51
|
Lohia R, Fox N, Gillis J. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships. Genome Biol 2022; 23:238. [PMID: 36352464 PMCID: PMC9647974 DOI: 10.1186/s13059-022-02790-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin contacts are essential for gene-expression regulation; however, obtaining a high-resolution genome-wide chromatin contact map is still prohibitively expensive owing to large genome sizes and the quadratic scale of pairwise data. Chromosome conformation capture (3C)-based methods such as Hi-C have been extensively used to obtain chromatin contacts. However, since the sparsity of these maps increases with an increase in genomic distance between contacts, long-range or trans-chromatin contacts are especially challenging to sample. RESULTS Here, we create a high-density reference genome-wide chromatin contact map using a meta-analytic approach. We integrate 3600 human, 6700 mouse, and 500 fly Hi-C experiments to create species-specific meta-Hi-C chromatin contact maps with 304 billion, 193 billion, and 19 billion contacts in respective species. We validate that meta-Hi-C contact maps are uniquely powered to capture functional chromatin contacts in both cis and trans. We find that while individual dataset Hi-C networks are largely unable to predict any long-range coexpression (median 0.54 AUC), meta-Hi-C networks perform comparably in both cis and trans (0.65 AUC vs 0.64 AUC). Similarly, for long-range expression quantitative trait loci (eQTL), meta-Hi-C contacts outperform all individual Hi-C experiments, providing an improvement over the conventionally used linear genomic distance-based association. Assessing between species, we find patterns of chromatin contact conservation in both cis and trans and strong associations with coexpression even in species for which Hi-C data is lacking. CONCLUSIONS We have generated an integrated chromatin interaction network which complements a large number of methodological and analytic approaches focused on improved specificity or interpretation. This high-depth "super-experiment" is surprisingly powerful in capturing long-range functional relationships of chromatin interactions, which are now able to predict coexpression, eQTLs, and cross-species relationships. The meta-Hi-C networks are available at https://labshare.cshl.edu/shares/gillislab/resource/HiC/ .
Collapse
Affiliation(s)
- Ruchi Lohia
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Nathan Fox
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
52
|
Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol 2022; 24:383-395. [DOI: 10.1038/s41580-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
|
53
|
Jones IR, Ren X, Shen Y. High-throughput CRISPRi and CRISPRa technologies in 3D genome regulation for neuropsychiatric diseases. Hum Mol Genet 2022; 31:R47-R53. [PMID: 35972825 PMCID: PMC9585669 DOI: 10.1093/hmg/ddac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genomics have led to the identification of many risk loci with hundreds of genes and thousands of DNA variants associated with neuropsychiatric disorders. A significant barrier to understanding the genetic underpinnings of complex diseases is the lack of functional characterization of risk genes and variants in biological systems relevant to human health and connecting disease-associated variants to pathological phenotypes. Characterizing gene and DNA variant functions requires genetic perturbations followed by molecular and cellular assays of neurobiological phenotypes. However, generating null or mutant alleles is low throughput, making it impossible to characterize disease-associated variants in large quantities efficiently. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens can be leveraged to dissect the biological consequences of the tested genes and variants in their native context. Nevertheless, testing non-coding variants associated with complex diseases remains non-trivial. In this review, we first discuss the current challenges of interpreting the function of the non-coding genome and approaches to prioritizing disease-associated variants in the context of the 3D epigenome. Second, we provide a brief overview of high-throughput CRISPRi and CRISPRa screening strategies applicable for characterizing non-coding sequences in appropriate biological systems. Lastly, we discuss the promising prospects of using CRISPR-based technologies to dissect DNA sequences associated with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
54
|
Fujita Y, Pather SR, Ming GL, Song H. 3D spatial genome organization in the nervous system: From development and plasticity to disease. Neuron 2022; 110:2902-2915. [PMID: 35777365 PMCID: PMC9509413 DOI: 10.1016/j.neuron.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 01/03/2023]
Abstract
Chromatin is organized into multiscale three-dimensional structures, including chromosome territories, A/B compartments, topologically associating domains, and chromatin loops. This hierarchically organized genomic architecture regulates gene transcription, which, in turn, is essential for various biological processes during brain development and adult plasticity. Here, we review different aspects of spatial genome organization and their functions in regulating gene expression in the nervous system, as well as their dysregulation in brain disorders. We also highlight new technologies to probe and manipulate chromatin architecture and discuss how investigating spatial genome organization can lead to a better understanding of the nervous system and associated disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo City, Shimane 693-8501, Japan.
| | - Sarshan R Pather
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
55
|
Girdhar K, Rahman S, Dong P, Fullard JF, Roussos P. The Neuroepigenome: Implications of Chemical and Physical Modifications of Genomic DNA in Schizophrenia. Biol Psychiatry 2022; 92:443-449. [PMID: 35750513 PMCID: PMC11500017 DOI: 10.1016/j.biopsych.2022.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Schizophrenia is a chronic mental illness with a substantial genetic component. To unfold the complex etiology of schizophrenia, it is important to understand the interplay between genetic and nongenetic factors. Genetic factors involve variation in the DNA sequences of protein-coding genes, which directly contribute to phenotypic traits, and variation in noncoding sequences, which comprise 98% of the genome and contain DNA elements known to play a role in regulating gene expression. The epigenome refers to the chemical modifications on both DNA and the structural proteins that package DNA into the nucleus, which together regulate gene expression in specific cell types, conditions, and developmental stages. The dynamic nature of the epigenome makes it an ideal tool to investigate the relationship between inherited genetic mutations associated with schizophrenia and altered gene regulation throughout the course of brain development. In this review, we focus on the current understanding of the role of epigenetic marks and their three-dimensional nuclear organization in the developmental trajectory of distinct brain cell types to decipher the complex gene regulatory mechanisms that are disrupted in schizophrenia.
Collapse
Affiliation(s)
- Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
56
|
Pascarella G, Hon CC, Hashimoto K, Busch A, Luginbühl J, Parr C, Hin Yip W, Abe K, Kratz A, Bonetti A, Agostini F, Severin J, Murayama S, Suzuki Y, Gustincich S, Frith M, Carninci P. Recombination of repeat elements generates somatic complexity in human genomes. Cell 2022; 185:3025-3040.e6. [DOI: 10.1016/j.cell.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
|
57
|
Rico D, Kent D, Karataraki N, Mikulasova A, Berlinguer-Palmini R, Walker BA, Javierre BM, Russell LJ, Brackley CA. High-resolution simulations of chromatin folding at genomic rearrangements in malignant B cells provide mechanistic insights into proto-oncogene deregulation. Genome Res 2022; 32:1355-1366. [PMID: 35863900 PMCID: PMC9341513 DOI: 10.1101/gr.276028.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus (IGH), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH-CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.
Collapse
Affiliation(s)
- Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Kent
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nefeli Karataraki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, Indiana 46202, USA
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Badalona, Barcelona, Spain
| | - Lisa J Russell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
58
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
59
|
Ballarino R, Bouwman BAM, Agostini F, Harbers L, Diekmann C, Wernersson E, Bienko M, Crosetto N. An atlas of endogenous DNA double-strand breaks arising during human neural cell fate determination. Sci Data 2022; 9:400. [PMID: 35821502 PMCID: PMC9276747 DOI: 10.1038/s41597-022-01508-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Endogenous DNA double-strand breaks (DSBs) occurring in neural cells have been implicated in the pathogenesis of neurodevelopmental disorders (NDDs). Currently, a genomic map of endogenous DSBs arising during human neurogenesis is missing. Here, we applied in-suspension Breaks Labeling In Situ and Sequencing (sBLISS), RNA-Seq, and Hi-C to chart the genomic landscape of DSBs and relate it to gene expression and genome architecture in 2D cultures of human neuroepithelial stem cells (NES), neural progenitor cells (NPC), and post-mitotic neural cells (NEU). Endogenous DSBs were enriched at the promoter and along the gene body of transcriptionally active genes, at the borders of topologically associating domains (TADs), and around chromatin loop anchors. NDD risk genes harbored significantly more DSBs in comparison to other protein-coding genes, especially in NEU cells. We provide sBLISS, RNA-Seq, and Hi-C datasets for each differentiation stage, and all the scripts needed to reproduce our analyses. Our datasets and tools represent a unique resource that can be harnessed to investigate the role of genome fragility in the pathogenesis of NDDs.
Collapse
Affiliation(s)
- Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17165, Sweden
| | - Britta A M Bouwman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Federico Agostini
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Luuk Harbers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Constantin Diekmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Erik Wernersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
60
|
Rajabli F, Beecham GW, Hendrie HC, Baiyewu O, Ogunniyi A, Gao S, Kushch NA, Lipkin-Vasquez M, Hamilton-Nelson KL, Young JI, Dykxhoorn DM, Nuytemans K, Kunkle BW, Wang L, Jin F, Liu X, Feliciano-Astacio BE, Alzheimer’s Disease Sequencing Project, Alzheimer’s Disease Genetic Consortium, Schellenberg GD, Dalgard CL, Griswold AJ, Byrd GS, Reitz C, Cuccaro ML, Haines JL, Pericak-Vance MA, Vance JM. A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer's Disease in African Ancestry. PLoS Genet 2022; 18:e1009977. [PMID: 35788729 PMCID: PMC9286282 DOI: 10.1371/journal.pgen.1009977] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/15/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (β = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (β = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (β = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (β = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.
Collapse
Affiliation(s)
- Farid Rajabli
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Gary W. Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Hugh C. Hendrie
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | | | - Sujuan Gao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Nicholas A. Kushch
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Marina Lipkin-Vasquez
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Kara L. Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Juan I. Young
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Karen Nuytemans
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Brian W. Kunkle
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Fulai Jin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | | | - Gerard D. Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Goldie S. Byrd
- Maya Angelou Center for Health Equity, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Christiane Reitz
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, New York State, United States of America
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
61
|
Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022; 25:104577. [PMID: 35789849 PMCID: PMC9249673 DOI: 10.1016/j.isci.2022.104577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different “omics” and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease. Simulated microgravity (SMG) causes ROS production in human cardiomyocytes (CMs) SMG inhibits mitochondria function and energy metabolism and induces senescence of CMs SMG attenuates contractile velocity, beating frequency and Ca2+ influx in CMs SMG induces chromosomal changes and modifies the chromosomal architecture in CMs
Collapse
|
62
|
Zhang S, Plummer D, Lu L, Cui J, Xu W, Wang M, Liu X, Prabhakar N, Shrinet J, Srinivasan D, Fraser P, Li Y, Li J, Jin F. DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution. Nat Genet 2022; 54:1013-1025. [PMID: 35817982 PMCID: PMC10082397 DOI: 10.1038/s41588-022-01116-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022]
Abstract
Mapping chromatin loops from noisy Hi-C heatmaps remains a major challenge. Here we present DeepLoop, which performs rigorous bias correction followed by deep-learning-based signal enhancement for robust chromatin interaction mapping from low-depth Hi-C data. DeepLoop enables loop-resolution, single-cell Hi-C analysis. It also achieves a cross-platform convergence between different Hi-C protocols and micrococcal nuclease (micro-C). DeepLoop allowed us to map the genetic and epigenetic determinants of allele-specific chromatin interactions in the human genome. We nominate new loci with allele-specific interactions governed by imprinting or allelic DNA methylation. We also discovered that, in the inactivated X chromosome (Xi), local loops at the DXZ4 'megadomain' boundary escape X-inactivation but the FIRRE 'superloop' locus does not. Importantly, DeepLoop can pinpoint heterozygous single-nucleotide polymorphisms and large structure variants that cause allelic chromatin loops, many of which rewire enhancers with transcription consequences. Taken together, DeepLoop expands the use of Hi-C to provide loop-resolution insights into the genetics of the three-dimensional genome.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Dylan Plummer
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jian Cui
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wanying Xu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Miao Wang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nachiketh Prabhakar
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Divyaa Srinivasan
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jing Li
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA. .,Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA. .,Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
63
|
Du Y, Gu Z, Li Z, Yuan Z, Zhao Y, Zheng X, Bo X, Chen H, Wang C. Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200818. [PMID: 35570408 PMCID: PMC9218654 DOI: 10.1002/advs.202200818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Indexed: 06/05/2023]
Abstract
Structural variations (SVs) are the greatest source of variations in the genome and can lead to oncogenesis. However, the identification and interpretation of SVs in human cancer remain technologically challenging. Here, long-read sequencing is first employed to depict the signatures of structural variations in carcinogenesis of human pancreatic ductal epithelium. Then widespread reprogramming of the 3D chromatin architecture is revealed by an in situ Hi-C technique. Integrative analyses indicate that the distribution pattern of SVs among the 3D genome is highly cell-type specific and the bulk remodeling effects of SVs in the chromatin organization partly depend on intercellular genomic heterogeneity. Meanwhile, contact domains tend to minimize these disrupting effects of SVs within local adjacent genomic regions to maintain overall stability. Notably, complex genomic rearrangements involving two key driver genes CDKN2A and SMAD4 are identified, and their influence on the expression of oncogenes MIR31HG, MYO5B, etc., are further elucidated from both a linear view and 3D perspective. Overall, this work provides a genome-wide resource and highlights the impact, complexity, and dynamicity of the interplay between structural variations and high-order chromatin organization, which expands the current understanding of the pathogenesis of SVs in human cancer.
Collapse
Affiliation(s)
- Yongxing Du
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongting Gu
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongze Li
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zan Yuan
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Yue Zhao
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Xiaohao Zheng
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xiaochen Bo
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Hebing Chen
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Chengfeng Wang
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
64
|
Pavlaki I, Shapiro M, Pisignano G, Jones SME, Telenius J, Muñoz-Descalzo S, Williams RJ, Hughes JR, Vance KW. Chromatin interaction maps identify Wnt responsive cis-regulatory elements coordinating Paupar-Pax6 expression in neuronal cells. PLoS Genet 2022; 18:e1010230. [PMID: 35709096 PMCID: PMC9202886 DOI: 10.1371/journal.pgen.1010230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Central nervous system-expressed long non-coding RNAs (lncRNAs) are often located in the genome close to protein coding genes involved in transcriptional control. Such lncRNA-protein coding gene pairs are frequently temporally and spatially co-expressed in the nervous system and are predicted to act together to regulate neuronal development and function. Although some of these lncRNAs also bind and modulate the activity of the encoded transcription factors, the regulatory mechanisms controlling co-expression of neighbouring lncRNA-protein coding genes remain unclear. Here, we used high resolution NG Capture-C to map the cis-regulatory interaction landscape of the key neuro-developmental Paupar-Pax6 lncRNA-mRNA locus. The results define chromatin architecture changes associated with high Paupar-Pax6 expression in neurons and identify both promoter selective as well as shared cis-regulatory-promoter interactions involved in regulating Paupar-Pax6 co-expression. We discovered that the TCF7L2 transcription factor, a regulator of chromatin architecture and major effector of the Wnt signalling pathway, binds to a subset of these candidate cis-regulatory elements to coordinate Paupar and Pax6 co-expression. We describe distinct roles for Paupar in Pax6 expression control and show that the Paupar DNA locus contains a TCF7L2 bound transcriptional silencer whilst the Paupar transcript can act as an activator of Pax6. Our work provides important insights into the chromatin interactions, signalling pathways and transcription factors controlling co-expression of adjacent lncRNAs and protein coding genes in the brain.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Michael Shapiro
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jelena Telenius
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jim R. Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith W. Vance
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Lobon I, Solís-Moruno M, Juan D, Muhaisen A, Abascal F, Esteller-Cucala P, García-Pérez R, Martí MJ, Tolosa E, Ávila J, Rahbari R, Marques-Bonet T, Casals F, Soriano E. Somatic Mutations Detected in Parkinson Disease Could Affect Genes With a Role in Synaptic and Neuronal Processes. FRONTIERS IN AGING 2022; 3:851039. [PMID: 35821807 PMCID: PMC9261316 DOI: 10.3389/fragi.2022.851039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
The role of somatic mutations in complex diseases, including neurodevelopmental and neurodegenerative disorders, is becoming increasingly clear. However, to date, no study has shown their relation to Parkinson disease’s phenotype. To explore the relevance of embryonic somatic mutations in sporadic Parkinson disease, we performed whole-exome sequencing in blood and four brain regions of ten patients. We identified 59 candidate somatic single nucleotide variants (sSNVs) through sensitive calling and a careful filtering strategy (COSMOS). We validated 27 of them with amplicon-based ultra-deep sequencing, with a 70% validation rate for the highest-confidence variants. The identified sSNVs are in genes with synaptic functions that are co-expressed with genes previously associated with Parkinson disease. Most of the sSNVs were only called in blood but were also found in the brain tissues with ultra-deep amplicon sequencing, demonstrating the strength of multi-tissue sampling designs.
Collapse
Affiliation(s)
- Irene Lobon
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- *Correspondence: Irene Lobon, ; Eduardo Soriano,
| | - Manuel Solís-Moruno
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Federico Abascal
- Cancer, Ageing, and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | - Maria Josep Martí
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
| | - Eduardo Tolosa
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
| | - Jesús Ávila
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | - Raheleh Rahbari
- Cancer, Ageing, and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- *Correspondence: Irene Lobon, ; Eduardo Soriano,
| |
Collapse
|
66
|
Liu W, Zhong W, Chen J, Huang B, Hu M, Li Y. Understanding Regulatory Mechanisms of Brain Function and Disease through 3D Genome Organization. Genes (Basel) 2022; 13:586. [PMID: 35456393 PMCID: PMC9027261 DOI: 10.3390/genes13040586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The human genome has a complex and dynamic three-dimensional (3D) organization, which plays a critical role for gene regulation and genome function. The importance of 3D genome organization in brain development and function has been well characterized in a region- and cell-type-specific fashion. Recent technological advances in chromosome conformation capture (3C)-based techniques, imaging approaches, and ligation-free methods, along with computational methods to analyze the data generated, have revealed 3D genome features at different scales in the brain that contribute to our understanding of genetic mechanisms underlying neuropsychiatric diseases and other brain-related traits. In this review, we discuss how these advances aid in the genetic dissection of brain-related traits.
Collapse
Affiliation(s)
- Weifang Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.L.); (J.C.)
| | - Wujuan Zhong
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA;
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.L.); (J.C.)
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA;
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.L.); (J.C.)
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
67
|
Wei X, Xiang Y, Peters DT, Marius C, Sun T, Shan R, Ou J, Lin X, Yue F, Li W, Southerland KW, Diao Y. HiCAR is a robust and sensitive method to analyze open-chromatin-associated genome organization. Mol Cell 2022; 82:1225-1238.e6. [PMID: 35196517 PMCID: PMC8934281 DOI: 10.1016/j.molcel.2022.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
The long-range interactions of cis-regulatory elements (cREs) play a central role in gene regulation. cREs can be characterized as accessible chromatin sequences. However, it remains technically challenging to comprehensively identify their spatial interactions. Here, we report a new method HiCAR (Hi-C on accessible regulatory DNA), which utilizes Tn5 transposase and chromatin proximity ligation, for the analysis of open-chromatin-anchored interactions with low-input cells. By applying HiCAR in human embryonic stem cells and lymphoblastoid cells, we demonstrate that HiCAR identifies high-resolution chromatin contacts with an efficiency comparable with that of in situ Hi-C over all distance ranges. Interestingly, we found that the "poised" gene promoters exhibit silencer-like function to repress the expression of distal genes via promoter-promoter interactions. Lastly, we applied HiCAR to 30,000 primary human muscle stem cells and demonstrated that HiCAR is capable of analyzing chromatin accessibility and looping using low-input primary cells and clinical samples.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Derek T Peters
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Choiselle Marius
- The Cell and Molecular Biology Program, Duke University, Durham, NC 27710, USA
| | - Tongyu Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Ruocheng Shan
- Center for Genetic Medicine Research, Center for Cancer and Immunology Research at Children's National Medical Center, Washington, DC 20010, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wei Li
- Center for Genetic Medicine Research, Center for Cancer and Immunology Research at Children's National Medical Center, Washington, DC 20010, USA
| | - Kevin W Southerland
- Department of Surgery, Division of Vascular and Endovascular Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
68
|
Chignon A, Mathieu S, Rufiange A, Argaud D, Voisine P, Bossé Y, Arsenault BJ, Thériault S, Mathieu P. Enhancer promoter interactome and Mendelian randomization identify network of druggable vascular genes in coronary artery disease. Hum Genomics 2022; 16:8. [PMID: 35246263 PMCID: PMC8895522 DOI: 10.1186/s40246-022-00381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
Coronary artery disease (CAD) is a multifactorial disorder, which is partly heritable. Herein, we implemented a mapping of CAD-associated candidate genes by using genome-wide enhancer-promoter conformation (H3K27ac-HiChIP) and expression quantitative trait loci (eQTL). Enhancer-promoter anchor loops from human coronary artery smooth muscle cells (HCASMC) explained 22% of the heritability for CAD. 3D enhancer-promoter genome mapping of CAD-genes in HCASMC was enriched in vascular eQTL genes. By using colocalization and Mendelian randomization analyses, we identified 58 causal candidate vascular genes including some druggable targets (MAP3K11, CAMK1D, PDGFD, IPO9 and CETP). A network analysis of causal candidate genes was enriched in TGF beta and MAPK pathways. The pharmacologic inhibition of causal candidate gene MAP3K11 in vascular SMC reduced the expression of athero-relevant genes and lowered cell migration, a cardinal process in CAD. Genes connected to enhancers are enriched in vascular eQTL and druggable genes causally associated with CAD.
Collapse
Affiliation(s)
- Arnaud Chignon
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | - Samuel Mathieu
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | - Anne Rufiange
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | - Déborah Argaud
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada
| | | | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | | | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Institut de Cardiologie Et de Pneumologie de Québec, Quebec Heart and Lung Institute/Research Center, Laval University, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada. .,Department of Surgery, Laval University, Quebec, Canada.
| |
Collapse
|
69
|
Scalvini B, Schiessel H, Golovnev A, Mashaghi A. Circuit topology analysis of cellular genome reveals signature motifs, conformational heterogeneity, and scaling. iScience 2022; 25:103866. [PMID: 35243229 PMCID: PMC8861635 DOI: 10.1016/j.isci.2022.103866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Reciprocal regulation of genome topology and function is a fundamental and enduring puzzle in biology. The wealth of data provided by Hi-C libraries offers the opportunity to unravel this relationship. However, there is a need for a comprehensive theoretical framework in order to extract topological information for genome characterization and comparison. Here, we develop a toolbox for topological analysis based on Circuit Topology, allowing for the quantification of inter- and intracellular genomic heterogeneity, at various levels of fold complexity: pairwise contact arrangement, higher-order contact arrangement, and topological fractal dimension. Single-cell Hi-C data were analyzed and characterized based on topological content, revealing not only a strong multiscale heterogeneity but also highly conserved features such as a characteristic topological length scale and topological signature motifs in the genome. We propose that these motifs inform on the topological state of the nucleus and indicate the presence of active loop extrusion. Circuit topology quantifies heterogeneity in genomic arrangement Scale analysis reveals a characteristic length scale of 10 Mb in genome topology We identify highly conserved topological structures related to loop extrusion We suggest a topological model of chromatin arrangement for loop extrusion, the L-loop
Collapse
Affiliation(s)
- Barbara Scalvini
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01062 Dresden, Germany
| | - Anatoly Golovnev
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
- Corresponding author
| |
Collapse
|
70
|
Yan J, Huangfu D. Epigenome rewiring in human pluripotent stem cells. Trends Cell Biol 2022; 32:259-271. [PMID: 34955367 PMCID: PMC8840982 DOI: 10.1016/j.tcb.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
The epigenome plays a crucial role in modulating the activity of regulatory elements, thereby orchestrating diverse transcriptional programs during embryonic development. Human (h)PSC stepwise differentiation provides an excellent platform for capturing dynamic epigenomic events during lineage transition in human development. Here we discuss how recent technological advances, from epigenomic mapping to targeted perturbation, are providing a more comprehensive appreciation of remodeling of the chromatin landscape during human development with implications for aberrant rewiring in disease. We predict that the continuous innovation of hPSC differentiation methods, epigenome mapping, and CRISPR (clustered regularly interspaced short palindromic repeats) perturbation technologies will allow researchers to build toward not only a comprehensive understanding of the epigenomic mechanisms governing development, but also a highly flexible way to model diseases with opportunities for translation.
Collapse
Affiliation(s)
- Jielin Yan
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
71
|
Grabowska A, Sas-Nowosielska H, Wojtas B, Holm-Kaczmarek D, Januszewicz E, Yushkevich Y, Czaban I, Trzaskoma P, Krawczyk K, Gielniewski B, Martin-Gonzalez A, Filipkowski RK, Olszynski KH, Bernas T, Szczepankiewicz AA, Sliwinska MA, Kanhema T, Bramham CR, Bokota G, Plewczynski D, Wilczynski GM, Magalska A. Activation-induced chromatin reorganization in neurons depends on HDAC1 activity. Cell Rep 2022; 38:110352. [PMID: 35172152 DOI: 10.1016/j.celrep.2022.110352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.
Collapse
Affiliation(s)
- Agnieszka Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Elzbieta Januszewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yana Yushkevich
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Pawel Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Martin-Gonzalez
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, 03550 Alicante, Spain
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Hubert Olszynski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Tytus Bernas
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Department of Anatomy and Neurology, VCU School of Medicine, Richmond, VA 23284, USA
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Malgorzata Alicja Sliwinska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Grzegorz Bokota
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
72
|
Chen K, Zhao H, Yang Y. Capturing large genomic contexts for accurately predicting enhancer-promoter interactions. Brief Bioinform 2022; 23:6513727. [DOI: 10.1093/bib/bbab577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Enhancer-promoter interaction (EPI) is a key mechanism underlying gene regulation. EPI prediction has always been a challenging task because enhancers could regulate promoters of distant target genes. Although many machine learning models have been developed, they leverage only the features in enhancers and promoters, or simply add the average genomic signals in the regions between enhancers and promoters, without utilizing detailed features between or outside enhancers and promoters. Due to a lack of large-scale features, existing methods could achieve only moderate performance, especially for predicting EPIs in different cell types. Here, we present a Transformer-based model, TransEPI, for EPI prediction by capturing large genomic contexts. TransEPI was developed based on EPI datasets derived from Hi-C or ChIA-PET data in six cell lines. To avoid over-fitting, we evaluated the TransEPI model by testing it on independent test datasets where the cell line and chromosome are different from the training data. TransEPI not only achieved consistent performance across the cross-validation and test datasets from different cell types but also outperformed the state-of-the-art machine learning and deep learning models. In addition, we found that the improved performance of TransEPI was attributed to the integration of large genomic contexts. Lastly, TransEPI was extended to study the non-coding mutations associated with brain disorders or neural diseases, and we found that TransEPI was also useful for predicting the target genes of non-coding mutations.
Collapse
|
73
|
Okada H, Saga Y. Repurposing of the enhancer-promoter communication underlies the compensation of Mesp2 by Mesp1. PLoS Genet 2022; 18:e1010000. [PMID: 35025872 PMCID: PMC8791502 DOI: 10.1371/journal.pgen.1010000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/26/2022] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are paralogs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent gene. Genetic compensation, the compensatory response by upregulating another gene or genes, is one of the inherent mechanisms against gene disruption to confer cellular fitness. However, the regulatory mechanisms are largely unknown. Nonsense-mediated mutant mRNA degradation was recently proposed as a conserved mechanism across species to upregulate homologous genes to compensate for a disrupted gene, but this cannot explain compensation events with no mutant mRNA. This study investigated the compensation mechanism operating over adjacent paralogs, Mesp1 and Mesp2, in the genome. Mesp genes encode essential transcription factors in the presomitic mesoderm for development. In general, an enhancer is considered to activate a target gene when it physically interacts with the target. The communication of the Mesp2-enhancer with the Mesp1 promoter is established upon differentiation of the presomitic mesoderm, but this communication activates Mesp1 only when Mesp2 is disrupted, leading to compensation. We revealed a novel compensation mechanism depending on the repurposing of this enhancer-promoter communication by gene disruption. Our study also provides new insight into transcriptional regulation by providing the concept that an enhancer changes its target even among its physically interacting genes in a context-dependent manner.
Collapse
Affiliation(s)
- Hajime Okada
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
74
|
Sheehy RN, Quintanilla LJ, Song J. Epigenetic regulation in the neurogenic niche of the adult dentate gyrus. Neurosci Lett 2022; 766:136343. [PMID: 34774980 PMCID: PMC8691367 DOI: 10.1016/j.neulet.2021.136343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
The adult dentate gyrus (DG) of the hippocampal formation is a specialized region of the brain that creates new adult-born neurons from a pool of resident adult neural stem and progenitor cells (aNSPCs) throughout life. These aNSPCs undergo epigenetic and epitranscriptomic regulation, including 3D genome interactions, histone modifications, DNA modifications, noncoding RNA mechanisms, and RNA modifications, to precisely control the neurogenic process. Furthermore, the specialized neurogenic niche also uses epigenetic mechanisms in mature neurons and glial cells to communicate signals to direct the behavior of the aNSPCs. Here, we review recent advances of epigenetic regulation in aNSPCs and their surrounding niche cells within the adult DG.
Collapse
Affiliation(s)
- Ryan N. Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis J. Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
75
|
Mapping nucleosome and chromatin architectures: A survey of computational methods. Comput Struct Biotechnol J 2022; 20:3955-3962. [PMID: 35950186 PMCID: PMC9340519 DOI: 10.1016/j.csbj.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
With ever-growing genomic sequencing data, the data variabilities and the underlying biases of the sequencing technologies pose significant computational challenges ranging from the need for accurately detecting the nucleosome positioning or chromatin interaction to the need for developing normalization methods to eliminate systematic biases. This review mainly surveys the computational methods for mapping the higher-resolution nucleosome and higher-order chromatin architectures. While a detailed discussion of the underlying algorithms is beyond the scope of our survey, we have discussed the methods and tools that can detect the nucleosomes in the genome, then demonstrated the computational methods for identifying 3D chromatin domains and interactions. We further illustrated computational approaches for integrating multi-omics data with Hi-C data and the advance of single-cell (sc)Hi-C data analysis. Our survey provides a comprehensive and valuable resource for biomedical scientists interested in studying nucleosome organization and chromatin structures as well as for computational scientists who are interested in improving upon them.
Collapse
|
76
|
Marchal C, Singh N, Corso-Díaz X, Swaroop A. HiCRes: a computational method to estimate and predict the genomic resolution of Hi-C libraries. Nucleic Acids Res 2021; 50:e35. [PMID: 34928367 DOI: 10.1093/nar/gkab1235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) conformation of the chromatin is crucial to stringently regulate gene expression patterns and DNA replication in a cell-type specific manner. Hi-C is a key technique for measuring 3D chromatin interactions genome wide. Estimating and predicting the resolution of a library is an essential step in any Hi-C experimental design. Here, we present the mathematical concepts to estimate the resolution of a dataset and predict whether deeper sequencing would enhance the resolution. We have developed HiCRes, a docker pipeline, by applying these concepts to several Hi-C libraries.
Collapse
Affiliation(s)
- Claire Marchal
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.,In silichrom Ltd, First Floor, Angel Court, 81 St Clements St, Oxford OX4 1AW, UK
| | - Nivedita Singh
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
77
|
Mallard C, Johnston M, Bobyn A, Nikolic A, Argiropoulos B, Chan J, Guilcher G, Gallo M. Hi-C detects genomic structural variants in peripheral blood of pediatric leukemia patients. Cold Spring Harb Mol Case Stud 2021; 8:mcs.a006157. [PMID: 34819303 PMCID: PMC8744495 DOI: 10.1101/mcs.a006157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is often driven by chromosome translocations that result in recurrent and well-studied gene fusions. Currently, fluorescent in-situ hybridization probes are employed to detect candidate translocations in bone marrow samples from B-ALL patients. Recently Hi-C, a sequencing-based technique originally designed to reconstruct the three-dimensional architecture of the nuclear genome, was shown to effectively recognize structural variants. Here, we demonstrate that Hi-C can be used as a genome-wide assay to detect translocations and other structural variants of potential clinical interest. Structural variants were identified in both bone marrow and peripheral blood samples, including an ETV6-RUNX1 translocation present in one pediatric B-ALL patient. Our report provides proof-of-principle that Hi-C could be an effective strategy to globally detect driver structural variants in B-ALL peripheral blood specimens, reducing the need for invasive bone marrow biopsies and candidate-based clinical tests.
Collapse
|
78
|
Abstract
Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology. Outstanding questions include how genomes are spatially and temporally organized to regulate cellular processes with high precision and whether genome organization is causally linked to transcription regulation. The advent of next-generation sequencing, super-resolution imaging, multiplexed fluorescent in situ hybridization, and single-molecule imaging in individual living cells has caused a resurgence in efforts to understand the spatiotemporal organization of the genome. In this review, we discuss structural and mechanistic properties of genome organization at different length scales and examine changes in higher-order chromatin organization during important developmental transitions.
Collapse
Affiliation(s)
- Rajarshi P Ghosh
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; ,
| | - Barbara J Meyer
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; ,
| |
Collapse
|
79
|
Animesh S, Choudhary R, Wong BJH, Koh CTJ, Ng XY, Tay JKX, Chong WQ, Jian H, Chen L, Goh BC, Fullwood MJ. Profiling of 3D Genome Organization in Nasopharyngeal Cancer Needle Biopsy Patient Samples by a Modified Hi-C Approach. Front Genet 2021; 12:673530. [PMID: 34539729 PMCID: PMC8446523 DOI: 10.3389/fgene.2021.673530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Nasopharyngeal cancer (NPC), a cancer derived from epithelial cells in the nasopharynx, is a cancer common in China, Southeast Asia, and Africa. The three-dimensional (3D) genome organization of nasopharyngeal cancer is poorly understood. A major challenge in understanding the 3D genome organization of cancer samples is the lack of a method for the characterization of chromatin interactions in solid cancer needle biopsy samples. Here, we developed Biop-C, a modified in situ Hi-C method using solid cancer needle biopsy samples. We applied Biop-C to characterize three nasopharyngeal cancer solid cancer needle biopsy patient samples. We identified topologically associated domains (TADs), chromatin interaction loops, and frequently interacting regions (FIREs) at key oncogenes in nasopharyngeal cancer from the Biop-C heatmaps. We observed that the genomic features are shared at some important oncogenes, but the patients also display extensive heterogeneity at certain genomic loci. On analyzing the super enhancer landscape in nasopharyngeal cancer cell lines, we found that the super enhancers are associated with FIREs and can be linked to distal genes via chromatin loops in NPC. Taken together, our results demonstrate the utility of our Biop-C method in investigating 3D genome organization in solid cancers.
Collapse
Affiliation(s)
- Sambhavi Animesh
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Ruchi Choudhary
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Charlotte Tze Jia Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xin Yi Ng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Joshua Kai Xun Tay
- Department of Otolaryngology - Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Wan-Qin Chong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Han Jian
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
80
|
A Comprehensive Toolbox to Analyze Enhancer-Promoter Functions. Methods Mol Biol 2021. [PMID: 34382181 DOI: 10.1007/978-1-0716-1597-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Knowledge in gene transcription and chromatin regulation has been intensely studied for decades, but thanks to next-generation sequencing (NGS) techniques there has been a major leap forward in the last few years. Historically, identification of specific enhancer elements has led to the identification of master transcription factors (TFs) in the 1990s. Genetic and biochemical experiments have identified the key regulators controlling RNA polymerase II (RNAPII) transcription and structurally analyses have elucidated detailed mechanisms. NGS and the development of chromatin immunoprecipitation (ChIP) have accelerated the gain of knowledge in the recent years. By now, we have a dazzling wealth of techniques that are currently used to put gene expression into a genome-wide context. This book is an attempt to assemble useful protocols for many researchers within and nearby research areas. In general, these innovative techniques focus on enhancer and promoter studies. The techniques should also be of interest for related fields such as DNA repair and replication.
Collapse
|
81
|
Liu N, Low WY, Alinejad-Rokny H, Pederson S, Sadlon T, Barry S, Breen J. Seeing the forest through the trees: prioritising potentially functional interactions from Hi-C. Epigenetics Chromatin 2021; 14:41. [PMID: 34454581 PMCID: PMC8399707 DOI: 10.1186/s13072-021-00417-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic genomes are highly organised within the nucleus of a cell, allowing widely dispersed regulatory elements such as enhancers to interact with gene promoters through physical contacts in three-dimensional space. Recent chromosome conformation capture methodologies such as Hi-C have enabled the analysis of interacting regions of the genome providing a valuable insight into the three-dimensional organisation of the chromatin in the nucleus, including chromosome compartmentalisation and gene expression. Complicating the analysis of Hi-C data, however, is the massive amount of identified interactions, many of which do not directly drive gene function, thus hindering the identification of potentially biologically functional 3D interactions. In this review, we collate and examine the downstream analysis of Hi-C data with particular focus on methods that prioritise potentially functional interactions. We classify three groups of approaches: structural-based discovery methods, e.g. A/B compartments and topologically associated domains, detection of statistically significant chromatin interactions, and the use of epigenomic data integration to narrow down useful interaction information. Careful use of these three approaches is crucial to successfully identifying potentially functional interactions within the genome.
Collapse
Affiliation(s)
- Ning Liu
- Computational & Systems Biology, Precision Medicine Theme, South Australian Health & Medical Research Institute, SA, 5000, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, The University of New South Wales, NSW, 2052, Sydney, Australia
- Core Member of UNSW Data Science Hub, The University of New South Wales, 2052, Sydney, Australia
| | - Stephen Pederson
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
| | - Timothy Sadlon
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Women's & Children's Health Network, SA, 5006, North Adelaide, Australia
| | - Simon Barry
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Core Member of UNSW Data Science Hub, The University of New South Wales, 2052, Sydney, Australia
- Women's & Children's Health Network, SA, 5006, North Adelaide, Australia
| | - James Breen
- Computational & Systems Biology, Precision Medicine Theme, South Australian Health & Medical Research Institute, SA, 5000, Adelaide, Australia.
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia.
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia.
- South Australian Genomics Centre (SAGC), South Australian Health & Medical Research Institute (SAHMRI), SA, 5000, Adelaide, Australia.
| |
Collapse
|
82
|
Claringbould A, Zaugg JB. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol Med 2021; 27:1060-1073. [PMID: 34420874 DOI: 10.1016/j.molmed.2021.07.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Enhancers are genomic sequences that play a key role in regulating tissue-specific gene expression levels. An increasing number of diseases are linked to impaired enhancer function through chromosomal rearrangement, genetic variation within enhancers, or epigenetic modulation. Here, we review how these enhancer disruptions have recently been implicated in congenital disorders, cancers, and common complex diseases and address the implications for diagnosis and treatment. Although further fundamental research into enhancer function, target genes, and context is required, enhancer-targeting drugs and gene editing approaches show great therapeutic promise for a range of diseases.
Collapse
Affiliation(s)
- Annique Claringbould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
83
|
Dong C, Simonett SP, Shin S, Stapleton DS, Schueler KL, Churchill GA, Lu L, Liu X, Jin F, Li Y, Attie AD, Keller MP, Keleş S. INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Genome Biol 2021; 22:241. [PMID: 34425882 PMCID: PMC8381555 DOI: 10.1186/s13059-021-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA's superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/ .
Collapse
Affiliation(s)
- Chenyang Dong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Sunyoung Shin
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | | | - Leina Lu
- Case Western University, Cleveland, OH USA
| | | | - Fulai Jin
- Case Western University, Cleveland, OH USA
| | - Yan Li
- Case Western University, Cleveland, OH USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
84
|
Topological isolation of developmental regulators in mammalian genomes. Nat Commun 2021; 12:4897. [PMID: 34385432 PMCID: PMC8361032 DOI: 10.1038/s41467-021-24951-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Precise control of mammalian gene expression is facilitated through epigenetic mechanisms and nuclear organization. In particular, insulated chromosome structures are important for regulatory control, but the phenotypic consequences of their boundary disruption on developmental processes are complex and remain insufficiently understood. Here, we generated deeply sequenced Hi-C data for human pluripotent stem cells (hPSCs) that allowed us to identify CTCF loop domains that have highly conserved boundary CTCF sites and show a notable enrichment of individual developmental regulators. Importantly, perturbation of such a boundary in hPSCs interfered with proper differentiation through deregulated distal enhancer-promoter activity. Finally, we found that germline variations affecting such boundaries are subject to purifying selection and are underrepresented in the human population. Taken together, our findings highlight the importance of developmental gene isolation through chromosomal folding structures as a mechanism to ensure their proper expression. The phenotypic consequence of 3D genome boundary disruption on developmental processes remains insufficiently understood. Here, the authors show that perturbation of a SOX17 boundary in human pluripotent stem cells interferes with proper differentiation and that germline variations affecting such boundaries are subject to selection, resulting in underrepresentation in the human population.
Collapse
|
85
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
86
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
87
|
Borsari B, Villegas-Mirón P, Pérez-Lluch S, Turpin I, Laayouni H, Segarra-Casas A, Bertranpetit J, Guigó R, Acosta S. Enhancers with tissue-specific activity are enriched in intronic regions. Genome Res 2021; 31:1325-1336. [PMID: 34290042 PMCID: PMC8327915 DOI: 10.1101/gr.270371.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/23/2021] [Indexed: 01/07/2023]
Abstract
Tissue function and homeostasis reflect the gene expression signature by which the combination of ubiquitous and tissue-specific genes contribute to the tissue maintenance and stimuli-responsive function. Enhancers are central to control this tissue-specific gene expression pattern. Here, we explore the correlation between the genomic location of enhancers and their role in tissue-specific gene expression. We find that enhancers showing tissue-specific activity are highly enriched in intronic regions and regulate the expression of genes involved in tissue-specific functions, whereas housekeeping genes are more often controlled by intergenic enhancers, common to many tissues. Notably, an intergenic-to-intronic active enhancers continuum is observed in the transition from developmental to adult stages: the most differentiated tissues present higher rates of intronic enhancers, whereas the lowest rates are observed in embryonic stem cells. Altogether, our results suggest that the genomic location of active enhancers is key for the tissue-specific control of gene expression.
Collapse
Affiliation(s)
- Beatrice Borsari
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Sílvia Pérez-Lluch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Isabel Turpin
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain.,Bioinformatic Studies, ESCI-UPF, 08003, Barcelona, Spain
| | - Alba Segarra-Casas
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain
| | - Sandra Acosta
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain.,Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona, 08907, L'Hospitalet de Llobregat, Catalonia, Spain
| |
Collapse
|
88
|
Chawla A, Nagy C, Turecki G. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits. Int J Mol Sci 2021; 22:7612. [PMID: 34299232 PMCID: PMC8305586 DOI: 10.3390/ijms22147612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.
Collapse
Affiliation(s)
- Anjali Chawla
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
| | - Corina Nagy
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
89
|
Dehghani H. Regulation of Chromatin Organization in Cell Stemness: The Emerging Role of Long Non-coding RNAs. Stem Cell Rev Rep 2021; 17:2042-2053. [PMID: 34181184 DOI: 10.1007/s12015-021-10209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Chromatin is organized as chromosome territories in the nucleus of an interphase cell. The cell-type- and cell-state-specific organization of chromatin including the location, volume, compaction level, and spatial arrangement of chromosome territories are the major determinants of genome function. In addition, in response to different signaling stimuli and regulatory cues, it is the dynamic adaptation of chromatin structure that establishes and organizes transcriptional programs. It is known that varying levels of stemness are defined by gene regulatory networks. Accordingly, chromatin is the main milieu to host the transcriptional programs and gene regulatory networks responsible for the stemness status of a cell. In this review, our current understanding of the spatial organization of chromatin and the ways by which it defines stemness are discussed. In particular, the role of lncRNAs that regulate and affect chromatin organization and stemness properties are delineated. These roles can be categorized into the topics of specific binding to and epigenetic regulation of the promoter of pluripotency genes, their interaction with transcription factors, coordinating the intra- and inter-chromosomal looping of pluripotency-related genes, and their RNA-independent functions. This review brings together the results of studies that have begun to clarify the emerging roles of lncRNAs in the regulation of chromatin organization adapted for stemness and cancer plasticity.
Collapse
Affiliation(s)
- Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
90
|
Suzuki A, Guerrini MM, Yamamoto K. Functional genomics of autoimmune diseases. Ann Rheum Dis 2021; 80:689-697. [PMID: 33408079 DOI: 10.1136/annrheumdis-2019-216794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
For more than a decade, genome-wide association studies have been applied to autoimmune diseases and have expanded our understanding on the pathogeneses. Genetic risk factors associated with diseases and traits are essentially causative. However, elucidation of the biological mechanism of disease from genetic factors is challenging. In fact, it is difficult to identify the causal variant among multiple variants located on the same haplotype or linkage disequilibrium block and thus the responsible biological genes remain elusive. Recently, multiple studies have revealed that the majority of risk variants locate in the non-coding region of the genome and they are the most likely to regulate gene expression such as quantitative trait loci. Enhancer, promoter and long non-coding RNA appear to be the main target mechanisms of the risk variants. In this review, we discuss functional genetics to challenge these puzzles.
Collapse
Affiliation(s)
- Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Matteo Maurizio Guerrini
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
91
|
Weiss CV, Harshman L, Inoue F, Fraser HB, Petrov DA, Ahituv N, Gokhman D. The cis-regulatory effects of modern human-specific variants. eLife 2021; 10:e63713. [PMID: 33885362 PMCID: PMC8062137 DOI: 10.7554/elife.63713] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells, and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these drove differential expression between human groups. Differentially active sequences were associated with divergent transcription factor binding motifs, and with genes enriched for vocal tract and brain anatomy and function. This work provides insight into the regulatory function of variants that emerged along the modern human lineage and the recent evolution of human gene expression.
Collapse
Affiliation(s)
- Carly V Weiss
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Hunter B Fraser
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David Gokhman
- Department of Biology, Stanford University, StanfordStanfordUnited States
| |
Collapse
|
92
|
Parisi C, Vashisht S, Winata CL. Fish-Ing for Enhancers in the Heart. Int J Mol Sci 2021; 22:3914. [PMID: 33920121 PMCID: PMC8069060 DOI: 10.3390/ijms22083914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precise control of gene expression is crucial to ensure proper development and biological functioning of an organism. Enhancers are non-coding DNA elements which play an essential role in regulating gene expression. They contain specific sequence motifs serving as binding sites for transcription factors which interact with the basal transcription machinery at their target genes. Heart development is regulated by intricate gene regulatory network ensuring precise spatiotemporal gene expression program. Mutations affecting enhancers have been shown to result in devastating forms of congenital heart defect. Therefore, identifying enhancers implicated in heart biology and understanding their mechanism is key to improve diagnosis and therapeutic options. Despite their crucial role, enhancers are poorly studied, mainly due to a lack of reliable way to identify them and determine their function. Nevertheless, recent technological advances have allowed rapid progress in enhancer discovery. Model organisms such as the zebrafish have contributed significant insights into the genetics of heart development through enabling functional analyses of genes and their regulatory elements in vivo. Here, we summarize the current state of knowledge on heart enhancers gained through studies in model organisms, discuss various approaches to discover and study their function, and finally suggest methods that could further advance research in this field.
Collapse
Affiliation(s)
- Costantino Parisi
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
93
|
Abstract
Single-cell sequencing-based methods for profiling gene transcript levels have revealed substantial heterogeneity in expression levels among morphologically indistinguishable cells. This variability has important functional implications for tissue biology and disease states such as cancer. Mapping of epigenomic information such as chromatin accessibility, nucleosome positioning, histone tail modifications and enhancer-promoter interactions in both bulk-cell and single-cell samples has shown that these characteristics of chromatin state contribute to expression or repression of associated genes. Advances in single-cell epigenomic profiling methods are enabling high-resolution mapping of chromatin states in individual cells. Recent studies using these techniques provide evidence that variations in different aspects of chromatin organization collectively define gene expression heterogeneity among otherwise highly similar cells.
Collapse
Affiliation(s)
- Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
94
|
Harabula I, Pombo A. The dynamics of chromatin architecture in brain development and function. Curr Opin Genet Dev 2021; 67:84-93. [DOI: 10.1016/j.gde.2020.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022]
|
95
|
Lee BH, Rhie SK. Molecular and computational approaches to map regulatory elements in 3D chromatin structure. Epigenetics Chromatin 2021; 14:14. [PMID: 33741028 PMCID: PMC7980343 DOI: 10.1186/s13072-021-00390-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetic marks do not change the sequence of DNA but affect gene expression in a cell-type specific manner by altering the activities of regulatory elements. Development of new molecular biology assays, sequencing technologies, and computational approaches enables us to profile the human epigenome in three-dimensional structure genome-wide. Here we describe various molecular biology techniques and bioinformatic tools that have been developed to measure the activities of regulatory elements and their chromatin interactions. Moreover, we list currently available three-dimensional epigenomic data sets that are generated in various human cell types and tissues to assist in the design and analysis of research projects.
Collapse
Affiliation(s)
- Beoung Hun Lee
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Suhn K Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
96
|
Chen X, Zhou J, Zhang R, Wong AK, Park CY, Theesfeld CL, Troyanskaya OG. Tissue-specific enhancer functional networks for associating distal regulatory regions to disease. Cell Syst 2021; 12:353-362.e6. [PMID: 33689683 DOI: 10.1016/j.cels.2021.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/13/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Systematic study of tissue-specific function of enhancers and their disease associations is a major challenge. We present an integrative machine-learning framework, FENRIR, that integrates thousands of disparate epigenetic and functional genomics datasets to infer tissue-specific functional relationships between enhancers for 140 diverse human tissues and cell types, providing a regulatory-region-centric approach to systematically identify disease-associated enhancers. We demonstrated its power to accurately prioritize enhancers associated with 25 complex diseases. In a case study on autism, FENRIR-prioritized enhancers showed a significant proband-specific de novo mutation enrichment in a large, sibling-controlled cohort, indicating pathogenic signal. We experimentally validated transcriptional regulatory activities of eight enhancers, including enhancers not previously reported with autism, and demonstrated their differential regulatory potential between proband and sibling alleles. Thus, FENRIR is an accurate and effective framework for the study of tissue-specific enhancers and their role in disease. FENRIR can be accessed at fenrir.flatironinstitute.org/.
Collapse
Affiliation(s)
- Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Jian Zhou
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ran Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Aaron K Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Christopher Y Park
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
97
|
Labudina A, Horsfield JA. The three-dimensional genome in zebrafish development. Brief Funct Genomics 2021:elab008. [PMID: 33675363 DOI: 10.1093/bfgp/elab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, remarkable progress has been made toward understanding the three-dimensional (3D) organisation of genomes and the influence of genome organisation on gene regulation. Although 3D genome organisation probably plays a crucial role in embryo development, animal studies addressing the developmental roles of chromosome topology are only just starting to emerge. Zebrafish, an important model system for early development, have already contributed important advances in understanding the developmental consequences of perturbation in 3D genome organisation. Zebrafish have been used to determine the effects of mutations in proteins responsible for 3D genome organisation: cohesin and CTCF. In this review, we highlight research to date from zebrafish that has provided insight into how 3D genome organisation contributes to tissue-specific gene regulation and embryo development.
Collapse
|
98
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
99
|
Tan L, Ma W, Wu H, Zheng Y, Xing D, Chen R, Li X, Daley N, Deisseroth K, Xie XS. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell 2021; 184:741-758.e17. [PMID: 33484631 DOI: 10.1016/j.cell.2020.12.032] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Both transcription and three-dimensional (3D) architecture of the mammalian genome play critical roles in neurodevelopment and its disorders. However, 3D genome structures of single brain cells have not been solved; little is known about the dynamics of single-cell transcriptome and 3D genome after birth. Here, we generated a transcriptome (3,517 cells) and 3D genome (3,646 cells) atlas of the developing mouse cortex and hippocampus by using our high-resolution multiple annealing and looping-based amplification cycles for digital transcriptomics (MALBAC-DT) and diploid chromatin conformation capture (Dip-C) methods and developing multi-omic analysis pipelines. In adults, 3D genome "structure types" delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first post-natal month. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, we examine allele-specific structure of imprinted genes, revealing local and chromosome (chr)-wide differences. These findings uncover an unknown dimension of neurodevelopment.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Wenping Ma
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Honggui Wu
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Yinghui Zheng
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Dong Xing
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xiang Li
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Nicholas Daley
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Belmont Hill School, Belmont, MA 02478, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - X Sunney Xie
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China.
| |
Collapse
|
100
|
Crump NT, Ballabio E, Godfrey L, Thorne R, Repapi E, Kerry J, Tapia M, Hua P, Lagerholm C, Filippakopoulos P, Davies JOJ, Milne TA. BET inhibition disrupts transcription but retains enhancer-promoter contact. Nat Commun 2021; 12:223. [PMID: 33431820 PMCID: PMC7801379 DOI: 10.1038/s41467-020-20400-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Enhancers are DNA sequences that enable complex temporal and tissue-specific regulation of genes in higher eukaryotes. Although it is not entirely clear how enhancer-promoter interactions can increase gene expression, this proximity has been observed in multiple systems at multiple loci and is thought to be essential for the maintenance of gene expression. Bromodomain and Extra-Terminal domain (BET) and Mediator proteins have been shown capable of forming phase condensates and are thought to be essential for super-enhancer function. Here, we show that targeting of cells with inhibitors of BET proteins or pharmacological degradation of BET protein Bromodomain-containing protein 4 (BRD4) has a strong impact on transcription but very little impact on enhancer-promoter interactions. Dissolving phase condensates reduces BRD4 and Mediator binding at enhancers and can also strongly affect gene transcription, without disrupting enhancer-promoter interactions. These results suggest that activation of transcription and maintenance of enhancer-promoter interactions are separable events. Our findings further indicate that enhancer-promoter interactions are not dependent on high levels of BRD4 and Mediator, and are likely maintained by a complex set of factors including additional activator complexes and, at some sites, CTCF and cohesin.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Erica Ballabio
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ross Thorne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Marta Tapia
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|