51
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
52
|
Ma L, Shao M, Cheng W, Jiang J, Chen X, Tan N, Ling G, Yang Y, Wang Q, Yang R, Li C, Wang Y. Neocryptotanshinone ameliorates insufficient energy production in heart failure by targeting retinoid X receptor alpha. Biomed Pharmacother 2023; 163:114868. [PMID: 37201263 DOI: 10.1016/j.biopha.2023.114868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Retinoid X receptor alpha (RXRα) is a nuclear transcription factor that extensively regulates energy metabolism in cardiovascular diseases. Identification of targeted RXRα drugs for heart failure (HF) therapy is urgently needed. Neocryptotanshinone (NCTS) is a component derived from Salvia miltiorrhiza Bunge, the effect and mechanism of which for treating HF have not been reported. The goal of this study was to explore the pharmacological effects of NCTS on energy metabolism to protect against HF post-acute myocardial infarction (AMI) via RXRα. We established a left anterior descending artery ligation-induced HF post-AMI model in mice and an oxygen-glucose deprivation-reperfusion-induced H9c2 cell model to investigate the cardioprotective effect of NCTS. Component-target binding techniques, surface plasmon resonance (SPR), microscale thermophoresis (MST) and small interfering RNA (siRNA) transfection were applied to explore the potential mechanism by which NCTS targets RXRα. The results showed that NCTS protects the heart against ischaemic damage, evidenced by improvement of cardiac dysfunction and attenuation of cellular hypoxic injury. Importantly, the SPR and MST results showed that NCTS has a high binding affinity for RXRα. Meanwhile, the critical downstream target genes of RXRα/PPARα, which are involved in fatty acid metabolism, including Cd36 and Cpt1a, were upregulated under NCTS treatment. Moreover, NCTS enhanced TFAM levels, promoted mitochondrial biogenesis and increased myocardial adenosine triphosphate levels by activating RXRα. In conclusion, we confirmed that NCTS improves myocardial energy metabolism, including fatty acid oxidation and mitochondrial biogenesis, by regulating the RXRα/PPARα pathway in mice with HF post-AMI.
Collapse
Affiliation(s)
- Lin Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchi Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ye Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ran Yang
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Chun Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
53
|
Liu C, Zhou X, Ju H, Zhang Y. Inhibition of pyruvate carboxylase reverses metformin resistance by activating AMPK in pancreatic cancer. Life Sci 2023:121817. [PMID: 37270169 DOI: 10.1016/j.lfs.2023.121817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
AIMS Pyruvate carboxylase (PC) plays a key role in cancer cell metabolic reprogramming. Whether metabolic reprogramming and PC are related in PDAC is unclear. Here, the effect of PC expression on PDAC tumorigenesis and metabolic reprogramming were evaluated. MATERIALS AND METHODS PC protein expression in PDAC and precancerous tissues was measured through immunohistochemistry. The maximum standardized uptake (SUVmax) of 18F-fluoro-2-deoxy-2-d-glucose (18F-FDG) in PDAC patient PET/CT scans before surgical resection was retrospectively determined. Stable PC-knockdown and PC-overexpressing cells were established using lentiviruses, and PDAC progression was assessed in vivo and in vitro. Lactate content, 18F-FDG cell uptake rate, mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured in cells. RNA sequencing revealed and qPCR verified differentially expressed genes (DEGs) after PC knockdown. The signaling pathways involved were determined by Western blotting. KEY FINDINGS PC was significantly upregulated in PDAC tissues vs. precancerous tissues. A high SUVmax correlated with PC upregulation. PC knockdown significantly inhibited PDAC progression. Lactate content, SUVmax, and ECAR significantly decreased after PC knockdown. Peroxisome proliferator-activated receptor gamma coactivator-one alpha (PGC-1α) was upregulated after PC knockdown; and PGC1a expression promoted AMPK phosphorylation to activate mitochondrial metabolism. Metformin significantly inhibited mitochondrial respiration after PC knockdown, further activated AMPK and downstream carnitine palmitoyltransferase 1A (CPT1A)-regulated fatty acid oxidation (FAO), and inhibited PDAC cells progression. SIGNIFICANCE PDAC cell uptake of FDG was positively correlated with PC expression. PC promotes PDAC glycolysis, and reducing PC expression can increase PGC1a expression, activate AMPK, and restore metformin sensitivity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijun Ju
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
54
|
Wu K, Yan M, Liu T, Wang Z, Duan Y, Xia Y, Ji G, Shen Y, Wang L, Li L, Zheng P, Dong B, Wu Q, Xiao L, Yang X, Shen H, Wen T, Zhang J, Yi J, Deng Y, Qian X, Ma L, Fang J, Zhou Q, Lu Z, Xu D. Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function. Nat Cell Biol 2023; 25:714-725. [PMID: 37156912 DOI: 10.1038/s41556-023-01133-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Activation of receptor protein kinases is prevalent in various cancers with unknown impact on ferroptosis. Here we demonstrated that AKT activated by insulin-like growth factor 1 receptor signalling phosphorylates creatine kinase B (CKB) T133, reduces metabolic activity of CKB and increases CKB binding to glutathione peroxidase 4 (GPX4). Importantly, CKB acts as a protein kinase and phosphorylates GPX4 S104. This phosphorylation prevents HSC70 binding to GPX4, thereby abrogating the GPX4 degradation regulated by chaperone-mediated autophagy, alleviating ferroptosis and promoting tumour growth in mice. In addition, the levels of GPX4 are positively correlated with the phosphorylation levels of CKB T133 and GPX4 S104 in human hepatocellular carcinoma specimens and associated with poor prognosis of patients with hepatocellular carcinoma. These findings reveal a critical mechanism by which tumour cells counteract ferroptosis by non-metabolic function of CKB-enhanced GPX4 stability and underscore the potential to target the protein kinase activity of CKB for cancer treatment.
Collapse
Affiliation(s)
- Ke Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Meisi Yan
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuran Duan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Xia
- Department of Cancer Biology, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guimei Ji
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuli Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Peixiang Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Bofei Dong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingang Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueying Yang
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haochen Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Wen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinfeng Yi
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuhan Deng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Leina Ma
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Qin Zhou
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
55
|
Xin J, Zhu B, Wang H, Zhang Y, Sun N, Cao X, Zheng L, Zhou Y, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Li F, Xia Y, Xu P, Ni X. Prolonged fluoride exposure induces spatial-memory deficit and hippocampal dysfunction by inhibiting small heat shock protein 22 in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131595. [PMID: 37224709 DOI: 10.1016/j.jhazmat.2023.131595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Millions of residents in areas with high-fluoride drinking water supply ingest excessive levels of fluoride for long periods. This study investigated the mechanisms and impacts of lifelong exposure to naturally occurring moderate-high-fluoride drinking water on spatial-memory function by studying mice in controlled experiments. Spatial-memory deficits and disorders of hippocampal neuronal electrical activity were observed in mice exposed to 25-ppm or 50-ppm-fluoride drinking water for 56 weeks, but not in adult or old mice exposed to 50 ppm fluoride for 12 weeks. Ultrastructural analysis showed severely damaged hippocampal mitochondria, evidenced by reduced mitochondrial membrane potential and ATP content. Mitochondrial biogenesis was impaired in fluoride-exposed mice, manifesting as a significantly reduced mtDNA content, mtDNA-encoded subunits mtND6 and mtCO1, and respiratory complex activities. Fluoride reduced expression of Hsp22, a beneficial mediator of mitochondrial homeostasis, and decreased levels of signaling for the PGC-1α/TFAM pathway-which regulates mitochondrial biogenesis-and the NF-κβ/STAT3 pathway-which regulates mitochondrial respiratory chain enzyme activity. Hippocampus-specific Hsp22-overexpression improved fluoride-induced spatial-memory deficits by activating the PGC-1α/TFAM and STAT3 signaling pathways, while Hsp22-silencing aggravated the deficits by inhibiting both pathways. Downregulation of Hsp22 plays a vital role in fluoride-induced spatial-memory deficits by impacting mtDNA-encoding subsets and mitochondrial respiratory chain enzyme activity.
Collapse
Affiliation(s)
- Jinge Xin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Zhu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liqin Zheng
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fali Li
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Peng Xu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
56
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
57
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
58
|
Dang Y, Xu R, Pan J, Xiao X, Zhang S, Zhou W, Xu Y, Ji G. Dynamic changes in DNA methylation and hydroxymethylation revealed the transformation of advanced adenoma into colorectal carcinoma. Clin Transl Med 2023; 13:e1202. [PMID: 36855789 PMCID: PMC9975459 DOI: 10.1002/ctm2.1202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/02/2023] Open
Affiliation(s)
- Yanqi Dang
- Institute of Digestive Diseases, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ruohui Xu
- Institute of Digestive Diseases, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jiashu Pan
- Institute of Digestive Diseases, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Digestive Disease, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaoli Xiao
- Institute of Digestive Diseases, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yangxian Xu
- Department of General Surgery, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang Ji
- Institute of Digestive Diseases, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
59
|
Jiang Y, Li Y, Zhang Y, Hu D, Zhang S, Wang C, Huang S, Zhang A, Jia Z, You R. NSC228155 alleviates septic cardiomyopathy via protecting mitochondria and inhibiting inflammation. Int Immunopharmacol 2023; 116:109847. [PMID: 36774857 DOI: 10.1016/j.intimp.2023.109847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Septic cardiomyopathy is a lethal symptom of sepsis. Discovery of effective therapy that prevents cardiac injury in sepsis is critical in the clinical management of sepsis. NSC228155 is a novel compound with therapeutic potential on acute kidney injury by preventing apoptosis and protecting mitochondria. Whether NSC228155 protects against septic cardiomyopathy is unclear. In the present study, adult C57BL/6J mice were i.p injected with 5 mg/kg/day NSC228155 for 2 days before 10 mg/kg lipopolysaccharide (LPS) injection. Cardiac functional testing and sampling for serum and tissue were performed 12 and 24 h post LPS injection, respectively. NSC228155 significantly improved cardiac function examined by echocardiography, decreased the serum lactate dehydrogenase (LDH) and creatine kinase-MB, and pathologically alleviated cardiac injury in LPS mice. Accordingly, NSC228155 attenuated cardiomyocytes' mitochondrial damage as shown by decreased damaged mitochondrial ratio and activated signals for mitochondrial biogenesis, dynamics and mitophagy in LPS mice model. Metabolomics analysis demonstrated that NSC228155 corrected the metabolic disturbance involved in oxidative stress and energy metabolism, and decreased tissue injury metabolites in LPS-stimulated cardiac tissue. In the LPS-stimulated cardiac cell culture derived from human induced pluripotent stem cells, NSC228155 effectively restored the beating frequency, decreased LDH release, and protected mitochondria. NSC228155 also inhibited inflammation shown by decreased pro-inflammatory mediators in both serum and cardiac tissue in LPS model. Taken together, NSC228155 significantly improved cardiac function by directly preventing against cardiac cell injury and inhibiting inflammation in LPS model, hence may be a potential novel therapy against septic cardiomyopathy.
Collapse
Affiliation(s)
- Yuteng Jiang
- School of Medicine, Southeast University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yanwei Li
- School of Medicine, Southeast University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yiyuan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Nephrology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Dandan Hu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- School of Medicine, Southeast University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Ran You
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
60
|
Placental Mesenchymal Stem Cells Alleviate Podocyte Injury in Diabetic Kidney Disease by Modulating Mitophagy via the SIRT1-PGC-1alpha-TFAM Pathway. Int J Mol Sci 2023; 24:ijms24054696. [PMID: 36902127 PMCID: PMC10003373 DOI: 10.3390/ijms24054696] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) has become a new strategy for treating diabetic kidney disease (DKD). However, the role of placenta derived mesenchymal stem cells (P-MSCs) in DKD remains unclear. This study aims to investigate the therapeutic application and molecular mechanism of P-MSCs on DKD from the perspective of podocyte injury and PINK1/Parkin-mediated mitophagy at the animal, cellular, and molecular levels. Western blotting, reverse transcription polymerase chain reaction, immunofluorescence, and immunohistochemistry were used to detect the expression of podocyte injury-related markers and mitophagy-related markers, SIRT1, PGC-1α, and TFAM. Knockdown, overexpression, and rescue experiments were performed to verify the underlying mechanism of P-MSCs in DKD. Mitochondrial function was detected by flow cytometry. The structure of autophagosomes and mitochondria were observed by electron microscopy. Furthermore, we constructed a streptozotocin-induced DKD rat model and injected P-MSCs into DKD rats. Results showed that as compared with the control group, exposing podocytes to high-glucose conditions aggravated podocyte injury, represented by a decreased expression of Podocin along with increased expression of Desmin, and inhibited PINK1/Parkin-mediated mitophagy, manifested as a decreased expression of Beclin1, the LC3II/LC3I ratio, Parkin, and PINK1 associated with an increased expression of P62. Importantly, these indicators were reversed by P-MSCs. In addition, P-MSCs protected the structure and function of autophagosomes and mitochondria. P-MSCs increased mitochondrial membrane potential and ATP content and decreased the accumulation of reactive oxygen species. Mechanistically, P-MSCs alleviated podocyte injury and mitophagy inhibition by enhancing the expression of the SIRT1-PGC-1α-TFAM pathway. Finally, we injected P-MSCs into streptozotocin-induced DKD rats. The results revealed that the application of P-MSCs largely reversed the markers related to podocyte injury and mitophagy and significantly increased the expression of SIRT1, PGC-1α, and TFAM compared with the DKD group. In conclusion, P-MSCs ameliorated podocyte injury and PINK1/Parkin-mediated mitophagy inhibition in DKD by activating the SIRT1-PGC-1α-TFAM pathway.
Collapse
|
61
|
Jiang J, Chen HN, Jin P, Zhou L, Peng L, Huang Z, Qin S, Li B, Ming H, Luo M, Xie N, Gao W, Nice EC, Yu Q, Huang C. Targeting PSAT1 to mitigate metastasis in tumors with p53-72Pro variant. Signal Transduct Target Ther 2023; 8:65. [PMID: 36788227 PMCID: PMC9929071 DOI: 10.1038/s41392-022-01266-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) of p53, in particular the codon 72 variants, has recently been implicated as a critical regulator in tumor progression. However, the underlying mechanism remains elusive. Here we found that cancer cells carrying codon 72-Pro variant of p53 showed impaired metastatic potential upon serine supplementation. Proteome-wide mapping of p53-interacting proteins uncovered a specific interaction of the codon 72 proline variant (but not p5372R) with phosphoserine aminotransferase 1 (PSAT1). Interestingly, p5372P-PSAT1 interaction resulted in dissociation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) that otherwise bound to p5372P, leading to subsequent nuclear translocation of PGC-1α and activation of oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle. Depletion of PSAT1 restored p5372P-PGC-1α interaction and impeded the OXPHOS and TCA function, resulting in mitochondrial dysfunction and metastasis suppression. Notably, pharmacological targeting the PSAT1-p5372P interaction by aminooxyacetic acid (AOA) crippled the growth of liver cancer cells carrying the p5372P variant in both in vitro and patient-derived xenograft models. Moreover, AOA plus regorafenib, an FDA-proved drug for hepatocellular carcinoma and colorectal cancer, achieved a better anti-tumor effect on tumors carrying the p5372P variant. Therefore, our findings identified a gain of function of the p5372P variant on mitochondrial function and provided a promising precision strategy to treat tumors vulnerable to p5372P-PSAT1 perturbation.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Hui Ming
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Qiang Yu
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
62
|
Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F. Reactive Oxygen Species and NRF2 Signaling, Friends or Foes in Cancer? Biomolecules 2023; 13:biom13020353. [PMID: 36830722 PMCID: PMC9953152 DOI: 10.3390/biom13020353] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The imbalance between reactive oxygen species (ROS) production and clearance causes oxidative stress and ROS, which play a central role in regulating cell and tissue physiology and pathology. Contingent upon concentration, ROS influence cancer development in contradictory ways, either stimulating cancer survival and growth or causing cell death. Cells developed evolutionarily conserved programs to sense and adapt redox the fluctuations to regulate ROS as either signaling molecules or toxic insults. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)-KEAP1 system is the master regulator of cellular redox and metabolic homeostasis. NRF2 has Janus-like roles in carcinogenesis and cancer development. Short-term NRF2 activation suppresses tissue injury, inflammation, and cancer initiation. However, cancer cells often exhibit constitutive NRF2 activation due to genetic mutations or oncogenic signaling, conferring advantages for cancer cells' survival and growth. Emerging evidence suggests that NRF2 hyperactivation, as an adaptive cancer phenotype under stressful tumor environments, regulates all hallmarks of cancer. In this review, we summarized the source of ROS, regulation of ROS signaling, and cellular sensors for ROS and oxygen (O2), we reviewed recent progress on the regulation of ROS generation and NRF2 signaling with a focus on the new functions of NRF2 in cancer development that reach beyond what we originally envisioned, including regulation of cancer metabolism, autophagy, macropinocytosis, unfolded protein response, proteostasis, and circadian rhythm, which, together with anti-oxidant and drug detoxification enzymes, contributes to cancer development, metastasis, and anticancer therapy resistance.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lirong Liang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| | - Feng He
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| |
Collapse
|
63
|
Nechanitzky R, Nechanitzky D, Ramachandran P, Duncan GS, Zheng C, Göbl C, Gill KT, Haight J, Wakeham AC, Snow BE, Bradaschia-Correa V, Ganguly M, Lu Z, Saunders ME, Flavell RA, Mak TW. Cholinergic control of Th17 cell pathogenicity in experimental autoimmune encephalomyelitis. Cell Death Differ 2023; 30:407-416. [PMID: 36528755 PMCID: PMC9950465 DOI: 10.1038/s41418-022-01092-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS) in which Th17 cells have a crucial but unclear function. Here we show that choline acetyltransferase (ChAT), which synthesizes acetylcholine (ACh), is a critical driver of pathogenicity in EAE. Mice with ChAT-deficient Th17 cells resist disease progression and show reduced brain-infiltrating immune cells. ChAT expression in Th17 cells is linked to strong TCR signaling, expression of the transcription factor Bhlhe40, and increased Il2, Il17, Il22, and Il23r mRNA levels. ChAT expression in Th17 cells is independent of IL21r signaling but dampened by TGFβ, implicating ChAT in controlling the dichotomous nature of Th17 cells. Our study establishes a cholinergic program in which ACh signaling primes chronic activation of Th17 cells, and thereby constitutes a pathogenic determinant of EAE. Our work may point to novel targets for therapeutic immunomodulation in MS.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Gordon S Duncan
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Chunxing Zheng
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Christoph Göbl
- Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Kyle T Gill
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Bryan E Snow
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | - Milan Ganguly
- Histology Core, The Centre for Phenogenomics, Toronto, ON, Canada
| | - Zhibin Lu
- UHN Bioinformatics and HPC Core, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
64
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
65
|
Liu T, Wang Z, Ye L, Duan Y, Jiang H, He H, Xiao L, Wu Q, Xia Y, Yang M, Wu K, Yan M, Ji G, Shen Y, Wang L, Li L, Zheng P, Dong B, Shao F, Qian X, Yu R, Zhang Z, Lu Z, Xu D. Nucleus-exported CLOCK acetylates PRPS to promote de novo nucleotide synthesis and liver tumour growth. Nat Cell Biol 2023; 25:273-284. [PMID: 36646788 DOI: 10.1038/s41556-022-01061-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/24/2022] [Indexed: 01/17/2023]
Abstract
Impairment of the circadian clock is linked to cancer development. However, whether the circadian clock is modulated by oncogenic receptor tyrosine kinases remains unclear. Here we demonstrated that receptor tyrosine kinase activation promotes CK2-mediated CLOCK S106 phosphorylation and subsequent disassembly of the CLOCK-BMAL1 dimer and suppression of the downstream gene expression in hepatocellular carcinoma (HCC) cells. In addition, CLOCK S106 phosphorylation exposes its nuclear export signal to bind Exportin1 for nuclear exportation. Cytosolic CLOCK acetylates PRPS1/2 K29 and blocks HSC70-mediated and lysosome-dependent PRPS1/2 degradation. Stabilized PRPS1/2 promote de novo nucleotide synthesis and HCC cell proliferation and liver tumour growth. Furthermore, CLOCK S106 phosphorylation and PRPS1/2 K29 acetylation are positively correlated in human HCC specimens and with HCC poor prognosis. These findings delineate a critical mechanism by which oncogenic signalling inhibits canonical CLOCK transcriptional activity and simultaneously confers CLOCK with instrumental moonlighting functions to promote nucleotide synthesis and tumour growth.
Collapse
Affiliation(s)
- Tong Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Leiguang Ye
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,, Harbin, China
| | - Yuran Duan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Haiyan He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Qingang Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yan Xia
- Department of Cancer Biology, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ke Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Guimei Ji
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuli Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Peixiang Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Bofei Dong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Shao
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
66
|
PGC-1α participates in tumor chemoresistance by regulating glucose metabolism and mitochondrial function. Mol Cell Biochem 2023; 478:47-57. [PMID: 35713741 DOI: 10.1007/s11010-022-04477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/10/2022] [Indexed: 01/22/2023]
Abstract
Chemotherapy resistance is the main reason for the failure of cancer treatment. The mechanism of drug resistance is complex and diverse. In recent years, the role of glucose metabolism and mitochondrial function in cancer resistance has gathered considerable interest. The increase in metabolic plasticity of cancer cells' mitochondria and adaptive changes to the mitochondrial function are some of the mechanisms through which cancer cells resist chemotherapy. As a key molecule regulating the mitochondrial function and glucose metabolism, PGC-1α plays an indispensable role in cancer progression. However, the role of PGC-1α in chemotherapy resistance remains controversial. Here, we discuss the role of PGC-1α in glucose metabolism and mitochondrial function and present a comprehensive overview of PGC-1α in chemotherapy resistance.
Collapse
|
67
|
Zheng M, Hu Z, Wang Y, Wang C, Zhong C, Cui W, You J, Gao B, Sun X, La L. Zhen Wu decoction represses renal fibrosis by invigorating tubular NRF2 and TFAM to fuel mitochondrial bioenergetics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154495. [PMID: 36257219 DOI: 10.1016/j.phymed.2022.154495] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Zhen Wu Decoction (ZWD) is a prescription from the classical text "Treatise on Exogenous Febrile Disease" and has been extensively used to control kidney diseases since the time of the Eastern Han Dynasty. HYPOTHESIS We hypothesized that ZWD limits tubular fibrogenesis by reinvigorating tubular bio-energetic capacity. STUDY DESIGN / METHODS A mouse model of chronic kidney disease (CKD) was established using unilateral ureteral obstruction (UUO). Three concentrations of ZWD, namely 25.2 g/kg (high dosage), 12.6 g/kg (middle dosage), and 6.3 g/kg (low dosage), were included to study the dose-effect relationship. Real-time qPCR was used to observe gene transcription in blood samples from patients with CKD. Different siRNAs were designed to study the role of mitochondrial transcription factor A (TFAM) and nuclear factor (erythroid-derived 2)-related factor 2 (NRF2) in transforming growth factor (TGF)-β1 induced fibrogenesis and mitochondrial damage. RESULTS We showed that ZWD efficiently attenuates renal function impairment and reduces renal interstitial fibrosis. TFAM and NRF2 were repressed, and the stimulator of interferon genes (STING) was activated in CKD patient blood sample. We further confirmed that ZWD activated TFAM depended on NRF2 as an important negative regulator of STING in mouse kidneys. Treatment with ZWD significantly reduced oxidative stress and inflammation by regulating the levels of oxidative phosphorylation (OXPHOS) and pro-inflammatory factors, such as interleukin-6, interleukin-1β, tumor necrosis factor receptor 1, and mitochondrial respiratory chain subunits. NRF2 inhibitors can weaken the ability of ZWD to increase TFAM expression and heal injured mitochondria, playing a similar role to that of STING inhibitors. Our study showed that ZWD elevates the expression of TFAM and mitochondrial respiratory chain subunits by promoting NRF2 activation, after suppressing mitochondrial membrane damage and cristae breakdown and restricting mitochondrial DNA (mtDNA) leakage into the cytoplasm to reduce STING activation. CONCLUSION ZWD maintains mitochondrial integrity and improves OXPHOS which represents an innovative insight into "strengthening Yang-Qi" theory. ZWD limits tubular fibrogenesis by reinvigorating tubular bioenergetic capacity.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengyang Hu
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yibin Wang
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Zhong
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Cui
- Department of Imaging, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junxiong You
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Baogui Gao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Lei La
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
68
|
Xiang D, Yang W, Fang Z, Mao J, Yan Q, Li L, Tan J, Yu C, Qian J, Tang D, Pan X, Cheng H, Sun D. Agrimol B inhibits colon carcinoma progression by blocking mitochondrial function through the PGC-1α/NRF1/TFAM signaling pathway. Front Oncol 2022; 12:1055126. [PMID: 36591497 PMCID: PMC9794846 DOI: 10.3389/fonc.2022.1055126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background The activation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) stimulates the transcription of the downstream target proteins, mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1), which induces mitochondrial biogenesis and promotes colorectal tumorigenesis. Agrimol B (Agr) is a constituent of Agrimonia pilosa Ledeb. that exerts anticancer effects. Herein, we aimed to investigate the antitumor activity of Agr and its mechanism of action. Methods The interaction between Agr and PGC-1α was predicted by molecular docking. After the treatment with different concentrations of Agr (0, 144, 288, and 576 nM), the cell viability, migration rate, proliferation rate, and apoptosis rate of human colon cancer HCT116 cells were determined. Mitochondrial activity, cellular reactive oxygen species (ROS), and mitochondrial membrane potential were assessed to measure the regulatory effect of Agr on mitochondrial function. Western blotting (WB) assay was used to examine the expression of PGC-1α, NRF1, and TFAM, as well as of the pro-apoptotic proteins, Bax and Caspase-3, and the antiapoptotic protein (Bcl-2). Finally, subcutaneous tumor xenograft model mice were used to evaluate the effect of Agr on colorectal cancer (CRC) in vivo. Results The molecular docking results revealed a high likelihood of Agr interacting with PGC-1α. Agr inhibited the proliferation and migration of HCT116 cells, promoted ROS production and mitochondrial oxidative stress, inhibited mitochondrial activity, and decreased mitochondrial membrane potential. Agr induced cell apoptosis and, in combination with PGC-1α, impaired mitochondrial biogenesis and suppressed the expression of NRF1 and TFAM. Agr also suppressed the expression of Bcl-2 and Cleaved-Caspase-3 and increased the expression of Bax and Caspase-3. In addition, the in vivo antitumor effect and mechanism of Agr were confirmed by using a subcutaneous tumor xenograft mouse model. Conclusions Our findings demonstrated that Agr regulates the expression of PGC-1α, thereby inducing mitochondrial dysfunction and promoting tumor cell apoptosis. This work highlights the potential of Agr as a promising therapeutic candidate in CRC.
Collapse
Affiliation(s)
- Dongyang Xiang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjuan Yang
- Oncology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Zihan Fang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialei Mao
- Oncology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Qiuying Yan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengtao Yu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Qian
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongxin Tang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoting Pan
- Oncology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China,*Correspondence: Haibo Cheng, ; Xiaoting Pan, ; Dongdong Sun,
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Haibo Cheng, ; Xiaoting Pan, ; Dongdong Sun,
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Haibo Cheng, ; Xiaoting Pan, ; Dongdong Sun,
| |
Collapse
|
69
|
Ge X, Li M, Song G, Zhang Z, Yin J, Ge Z, Shi Z, Liu L, Jiang B, Qian X, Shen H. Chromium (VI)-induced ALDH1A1/EGF axis promotes lung cancer progression. Clin Transl Med 2022; 12:e1136. [PMID: 36504325 PMCID: PMC9742488 DOI: 10.1002/ctm2.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Cr(VI) is broadly applied in industry. Cr(VI) exposure places a big burden on public health, thereby increasing the risk of lung squamous cell carcinoma (LUSC). The mechanisms underlying Cr(VI)-induced LUSC remain largely elusive. Here, we report that the cancer stem cell (CSC)/tumour-initiating cell (TIC)-like subgroup within Cr(VI)-transformed bronchial epithelial cells (CrT) promotes lung cancer tumourigenesis. Mechanistically, Cr(VI) exposure specifically increases the expression levels of aldehyde dehydrogenase 1A1 (ALDH1A1), a CSC marker, through KLF4-mediated transcription. ALDH1A1 maintains self-renewal of CrT/TICs and facilitates the expression and secretion of EGF from CrT/TICs, which subsequently promotes the activation of EGFR signalling in differentiated cancer cells and tumour growth of LUSC. In addition, the ALDH1A1 inhibitor A37 and gemcitabine synergistically suppress LUSC progression. Importantly, high ALDH1A1 expression levels are positively correlated with advanced clinical stages and predict poor survival in LUSC patients. These findings elucidate how ALDH1A1 modulates EGF secretion from TICs to facilitate LUSC tumourigenesis, highlighting new therapeutic strategies for malignant lung cancers.
Collapse
Affiliation(s)
- Xin Ge
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
- The Key Laboratory of Modern Toxicology of Ministry of EducationNanjing Medical UniversityNanjingJiangsuChina
| | - Mengdie Li
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Guo‐Xin Song
- Department of PathologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhixiang Zhang
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Jianxing Yin
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zehe Ge
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Zhumei Shi
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Ling‐Zhi Liu
- Department of PathologyAnatomy and Cell BiologyDepartment of Medical OncologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Bing‐Hua Jiang
- The Academy of Medical ScienceZhengzhou UniversityZhengzhou450000China
| | - Xu Qian
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
- The Key Laboratory of Modern Toxicology of Ministry of EducationNanjing Medical UniversityNanjingJiangsuChina
| | - Hua Shen
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Department of OncologySir Run Run HospitalNanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
70
|
Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice. Cell Death Dis 2022; 13:975. [PMID: 36402750 PMCID: PMC9675822 DOI: 10.1038/s41419-022-05416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy.
Collapse
|
71
|
Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth. Nat Cell Biol 2022; 24:1655-1665. [PMID: 36266488 DOI: 10.1038/s41556-022-01009-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2022] [Indexed: 01/18/2023]
Abstract
Tumour cells exhibit greater metabolic plasticity than normal cells and possess selective advantages for survival and proliferation with unclearly defined mechanisms. Here we demonstrate that glucose deprivation in normal hepatocytes induces PERK-mediated fructose-1,6-bisphosphatase 1 (FBP1) S170 phosphorylation, which converts the FBP1 tetramer to monomers and exposes its nuclear localization signal for nuclear translocation. Importantly, nuclear FBP1 binds PPARα and functions as a protein phosphatase that dephosphorylates histone H3T11 and suppresses PPARα-mediated β-oxidation gene expression. In contrast, FBP1 S124 is O-GlcNAcylated by overexpressed O-linked N-acetylglucosamine transferase in hepatocellular carcinoma cells, leading to inhibition of FBP1 S170 phosphorylation and enhancement of β-oxidation for tumour growth. In addition, FBP1 S170 phosphorylation inversely correlates with β-oxidation gene expression in hepatocellular carcinoma specimens and patient survival duration. These findings highlight the differential role of FBP1 in gene regulation in normal and tumour cells through direct chromatin modulation and underscore the inactivation of its protein phosphatase function in tumour growth.
Collapse
|
72
|
Lv Y, Wei C, Zhao B. Study on the mechanism of low shear stress restoring the viability of damaged breast tumor cells. Tissue Cell 2022; 79:101947. [DOI: 10.1016/j.tice.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
|
73
|
Ma M, Cai B, Kong S, Zhou Z, Zhang J, Zhang X, Nie Q. PPARGC1A Is a Moderator of Skeletal Muscle Development Regulated by miR-193b-3p. Int J Mol Sci 2022; 23:ijms23179575. [PMID: 36076970 PMCID: PMC9455960 DOI: 10.3390/ijms23179575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Meat production performance is one of the most important factors in determining the economic value of poultry. Myofiber is the basic unit of skeletal muscle, and its physical and chemical properties determine the meat quality of livestock and poultry to a certain extent. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) as a transcriptional coactivator has been found to be widely involved in a series of biological processes. However, PPARGC1A is still poorly understood in chickens. In this manuscript, we reported that PPARGC1A was highly expressed in slow-twitch myofibers. PPARGC1A facilitated mitochondrial biogenesis and regulated skeletal muscle metabolism by mediating the flux of glycolysis and the TCA cycle. Gain- and loss-of-function analyses revealed that PPARGC1A promoted intramuscular fatty acid oxidation, drove the transformation of fast-twitch to slow-twitch myofibers, and increased chicken skeletal muscle mass. Mechanistically, the expression level of PPARGC1A is regulated by miR-193b-3p. Our findings help to understand the genetic regulation of skeletal muscle development and provide a molecular basis for further research on the antagonism of skeletal muscle development and fat deposition in chickens.
Collapse
Affiliation(s)
- Manting Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Bolin Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shaofen Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85285759
| |
Collapse
|
74
|
Jarrold BB, Tan CYR, Ho CY, Soon AL, Lam TT, Yang X, Nguyen C, Guo W, Chew YC, DeAngelis YM, Costello L, De Los Santos Gomez P, Przyborski S, Bellanger S, Dreesen O, Kimball AB, Oblong JE. Early onset of senescence and imbalanced epidermal homeostasis across the decades in photoexposed human skin: Fingerprints of inflammaging. Exp Dermatol 2022; 31:1748-1760. [DOI: 10.1111/exd.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Chin Yee Ho
- A*STAR Skin Research Labs Singapore City Singapore
| | - Ai Ling Soon
- A*STAR Skin Research Labs Singapore City Singapore
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource Yale School of Medicine New Haven Connecticut USA
| | | | | | - Wei Guo
- Zymo Research Corporation Irvine California USA
| | | | | | | | | | | | | | | | - Alexa B. Kimball
- Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| | | |
Collapse
|
75
|
Wang H, Wang X, Ma L, Huang X, Peng Y, Huang H, Gao X, Chen Y, Cao Z. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann N Y Acad Sci 2022; 1516:300-311. [PMID: 35917205 DOI: 10.1111/nyas.14872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia often occurs in inflammatory tissues, such as tissues affected by periodontitis and apical periodontitis lesions. Mitochondrial biogenesis can be disrupted in hypoxia. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a core factor required for mitochondrial biogenesis. Cementoblasts are root surface lining cells that play an integral role in cementum formation. There is a dearth of research on the effect of hypoxia on cementoblasts and underlying mechanisms, particularly in relation to mitochondrial biogenesis during the hypoxic process. In this study, we found that the expression of hypoxia inducible factor-1α was elevated in apical periodontitis tissues in vivo. In contrast, periapical lesions exhibited a reduction of PGC-1α expression. For in vitro experiments, cobalt chloride (CoCl2 ) was used to induce hypoxia. We observed that CoCl2 -induced hypoxia suppressed the mineralization ability and mitochondrial biogenesis of cementoblasts, accompanied by abnormal mitochondria morphology. Furthermore, we found that CoCl2 blocked the p38 pathway, while it activated the Erk1/2 pathway, with the former upregulating the expression of PGC-1α, while the latter reversed the effects. Overall, our findings demonstrate that mitochondrial biogenesis, especially via PGC-1α, is impaired during cementogenesis in the context of CoCl2 -induced hypoxia, dependent on the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
76
|
Li W, Yuan P, Liu W, Xiao L, Xu C, Mo Q, Xu S, He Y, Jiang D, Wang X. Hypoxia–Immune-Related Gene SLC19A1 Serves as a Potential Biomarker for Prognosis in Multiple Myeloma. Front Immunol 2022; 13:843369. [PMID: 35958555 PMCID: PMC9358019 DOI: 10.3389/fimmu.2022.843369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Multiple myeloma (MM) remains an incurable malignant tumor of plasma cells. Increasing evidence has reported that hypoxia and immune status contribute to the progression of MM. In this research, the prognostic value of the hypoxia–immune-related gene SLC19A1 in MM was evaluated by bioinformatics analysis. Method RNA-sequencing (RNA-seq) data along with clinical information on MM were downloaded from the Gene Expression Omnibus (GEO) database. Consistent clustering analysis and ESTIMATE algorithms were performed to establish the MM sample subgroups related to hypoxia and immune status, respectively, based on the GSE24080 dataset. The differentially expressed analysis was performed to identify the hypoxia–immune-related genes. Subsequently, a hypoxia–immune-gene risk signature for MM patients was constructed by univariate and multivariate Cox regression analyses, which was also verified in the GSE4581 dataset. Furthermore, the mRNA expression of SLC19A1 was determined using qRT-PCR in 19 MM patients, and the correlations between the genetic expression of SLC19A1 and clinical features were further analyzed. Result A total of 47 genes were identified as hypoxia–immune-related genes for MM. Among these genes, SLC19A1 was screened to construct a risk score model that had better predictive power for MM. The constructed prognostic signature based on SLC19A1 was verified in the GSE4581 dataset. All independent prognostic factors (age, β2-microglobulin, LDH, albumin, MRI, and gene risk score) were used to develop a nomogram that showed a better performance for predicting the survival probability of MM patients for 1–5 years. Furthermore, SLC19A1 was highly expressed in newly diagnosed and relapsed MM patients, and high expression of SLC19A1 is correlated with higher bone marrow aspiration plasma cells and β2-microglobulin levels in MM patients. Conclusion In conclusion, our results suggest that SLC19A1 is aberrantly expressed in MM and highly expressed SLC19A1 might be a biomarker correlated with inferior prognosis. More importantly, we identified SLC19A1 as a hypoxia–immune-related gene in MM. Future functional and mechanistic studies will further clarify the roles of SLC19A1 in MM.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| | - Peng Yuan
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| | - Weiqin Liu
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| | - Lichan Xiao
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| | - Chun Xu
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Shujuan Xu
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yuchan He
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Duanfeng Jiang
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, China
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaotao Wang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Xiaotao Wang,
| |
Collapse
|
77
|
Molecular characterization of TRIB1 gene and its role in regulation of steroidogenesis in bos grunniens granulosa cells. Theriogenology 2022; 191:1-9. [DOI: 10.1016/j.theriogenology.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023]
|
78
|
Wang Q, Xi Y, Chen B, Zhao H, Yu W, Xie D, Liu W, He F, Xu C, Cheng J. Receptor of Advanced Glycation End Products Deficiency Attenuates Cisplatin-Induced Acute Nephrotoxicity by Inhibiting Apoptosis, Inflammation and Restoring Fatty Acid Oxidation. Front Pharmacol 2022; 13:907133. [PMID: 35712715 PMCID: PMC9196246 DOI: 10.3389/fphar.2022.907133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a widely used and potent anti-neoplastic agent, but severe and inescapable side effects in multiple normal tissues and organs limit its application, especially nephrotoxicity. Molecular mechanisms of cisplatin nephrotoxicity involve mitochondrial damage, oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, necroptosis, etc. Receptor of advanced glycation end products (RAGE) is a multiligand pattern recognition receptor, engaged in inflammatory signaling and mitochondrial homeostasis. Whether inhibition of RAGE alleviates cisplatin-induced nephropathy has not been investigated. Here, we revealed that RAGE deficiency attenuates cisplatin-induced acute nephrotoxicity, as evidenced by reduced apoptosis, inflammation, lipid accumulation, restored mitochondrial homeostasis and fatty acid oxidation in renal tubular epithelial cells (TECs). In vitro studies showed that, the RAGE-specific inhibitor FPS-ZM1 attenuated the cisplatin-induced decrease of cell viability and fatty acid oxidation in the normal rat renal TEC line NRK-52E cells. Taken together, RAGE knockout mitigated cisplatin-induced acute nephrotoxicity by inhibiting apoptosis, inflammation, and restoring fatty acid oxidation in TECs, suggesting that RAGE inhibition could be a therapeutic option for cisplatin-induced acute nephrotoxicity.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Yuemei Xi
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Weidong Liu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Chenxi Xu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| |
Collapse
|
79
|
Hou Y, Sun X, Gheinani PT, Guan X, Sharma S, Zhou Y, Jin C, Yang Z, Naren AP, Yin J, Denning TL, Gewirtz AT, Liu Y, Xie Z, Li C. Epithelial SMYD5 Exaggerates IBD by Down-regulating Mitochondrial Functions via Post-Translational Control of PGC-1α Stability. Cell Mol Gastroenterol Hepatol 2022; 14:375-403. [PMID: 35643234 PMCID: PMC9249919 DOI: 10.1016/j.jcmgh.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The expression and role of methyltransferase SET and MYND domain-containing protein 5 (SMYD5) in inflammatory bowel disease (IBD) is completely unknown. Here, we investigated the role and underlying mechanism of epithelial SMYD5 in IBD pathogenesis and progression. METHODS The expression levels of SMYD5 and the mitochondrial transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) were examined by Western blot, immunofluorescence staining, and immunohistochemistry in intestinal epithelial cells (IECs) and in colon tissues from human IBD patients and colitic mice. Mice with Smyd5 conditional knockout in IECs and littermate controls were subjected to dextran sulfate sodium-induced colitis and the disease severity was assessed. SMYD5-regulated mitochondrial biogenesis was examined by quantitative reverse-transcription polymerase chain reaction and transmission electron microscopy, and the mitochondrial oxygen consumption rate was measured in a Seahorse Analyzer system (Agilent, Santa Clara, CA). SMYD5 and PGC-1α interaction was determined by co-immunoprecipitation assay. PGC-1α degradation and turnover (half-life) were analyzed by cycloheximide chase assay. SMYD5-mediated PGC-1α methylation was assessed via in vitro methylation assay followed by mass spectrometry for identification of methylated lysine residues. RESULTS Up-regulated SMYD5 and down-regulated PGC-1α were observed in intestinal epithelia from IBD patients and colitic mice. Smyd5 depletion in IECs protected mice from dextran sulfate sodium-induced colitis. SMYD5 was critically involved in regulating mitochondrial biology such as mitochondrial biogenesis, respiration, and apoptosis. Mechanistically, SMYD5 regulates mitochondrial functions in a PGC-1α-dependent manner. Furthermore, SMYD5 mediates lysine methylation of PGC-1α and subsequently facilitates its ubiquitination and degradation. CONCLUSIONS SMYD5 attenuates mitochondrial functions in IECs and promotes IBD progression by enhancing PGC-1α degradation in a methylation-dependent manner. Strategies to decrease SMYD5 expression and/or increase PGC-1α expression in IECs might be a promising therapeutic approach to treat IBD patients.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | | | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Yu Zhou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, Georgia
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jun Yin
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Timothy L Denning
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yuan Liu
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
80
|
Wang W, Wang B. KDM3A-mediated SP1 activates PFKFB4 transcription to promote aerobic glycolysis in osteosarcoma and augment tumor development. BMC Cancer 2022; 22:562. [PMID: 35590288 PMCID: PMC9118730 DOI: 10.1186/s12885-022-09636-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/05/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lysine-specific histone demethylase 3A (KDM3A) is a potent histone modifier that is frequently implicated in the progression of several malignancies. However, its role in aerobic glycolysis of osteosarcoma (OS) remains unclear. METHODS KDM3A expression in OS tissues was determined by immunohistochemistry, and that in acquired OS cells was determined by RT-qPCR and western blot assays. KDM3A was silenced in OS cells to examine cellular behaviors and the aerobic glycolysis. Stably transfected cells were injected into nude mice for in vivo experiments. The downstream targets of KDM3A were predicted by bioinformatics systems and validated by ChIP-qPCR. Rescue experiments of SP1 and PFKFB4 were performed to examine their roles in the KDM3A-mediated events. RESULTS KDM3A was highly expressed in OS tissues and cells. Knockdown of KDM3A weakened OS cell growth and metastasis in vivo and in vitro, and it suppressed the aerobic glycolysis in OS cells. KDM3A enhanced the transcription of SP1 by demethylating H3K9me2 on its promoter. Restoration of SP1 rescued growth and metastasis of OS cells and recovered the glycolytic flux in cells suppressed by knockdown of KDM3A. SP1 bound to the PFKFB4 promoter to activate its transcription and expression. PFKFB4 expression in OS cells was suppressed by KDM3A silencing but increased after SP1 restoration. Overexpression of PFKFB4 significantly promoted OS cell growth and metastasis as well as the glycolytic flux in cells. CONCLUSION This paper elucidates that upregulation of PFKFB4 mediated by the KDM3A-SP1 axis promotes aerobic glycolysis in OS and augments tumor development.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China
| | - Bin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China.
| |
Collapse
|
81
|
Chopra A, Willmore WG, Biggar KK. Insights into a Cancer-Target Demethylase: Substrate Prediction through Systematic Specificity Analysis for KDM3A. Biomolecules 2022; 12:biom12050641. [PMID: 35625569 PMCID: PMC9139010 DOI: 10.3390/biom12050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Jumonji C (JmjC) lysine demethylases (KDMs) catalyze the removal of methyl (-CH3) groups from modified lysyl residues. Several JmjC KDMs promote cancerous properties and these findings have primarily been in relation to histone demethylation. However, the biological roles of these enzymes are increasingly being shown to also be attributed to non-histone demethylation. Notably, KDM3A has become relevant to tumour progression due to recent findings of this enzyme's role in promoting cancerous phenotypes, such as enhanced glucose consumption and upregulated mechanisms of chemoresistance. To aid in uncovering the mechanism(s) by which KDM3A imparts its oncogenic function(s), this study aimed to unravel KDM3A substrate specificity to predict high-confidence substrates. Firstly, substrate specificity was assessed by monitoring activity towards a peptide permutation library of histone H3 di-methylated at lysine-9 (i.e., H3K9me2). From this, the KDM3A recognition motif was established and used to define a set of high-confidence predictions of demethylation sites from within the KDM3A interactome. Notably, this led to the identification of three in vitro substrates (MLL1, p300, and KDM6B), which are relevant to the field of cancer progression. This preliminary data may be exploited in further tissue culture experiments to decipher the avenues by which KDM3A imparts cancerous phenotypes.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - William G. Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| |
Collapse
|
82
|
Rutaecarpine Promotes Adipose Thermogenesis and Protects against HFD-Induced Obesity via AMPK/PGC-1α Pathway. Pharmaceuticals (Basel) 2022; 15:ph15040469. [PMID: 35455466 PMCID: PMC9027001 DOI: 10.3390/ph15040469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Pharmacological activation of adaptive thermogenesis to increase energy expenditure is considered to be a novel strategy for obesity. Peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α), which serves as an inducible co-activator in energy expenditure, is highly expressed in brown adipose tissues (BAT). In this study, we found a PGC-1α transcriptional activator, natural compound rutaecarpine (Rut), which promoted brown adipocytes mitochondrial biogenesis and thermogenesis in vitro. Chronic Rut treatment reduced the body weight gain and mitigated insulin sensitivity through brown and beige adipocyte thermogenesis. Mechanistic study showed that Rut activated the energy metabolic pathway AMP-activated protein kinase (AMPK)/PGC-1α axis, and deficiency of AMPK abolished the beneficial metabolic phenotype of the Rut treatment in vitro and in vivo. In summary, a PGC-1α transcriptional activator Rut was found to activate brown and beige adipose thermogenesis to resist diet-induced obesity through AMPK pathway. Our findings serve as a further understanding of the natural compound in adipose tissue and provides a possible strategy to combat obesity and related metabolic disorders.
Collapse
|
83
|
Zhuang L, Jia K, Chen C, Li Z, Zhao J, Hu J, Zhang H, Fan Q, Huang C, Xie H, Lu L, Shen W, Ning G, Wang J, Zhang R, Chen K, Yan X. DYRK1B-STAT3 Drives Cardiac Hypertrophy and Heart Failure by Impairing Mitochondrial Bioenergetics. Circulation 2022; 145:829-846. [PMID: 35235343 DOI: 10.1161/circulationaha.121.055727] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a global public health issue that is associated with increasing morbidity and mortality. Previous studies have suggested that mitochondrial dysfunction plays critical roles in the progression of heart failure; however, the underlying mechanisms remain unclear. Because kinases have been reported to modulate mitochondrial function, we investigated the effects of DYRK1B (dual-specificity tyrosine-regulated kinase 1B) on mitochondrial bioenergetics, cardiac hypertrophy, and heart failure. METHODS We engineered DYRK1B transgenic and knockout mice and used transverse aortic constriction to produce an in vivo model of cardiac hypertrophy. The effects of DYRK1B and its downstream mediators were subsequently elucidated using RNA-sequencing analysis and mitochondrial functional analysis. RESULTS We found that DYRK1B expression was clearly upregulated in failing human myocardium and in hypertrophic murine hearts, as well. Cardiac-specific DYRK1B overexpression resulted in cardiac dysfunction accompanied by a decline in the left ventricular ejection fraction, fraction shortening, and increased cardiac fibrosis. In striking contrast to DYRK1B overexpression, the deletion of DYRK1B mitigated transverse aortic constriction-induced cardiac hypertrophy and heart failure. Mechanistically, DYRK1B was positively associated with impaired mitochondrial bioenergetics by directly binding with STAT3 to increase its phosphorylation and nuclear accumulation, ultimately contributing toward the downregulation of PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α). Furthermore, the inhibition of DYRK1B or STAT3 activity using specific inhibitors was able to restore cardiac performance by rejuvenating mitochondrial bioenergetics. CONCLUSIONS Taken together, the findings of this study provide new insights into the previously unrecognized role of DYRK1B in mitochondrial bioenergetics and the progression of cardiac hypertrophy and heart failure. Consequently, these findings may provide new therapeutic options for patients with heart failure.
Collapse
Affiliation(s)
- Lingfang Zhuang
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kangni Jia
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chen Chen
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.C.)
| | - Zhigang Li
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jiaxin Zhao
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jian Hu
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Zhang
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qin Fan
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chunkai Huang
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hongyang Xie
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lin Lu
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weifeng Shen
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guang Ning
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jiqiu Wang
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kang Chen
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
84
|
Zhong G, Hu T, Tang L, Li T, Wu S, Duan X, Pan J, Zhang H, Tang Z, Feng X, Hu L. Arsenic causes mitochondrial biogenesis obstacles by inhibiting the AMPK/PGC-1α signaling pathway and also induces apoptosis and dysregulated mitophagy in the duck liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113117. [PMID: 34959015 DOI: 10.1016/j.ecoenv.2021.113117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Arsenic is a dangerous metalloid-material which is known to cause liver injury in many animals and humans. However, little is known about the underlying mechanism of arsenic-induced hepatotoxicity in poultry. This study was executed to systematically investigate the potential role of mitochondrial biogenesis, mitophagy and apoptosis in duck hepatotoxicity caused by arsenic. Results showed that the body weight and liver coefficient of duck had distinct changed after arsenic-exposure, and the arsenic content in serum and liver also increased significantly in a dose-dependent manner. Meanwhile, histopathological examination and metabolomics results showed that arsenic-exposure caused severe steatosis and metabolism disorder in liver tissues. Furthermore, arsenic-exposure significantly inhibited AMPK/PGC-1α-mediated mitochondrial biogenesis, determined by the ultrastructure observation and down-regulation of p-AMPKα/AMPKα, PGC-1α, NRF1, NRF2, TFAM, TFB1M, TFB2M and COX-Ⅳ expression levels. Besides, arsenic-treatment obviously increased the levels of mitophagy (PINK1, Parkin, LC3, P62) and pro-apoptotic (Caspase-3, Caspase-9, Cleaved Caspase-3, Cytc, Bax, P53) indexes, and simultaneously resulted in reductions in anti-apoptosis index (Bcl-2). Overall, our findings provided evidences that arsenic-induced duck hepatotoxicity may be caused by a combination of impaired mitochondrial biosynthesis, mitophagy, and mitochondrial-dependent apoptosis. To our knowledge, this is the first report to systematically investigate the potential mechanism of arsenic-induced hepatotoxicity in poultry.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Ting Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lixuan Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Li
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xia Feng
- Yanzhou District Bureau of Agriculture and Rural Development, Jining City, Shandong, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
85
|
Targeting PGC1α to wrestle cancer: a compelling therapeutic opportunity. J Cancer Res Clin Oncol 2022; 148:767-774. [PMID: 35032216 DOI: 10.1007/s00432-021-03912-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Metabolic adaptation is an emerging hallmark of cancer, as it provides tumor cells sufficient energy and metabolic intermediates. Although tumor cells are believed to highly rely on Warburg effect to satisfy their energy demand, more studies have pointed out that various types of tumor cells are highly dependent on oxidative phosphorylation to drive the tumorigenesis. Peroxisome proliferator-activated receptor-c coactivator 1α (PGC1α), the crucial member of PGC1 family, is aberrantly expressed in several cancer types, implicating its role in tumor proliferation, migration, invasion, metastasis, and chemoresistance. Numerous studies have reported that PGC1α participates in the regulation of tumor development by altering the transcriptional programs as well as the metabolic phenotypes. Thus, PGC1α-targeted therapy is therapeutically exploitable to target the metabolic vulnerabilities in tumor cells. This review mainly focuses on the current underlying mechanisms for its roles in regulating metabolic adaptation of tumor cells and its upstream regulators; how PGC1α participates in the regulation of the tumor proliferation, migration, invasion, metastasis, therapy resistance; and the feasibility of PGC1α-targeted therapy for cancer treatment.
Collapse
|
86
|
GONG WY, XU B, LIU L, LI ST. Effects of different doses of dezocine on central nervous system in mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.73021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wen-yi GONG
- Shanghai General Hospital of Nanjing Medical University, China; Wusong Hospital, China
| | | | | | - Shi-tong LI
- Shanghai General Hospital of Nanjing Medical University, China
| |
Collapse
|
87
|
Disrupted mitochondrial homeostasis coupled with mitotic arrest generates antineoplastic oxidative stress. Oncogene 2022; 41:427-443. [PMID: 34773075 PMCID: PMC8755538 DOI: 10.1038/s41388-021-02105-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) serve as critical signals in various cellular processes. Excessive ROS cause cell death or senescence and mediates the therapeutic effect of many cancer drugs. Recent studies showed that ROS increasingly accumulate during G2/M arrest, the underlying mechanism, however, has not been fully elucidated. Here, we show that in cancer cells treated with anticancer agent TH287 or paclitaxel that causes M arrest, mitochondria accumulate robustly and produce excessive mitochondrial superoxide, which causes oxidative DNA damage and undermines cell survival and proliferation. While mitochondrial mass is greatly increased in cells arrested at M phase, the mitochondrial function is compromised, as reflected by reduced mitochondrial membrane potential, increased SUMOylation and acetylation of mitochondrial proteins, as well as an increased metabolic reliance on glycolysis. CHK1 functional disruption decelerates cell cycle, spares the M arrest and attenuates mitochondrial oxidative stress. Induction of mitophagy and blockade of mitochondrial biogenesis, measures that reduce mitochondrial accumulation, also decelerate cell cycle and abrogate M arrest-coupled mitochondrial oxidative stress. These results suggest that cell cycle progression and mitochondrial homeostasis are interdependent and coordinated, and that impairment of mitochondrial homeostasis and the associated redox signaling may mediate the antineoplastic effect of the M arrest-inducing chemotherapeutics. Our findings provide insights into the fate of cells arrested at M phase and have implications in cancer therapy.
Collapse
|
88
|
Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:772036. [PMID: 34938172 PMCID: PMC8686680 DOI: 10.3389/fnagi.2021.772036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
89
|
The adverse effects of hypoxia on hiHep functions via HIF-1α/PGC-1α axis are alleviated by PFDC emulsion. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
90
|
Birla H, Keswani C, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh R, Rajput M, Keshri P, Singh SP. Unraveling the Neuroprotective Effect of Tinospora cordifolia in a Parkinsonian Mouse Model through the Proteomics Approach. ACS Chem Neurosci 2021; 12:4319-4335. [PMID: 34747594 DOI: 10.1021/acschemneuro.1c00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stress-induced dopaminergic (DAergic) neuronal death in the midbrain region is the primary cause of Parkinson's disease (PD). Following the discovery of l-dopa, multiple drugs have been developed to improve the lifestyle of PD patients; however, none have been suitable for clinical use due to their multiple side effects. Tinospora cordifolia has been used in traditional medicines to treat neurodegenerative diseases. Previously, we reported the neuroprotective role of Tc via inhibition of NF-κB-associated proinflammatory cytokines against MPTP-intoxicated Parkinsonian mice. In the present study, we investigated the neuroprotective molecular mechanism of Tc in a rotenone (ROT)-intoxicated mouse model, using a proteomics approach. Mice were pretreated with Tc extract by oral administration, followed by ROT intoxication. Behavioral tests were performed to check motor functions of mice. Protein was isolated, and label-free quantification (LFQ) was carried out to identify differentially expressed protein (DEP) in control vs PD and PD vs treatment groups. Results were validated by qRT-PCR with the expression of target genes correlating with the proteomics data. In this study, we report 800 DEPs in control vs PD and 133 in PD vs treatment groups. In silico tools demonstrate significant enrichment of biochemical and molecular pathways with DEPs, which are known to be important for PD progression including mitochondrial gene expression, PD pathways, TGF-β signaling, and Alzheimer's disease. This study provides novel insights into the PD progression as well as new therapeutic targets. More importantly, it demonstrates that Tc can exert therapeutic effects by regulating multiple pathways, resulting in neuroprotection.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Monika Rajput
- Department of Bioinformatics, Mahila Maha Vidhyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
91
|
Rao Y, Li C, Hu YT, Xu YH, Song BB, Guo SY, Jiang Z, Zhao DD, Chen SB, Tan JH, Huang SL, Li QJ, Wang XJ, Zhang YJ, Ye JM, Huang ZS. A novel HSF1 activator ameliorates nonalcoholic steatohepatitis by stimulating mitochondrial adaptive oxidation. Br J Pharmacol 2021; 179:1411-1432. [PMID: 34783017 DOI: 10.1111/bph.15727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD), and no pharmacologic treatment approved as yet. Identification of novel therapeutic targets and their agents are critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were revealed by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet, the methionine-choline deficient diet fed mice). The drug-like properties of SYSU-3d in vivo were evaluated. KEY RESULTS HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly-identified activator SYSU-3d efficiently ameliorated all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis, thus increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells revealed the HSF1/PGC-1α metabolic axis mainly responsible for the anti-NASH effects of SYSU-3d independent of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS Activation of HSF1 is a practicable therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial axis, and SYSU-3d would take into consideration as a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing-Bing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Jun Wang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ying-Jun Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
92
|
Xia BY, Li Y, Ding X, Li X, Liu XC, Yu WX. Effect of peroxisome proliferator-activated receptor-γ coactivator-1α on liver injury induced by periodontitis in rats. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:518-523. [PMID: 34636198 DOI: 10.7518/hxkq.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To investigate the effect of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) on liver injury induced by periodontitis in rats. METHODS Twenty-four male Wistar rats were randomly divided into two groups: control group and periodontitis group, twelve per group. In periodontitis group, the periodontitis models were established for the maxillary first molars in rats by means of "wire ligation+vaccinationwith Porphyromonas gingivalis", the control group was inoculated with the equal volume of 2% sodium carboxymethyl cellulose in the same position, for 6 weeks. The probing depth, tooth mobility and sulcus bleeding index were detected. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of liver tissues in rats. The quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were used to detect the gene and protein expression levels of PGC-1α, nuclear factor erythroid 2-related factor 2 (Nrf2) and mitochondrial transcription factor A (TFAM) in liver tissues of rats. RESULTS The probing depth, tooth mobility and sulcus bleeding index in periodontitis group were significantly higher than that in control group. HE staining showed in periodontitis group, hepatic cords ranged disorderly and there were vacuoles in cells and inflammatory cells infiltrated in liver tissues of rats, and there was no obvious abnormality in control group. The qRT-PCR results showed that the mRNA expression levels of Pgc-1α, Nrf2 and Tfam in liver tissues of rats in periodontitis group were lower obviously than that in control group. IHC results showed that the protein expression level of PGC-1α in liver tissues of rats in periodontitis group was decreased significantly than that in control group. CONCLUSIONS PGC-1α may be involved in the process of periodontitis-induced liver injury in rats.
Collapse
Affiliation(s)
- Bo-Yuan Xia
- Dept. of Periodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yan Li
- Dept. of Periodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xu Ding
- Dept. of Periodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xin Li
- Dept. of Periodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xin-Chan Liu
- Dept. of Geriatric Stomatology, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Wei-Xian Yu
- Dept. of Geriatric Stomatology, Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
93
|
Hou X, Li Q, Yang L, Yang Z, He J, Li Q, Li D. KDM1A and KDM3A promote tumor growth by upregulating cell cycle-associated genes in pancreatic cancer. Exp Biol Med (Maywood) 2021; 246:1869-1883. [PMID: 34171978 PMCID: PMC8424634 DOI: 10.1177/15353702211023473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic cancer is a highly malignant cancer of the pancreas with a very poor prognosis. Methylation of histone lysine residues is essential for regulating cancer physiology and pathophysiology, mediated by a set of methyltransferases (KMTs) and demethylases (KDMs). This study surveyed the expression of methylation regulators functioning at lysine 9 of histone 3 (H3K9) in pancreatic lesions and explored the underlying mechanisms. We analyzed KDM1A and KDM3A expression in clinical samples by immunohistochemical staining and searching the TCGA PAAD program and GEO datasets. Next, we identified the variation in tumor growth in vitro and in vivo after knockdown of KDM1A or KDM3A and explored the downstream regulators of KDM1A and KDM3A via RNA-seq, and gain- and loss-of-function assays. Eleven H3K9 methylation regulators were highly expressed in pancreatic cancer, and only KDM1A and KDM3A expression positively correlated with the clinicopathological characteristics in pancreatic cancer. High expression of KDM1A or KDM3A positively correlated with pathological grade, lymphatic metastasis, invasion, and clinical stage. Kaplan-Meier analysis indicated that a higher level of KDM1A or KDM3A led to a shorter survival period. Knockdown of KDM1A or KDM3A led to markedly impaired tumor growth in vitro and in vivo. Mechanistically, CCNA2, a cell cycle-associated gene was partially responsible for KDM1A knockdown-mediated effect and CDK6, also a cell cycle-associated gene was partially responsible for KDM3A knockdown-mediated effect on pancreatic cancer cells. Our study demonstrates that KDM1A and KDM3A are highly expressed in pancreatic cancer and are intimately correlated with clinicopathological factors and prognosis. The mechanism of action of KDM1A or KDM3A was both linked to the regulation of cell cycle-associated genes, such as CCNA2 or CDK6, respectively, by an H3K9-dependent pathway.
Collapse
Affiliation(s)
- Xuyang Hou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qiuguo Li
- Department of General Surgery, Hunan Chest Hospital, Changsha 410006, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Daming Li
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
94
|
Sun C, Xiao Y, Li J, Ge B, Chen X, Liu H, Zheng T. Nonenzymatic function of DPP4 in diabetes-associated mitochondrial dysfunction and cognitive impairment. Alzheimers Dement 2021; 18:966-987. [PMID: 34374497 DOI: 10.1002/alz.12437] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) has been proven to exert its functions by both enzymatic and nonenzymatic pathways. The nonenzymatic function of DPP4 in diabetes-associated cognitive impairment remains unexplored. We determined DPP4 protein concentrations or its enzymatic activity in type 2 diabetic patients and db/db mice and tested the impact of the non-enzymatic function of DPP4 on mitochondrial dysfunction and cognitive impairment both in vivo and in vitro. The results show that increased DPP4 activity was an independent risk factor for incident mild cognitive impairment (MCI) in type 2 diabetic patients. In addition, DPP4 was highly expressed in the hippocampus of db/db mice and contributed to mitochondria dysfunction and cognitive impairment. Mechanistically, DPP4 might bind to PAR2 in the hippocampus and trigger GSK-3β activation, which downregulates peroxisome proliferator-activated receptor gamma coactivator 1 alpha expression and leads to mitochondria dysfunction, thereby promoting cognitive impairment in diabetes. Our findings indicate that the nonenzymatic function of DPP4 might promote mitochondrial dysfunction and cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Cunwei Sun
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P. R. China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Yanhua Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P. R. China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Jiaxiu Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P. R. China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Bo Ge
- Department of Urology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P. R. China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, P. R. China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P. R. China
| |
Collapse
|
95
|
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacol Res 2021; 171:105783. [PMID: 34302976 DOI: 10.1016/j.phrs.2021.105783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Diabetes and Alzheimer's disease are common chronic illnesses in the United States and lack clearly demonstrated therapeutics. Mitochondria, the "powerhouse of the cell", is involved in the homeostatic regulation of glucose, energy, and reduction/oxidation reactions. The mitochondria has been associated with the etiology of metabolic and neurological disorders through a dysfunction of regulation of reactive oxygen species. Mitochondria-targeted chemicals, such as the Szeto-Schiller-31 peptide, have advanced therapeutic potential through the inhibition of oxidative stress and the restoration of normal mitochondrial function as compared to traditional antioxidants, such as vitamin E. In this article, we summarize the pathophysiological relevance of the mitochondria and the beneficial effects of Szeto-Schiller-31 peptide in the treatment of Diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Hadeel Aldhowayan
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
96
|
Abstract
Aerobic respiration is essential to almost all eukaryotes and sensing oxygen is a key determinant of survival. Analogous but mechanistically different oxygen-sensing pathways were adopted in plants and metazoan animals, and include ubiquitin-mediated degradation of transcription factors and direct sensing via non-heme iron(Fe2+)-dependent-dioxygenases. Key roles for oxygen sensing have been identified in both groups, with downstream signalling focussed on regulating gene transcription and chromatin modification to control development and stress responses. Components of sensing systems are promising targets for human therapeutic intervention and developing stress-resilient crops. Here, we review current knowledge about the origins, commonalities and differences between oxygen sensing in plants and animals.
Collapse
Affiliation(s)
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
97
|
PGC1s and Beyond: Disentangling the Complex Regulation of Mitochondrial and Cellular Metabolism. Int J Mol Sci 2021; 22:ijms22136913. [PMID: 34199142 PMCID: PMC8268830 DOI: 10.3390/ijms22136913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolism is the central engine of living organisms as it provides energy and building blocks for many essential components of each cell, which are required for specific functions in different tissues. Mitochondria are the main site for energy production in living organisms and they also provide intermediate metabolites required for the synthesis of other biologically relevant molecules. Such cellular processes are finely tuned at different levels, including allosteric regulation, posttranslational modifications, and transcription of genes encoding key proteins in metabolic pathways. Peroxisome proliferator activated receptor γ coactivator 1 (PGC1) proteins are transcriptional coactivators involved in the regulation of many cellular processes, mostly ascribable to metabolic pathways. Here, we will discuss some aspects of the cellular processes regulated by PGC1s, bringing up some examples of their role in mitochondrial and cellular metabolism, and how metabolic regulation in mitochondria by members of the PGC1 family affects the immune system. We will analyze how PGC1 proteins are regulated at the transcriptional and posttranslational level and will also examine other regulators of mitochondrial metabolism and the related cellular functions, considering approaches to identify novel mitochondrial regulators and their role in physiology and disease. Finally, we will analyze possible therapeutical perspectives currently under assessment that are applicable to different disease states.
Collapse
|
98
|
Patel JC, Singh A, Tulswani R, Sharma YK, Khurana P, Ragumani S. Identification of VEGFA-centric temporal hypoxia-responsive dynamic cardiopulmonary network biomarkers. Life Sci 2021; 281:119718. [PMID: 34147483 DOI: 10.1016/j.lfs.2021.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
AIMS Hypoxia, a pathophysiological condition, is profound in several cardiopulmonary diseases (CPD). Every individual's lethality to a hypoxia state differs in terms of hypoxia exposure time, dosage units and dependent on the individual's genetic makeup. Most of the proposed markers for CPD were generally aim to distinguish disease samples from normal samples. Although, as per the 2018 GOLD guidelines, clinically useful biomarkers for several cardio pulmonary disease patients in stable condition have yet to be identified. We attempt to address these key issues through the identification of Dynamic Network Biomarkers (DNB) to detect hypoxia induced early warning signals of CPD before the catastrophic deterioration. MATERIALS AND METHODS The human microvascular endothelial tissues microarray datasets (GSE11341) of lung and cardiac expose to hypoxia (1% O2) for 3, 24 and 48 h were retrieved from the public repository. The time dependent differentially expressed genes were subjected to tissue specificity and promoter analysis to filtrate the noise levels in the networks and to dissect the tissue specific hypoxia induced genes. These filtered out genes were used to construct the dynamic segmentation networks. The hypoxia induced dynamic differentially expressed genes were validated in the lung and heart tissues of male rats. These rats were exposed to hypobaric hypoxia (simulated altitude of 25,000 or PO2 - 282 mm of Hg) progressively for 3, 24 and 48 h. KEY FINDINGS To identify the temporal key genes regulated in hypoxia, we ranked the dominant genes based on their consolidated topological features from tissue specific networks, time dependent networks and dynamic networks. Overall topological ranking described VEGFA as a single node dynamic hub and strongly communicated with tissue specific genes to carry forward their tissue specific information. We named this type of VEGFAcentric dynamic networks as "V-DNBs". As a proof of principle, our methodology helped us to identify the V-DNBs specific for lung and cardiac tissues namely V-DNBL and V-DNBC respectively. SIGNIFICANCE Our experimental studies identified VEGFA, SLC2A3, ADM and ENO2 as the minimum and sufficient candidates of V-DNBL. The dynamic expression patterns could be readily exploited to capture the pre disease state of hypoxia induced pulmonary vascular remodelling. Whereas in V-DNBC the minimum and sufficient candidates are VEGFA, SCL2A3, ADM, NDRG1, ENO2 and BHLHE40. The time dependent single node expansion indicates V-DNBC could also be the pre disease state pathological hallmark for hypoxia-associated cardiovascular remodelling. The network cross-talk and expression pattern between V-DNBL and V-DNBC are completely distinct. On the other hand, the great clinical advantage of V-DNBs for pre disease predictions, a set of samples during the healthy condition should suffice. Future clinical studies might further shed light on the predictive power of V-DNBs as prognostic and diagnostic biomarkers for CPD.
Collapse
Affiliation(s)
- Jai Chand Patel
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Ajeet Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Rajkumar Tulswani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Yogendra Kumar Sharma
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Sugadev Ragumani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
99
|
Fan H, Shen Y, Ren Y, Mou Q, Lin T, Zhu L, Ren T. Combined intake of blueberry juice and probiotics ameliorate mitochondrial dysfunction by activating SIRT1 in alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:50. [PMID: 33971886 PMCID: PMC8108333 DOI: 10.1186/s12986-021-00554-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial dysfunction has been implicated as a significant factor in the liver disease process. Blueberry juice and probiotics (BP) synergistically improve liver function in alcoholic fatty liver disease (AFLD), although the mechanism for this effect was unclear. This study aims to investigate the effect and specific mechanisms of BP on AFLD. Methods C57/BL6 mice were randomly divided into seven groups: CG (control), MG (AFLD model), BJ (MG mice treated with blueberry), BJB (MG mice treated with BP), SI (AFLD mice treated with SIRT1 siRNA), BJSI (SI mice treated with blueberry), and BJBSI (SI mice treated with BP). The mice were fed an alcohol liquid diet for 10 days to establish the AFLD model, and subjected to BP and SIRT1 siRNA intervention for 10 days. Liver pathology was performed on day 11, and biochemical and molecular analyses of liver mitochondria were employed on day 12. Results BP significantly ameliorated hepatic mitochondrial injury, mitochondrial swelling, and hepatic necrosis in AFLD. BP alleviated hepatic mitochondrial dysfunction by increasing the expression of succinate dehydrogenase and cytochrome c oxidase, increasing respiratory control rate and the ADP/O ratio, and facilitating the synthesis of energy-related molecules. Besides, BP increased the expression of glutathione and superoxide dismutase, and inhibited malondialdehyde expression and reactive oxygen species activity. BP-induced sirtuin 1 (SIRT1), which activates peroxisome proliferator-activated receptor-gamma coactivator-1α, both of which mediate mitochondrial homeostasis. SIRT1 silencing suppressed the BP-induced changes in liver mitochondria, blunting its efficacy. Conclusions The ingredients of BP ameliorate hepatocyte mitochondrial dysfunction in AFLD mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00554-3.
Collapse
Affiliation(s)
- Houmin Fan
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanyan Shen
- Tongren Maternal and Child Health Care Hospital, Tongren, Guizhou, China
| | - Ya Ren
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiuju Mou
- Department of Blood Transfusion, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Lin
- Department of Clinical Examination, The Affiliated Hospital of Guizhou Medical University, No 28, Guiyi Street, Yunyan District, Guiyang, Guizhou, China
| | - Lili Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Tingting Ren
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
100
|
Mitochondrial dysfunction: A potential target for Alzheimer's disease intervention and treatment. Drug Discov Today 2021; 26:1991-2002. [PMID: 33962036 DOI: 10.1016/j.drudis.2021.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder which manifests as a progressive decline in cognitive function. Mitochondrial dysfunction plays a critical role in the early stages of AD, and advances the progression of this age-related neurodegenerative disorder. Therefore, it can be a potential target for interventions to treat AD. Several therapeutic strategies to target mitochondrial dysfunction have gained significant attention in the preclinical stage, but the clinical trials performed to date have shown little progress. Thus, we discuss the mechanisms and strategies of different therapeutic agents for targeting mitochondrial dysfunction in AD. We hope that this review will inspire and guide the development of efficient AD drugs in the future.
Collapse
|