| |
Collapse
|
93
|
Erdel F. Phase transitions in heterochromatin organization. Curr Opin Struct Biol 2023; 80:102597. [PMID: 37087823 DOI: 10.1016/j.sbi.2023.102597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Heterochromatin formation has been proposed to involve phase transitions on the level of the three-dimensional folding of heterochromatin regions and the liquid-liquid demixing of heterochromatin proteins. Here, I outline the hallmarks of such transitions and the current challenges to detect them in living cells. I further discuss the abundance and properties of prominent heterochromatin proteins and relate them to their potential role in driving phase transitions. Recent data from mouse fibroblasts indicate that pericentric heterochromatin is organized via a reordering transition on the level of heterochromatin regions that does not necessarily involve liquid-liquid demixing of heterochromatin proteins. Evaluating key hallmarks of the different candidate phase transition mechanisms across cell types and species will be needed to complete the current picture.
Collapse
Affiliation(s)
- Fabian Erdel
- MCD, Center for Integrative Biology (CBI), CNRS, UPS, Toulouse, France.
| |
Collapse
|
94
|
Scott AK, Casas E, Schneider SE, Swearingen AR, Van Den Elzen CL, Seelbinder B, Barthold JE, Kugel JF, Stern JL, Foster KJ, Emery NC, Brumbaugh J, Neu CP. Mechanical memory stored through epigenetic remodeling reduces cell therapeutic potential. Biophys J 2023; 122:1428-1444. [PMID: 36871159 PMCID: PMC10147835 DOI: 10.1016/j.bpj.2023.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding how cells remember previous mechanical environments to influence their fate, or mechanical memory, informs the design of biomaterials and therapies in medicine. Current regeneration therapies, such as cartilage regeneration procedures, require 2D cell expansion processes to achieve large cell populations critical for the repair of damaged tissues. However, the limit of mechanical priming for cartilage regeneration procedures before inducing long-term mechanical memory following expansion processes is unknown, and mechanisms defining how physical environments influence the therapeutic potential of cells remain poorly understood. Here, we identify a threshold to mechanical priming separating reversible and irreversible effects of mechanical memory. After 16 population doublings in 2D culture, expression levels of tissue-identifying genes in primary cartilage cells (chondrocytes) are not recovered when transferred to 3D hydrogels, while expression levels of these genes were recovered for cells only expanded for eight population doublings. Additionally, we show that the loss and recovery of the chondrocyte phenotype correlates with a change in chromatin architecture, as shown by structural remodeling of the trimethylation of H3K9. Efforts to disrupt the chromatin architecture by suppressing or increasing levels of H3K9me3 reveal that only with increased levels of H3K9me3 did the chromatin architecture of the native chondrocyte phenotype partially return, along with increased levels of chondrogenic gene expression. These results further support the connection between the chondrocyte phenotype and chromatin architecture, and also reveal the therapeutic potential of inhibitors of epigenetic modifiers as disruptors of mechanical memory when large numbers of phenotypically suitable cells are required for regeneration procedures.
Collapse
Affiliation(s)
- Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Eduard Casas
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Alison R Swearingen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Courtney L Van Den Elzen
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado
| | - Benjamin Seelbinder
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Jennifer F Kugel
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Josh Lewis Stern
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyla J Foster
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado
| | - Justin Brumbaugh
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
95
|
Cheng J, Cao X, Wang X, Wang J, Yue B, Sun W, Huang Y, Lan X, Ren G, Lei C, Chen H. Dynamic chromatin architectures provide insights into the genetics of cattle myogenesis. J Anim Sci Biotechnol 2023; 14:59. [PMID: 37055796 PMCID: PMC10103417 DOI: 10.1186/s40104-023-00855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Sharply increased beef consumption is propelling the genetic improvement projects of beef cattle in China. Three-dimensional genome structure is confirmed to be an important layer of transcription regulation. Although genome-wide interaction data of several livestock species have already been produced, the genome structure states and its regulatory rules in cattle muscle are still limited. RESULTS Here we present the first 3D genome data in Longissimus dorsi muscle of fetal and adult cattle (Bos taurus). We showed that compartments, topologically associating domains (TADs), and loop undergo re-organization and the structure dynamics were consistent with transcriptomic divergence during muscle development. Furthermore, we annotated cis-regulatory elements in cattle genome during myogenesis and demonstrated the enrichments of promoter and enhancer in selection sweeps. We further validated the regulatory function of one HMGA2 intronic enhancer near a strong sweep region on primary bovine myoblast proliferation. CONCLUSIONS Our data provide key insights of the regulatory function of high order chromatin structure and cattle myogenic biology, which will benefit the progress of genetic improvement of beef cattle.
Collapse
Affiliation(s)
- Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Binglin Yue
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610225, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Gang Ren
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China.
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
96
|
Abdulla AZ, Salari H, Tortora MMC, Vaillant C, Jost D. 4D epigenomics: deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling. Curr Opin Genet Dev 2023; 79:102033. [PMID: 36893485 DOI: 10.1016/j.gde.2023.102033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Recent experimental observations suggest a strong coupling between the 3D nuclear chromosome organization and epigenomics. However, the mechanistic and functional bases of such interplay remain elusive. In this review, we describe how biophysical modeling has been instrumental in characterizing how genome folding may impact the formation of epigenomic domains and, conversely, how epigenomic marks may affect chromosome conformation. Finally, we discuss how this mutual feedback loop between chromatin organization and epigenome regulation, via the formation of physicochemical nanoreactors, may represent a key functional role of 3D compartmentalization in the assembly and maintenance of stable - but yet plastic - epigenomic landscapes.
Collapse
Affiliation(s)
- Amith Z Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France; École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France. https://twitter.com/@AmithZafal
| | - Hossein Salari
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France; École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France. https://twitter.com/@hosseinsalari65
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| | - Cédric Vaillant
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France.
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
97
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
98
|
Rubio K, Hernández-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, Barreto G, Pedraza-Chaverri J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants (Basel) 2023; 12:771. [PMID: 36979019 PMCID: PMC10045733 DOI: 10.3390/antiox12030771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Complex molecular mechanisms define our responses to environmental stimuli. Beyond the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong impact on epigenetic players and, consequently, sustains a promising role in the regulation of cellular responses such as oxidative stress. As oxidative stress is a natural physiological process where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by environmental pollutants and culminates in signaling the disruption of redox control. In this review, we present an update on epigenetic mechanisms induced by environmental factors that lead to oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated communication) that influence the epigenetic regulation of cellular responses. Understanding the mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for future early diagnostic and therapeutic efforts in the field of environmental medicine.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Estefani Y. Hernández-Cruz
- Postgraduate in Biological Sciences, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| | - Diana G. Rogel-Ayala
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via Paolo Solaroli 17, 28100 Novara, Italy
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
99
|
Lambuta RA, Nanni L, Liu Y, Diaz-Miyar J, Iyer A, Tavernari D, Katanayeva N, Ciriello G, Oricchio E. Whole-genome doubling drives oncogenic loss of chromatin segregation. Nature 2023; 615:925-933. [PMID: 36922594 PMCID: PMC10060163 DOI: 10.1038/s41586-023-05794-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies1-8. However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS). This event is characterized by reduced segregation between short and long chromosomes, A and B subcompartments and adjacent chromatin domains. LCS is driven by the downregulation of CTCF and H3K9me3 in cells that bypassed activation of the tetraploid checkpoint. Longitudinal analyses revealed that LCS primes genomic regions for subcompartment repositioning in WGD cells. This results in chromatin and epigenetic changes associated with oncogene activation in tumours ensuing from WGD cells. Notably, subcompartment repositioning events were largely independent of chromosomal alterations, which indicates that these were complementary mechanisms contributing to tumour development and progression. Overall, LCS initiates chromatin conformation changes that ultimately result in oncogenic epigenetic and transcriptional modifications, which suggests that chromatin evolution is a hallmark of WGD-driven cancer.
Collapse
Affiliation(s)
- Ruxandra A Lambuta
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Luca Nanni
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Juan Diaz-Miyar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Arvind Iyer
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daniele Tavernari
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Natalya Katanayeva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Cancer Center Leman, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland.
- Swiss Cancer Center Leman, Lausanne, Switzerland.
| |
Collapse
|
100
|
Staples MI, Frazer C, Fawzi NL, Bennett RJ. Phase separation in fungi. Nat Microbiol 2023; 8:375-386. [PMID: 36782025 PMCID: PMC10081517 DOI: 10.1038/s41564-022-01314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
Phase separation, in which macromolecules partition into a concentrated phase that is immiscible with a dilute phase, is involved with fundamental cellular processes across the tree of life. We review the principles of phase separation and highlight how it impacts diverse processes in the fungal kingdom. These include the regulation of autophagy, cell signalling pathways, transcriptional circuits and the establishment of asymmetry in fungal cells. We describe examples of stable, phase-separated assemblies including membraneless organelles such as the nucleolus as well as transient condensates that also arise through phase separation and enable cells to rapidly and reversibly respond to important environmental cues. We showcase how research into phase separation in model yeasts, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe, in conjunction with that in plant and human fungal pathogens, such as Ashbya gossypii and Candida albicans, is continuing to enrich our understanding of fundamental molecular processes.
Collapse
Affiliation(s)
- Mae I Staples
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|