51
|
Keitany GJ, Rubin BER, Garrett ME, Musa A, Tracy J, Liang Y, Ebert P, Moore AJ, Guan J, Eggers E, Lescano N, Brown R, Carbo A, Al-Asadi H, Ching T, Day A, Harris R, Linkem C, Popov D, Wilkins C, Li L, Wang J, Liu C, Chen L, Dines JN, Atyeo C, Alter G, Baldo L, Sherwood A, Howie B, Klinger M, Yusko E, Robins HS, Benzeno S, Gilbert AE. Multimodal, broadly neutralizing antibodies against SARS-CoV-2 identified by high-throughput native pairing of BCRs from bulk B cells. Cell Chem Biol 2023; 30:1377-1389.e8. [PMID: 37586370 PMCID: PMC10659930 DOI: 10.1016/j.chembiol.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/25/2023] [Accepted: 07/23/2023] [Indexed: 08/18/2023]
Abstract
TruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation. The exceptionally diverse antibodies included RBD-binders with broad neutralizing activity against SARS-CoV-2 variants, and S2-binders with broad specificity against betacoronaviruses and the ability to block membrane fusion. A subset of these RBD- and S2-binding antibodies demonstrated robust protection against challenge in hamster and mouse models. This high-throughput approach can accelerate discovery of diverse, multifunctional antibodies against any target of interest.
Collapse
Affiliation(s)
| | | | | | - Andrea Musa
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Jeff Tracy
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Yu Liang
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Peter Ebert
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | - Erica Eggers
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | - Ryan Brown
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Adria Carbo
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | - Austin Day
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | | | | | - Lianqu Li
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Jiao Wang
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Chuanxin Liu
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Li Chen
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Lance Baldo
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | - Bryan Howie
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Mark Klinger
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Erik Yusko
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
52
|
Meijers M, Ruchnewitz D, Eberhardt J, Łuksza M, Lässig M. Population immunity predicts evolutionary trajectories of SARS-CoV-2. Cell 2023; 186:5151-5164.e13. [PMID: 37875109 PMCID: PMC10964984 DOI: 10.1016/j.cell.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
The large-scale evolution of the SARS-CoV-2 virus has been marked by rapid turnover of genetic clades. New variants show intrinsic changes, notably increased transmissibility, and antigenic changes that reduce cross-immunity induced by previous infections or vaccinations. How this functional variation shapes global evolution has remained unclear. Here, we establish a predictive fitness model for SARS-CoV-2 that integrates antigenic and intrinsic selection. The model is informed by tracking of time-resolved sequence data, epidemiological records, and cross-neutralization data of viral variants. Our inference shows that immune pressure, including contributions of vaccinations and previous infections, has become the dominant force driving the recent evolution of SARS-CoV-2. The fitness model can serve continued surveillance in two ways. First, it successfully predicts the short-term evolution of circulating strains and flags emerging variants likely to displace the previously predominant variant. Second, it predicts likely antigenic profiles of successful escape variants prior to their emergence.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Jan Eberhardt
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany.
| |
Collapse
|
53
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
54
|
Lusvarghi S, Stauft CB, Vassell R, Williams B, Baha H, Wang W, Neerukonda SN, Wang T, Weiss CD. Effects of N-glycan modifications on spike expression, virus infectivity, and neutralization sensitivity in ancestral compared to Omicron SARS-CoV-2 variants. PLoS Pathog 2023; 19:e1011788. [PMID: 37943965 PMCID: PMC10662749 DOI: 10.1371/journal.ppat.1011788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/21/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
The SARS-CoV-2 spike glycoprotein has 22 potential N-linked glycosylation sites per monomer that are highly conserved among diverse variants, but how individual glycans affect virus entry and neutralization of Omicron variants has not been extensively characterized. Here we compared the effects of specific glycan deletions or modifications in the Omicron BA.1 and D614G spikes on spike expression, processing, and incorporation into pseudoviruses, as well as on virus infectivity and neutralization by therapeutic antibodies. We found that loss of potential glycans at spike residues N717 and N801 each conferred a loss of pseudovirus infectivity for Omicron but not for D614G or Delta variants. This decrease in infectivity correlated with decreased spike processing and incorporation into Omicron pseudoviruses. Oligomannose-enriched Omicron pseudoviruses generated in GnTI- cells or in the presence of kifunensine were non-infectious, whereas D614G or Delta pseudoviruses generated under similar conditions remained infectious. Similarly, growth of live (authentic) SARS-CoV-2 in the presence of kifunensine resulted in a greater reduction of titers for the BA.1.1 variant than Delta or D614G variants relative to their respective, untreated controls. Finally, we found that loss of some N-glycans, including N343 and N234, increased the maximum percent neutralization by the class 3 S309 monoclonal antibody against D614G but not BA.1 variants, while these glycan deletions altered the neutralization potency of the class 1 COV2-2196 and Etesevimab monoclonal antibodies without affecting maximum percent neutralization. The maximum neutralization by some antibodies also varied with the glycan composition, with oligomannose-enriched pseudoviruses conferring the highest percent neutralization. These results highlight differences in the interactions between glycans and residues among SARS-CoV-2 variants that can affect spike expression, virus infectivity, and susceptibility of variants to antibody neutralization.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Charles B. Stauft
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Russell Vassell
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Brittany Williams
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Haseebullah Baha
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Sabari Nath Neerukonda
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Tony Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Carol D. Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| |
Collapse
|
55
|
de Souza AS, Amorim VMDF, de Souza RF, Guzzo CR. Molecular dynamics simulations of the spike trimeric ectodomain of the SARS-CoV-2 Omicron variant: structural relationships with infectivity, evasion to immune system and transmissibility. J Biomol Struct Dyn 2023; 41:9326-9343. [PMID: 36345794 DOI: 10.1080/07391102.2022.2142296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron is currently the most prevalent SARS-CoV-2 variant worldwide. Herein, we calculated molecular dynamics simulations of the trimeric spikeWT and SpikeBA.1 for 300 ns. Our results show that SpikeBA.1 has more conformational flexibility than SpikeWT. Our principal component analysis (PCA) allowed us to observe a broader spectrum of different conformations for SpikeBA.1, mainly at N-terminal domain (NTD) and receptor-binding domain (RBD). Such increased flexibility could contribute to decreased neutralizing antibody recognition of this variant. Our molecular dynamics data show that the RBDBA.1 easily visits an up-conformational state and the prevalent D614G mutation is pivotal to explain molecular dynamics results for this variant because to lost hydrogen bonding interactions between the residue pairs K854SC/D614SC, Y837MC/D614MC, K835SC/D614SC, T859SC/D614SC. In addition, SpikeBA.1 residues near the furin cleavage site are more flexible than in SpikeWT, probably due to P681H and D614G substitutions. Finally, dynamical cross-correlation matrix (DCCM) analysis reveals that D614G and P681H may allosterically affect the cleavage site S1/S2. Conversely, S2' site may be influenced by residues located between NTD and RBD of a neighboring protomer of the SpikeWT. Such communication may be lost in SpikeBA.1, explaining the changes of the cell tropism in the viral infection. In addition, the movements of the NTDWT and NTDBA.1 may modulate the RBD conformation through allosteric effects. Taken together, our results explain how the structural aspects may explain the observed gains in infectivity, immune system evasion and transmissibility of the Omicron variant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
56
|
Nyachoti DO, Ranjit N, Ramphul R, Whigham LD, Springer AE. Association of Social Vulnerability and COVID-19 Mortality Rates in Texas between 15 March 2020, and 21 July 2022: An Ecological Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6985. [PMID: 37947543 PMCID: PMC10647229 DOI: 10.3390/ijerph20216985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Despite the key role of social vulnerability such as economic disadvantage in health outcomes, research is limited on the impact of social vulnerabilities on COVID-19-related deaths, especially at the state and county level in the USA. METHODS We conducted a cross-sectional ecologic analysis of COVID-19 mortality by the county-level Minority Health Social Vulnerability Index (MH SVI) and each of its components in Texas. Negative binomial regression (NBR) analyses were used to estimate the association between the composite MH SVI (and its components) and COVID-19 mortality. RESULTS A 0.1-unit increase in the overall MH SVI (IRR, 1.27; 95% CI, 1.04-1.55; p = 0.017) was associated with a 27% increase in the COVID-19 mortality rate. Among the MH SVI component measures, only low socioeconomic status (IRR, 1.55; 95% CI, 1.28-1.89; p = 0.001) and higher household composition (e.g., proportion of older population per county) and disability scores (IRR, 1.47; 95% CI, 1.29-1.68; p < 0.001) were positively associated with COVID-19 mortality rates. CONCLUSIONS This study provides further evidence of disparities in COVID-19 mortality by social vulnerability and can inform decisions on the allocation of social resources and services as a strategy for reducing COVID-19 mortality rates and similar pandemics in the future.
Collapse
Affiliation(s)
- Dennis Ogeto Nyachoti
- Epidemiology and Surveillance Unit, Texas Department of State Health Services, 201 W Howard Ln, Austin, TX 78753, USA
- Department of Health Promotion and Behavioral Sciences, Center for Community Health Impact, The University of Texas Health Science Center at Houston School of Public Health, 5130 Gateway Boulevard East MCA 110, El Paso, TX 79905, USA;
| | - Nalini Ranjit
- Department of Health Promotion and Behavioral Sciences, The University of Texas Health Science Center at Houston School of Public Health, 1616 Guadalupe, Austin, TX 78701, USA;
| | - Ryan Ramphul
- Department of Epidemiology, Human Genetics & Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler Street, Houston, TX 77030, USA;
| | - Leah D. Whigham
- Department of Health Promotion and Behavioral Sciences, Center for Community Health Impact, The University of Texas Health Science Center at Houston School of Public Health, 5130 Gateway Boulevard East MCA 110, El Paso, TX 79905, USA;
| | - Andrew E. Springer
- Department of Health Promotion and Behavioral Sciences, The University of Texas Health Science Center at Houston School of Public Health, 1616 Guadalupe, Austin, TX 78701, USA;
| |
Collapse
|
57
|
Sun J, Liu X, Zhang S, Li M, Zhang Q, Chen J. Molecular insights and optimization strategies for the competitive binding of engineered ACE2 proteins: a multiple replica molecular dynamics study. Phys Chem Chem Phys 2023; 25:28479-28496. [PMID: 37846774 DOI: 10.1039/d3cp03392a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to spread globally, and rapid viral evolution and the emergence of new variants pose challenges to pandemic control. During infection, the spike protein of SARS-CoV-2 interacts with the human ACE2 protein via its receptor binding domain (RBD), and it is known that engineered forms of ACE2 can compete with wild-type (WT) ACE2 for binding to inhibit infection. Here, we conducted multiple replica molecular dynamics (MRMD) simulations to study the mechanisms of the engineered ACE2 variants 3N39 and 3N94 and provide directions for optimization. Our findings reveal that engineered ACE2 is notably more efficacious in systems that show weaker binding to WT ACE2 (i.e., WT and BA.1 RBD), but also faces immune escape as the virus evolves. Moreover, by modifying residue types near the binding interface, engineered ACE2 alters the electrostatic potential distribution and reconfigures the hydrogen bonding network, which results in modified binding to the RBD. However, this structural rearrangement does not occur in all RBD variants. In addition, we identified potentially engineerable beneficial residues and potentially engineerable detrimental residues in both ACE2 and RBD. Functional conservation can thus enable the optimization of these residues and improve the binding competitiveness of engineered ACE2, which therefore provides additional immune escape prevention. Finally, we conclude that these findings have implications for understanding the mechanisms responsible for engineered ACE2 and can help us to develop engineered ACE2 proteins that show superior performance.
Collapse
Affiliation(s)
- Jiahao Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Meng Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| |
Collapse
|
58
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites. Viruses 2023; 15:2073. [PMID: 37896850 PMCID: PMC10612107 DOI: 10.3390/v15102073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full-length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results are significant for understanding the functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
59
|
Verkhivker G, Alshahrani M, Gupta G. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites. Viruses 2023; 15:2009. [PMID: 37896786 PMCID: PMC10610873 DOI: 10.3390/v15102009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron variants. By using a combination of atomistic simulations, a dynamics network analysis, and an allostery-guided network screening of binding pockets in the conformational ensembles of the BA.1 and BA.2 spike conformations, we identified all experimentally known allosteric sites and discovered significant variant-specific differences in the distribution of binding sites in the BA.1 and BA.2 trimers. This study provided a structural characterization of the predicted cryptic pockets and captured the experimentally known allosteric sites, revealing the critical role of conformational plasticity in modulating the distribution and cross-talk between functional binding sites. We found that mutational and dynamic changes in the BA.1 variant can induce the remodeling and stabilization of a known druggable pocket in the N-terminal domain, while this pocket is drastically altered and may no longer be available for ligand binding in the BA.2 variant. Our results predicted the experimentally known allosteric site in the receptor-binding domain that remains stable and ranks as the most favorable site in the conformational ensembles of the BA.2 variant but could become fragmented and less probable in BA.1 conformations. We also uncovered several cryptic pockets formed at the inter-domain and inter-protomer interface, including functional regions of the S2 subunit and stem helix region, which are consistent with the known role of pocket residues in modulating conformational transitions and antibody recognition. The results of this study are particularly significant for understanding the dynamic and network features of the universe of available binding pockets in spike proteins, as well as the effects of the Omicron-variant-specific modulation of preferential druggable pockets. The exploration of predicted druggable sites can present a new and previously underappreciated opportunity for therapeutic interventions for Omicron variants through the conformation-selective and variant-specific targeting of functional sites involved in allosteric changes.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| |
Collapse
|
60
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
61
|
Kapingidza B, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Cantazaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Itallie EV, Vure P, Manness B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori D, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered Immunogens to Elicit Antibodies Against Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530277. [PMID: 36909627 PMCID: PMC10002628 DOI: 10.1101/2023.02.27.530277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
|
62
|
Rebelo M, Tang C, Coelho AR, Labão-Almeida C, Schneider MM, Tatalick L, Ruivo P, de Miranda MP, Gomes A, Carvalho T, Walker MJ, Ausserwoeger H, Pedro Simas J, Veldhoen M, Knowles TPJ, Silva DA, Shoultz D, Bernardes GJL. De Novo Human Angiotensin-Converting Enzyme 2 Decoy NL-CVX1 Protects Mice From Severe Disease After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis 2023; 228:723-733. [PMID: 37279654 PMCID: PMC10503951 DOI: 10.1093/infdis/jiad135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/27/2023] [Indexed: 06/08/2023] Open
Abstract
The emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need to investigate alternative approaches to prevent infection and treat patients with coronavirus disease 2019. Here, we report the preclinical efficacy of NL-CVX1, a de novo decoy that blocks virus entry into cells by binding with nanomolar affinity and high specificity to the receptor-binding domain of the SARS-CoV-2 spike protein. Using a transgenic mouse model of SARS-CoV-2 infection, we showed that a single prophylactic intranasal dose of NL-CVX1 conferred complete protection from severe disease following SARS-CoV-2 infection. Multiple therapeutic administrations of NL-CVX1 also protected mice from succumbing to infection. Finally, we showed that infected mice treated with NL-CVX1 developed both anti-SARS-CoV-2 antibodies and memory T cells and were protected against reinfection a month after treatment. Overall, these observations suggest NL-CVX1 is a promising therapeutic candidate for preventing and treating severe SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Maria Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana R Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Matthias M Schneider
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Pedro Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Pires de Miranda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Histopathology Unit, Champalimaud Research, Lisboa, Portugal
| | | | - Hannes Ausserwoeger
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - J Pedro Simas
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Católica Biomedical Research and Católica Medical School, Universidade Católica Portuguesa, Lisboa, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
63
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Examining Functional Linkages Between Conformational Dynamics, Protein Stability and Evolution of Cryptic Binding Pockets in the SARS-CoV-2 Omicron Spike Complexes with the ACE2 Host Receptor: Recombinant Omicron Variants Mediate Variability of Conserved Allosteric Sites and Binding Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557205. [PMID: 37745525 PMCID: PMC10515794 DOI: 10.1101/2023.09.11.557205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results of are significant for understanding functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
|
64
|
Bains A, Guan W, LiWang PJ. The Effect of Select SARS-CoV-2 N-Linked Glycan and Variant of Concern Spike Protein Mutations on C-Type Lectin-Receptor-Mediated Infection. Viruses 2023; 15:1901. [PMID: 37766307 PMCID: PMC10535197 DOI: 10.3390/v15091901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virion has shown remarkable resilience, capable of mutating to escape immune detection and re-establishing infectious capabilities despite new vaccine rollouts. Therefore, there is a critical need to identify relatively immutable epitopes on the SARS-CoV-2 virion that are resistant to future mutations the virus may accumulate. While hACE2 has been identified as the receptor that mediates SARS-CoV-2 susceptibility, it is only modestly expressed in lung tissue. C-type lectin receptors like DC-SIGN can act as attachment sites to enhance SARS-CoV-2 infection of cells with moderate or low hACE2 expression. We developed an easy-to-implement assay system that allows for the testing of SARS-CoV-2 trans-infection. Using our assay, we assessed how SARS-CoV-2 Spike S1-domain glycans and spike proteins from different strains affected the ability of pseudotyped lentivirions to undergo DC-SIGN-mediated trans-infection. Through our experiments with seven glycan point mutants, two glycan cluster mutants and four strains of SARS-CoV-2 spike, we found that glycans N17 and N122 appear to have significant roles in maintaining COVID-19's infectious capabilities. We further found that the virus cannot retain infectivity upon the loss of multiple glycosylation sites, and that Omicron BA.2 pseudovirions may have an increased ability to bind to other non-lectin receptor proteins on the surface of cells. Taken together, our work opens the door to the development of new therapeutics that can target overlooked epitopes of the SARS-CoV-2 virion to prevent C-type lectin-receptor-mediated trans-infection in lung tissue.
Collapse
Affiliation(s)
- Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
65
|
Zhang X, Li Z, Zhang Y, Liu Y, Wang J, Liu B, Chen Q, Wang Q, Fu L, Wang P, Zhong X, Jin L, Yan Q, Chen L, He J, Zhao J, Xiong X. Disulfide stabilization reveals conserved dynamic features between SARS-CoV-1 and SARS-CoV-2 spikes. Life Sci Alliance 2023; 6:e202201796. [PMID: 37402591 PMCID: PMC10320017 DOI: 10.26508/lsa.202201796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
SARS-CoV-2 spike protein (S) is structurally dynamic and has been observed by cryo-EM to adopt a variety of prefusion conformations that can be categorized as locked, closed, and open. S-trimers adopting locked conformations are tightly packed featuring structural elements incompatible with RBD in the "up" position. For SARS-CoV-2 S, it has been shown that the locked conformations are transient under neutral pH. Probably because of their transience, locked conformations remain largely uncharacterized for SARS-CoV-1 S. In this study, we introduced x1, x2, and x3 disulfides into SARS-CoV-1 S. Some of these disulfides have been shown to preserve rare locked conformations when introduced to SARS-CoV-2 S. Introduction of these disulfides allowed us to image a variety of locked and other rare conformations for SARS-CoV-1 S by cryo-EM. We identified bound cofactors and structural features that are associated with SARS-CoV-1 S locked conformations. We compare newly determined structures with other available spike structures of SARS-related CoVs to identify conserved features and discuss their possible functions.
Collapse
Affiliation(s)
- Xixi Zhang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lutang Fu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Peiyi Wang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Xiaolin Zhong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Liang Jin
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
66
|
Qing E, Gallagher T. Adaptive variations in SARS-CoV-2 spike proteins: effects on distinct virus-cell entry stages. mBio 2023; 14:e0017123. [PMID: 37382441 PMCID: PMC10470846 DOI: 10.1128/mbio.00171-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 06/30/2023] Open
Abstract
Evolved SARS-CoV-2 variants of concern (VOCs) spread through human populations in succession. Major virus variations are in the entry-facilitating viral spike (S) proteins; Omicron VOCs have 29-40 S mutations relative to ancestral D614G viruses. The impacts of this Omicron divergence on S protein structure, antigenicity, cell entry pathways, and pathogenicity have been extensively evaluated, yet gaps remain in correlating specific alterations with S protein functions. In this study, we compared the functions of ancestral D614G and Omicron VOCs using cell-free assays that can reveal differences in several distinct steps of the S-directed virus entry process. Relative to ancestral D614G, Omicron BA.1 S proteins were hypersensitized to receptor activation, to conversion into intermediate conformational states, and to membrane fusion-activating proteases. We identified mutations conferring these changes in S protein character by evaluating domain-exchanged D614G/Omicron recombinants in the cell-free assays. Each of the three functional alterations was mapped to specific S protein domains, with the recombinants providing insights on inter-domain interactions that fine-tune S-directed virus entry. Our results provide a structure-function atlas of the S protein variations that may promote the transmissibility and infectivity of current and future SARS-CoV-2 VOCs. IMPORTANCE Continuous SARS-CoV-2 adaptations generate increasingly transmissible variants. These succeeding variants show ever-increasing evasion of suppressive antibodies and host factors, as well as increasing invasion of susceptible host cells. Here, we evaluated the adaptations enhancing invasion. We used reductionist cell-free assays to compare the entry steps of ancestral (D614G) and Omicron (BA.1) variants. Relative to D614G, Omicron entry was distinguished by heightened responsiveness to entry-facilitating receptors and proteases and by enhanced formation of intermediate states that execute virus-cell membrane fusion. We found that these Omicron-specific characteristics arose from mutations in specific S protein domains and subdomains. The results reveal the inter-domain networks controlling S protein dynamics and efficiencies of entry steps, and they offer insights on the evolution of SARS-CoV-2 variants that arise and ultimately dominate infections worldwide.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
67
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variant Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. J Chem Inf Model 2023; 63:5272-5296. [PMID: 37549201 PMCID: PMC11162552 DOI: 10.1021/acs.jcim.3c00778] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.
Collapse
Affiliation(s)
- Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
68
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. Probing conformational landscapes of binding and allostery in the SARS-CoV-2 omicron variant complexes using microsecond atomistic simulations and perturbation-based profiling approaches: hidden role of omicron mutations as modulators of allosteric signaling and epistatic relationships. Phys Chem Chem Phys 2023; 25:21245-21266. [PMID: 37548589 PMCID: PMC10536792 DOI: 10.1039/d3cp02042h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.3 and BA.4/BA.5 spike protein complexes with the ACE2 host receptor using molecular dynamics simulations and perturbation-based network profiling approaches. Microsecond atomistic simulations provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the BA.2 variant which can be contrasted with the BA.4/BA.5 variants inducing a significant mobility of the complexes. Using the dynamics-based mutational scanning of spike residues, we identified structural stability and binding affinity hotspots in the Omicron complexes. Perturbation response scanning and network-based mutational profiling approaches probed the effect of the Omicron mutations on allosteric interactions and communications in the complexes. The results of this analysis revealed specific roles of Omicron mutations as conformationally plastic and evolutionary adaptable modulators of binding and allostery which are coupled to the major regulatory positions through interaction networks. Through perturbation network scanning of allosteric residue potentials in the Omicron variant complexes performed in the background of the original strain, we characterized regions of epistatic couplings that are centered around the binding affinity hotspots N501Y and Q498R. Our results dissected the vital role of these epistatic centers in regulating protein stability, efficient ACE2 binding and allostery which allows for accumulation of multiple Omicron immune escape mutations at other sites. Through integrative computational approaches, this study provides a systematic analysis of the effects of Omicron mutations on thermodynamics, binding and allosteric signaling in the complexes with ACE2 receptor.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| |
Collapse
|
69
|
Oliveira ASF, Shoemark DK, Davidson AD, Berger I, Schaffitzel C, Mulholland AJ. SARS-CoV-2 spike variants differ in their allosteric responses to linoleic acid. J Mol Cell Biol 2023; 15:mjad021. [PMID: 36990513 PMCID: PMC10563148 DOI: 10.1093/jmcb/mjad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The SARS-CoV-2 spike protein contains a functionally important fatty acid (FA) binding site, which is also found in some other coronaviruses, e.g. SARS-CoV and MERS-CoV. The occupancy of the FA site by linoleic acid (LA) reduces infectivity by 'locking' the spike in a less infectious conformation. Here, we use dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations to compare the allosteric responses of spike variants to LA removal. D-NEMD simulations show that the FA site is coupled to other functional regions of the protein, e.g. the receptor-binding motif (RBM), N-terminal domain (NTD), furin cleavage site, and regions surrounding the fusion peptide. D-NEMD simulations also identify the allosteric networks connecting the FA site to these functional regions. The comparison between the wild-type spike and four variants (Alpha, Delta, Delta plus, and Omicron BA.1) shows that the variants differ significantly in their responses to LA removal. The allosteric connections to the FA site on Alpha are generally similar to those on the wild-type protein, with the exception of the RBM and the S71-R78 region, which show a weaker link to the FA site. In contrast, Omicron is the most different variant, exhibiting significant differences in the RBM, NTD, V622-L629, and furin cleavage site. These differences in the allosteric modulation may be of functional relevance, potentially affecting transmissibility and virulence. Experimental comparison of the effects of LA on SARS-CoV-2 variants, including emerging variants, is warranted.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, Max Planck Bristol Centre for Minimal Biology, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
70
|
Haddox HK, Galloway JG, Dadonaite B, Bloom JD, Matsen IV FA, DeWitt WS. Jointly modeling deep mutational scans identifies shifted mutational effects among SARS-CoV-2 spike homologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551037. [PMID: 37577604 PMCID: PMC10418112 DOI: 10.1101/2023.07.31.551037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Deep mutational scanning (DMS) is a high-throughput experimental technique that measures the effects of thousands of mutations to a protein. These experiments can be performed on multiple homologs of a protein or on the same protein selected under multiple conditions. It is often of biological interest to identify mutations with shifted effects across homologs or conditions. However, it is challenging to determine if observed shifts arise from biological signal or experimental noise. Here, we describe a method for jointly inferring mutational effects across multiple DMS experiments while also identifying mutations that have shifted in their effects among experiments. A key aspect of our method is to regularize the inferred shifts, so that they are nonzero only when strongly supported by the data. We apply this method to DMS experiments that measure how mutations to spike proteins from SARS-CoV-2 variants (Delta, Omicron BA.1, and Omicron BA.2) affect cell entry. Most mutational effects are conserved between these spike homologs, but a fraction have markedly shifted. We experimentally validate a subset of the mutations inferred to have shifted effects, and confirm differences of > 1,000-fold in the impact of the same mutation on spike-mediated viral infection across spikes from different SARS-CoV-2 variants. Overall, our work establishes a general approach for comparing sets of DMS experiments to identify biologically important shifts in mutational effects.
Collapse
Affiliation(s)
- Hugh K. Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Jared G. Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jesse D. Bloom
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Frederick A. Matsen IV
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - William S. DeWitt
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
71
|
Wrobel AG. Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike. Curr Opin Struct Biol 2023; 81:102619. [PMID: 37285618 PMCID: PMC10183628 DOI: 10.1016/j.sbi.2023.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
Spike glycoprotein of SARS-CoV-2 mediates viral entry into host cells by facilitating virus attachment and membrane fusion. ACE2 is the main receptor of SARS-CoV-2 and its interaction with spike has shaped the virus' emergence from an animal reservoir and subsequent evolution in the human host. Many structural studies on the spike:ACE2 interaction have provided insights into mechanisms driving viral evolution during the on-going pandemic. This review describes the molecular basis of spike binding to ACE2, outlines mechanisms that have optimised this interaction during viral evolution, and suggests directions for future research.
Collapse
Affiliation(s)
- Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
72
|
Ha YR, Kim HJ, Park JS, Chung YS. Genomic surveillance of genes encoding the SARS-CoV-2 spike protein to monitor for emerging variants on Jeju Island, Republic of Korea. Front Microbiol 2023; 14:1170766. [PMID: 37533831 PMCID: PMC10390832 DOI: 10.3389/fmicb.2023.1170766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been fueled by new variants emerging from circulating strains. Here, we report results from a genomic surveillance study of SARS-CoV-2 on Jeju Island, Republic of Korea, from February 2021 to September 2022. Methods A total of 3,585 SARS-CoV-2 positive samples were analyzed by Sanger sequencing of the gene encoding the spike protein before performing phylogenetic analyses. Results We found that the Alpha variant (B.1.1.7) was dominant in May 2021 before being replaced by the Delta variant (B.1.617.2) in July 2021, which was dominant until December 2021 before being replaced by the Omicron variant. Mutations in the spike protein, including N440K and G446S, have been proposed to contribute to immune evasion, accelerating the spread of Omicron variants. Discussion Our results from Juju Island, Republic of Korea, are consistent with and contribute to global surveillance efforts crucial for identifying new variants of concern of SARS-CoV-2 and for monitoring the transmission dynamics and characteristics of known strains.
Collapse
Affiliation(s)
- Young-Ran Ha
- Jeju Branch Office, Honam Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Jeju, Republic of Korea
| | - Hyun-Jeong Kim
- Jeju Branch Office, Honam Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Jeju, Republic of Korea
| | - Jae-Sung Park
- Jeju National Quarantine Station, Korea Disease Control and Prevention Agency, Jeju, Republic of Korea
| | - Yoon-Seok Chung
- Division of Infectious Disease Diagnosis Control, Honam Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Gwangju, Republic of Korea
| |
Collapse
|
73
|
Li Y, Shen Y, Zhang Y, Yan R. Structural Basis for the Enhanced Infectivity and Immune Evasion of Omicron Subvariants. Viruses 2023; 15:1398. [PMID: 37376697 PMCID: PMC10304477 DOI: 10.3390/v15061398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The Omicron variants of SARS-CoV-2 have emerged as the dominant strains worldwide, causing the COVID-19 pandemic. Each Omicron subvariant contains at least 30 mutations on the spike protein (S protein) compared to the original wild-type (WT) strain. Here we report the cryo-EM structures of the trimeric S proteins from the BA.1, BA.2, BA.3, and BA.4/BA.5 subvariants, with BA.4 and BA.5 sharing the same S protein mutations, each in complex with the surface receptor ACE2. All three receptor-binding domains of the S protein from BA.2 and BA.4/BA.5 are "up", while the BA.1 S protein has two "up" and one "down". The BA.3 S protein displays increased heterogeneity, with the majority in the all "up" RBD state. The different conformations preferences of the S protein are consistent with their varied transmissibility. By analyzing the position of the glycan modification on Asn343, which is located at the S309 epitopes, we have uncovered the underlying immune evasion mechanism of the Omicron subvariants. Our findings provide a molecular basis of high infectivity and immune evasion of Omicron subvariants, thereby offering insights into potential therapeutic interventions against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Renhong Yan
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
74
|
Wang M, Yan H, Chen L, Wang Y, Li L, Zhang H, Miao L. Oxalic acid blocked the binding of spike protein from SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) variants to human angiotensin-converting enzymes 2. PLoS One 2023; 18:e0285722. [PMID: 37200310 PMCID: PMC10194883 DOI: 10.1371/journal.pone.0285722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
An epidemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. Moreover, the emergence of SARS-CoV-2 variants of concern, such as Delta and Omicron, has seriously challenged the application of current therapeutics including vaccination and drugs. Relying on interaction of spike protein with receptor angiotensin-converting enzymes 2 (ACE2), SARS-CoV-2 successfully invades to the host cells, which indicates a strategy that identification of small-molecular compounds to block the entry is of great significance for COVID-19 prevention. Our study evaluated the potential efficacy of natural compound oxalic acid (OA) as an inhibitory agent against SARS-CoV-2 invasion, particular on the interaction of the receptor binding domain (RBD) of Delta and Omicron variants to ACE2. By employing a competitive binding assay in vitro, OA significantly blocked the binding of RBDs from Delta B.1.617.2 and Omicron B.1.1.529 to ACE2, but has no effect on the wide-type SARS-CoV-2 strain. Furthermore, OA inhibited the entries of Delta and Omicron pseudovirus into ACE2 high expressing-HEK293T cells. By surface plasmon resonance (SPR) assay, the direct bindings of OA to RBD and ACE2 were analyzed and OA had both affinities with RBDs of B.1.617.2 and B.1.1.529 and with ACE2. Molecular docking predicted the binding sites on the RBD-ACE2 complex and it showed similar binding abilities to both complex of variant Delta or Omicron RBD and ACE2. In conclusion, we provided a promising novel small-molecule compound OA as an antiviral candidate by blocking the cellular entries of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huimin Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
75
|
Tuvi-Arad I, Shalit Y. The SARS-CoV-2 spike protein structure: a symmetry tale on distortion trail. Phys Chem Chem Phys 2023; 25:14430-14439. [PMID: 37184521 DOI: 10.1039/d3cp00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A preliminary step in the SARS-CoV-2 human infection process is a conformational change of the receptor binding domain (RBD) of its spike protein, characterized by a significant loss of symmetry. During this process, the residues which later on bind to the human angiotensin converting enzyme 2 (ACE2) receptor, become exposed at the surface of the protein. Symmetry analysis of a data set of 33 protein structures from experimental measurements and 32 structures from molecular dynamics simulation, show that the initial state carries clear indications on the structure of the final state, with respect to the local distortion along the sequence. This surprising finding implies that this type of analysis predicts the mechanism of change. We further show that the level of local distortion at the initial state increases with variant's transmissibility, for the wild type (WT) along with past and present variants of concern (WT ∼ alpha < beta < delta < Omicron BA.1), in accordance with the trend of their evolutionary path. In other words, the initial structure of the variant which is most infectious is also the most distorted, making its path to the final state shorter. It has been claimed that the RBD migration of the spike protein is allosterically controlled. Our analysis provides a quantitative support to a major theorem in this respect - that information about an allosteric process is encoded in the structure itself, suggesting that the path of local distortion is related to an allosteric information network.
Collapse
Affiliation(s)
- Inbal Tuvi-Arad
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel.
| | - Yaffa Shalit
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel.
| |
Collapse
|
76
|
Yao Z, Geng B, Marcon E, Pu S, Tang H, Merluza J, Bello A, Snider J, Lu P, Wood H, Stagljar I. Omicron Spike Protein Is Vulnerable to Reduction. J Mol Biol 2023; 435:168128. [PMID: 37100168 PMCID: PMC10125213 DOI: 10.1016/j.jmb.2023.168128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
SARS-CoV-2 virus spike (S) protein is an envelope protein responsible for binding to the ACE2 receptor, driving subsequent entry into host cells. The existence of multiple disulfide bonds in the S protein makes it potentially susceptible to reductive cleavage. Using a tri-part split luciferase-based binding assay, we evaluated the impacts of chemical reduction on S proteins from different virus variants and found that those from the Omicron family are highly vulnerable to reduction. Through manipulation of different Omicron mutations, we found that alterations in the receptor binding module (RBM) are the major determinants of this vulnerability. Specifically we discovered that Omicron mutations facilitate the cleavage of C480-C488 and C379-C432 disulfides, which consequently impairs binding activity and protein stability. The vulnerability of Omicron S proteins suggests a mechanism that can be harnessed to treat specific SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Betty Geng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - John Merluza
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Alexander Bello
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ping Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000 Split, Croatia.
| |
Collapse
|
77
|
Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJ, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC. Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. J Clin Invest 2023; 133:e166844. [PMID: 36862518 PMCID: PMC10104900 DOI: 10.1172/jci166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joshua J.C. McGrath
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - G. Dewey Wilbanks
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Min Huang
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nai-Ying Zheng
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven A. Erickson
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, Illinois, USA
| | - Yanbin Fu
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gagandeep Singh
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
| | - Brian Monahan
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Jacob Mauldin
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Komal Srivastava
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Viviana Simon
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
- The Global Health and Emerging Pathogens Institute, and
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
78
|
Cheng H, Zheng L, Liu N, Huang C, Xu J, Lu Y, Cui X, Xu K, Hou Y, Tang J, Zhang Z, Li J, Ni X, Chen Y, Peng H, Wang HW. Dual-Affinity Graphene Sheets for High-Resolution Cryo-Electron Microscopy. J Am Chem Soc 2023; 145:8073-8081. [PMID: 37011903 PMCID: PMC10103130 DOI: 10.1021/jacs.3c00659] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
With the development of cryo-electron microscopy (cryo-EM), high-resolution structures of macromolecules can be reconstructed by the single particle method efficiently. However, challenges may still persist during the specimen preparation stage. Specifically, proteins tend to adsorb at the air-water interface and exhibit a preferred orientation in vitreous ice. To overcome these challenges, we have explored dual-affinity graphene (DAG) modified with two different affinity ligands as a supporting material for cryo-EM sample preparation. The ligands can bind to distinct sites on the corresponding tagged particles, which in turn generates various orientation distributions of particles and prevents the adsorption of protein particles onto the air-water interface. As expected, the DAG exhibited high binding specificity and affinity to target macromolecules, resulting in more balanced particle Euler angular distributions compared to single functionalized graphene on two different protein cases, including the SARS -CoV-2 spike glycoprotein. We anticipate that the DAG grids will enable facile and efficient three-dimensional (3D) reconstruction for cryo-EM structural determination, providing a robust and general technique for future studies.
Collapse
Affiliation(s)
- Hang Cheng
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Shuimu BioSciences Ltd., Beijing 102206, China
| | - Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| | - Congyuan Huang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Lu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoya Cui
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Junchuan Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jing Li
- Shuimu BioSciences Ltd., Beijing 102206, China
| | - Xiaodan Ni
- Shuimu BioSciences Ltd., Beijing 102206, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| |
Collapse
|
79
|
Verkhivker G, Alshahrani M, Gupta G. Coarse-Grained Molecular Simulations and Ensemble-Based Mutational Profiling of Protein Stability in the Different Functional Forms of the SARS-CoV-2 Spike Trimers: Balancing Stability and Adaptability in BA.1, BA.2 and BA.2.75 Variants. Int J Mol Sci 2023; 24:ijms24076642. [PMID: 37047615 PMCID: PMC10094791 DOI: 10.3390/ijms24076642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable among these variants. A systematic mutational scanning of the inter-protomer interfaces in the spike trimers revealed a group of conserved structural stability hotspots that play a key role in the modulation of functional dynamics and are also involved in the inter-protomer couplings through local contacts and interaction networks with the Omicron mutational sites. The results of mutational scanning provided evidence that BA.2.75 trimers are more stable than BA.2 and comparable in stability to the BA.1 variant. Using dynamic network modeling of the S Omicron BA.1, BA.2, and BA.2.75 trimers, we showed that the key network mediators of allosteric interactions are associated with the major stability hotspots that are interconnected along potential communication pathways. The network analysis of the BA.1, BA.2, and BA.2.75 trimers suggested that the increased thermodynamic stability of the BA.2.75 variant may be linked with the organization and modularity of the residue interaction network that allows for allosteric communications between structural stability hotspots and Omicron mutational sites. This study provided a plausible rationale for a mechanism in which Omicron mutations may evolve by targeting vulnerable sites of conformational adaptability to elicit immune escape while maintaining their control on balancing protein stability and functional fitness through robust allosteric communications with the stability hotspots.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
80
|
Silva RP, Huang Y, Nguyen AW, Hsieh CL, Olaluwoye OS, Kaoud TS, Wilen RE, Qerqez AN, Park JG, Khalil AM, Azouz LR, Le KC, Bohanon AL, DiVenere AM, Liu Y, Lee AG, Amengor DA, Shoemaker SR, Costello SM, Padlan EA, Marqusee S, Martinez-Sobrido L, Dalby KN, D'Arcy S, McLellan JS, Maynard JA. Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. eLife 2023; 12:e83710. [PMID: 36942851 PMCID: PMC10030117 DOI: 10.7554/elife.83710] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of β-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.
Collapse
Affiliation(s)
- Rui P Silva
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at DallasDallasUnited States
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at AustinAustinUnited States
| | - Rebecca E Wilen
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Jun-Gyu Park
- Texas Biomedical Research InstituteSan AntonioUnited States
- Laboratory of Veterinary Zoonosis, College of Veterinary Medicine, Chonnam National UniversityGwangjuRepublic of Korea
| | - Ahmed M Khalil
- Texas Biomedical Research InstituteSan AntonioUnited States
| | - Laura R Azouz
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Kevin C Le
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Amanda L Bohanon
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Yutong Liu
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Alison G Lee
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Dzifa A Amengor
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Sophie R Shoemaker
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, BerkeleyBerkeleyUnited States
| | | | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | | | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at AustinAustinUnited States
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at DallasDallasUnited States
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
- LaMontagne Center for Infectious Diseases, The University of Texas at AustinAustinUnited States
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
- LaMontagne Center for Infectious Diseases, The University of Texas at AustinAustinUnited States
| |
Collapse
|
81
|
Triveri A, Casali E, Frasnetti E, Doria F, Frigerio F, Cinquini F, Pavoni S, Moroni E, Marchetti F, Serapian SA, Colombo G. Conformational Behavior of SARS-Cov-2 Spike Protein Variants: Evolutionary Jumps in Sequence Reverberate in Structural Dynamic Differences. J Chem Theory Comput 2023; 19:2120-2134. [PMID: 36926878 PMCID: PMC10029694 DOI: 10.1021/acs.jctc.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
SARS-CoV-2 has evolved rapidly in the first 3 years of pandemic diffusion. The initial evolution of the virus appeared to proceed through big jumps in sequence changes rather than through the stepwise accumulation of point mutations on already established variants. Here, we examine whether this nonlinear mutational process reverberates in variations of the conformational dynamics of the SARS-CoV-2 Spike protein (S-protein), the first point of contact between the virus and the human host. We run extensive microsecond-scale molecular dynamics simulations of seven distinct variants of the protein in their fully glycosylated state and set out to elucidate possible links between the mutational spectrum of the S-protein and the structural dynamics of the respective variant, at global and local levels. The results reveal that mutation-dependent structural and dynamic modulations mostly consist of increased coordinated motions in variants that acquire stability and in an increased internal flexibility in variants that are less stable. Importantly, a limited number of functionally important substructures (the receptor binding domain, in particular) share the same time of movements in all variants, indicating efficient preorganization for functional regions dedicated to host interactions. Our results support a model in which the internal dynamics of the S-proteins from different strains varies in a way that reflects the observed random and non-stepwise jumps in sequence evolution, while conserving the functionally oriented traits of conformational dynamics necessary to support productive interactions with host receptors.
Collapse
Affiliation(s)
- Alice Triveri
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Emanuele Casali
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Elena Frasnetti
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Filippo Doria
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D
Eni SpA, via Maritano 27, 20097 San Donato Milanese (Mi),
Italy
| | - Fabrizio Cinquini
- Upstream & Technical
Services—TECS/STES—Eni Spa, via Emilia 1, 20097 San Donato
Milanese (Mi), Italy
| | - Silvia Pavoni
- Department of Physical Chemistry, R&D
Eni SpA, via Maritano 27, 20097 San Donato Milanese (Mi),
Italy
| | | | - Filippo Marchetti
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Stefano A. Serapian
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Giorgio Colombo
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| |
Collapse
|
82
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
83
|
Calvaresi V, Wrobel AG, Toporowska J, Hammerschmid D, Doores KJ, Bradshaw RT, Parsons RB, Benton DJ, Roustan C, Reading E, Malim MH, Gamblin SJ, Politis A. Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. Nat Commun 2023; 14:1421. [PMID: 36918534 PMCID: PMC10013288 DOI: 10.1038/s41467-023-36745-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
SARS-CoV-2 spike glycoprotein mediates receptor binding and subsequent membrane fusion. It exists in a range of conformations, including a closed state unable to bind the ACE2 receptor, and an open state that does so but displays more exposed antigenic surface. Spikes of variants of concern (VOCs) acquired amino acid changes linked to increased virulence and immune evasion. Here, using HDX-MS, we identified changes in spike dynamics that we associate with the transition from closed to open conformations, to ACE2 binding, and to specific mutations in VOCs. We show that the RBD-associated subdomain plays a role in spike opening, whereas the NTD acts as a hotspot of conformational divergence of VOC spikes driving immune evasion. Alpha, beta and delta spikes assume predominantly open conformations and ACE2 binding increases the dynamics of their core helices, priming spikes for fusion. Conversely, substitutions in omicron spike lead to predominantly closed conformations, presumably enabling it to escape antibodies. At the same time, its core helices show characteristics of being pre-primed for fusion even in the absence of ACE2. These data inform on SARS-CoV-2 evolution and omicron variant emergence.
Collapse
Affiliation(s)
- Valeria Calvaresi
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| | | | | | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | | | | | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Chloë Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT, London, UK
| | - Eamonn Reading
- Department of Chemistry, King's College London, SE1 1DB, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, M13 9PT, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, M1 7DN, Manchester, UK.
| |
Collapse
|
84
|
Lu C, Zhang Y, Liu X, Hou F, Cai R, Yu Z, Liu F, Yang G, Ding J, Xu J, Hua X, Cheng X, Pan X, Liu L, Lin K, Wang Z, Li X, Lu J, Zhang Q, Li Y, Hu C, Fan H, Liu X, Wang H, Jia R, Xu F, Wang X, Huang H, Zhao R, Li J, Cheng H, Jia W, Yang X. Heterologous boost with mRNA vaccines against SARS-CoV-2 Delta/Omicron variants following an inactivated whole-virus vaccine. Antiviral Res 2023; 212:105556. [PMID: 36871919 PMCID: PMC9985518 DOI: 10.1016/j.antiviral.2023.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
The coronavirus SARS-CoV-2 has mutated quickly and caused significant global damage. This study characterizes two mRNA vaccines ZSVG-02 (Delta) and ZSVG-02-O (Omicron BA.1), and associating heterologous prime-boost strategy following the prime of a most widely administrated inactivated whole-virus vaccine (BBIBP-CorV). The ZSVG-02-O induces neutralizing antibodies that effectively cross-react with Omicron subvariants. In naïve animals, ZSVG-02 or ZSVG-02-O induce humoral responses skewed to the vaccine's targeting strains, but cellular immune responses cross-react to all variants of concern (VOCs) tested. Following heterologous prime-boost regimes, animals present comparable neutralizing antibody levels and superior protection against Delta and Omicron BA.1variants. Single-boost only generated ancestral and omicron dual-responsive antibodies, probably by "recall" and "reshape" the prime immunity. New Omicron-specific antibody populations, however, appeared only following the second boost with ZSVG-02-O. Overall, our results support a heterologous boost with ZSVG-02-O, providing the best protection against current VOCs in inactivated virus vaccine-primed populations.
Collapse
Affiliation(s)
- Changrui Lu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | | | - Xiaohu Liu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Fujun Hou
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Rujie Cai
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Zhibin Yu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Fei Liu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Guohuan Yang
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Jun Ding
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Jiang Xu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Xianwu Hua
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Xinhua Cheng
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Xinping Pan
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Lianxiao Liu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Kang Lin
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Jia Lu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Qiu Zhang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Yuwei Li
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Chunxia Hu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Huifen Fan
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Xiaoke Liu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Hui Wang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Rui Jia
- China National Biotec Group (CNBG), China
| | | | | | - Hongwei Huang
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Ronghua Zhao
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Jing Li
- Shuimu BioSciences Ltd, China
| | | | - William Jia
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China.
| | | |
Collapse
|
85
|
Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, Alotaibi N, Alsalman J, Gorab AH, Almaghrabi RS, Zaidan AA, Aldossary S, Alissa M, Alburaiky LM, Alsalim FM, Thakur N, Verma G, Dhawan M. Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:507. [PMID: 36984508 PMCID: PMC10051174 DOI: 10.3390/medicina59030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The immune response elicited by the current COVID-19 vaccinations declines with time, especially among the immunocompromised population. Furthermore, the emergence of novel SARS-CoV-2 variants, particularly the Omicron variant, has raised serious concerns about the efficacy of currently available vaccines in protecting the most vulnerable people. Several studies have reported that vaccinated people get breakthrough infections amid COVID-19 cases. So far, five variants of concern (VOCs) have been reported, resulting in successive waves of infection. These variants have shown a variable amount of resistance towards the neutralising antibodies (nAbs) elicited either through natural infection or the vaccination. The spike (S) protein, membrane (M) protein, and envelope (E) protein on the viral surface envelope and the N-nucleocapsid protein in the core of the ribonucleoprotein are the major structural vaccine target proteins against COVID-19. Among these targets, S Protein has been extensively exploited to generate effective vaccines against COVID-19. Hence, amid the emergence of novel variants of SARS-CoV-2, we have discussed their impact on currently available vaccines. We have also discussed the potential roles of S Protein in the development of novel vaccination approaches to contain the negative consequences of the variants' emergence and acquisition of mutations in the S Protein of SARS-CoV-2. Moreover, the implications of SARS-CoV-2's structural proteins were also discussed in terms of their variable potential to elicit an effective amount of immune response.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Ali Alghadeer
- Department of Anesthesia, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ali H. Gorab
- Al Kuzama Primary Health Care Center, Al Khobar Health Network, Eastern Health Cluster, Al Khobar 34446, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ali A. Zaidan
- Gastroenterology Department, King Fahad Armed Forces Hospital, Jeddah 23831, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children’s Health Institute, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Lamees M. Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Safwa 31921, Saudi Arabia
| | - Fatimah Mustafa Alsalim
- Department of Family Medicine, Primary Health Care, Qatif Health Cluster, Qatif 32434, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| |
Collapse
|
86
|
Newby ML, Fogarty CA, Allen JD, Butler J, Fadda E, Crispin M. Variations within the Glycan Shield of SARS-CoV-2 Impact Viral Spike Dynamics. J Mol Biol 2023; 435:167928. [PMID: 36565991 PMCID: PMC9769069 DOI: 10.1016/j.jmb.2022.167928] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity, whether arisen naturally or through vaccination. Understanding the structure of the viral spike assists in determining the impact of mutations on the antigenic surface. One class of mutation impacts glycosylation attachment sites, which have the capacity to influence the antigenic structure beyond the immediate site of attachment. Here, we compare the site-specific glycosylation of recombinant viral spike mimetics of B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), B.1.1.529 (Omicron). The P.1 strain exhibits two additional N-linked glycan sites compared to the other variants analyzed and we investigate the impact of these glycans by molecular dynamics. The acquired N188 site is shown to exhibit very limited glycan maturation, consistent with limited enzyme accessibility. Structural modeling and molecular dynamics reveal that N188 is located within a cavity by the receptor binding domain, which influences the dynamics of these attachment domains. These observations suggest a mechanism whereby mutations affecting viral glycosylation sites have a structural impact across the protein surface.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, UK. https://twitter.com/Maddy_Newby
| | - Carl A Fogarty
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland. https://twitter.com/2016Carl
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK. https://twitter.com/JoelDalllen
| | - John Butler
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
87
|
Guzzi PH, di Paola L, Puccio B, Lomoio U, Giuliani A, Veltri P. Computational analysis of the sequence-structure relation in SARS-CoV-2 spike protein using protein contact networks. Sci Rep 2023; 13:2837. [PMID: 36808182 PMCID: PMC9936485 DOI: 10.1038/s41598-023-30052-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The structure of proteins impacts directly on the function they perform. Mutations in the primary sequence can provoke structural changes with consequent modification of functional properties. SARS-CoV-2 proteins have been extensively studied during the pandemic. This wide dataset, related to sequence and structure, has enabled joint sequence-structure analysis. In this work, we focus on the SARS-CoV-2 S (Spike) protein and the relations between sequence mutations and structure variations, in order to shed light on the structural changes stemming from the position of mutated amino acid residues in three different SARS-CoV-2 strains. We propose the use of protein contact network (PCN) formalism to: (i) obtain a global metric space and compare various molecular entities, (ii) give a structural explanation of the observed phenotype, and (iii) provide context dependent descriptors of single mutations. PCNs have been used to compare sequence and structure of the Alpha, Delta, and Omicron SARS-CoV-2 variants, and we found that omicron has a unique mutational pattern leading to different structural consequences from mutations of other strains. The non-random distribution of changes in network centrality along the chain has allowed to shed light on the structural (and functional) consequences of mutations.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Luisa di Paola
- grid.9657.d0000 0004 1757 5329Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Universita Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Barbara Puccio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ugo Lomoio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Giuliani
- grid.416651.10000 0000 9120 6856Environment and Health Department, Istituto Superiore di Sanita, Rome, Italy
| | - Pierangelo Veltri
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy ,grid.7778.f0000 0004 1937 0319Department of Computer, Modeling, Electronics and System Engineering, University of Calabria, Rende, Italy
| |
Collapse
|
88
|
Omicron mutations increase interdomain interactions and reduce epitope exposure in the SARS-CoV-2 spike. iScience 2023; 26:105981. [PMID: 36694788 PMCID: PMC9851991 DOI: 10.1016/j.isci.2023.105981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Omicron BA.1 is a highly infectious variant of SARS-CoV-2 that carries more than thirty mutations on the spike protein in comparison to the Wuhan wild type (WT). Some of the Omicron mutations, located on the receptor-binding domain (RBD), are exposed to the surrounding solvent and are known to help evade immunity. However, the impact of buried mutations on the RBD conformations and on the mechanics of the spike opening is less evident. Here, we use all-atom molecular dynamics (MD) simulations with metadynamics to characterize the thermodynamic RBD-opening ensemble, identifying significant differences between WT and Omicron. Specifically, the Omicron mutations S371L, S373P, and S375F make more RBD interdomain contacts during the spike's opening. Moreover, Omicron takes longer to reach the transition state than WT. It stabilizes up-state conformations with fewer RBD epitopes exposed to the solvent, potentially favoring immune or antibody evasion.
Collapse
|
89
|
Lee M, Major M, Hong H. Distinct Conformations of SARS-CoV-2 Omicron Spike Protein and Its Interaction with ACE2 and Antibody. Int J Mol Sci 2023; 24:3774. [PMID: 36835186 PMCID: PMC9967551 DOI: 10.3390/ijms24043774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Since November 2021, Omicron has been the dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that causes the coronavirus disease 2019 (COVID-19) and has continuously impacted human health. Omicron sublineages are still increasing and cause increased transmission and infection rates. The additional 15 mutations on the receptor binding domain (RBD) of Omicron spike proteins change the protein conformation, enabling the Omicron variant to evade neutralizing antibodies. For this reason, many efforts have been made to design new antigenic variants to induce effective antibodies in SARS-CoV-2 vaccine development. However, understanding the different states of Omicron spike proteins with and without external molecules has not yet been addressed. In this review, we analyze the structures of the spike protein in the presence and absence of angiotensin-converting enzyme 2 (ACE2) and antibodies. Compared to previously determined structures for the wildtype spike protein and other variants such as alpha, beta, delta, and gamma, the Omicron spike protein adopts a partially open form. The open-form spike protein with one RBD up is dominant, followed by the open-form spike protein with two RBD up, and the closed-form spike protein with the RBD down. It is suggested that the competition between antibodies and ACE2 induces interactions between adjacent RBDs of the spike protein, which lead to a partially open form of the Omicron spike protein. The comprehensive structural information of Omicron spike proteins could be helpful for the efficient design of vaccines against the Omicron variant.
Collapse
Affiliation(s)
- Myeongsang Lee
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Marian Major
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
90
|
Ancestral Lineage of SARS-CoV-2 Is More Stable in Human Biological Fluids than Alpha, Beta, and Omicron Variants of Concern. Microbiol Spectr 2023; 11:e0330122. [PMID: 36688691 PMCID: PMC9927102 DOI: 10.1128/spectrum.03301-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
SARS-CoV-2 is a zoonotic virus first identified in 2019, and has quickly spread worldwide. The virus is primarily transmitted through respiratory droplets from infected persons; however, the virus-laden excretions can contaminate surfaces which can serve as a potential source of infection. Since the beginning of the pandemic, SARS-CoV-2 has continued to evolve and accumulate mutations throughout its genome leading to the emergence of variants of concern (VOCs) which exhibit increased fitness, transmissibility, and/or virulence. However, the stability of SARS-CoV-2 VOCs in biological fluids has not been thoroughly investigated. The aim of this study was to determine and compare the stability of different SARS-CoV-2 strains in human biological fluids. Here, we demonstrate that the ancestral strain of the Wuhan-like lineage A was more stable than the Alpha VOC B.1.1.7, and the Beta VOC B.1.351 strains in human liquid nasal mucus and sputum. In contrast, there was no difference in stability among the three strains in dried biological fluids. Furthermore, we also show that the Omicron VOC B.1.1.529 strain was less stable than the ancestral Wuhan-like strain in liquid nasal mucus. These studies provide insight into the effect of the molecular evolution of SARS-CoV-2 on environmental virus stability, which is important information for the development of countermeasures against SARS-CoV-2. IMPORTANCE Genetic evolution of SARS-CoV-2 leads to the continuous emergence of novel virus variants, posing a significant concern to global public health. Five of these variants have been classified to date into variants of concern (VOCs); Alpha, Beta, Gamma, Delta, and Omicron. Previous studies investigated the stability of SARS-CoV-2 under various conditions, but there is a gap of knowledge on the survival of SARS-CoV-2 VOCs in human biological fluids which are clinically relevant. Here, we present evidence that Alpha, Beta, and Omicron VOCs were less stable than the ancestral Wuhan-like strain in human biological fluids. Our findings highlight the potential risk of contaminated human biological fluids in SARS-CoV-2 transmission and contribute to the development of countermeasures against SARS-CoV-2.
Collapse
|
91
|
Overduin M, Bhat RK, Kervin TA. SARS-CoV-2 Omicron Subvariants Balance Host Cell Membrane, Receptor, and Antibody Docking via an Overlapping Target Site. Viruses 2023; 15:v15020447. [PMID: 36851661 PMCID: PMC9967007 DOI: 10.3390/v15020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are emerging rapidly and offer surfaces that are optimized for recognition of host cell membranes while also evading antibodies arising from vaccinations and previous infections. Host cell infection is a multi-step process in which spike heads engage lipid bilayers and one or more angiotensin-converting enzyme 2 (ACE-2) receptors. Here, the membrane binding surfaces of Omicron subvariants are compared using cryo-electron microscopy (cEM) structures of spike trimers from BA.2, BA.2.12.1, BA.2.13, BA.2.75, BA.3, BA.4, and BA.5 viruses. Despite significant differences around mutated sites, they all maintain strong membrane binding propensities that first appeared in BA.1. Both their closed and open states retain elevated membrane docking capacities, although the presence of more closed than open states diminishes opportunities to bind receptors while enhancing membrane engagement. The electrostatic dipoles are generally conserved. However, the BA.2.75 spike dipole is compromised, and its ACE-2 affinity is increased, and BA.3 exhibits the opposite pattern. We propose that balancing the functional imperatives of a stable, readily cleavable spike that engages both lipid bilayers and receptors while avoiding host defenses underlies betacoronavirus evolution. This provides predictive criteria for rationalizing future pandemic waves and COVID-19 transmissibility while illuminating critical sites and strategies for simultaneously combating multiple variants.
Collapse
|
92
|
Yang DM, Chang TJ, Hung KF, Wang ML, Cheng YF, Chiang SH, Chen MF, Liao YT, Lai WQ, Liang KH. Smart healthcare: A prospective future medical approach for COVID-19. J Chin Med Assoc 2023; 86:138-146. [PMID: 36227021 PMCID: PMC9847685 DOI: 10.1097/jcma.0000000000000824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
COVID-19 has greatly affected human life for over 3 years. In this review, we focus on smart healthcare solutions that address major requirements for coping with the COVID-19 pandemic, including (1) the continuous monitoring of severe acute respiratory syndrome coronavirus 2, (2) patient stratification with distinct short-term outcomes (eg, mild or severe diseases) and long-term outcomes (eg, long COVID), and (3) adherence to medication and treatments for patients with COVID-19. Smart healthcare often utilizes medical artificial intelligence (AI) and cloud computing and integrates cutting-edge biological and optoelectronic techniques. These are valuable technologies for addressing the unmet needs in the management of COVID. By leveraging deep learning/machine learning capabilities and big data, medical AI can perform precise prognosis predictions and provide reliable suggestions for physicians' decision-making. Through the assistance of the Internet of Medical Things, which encompasses wearable devices, smartphone apps, internet-based drug delivery systems, and telemedicine technologies, the status of mild cases can be continuously monitored and medications provided at home without the need for hospital care. In cases that develop into severe cases, emergency feedback can be provided through the hospital for rapid treatment. Smart healthcare can possibly prevent the development of severe COVID-19 cases and therefore lower the burden on intensive care units.
Collapse
Affiliation(s)
- De-Ming Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Address correspondence. Dr. De-Ming Yang, Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (D.-M. Yang). and Dr. Kung-Hao Liang, Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail: (K.-H. Liang)
| | - Tai-Jay Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Su-Hua Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Fang Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Qun Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Address correspondence. Dr. De-Ming Yang, Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (D.-M. Yang). and Dr. Kung-Hao Liang, Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail: (K.-H. Liang)
| |
Collapse
|
93
|
|
94
|
Ma H, Zong HF, Liu JJ, Yue YL, Ke Y, Liao YJ, Tang HN, Wang L, Wang SS, Yuan YS, Wu MY, Bian YL, Zhang BH, Yin HY, Jiang H, Sun T, Han L, Xie YQ, Zhu JW. Long-term passaging of pseudo-typed SARS-CoV-2 reveals the breadth of monoclonal and bispecific antibody cocktails. Acta Pharmacol Sin 2023:10.1038/s41401-022-01043-w. [PMID: 36707721 PMCID: PMC9880922 DOI: 10.1038/s41401-022-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023]
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses challenges to the effectiveness of neutralizing antibodies. Rational design of antibody cocktails is a realizable approach addressing viral immune evasion. However, evaluating the breadth of antibody cocktails is essential for understanding the development potential. Here, based on a replication competent vesicular stomatitis virus model that incorporates the spike of SARS-CoV-2 (VSV-SARS-CoV-2), we evaluated the breadth of a number of antibody cocktails consisting of monoclonal antibodies and bispecific antibodies by long-term passaging the virus in the presence of the cocktails. Results from over two-month passaging of the virus showed that 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 from these cocktails were highly resistant to random mutation, and there was no breakthrough after 30 rounds of passaging. As a control, antibody REGN10933 was broken through in the third passage. Next generation sequencing was performed and several critical mutations related to viral evasion were identified. These mutations caused a decrease in neutralization efficiency, but the reduced replication rate and ACE2 susceptibility of the mutant virus suggested that they might not have the potential to become epidemic strains. The 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 cocktails that picked from the VSV-SARS-CoV-2 system efficiently neutralized all current variants of concern and variants of interest including the most recent variants Delta and Omicron, as well as SARS-CoV-1. Our results highlight the feasibility of using the VSV-SARS-CoV-2 system to develop SARS-CoV-2 antibody cocktails and provide a reference for the clinical selection of therapeutic strategies to address the mutational escape of SARS-CoV-2.
Collapse
Affiliation(s)
- Hang Ma
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China ,grid.263906.80000 0001 0362 4044School of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 China
| | - Hui-fang Zong
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China ,Jecho Institute, Co., Ltd., Shanghai, 200240 China
| | - Jun-jun Liu
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ya-li Yue
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yong Ke
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yun-ji Liao
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hao-neng Tang
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lei Wang
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | | | - Yun-sheng Yuan
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ming-yuan Wu
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yan-lin Bian
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Bao-hong Zhang
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hai-yang Yin
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD 21704 USA
| | - Tao Sun
- grid.16821.3c0000 0004 0368 8293School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China ,Shanghai Municipal Veterinary Key Laboratory, Shanghai, 200240 China
| | - Lei Han
- Jecho Institute, Co., Ltd., Shanghai, 200240 China
| | - Yue-qing Xie
- Jecho Laboratories, Inc., Frederick, MD 21704 USA
| | - Jian-wei Zhu
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
95
|
Manrique PD, Chakraborty S, Henderson R, Edwards RJ, Mansbach R, Nguyen K, Stalls V, Saunders C, Mansouri K, Acharya P, Korber B, Gnanakaran S. Network analysis uncovers the communication structure of SARS-CoV-2 spike protein identifying sites for immunogen design. iScience 2023; 26:105855. [PMID: 36590900 PMCID: PMC9791713 DOI: 10.1016/j.isci.2022.105855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has triggered myriad efforts to understand the structure and dynamics of this complex pathogen. The spike glycoprotein of SARS-CoV-2 is a significant target for immunogens as it is the means by which the virus enters human cells, while simultaneously sporting mutations responsible for immune escape. These functional and escape processes are regulated by complex molecular-level interactions. Our study presents quantitative insights on domain and residue contributions to allosteric communication, immune evasion, and local- and global-level control of functions through the derivation of a weighted graph representation from all-atom MD simulations. Focusing on the ancestral form and the D614G-variant, we provide evidence of the utility of our approach by guiding the selection of a mutation that alters the spike's stability. Taken together, the network approach serves as a valuable tool to evaluate communication "hot-spots" in proteins to guide design of stable immunogens.
Collapse
Affiliation(s)
- Pedro D. Manrique
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Rachael Mansbach
- Physics Department, Concordia University, Montreal, QC H4B IR6, Canada
| | - Kien Nguyen
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
96
|
Li X, Yin Y, Cui Q, Huang W, Zou Q, Shen T. Long-term variations and potency of neutralizing antibodies against Omicron subvariants after CoronaVac-inactivated booster: A 7-month follow-up study. J Med Virol 2023; 95:e28279. [PMID: 36329634 PMCID: PMC9877893 DOI: 10.1002/jmv.28279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The long-term protective efficacy of neutralizing antibodies (Nabs) against Omicron subvariants after inactivated booster vaccines remains elusive. During the follow-up study, 54 healthy volunteers aged 20-31 years received inactivated CoronaVac booster vaccinations and were monitored for 221 days. The dynamic efficacy and durability of Nab against Omicron subvariants BA.1, BA.2, BA.2.12.2, and BA4/5 were assessed using a pseudotyped virus neutralization assay at up to nine time points post immunization. The antibody response against Omicron subvariants was substantially weaker than D614G, with BA.4/5 being the least responsive. The geometric mean titer (GMT) of Nab against Omicron subvariants BA.1, BA.2, BA.2.12.1, and BA.4/5 was 2.2-, 1.7-, 1.8-, and 2.2-fold lower than that against D614G (ps < 0.0001). The gap in Nab response between Omicron subvariants was pronounced during the 2 weeks-2 months following booster vaccination (ps < 0.05). Seven months post booster, the antibody potency against D614G was maintained at 100% (50% for Nab titers ≥ 100 50% inhibitory dilution [EC50 ]), whereas at 77.3% for BA.1, 90.9% for BA.2, 86.4% for BA.2.12.1, and 86.4% for BA.4/5 (almost 20% for Nab titers ≥ 100 EC50 ). Despite the inevitable immune escape, Omicron subvariants maintained sustained and measurable antibody potency post-booster vaccination during long-term monitoring, which could help optimize immunization strategies.
Collapse
Affiliation(s)
- Xinjie Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yue Yin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Qianqian Cui
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, WHO Collaborating Center for Standardization and Evaluation of Biologicals, Institute for Biological Product ControlNational Institutes for Food and Drug Control (NIFDC)BeijingChina
| | - Weijin Huang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, WHO Collaborating Center for Standardization and Evaluation of Biologicals, Institute for Biological Product ControlNational Institutes for Food and Drug Control (NIFDC)BeijingChina
| | - Qinghua Zou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking UniversityBeijingChina
| |
Collapse
|
97
|
Zhu R, Canena D, Sikora M, Klausberger M, Seferovic H, Mehdipour AR, Hain L, Laurent E, Monteil V, Wirnsberger G, Wieneke R, Tampé R, Kienzl NF, Mach L, Mirazimi A, Oh YJ, Penninger JM, Hummer G, Hinterdorfer P. Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level. Nat Commun 2022; 13:7926. [PMID: 36566234 PMCID: PMC9789309 DOI: 10.1038/s41467-022-35641-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Recent waves of COVID-19 correlate with the emergence of the Delta and the Omicron variant. We report that the Spike trimer acts as a highly dynamic molecular caliper, thereby forming up to three tight bonds through its RBDs with ACE2 expressed on the cell surface. The Spike of both Delta and Omicron (B.1.1.529) Variant enhance and markedly prolong viral attachment to the host cell receptor ACE2, as opposed to the early Wuhan-1 isolate. Delta Spike shows rapid binding of all three Spike RBDs to three different ACE2 molecules with considerably increased bond lifetime when compared to the reference strain, thereby significantly amplifying avidity. Intriguingly, Omicron (B.1.1.529) Spike displays less multivalent bindings to ACE2 molecules, yet with a ten time longer bond lifetime than Delta. Delta and Omicron (B.1.1.529) Spike variants enhance and prolong viral attachment to the host, which likely not only increases the rate of viral uptake, but also enhances the resistance of the variants against host-cell detachment by shear forces such as airflow, mucus or blood flow. We uncover distinct binding mechanisms and strategies at single-molecule resolution, employed by circulating SARS-CoV-2 variants to enhance infectivity and viral transmission.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Canena
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Faculty of Physics, University of Vienna, Vienna, Austria
- Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Miriam Klausberger
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Hannah Seferovic
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Ahmad Reza Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Center for Molecular Modeling, University of Ghent, Ghent, Belgium
| | - Lisa Hain
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Elisabeth Laurent
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
- Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Vanessa Monteil
- Department of Laboratory Medicine, Unit of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Nikolaus F Kienzl
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ali Mirazimi
- Department of Laboratory Medicine, Unit of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- National Veterinary Institute, Uppsala, Sweden
| | - Yoo Jin Oh
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Peter Hinterdorfer
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
98
|
The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant. iScience 2022; 25:105720. [PMID: 36507224 PMCID: PMC9719929 DOI: 10.1016/j.isci.2022.105720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have revealed the unique virological characteristics of Omicron, particularly those of its spike protein, such as less cleavage efficacy in cells, reduced ACE2 binding affinity, and poor fusogenicity. However, it remains unclear which mutation(s) determine these three virological characteristics of Omicron spike. Here, we show that these characteristics of the Omicron spike protein are determined by its receptor-binding domain. Of interest, molecular phylogenetic analysis revealed that acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidated that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue of another protomer in the spike trimer, conferring the attenuated cleavage efficiency and fusogenicity of Omicron spike. Our data shed light on the evolutionary events underlying the emergence of Omicron at the molecular level.
Collapse
|
99
|
Orgera J, Kelley JJ, Bar O, Vaidhyanathan S, Grigoriev A. SARSNTdb database: Factors affecting SARS-CoV-2 sequence conservation. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1028335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
SARSNTdb offers a curated, nucleotide-centric database for users of varying levels of SARS-CoV-2 knowledge. Its user-friendly interface enables querying coding regions and coordinate intervals to find out the various functional and selective constraints that act upon the corresponding nucleotides and amino acids. Users can easily obtain information about viral genes and proteins, functional domains, repeats, secondary structure formation, intragenomic interactions, and mutation prevalence. Currently, many databases are focused on the phylogeny and amino acid substitutions, mainly in the spike protein. We took a novel, more nucleotide-focused approach as RNA does more than just code for proteins and many insights can be gleaned from its study. For example, RNA-targeted drug therapies for SARS-CoV-2 are currently being developed and it is essential to understand the features only visible at that level. This database enables the user to identify regions that are more prone to forming secondary structures that drugs can target. SARSNTdb also provides illustrative mutation data from a subset of ~25,000 patient samples with a reliable read coverage across the whole genome (from different locations and time points in the pandemic. Finally, the database allows for comparing SARS-CoV-2 and SARS-CoV domains and sequences. SARSNTdb can serve the research community by being a curated repository for information that gives a jump start to analyze a mutation’s effect far beyond just determining synonymous/non-synonymous substitutions in protein sequences.
Collapse
|
100
|
Novel chimeric proteins mimicking SARS-CoV-2 spike epitopes with broad inhibitory activity. Int J Biol Macromol 2022; 222:2467-2478. [PMID: 36220405 PMCID: PMC9546781 DOI: 10.1016/j.ijbiomac.2022.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
SARS-CoV-2 spike (S) protein mediates virus attachment to the cells and fusion between viral and cell membranes. Membrane fusion is driven by mutual interaction between the highly conserved heptad-repeat regions 1 and 2 (HR1 and HR2) of the S2 subunit of the spike. For this reason, these S2 regions are interesting therapeutic targets for COVID-19. Although HR1 and HR2 have been described as transiently exposed during the fusion process, no significant antibody responses against these S2 regions have been reported. Here we designed chimeric proteins that imitate highly stable HR1 helical trimers and strongly bind to HR2. The proteins have broad inhibitory activity against WT B.1 and BA.1 viruses. Sera from COVID-19 convalescent donors showed significant levels of reactive antibodies (IgG and IgA) against the HR1 mimetic proteins, whereas these antibody responses were absent in sera from uninfected donors. Moreover, both inhibitory activity and antigenicity of the proteins correlate positively with their structural stability but not with the number of amino acid changes in their HR1 sequences, indicating a conformational and conserved nature of the involved epitopes. Our results reveal previously undetected spike epitopes that may guide the design of new robust COVID-19 vaccines and therapies.
Collapse
|