51
|
Vacher P, Vacher AM, Pineau R, Latour S, Soubeyran I, Pangault C, Tarte K, Soubeyran P, Ducret T, Bresson-Bepoldin L. Localized Store-Operated Calcium Influx Represses CD95-Dependent Apoptotic Effects of Rituximab in Non-Hodgkin B Lymphomas. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202984 DOI: 10.4049/jimmunol.1402942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The anti-CD20 mAb, rituximab, is routinely used to treat B cell malignancies. However, a majority of patients relapse. An improvement in the complete response was obtained by combining rituximab with chemotherapy, at the cost of increased toxicity. We reported that rituximab induced the colocalization of both the Orai1 Ca(2+) release-activated Ca(2+) channel (CRAC) and the endoplasmic reticulum Ca(2+) sensor stromal interaction molecule 1 with CD20 and CD95 into a cluster, eliciting a polarized store-operated Ca(2+) entry (SOCE). We observed that blocking this Ca(2+) entry with downregulation of Orai1, pharmacological inhibitors, or reducing calcemia with hypocalcemic drugs sensitized human B lymphoma cell lines and primary human lymphoma cells to rituximab-induced apoptosis in vitro, and improved the antitumoral effect of rituximab in xenografted mice. This revealed that Ca(2+) entry exerted a negative feedback loop on rituximab-induced apoptosis, suggesting that associating CRAC channel inhibitors or hypocalcemic agents with rituximab may improve the treatment of patients with B cell malignancies. The calcium-dependent proteins involved in this process appear to vary according to the B lymphoma cell type, suggesting that CRAC-channel targeting is likely to be more efficient than calcium-dependent protein targeting.
Collapse
Affiliation(s)
- Pierre Vacher
- Institut Bergonié, Centre de Lutte contre le Cancer, F-33076 Bordeaux Cedex, France; Université de Bordeaux, F-33076 Bordeaux Cedex, France; INSERM U916 Validation et Identification de Nouvelles Cibles en Oncologie, F-33076 Bordeaux Cedex, France;
| | - Anne-Marie Vacher
- Institut Bergonié, Centre de Lutte contre le Cancer, F-33076 Bordeaux Cedex, France; Université de Bordeaux, F-33076 Bordeaux Cedex, France; INSERM U916 Validation et Identification de Nouvelles Cibles en Oncologie, F-33076 Bordeaux Cedex, France
| | - Raphael Pineau
- Animalerie Mutualisée, Université de Bordeaux, F33400 Talence, France
| | - Simon Latour
- Institut Bergonié, Centre de Lutte contre le Cancer, F-33076 Bordeaux Cedex, France; Université de Bordeaux, F-33076 Bordeaux Cedex, France; INSERM U916 Validation et Identification de Nouvelles Cibles en Oncologie, F-33076 Bordeaux Cedex, France
| | - Isabelle Soubeyran
- Institut Bergonié, Centre de Lutte contre le Cancer, F-33076 Bordeaux Cedex, France; Université de Bordeaux, F-33076 Bordeaux Cedex, France; INSERM U916 Validation et Identification de Nouvelles Cibles en Oncologie, F-33076 Bordeaux Cedex, France
| | - Celine Pangault
- INSERM, Unité Mixte de Recherche 917, F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Centre Hospitalier Universitaire Pontchaillou, F-35033 Rennes, France
| | - Karin Tarte
- INSERM, Unité Mixte de Recherche 917, F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Centre Hospitalier Universitaire Pontchaillou, F-35033 Rennes, France
| | - Pierre Soubeyran
- Institut Bergonié, Centre de Lutte contre le Cancer, F-33076 Bordeaux Cedex, France; Université de Bordeaux, F-33076 Bordeaux Cedex, France; INSERM U916 Validation et Identification de Nouvelles Cibles en Oncologie, F-33076 Bordeaux Cedex, France
| | - Thomas Ducret
- Université de Bordeaux, F-33076 Bordeaux Cedex, France; Centre de Recherche Cardio-Thoracique de Bordeaux, F-33076 Bordeaux Cedex, France; and INSERM, U1045, F-33076 Bordeaux Cedex, France
| | - Laurence Bresson-Bepoldin
- Institut Bergonié, Centre de Lutte contre le Cancer, F-33076 Bordeaux Cedex, France; Université de Bordeaux, F-33076 Bordeaux Cedex, France; INSERM U916 Validation et Identification de Nouvelles Cibles en Oncologie, F-33076 Bordeaux Cedex, France;
| |
Collapse
|
52
|
Gao XH, Gao R, Tian YZ, McGonigle P, Barrett JE, Dai Y, Hu H. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. Br J Pharmacol 2015; 172:2991-3002. [PMID: 25651822 DOI: 10.1111/bph.13104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Store-operated calcium (SOC) channels are thought to play a critical role in immune responses, inflammatory diseases and chronic pain. The aim of this study was to explore the potential role and mechanisms of SOC channels in collagen-induced arthritis (CIA). EXPERIMENTAL APPROACH The CIA mouse model was used to examine the effects of the SOC channel inhibitor YM-58483 on CIA and arthritic pain. Hargreaves' and von Frey hair tests were conducted to measure thermal and mechanical sensitivities of hind paws. elisa was performed to measure cytokine production, and haematoxylin and eosin staining was used to assess knee histological changes. Western blot analysis was performed to examine protein levels. KEY RESULTS Pretreatment with 5 or 10 mg · kg(-1) of YM-58483 reduced the incidence of CIA, prevented the development of inflammation and pain hypersensitivity and other signs and features of arthritis disease. Similarly, treatment with YM-58483 after the onset of CIA: (i) reversed the clinical scores; (ii) reduced paw oedema; (iii) attenuated mechanical and thermal hypersensitivity; (iv) improved spontaneous motor activity; (v) decreased periphery production of IL-1β, IL-6 and TNF-α; and (vi) reduced spinal activation of ERK and calmodulin-dependent PKII (CaMKIIα). CONCLUSIONS AND IMPLICATIONS This study provides the first evidence that inhibition of SOC entry prevents and relieves rheumatoid arthritis (RA) and arthritic pain. These effects are probably mediated by a reduction in cytokine levels in the periphery and activation of ERK and CaMKIIα in the spinal cord. These results suggest that SOC channels are potential drug targets for the treatment of RA.
Collapse
Affiliation(s)
- X H Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - R Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Z Tian
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - P McGonigle
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - J E Barrett
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - H Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
53
|
Thompson JL, Shuttleworth TJ. Anchoring protein AKAP79-mediated PKA phosphorylation of STIM1 determines selective activation of the ARC channel, a store-independent Orai channel. J Physiol 2015; 593:559-72. [PMID: 25504574 PMCID: PMC4324705 DOI: 10.1113/jphysiol.2014.284182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/02/2014] [Indexed: 02/02/2023] Open
Abstract
KEY POINTS Although both the calcium store-dependent CRAC channels and the store-independent ARC channels are regulated by the protein STIM1, CRAC channels are regulated by STIM1 in the endoplasmic reticulum, whilst ARC channels are regulated by the STIM1 constitutively resident in the plasma membrane. We now demonstrate that activation of the ARC channels, but not CRAC channels, is uniquely dependent on phosphorylation of a single residue (T389) in the extensive cytosolic domain of STIM1 by protein kinase A. We further demonstrate that the phosphorylation of the T389 residue by protein kinase A is mediated by the association of plasma membrane STIM1 with the scaffolding protein AKAP79. Together, these findings indicate that the phosphorylation status of this single residue in STIM1 represents a key molecular determinant of the relative activities of these two co-existing Ca(2+) entry channels that are known to play critical, but distinct, roles in modulating a variety of physiologically relevant activities. ABSTRACT The low-conductance, highly calcium-selective channels encoded by the Orai family of proteins represent a major pathway for the agonist-induced entry of calcium associated with the generation and modulation of the key intracellular calcium signals that initiate and control a wide variety of physiologically important processes in cells. There are two distinct members of this channel family that co-exist endogenously in many cell types: the store-operated Ca(2+) release-activated CRAC channels and the store-independent arachidonic acid-regulated ARC channels. Although the activities of both channels are regulated by the stromal-interacting molecule-1 (STIM1) protein, two distinct pools of this protein are responsible, with the major pool of STIM1 in the endoplasmic reticulum membrane regulating CRAC channel activity, whilst the minor pool of plasma membrane STIM1 regulates ARC channel activity. We now show that a critical feature in determining this selective activation of the two channels is the phosphorylation status of a single threonine residue (T389) within the extensive (∼450 residue) cytosolic domain of STIM1. Specifically, protein kinase A (PKA)-mediated phosphorylation of T389 of STIM1 is necessary for effective activation of the ARC channels, whilst phosphorylation of the same residue actually inhibits the ability of STIM1 to activate the CRAC channels. We further demonstrate that the PKA-mediated phosphorylation of T389 occurs at the plasma membrane via the involvement of the anchoring protein AKAP79, which is constitutively associated with the pool of STIM1 in the plasma membrane. The novel mechanism we have described provides a means for the cell to precisely regulate the relative activities of these two channels to independently modulate the resulting intracellular calcium signals in a physiologically relevant manner.
Collapse
Affiliation(s)
- Jill L Thompson
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochester, NY, 14642, USA
| | - Trevor J Shuttleworth
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochester, NY, 14642, USA
| |
Collapse
|
54
|
Abstract
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616
| | - Edward Y. Skolnik
- Division of Nephrology, New York University School of Medicine, New York, NY 10016
- Department of Molecular Pathogenesis, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
55
|
Abstract
Ca(2+) release-activated Ca(2+) (CRAC) channels are becoming important targets for therapeutic intervention in several areas of disease, including immunology, allergy and cancer. In parallel to the progression towards reliable methods for measuring CRAC currents and their inhibition, patents have been generated by several companies. In this Patent Review, an analysis of the patents in the CRAC channel inhibition filed is presented. A discussion of the biological methods used in the patents is included. The general interest in this area is growing fast with almost 80% of the patents issued after 2010.
Collapse
|
56
|
Sadaghiani A, Lee S, Odegaard J, Leveson-Gower D, McPherson O, Novick P, Kim M, Koehler A, Negrin R, Dolmetsch R, Park C. Identification of Orai1 Channel Inhibitors by Using Minimal Functional Domains to Screen Small Molecule Microarrays. ACTA ACUST UNITED AC 2014; 21:1278-1292. [DOI: 10.1016/j.chembiol.2014.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
|
57
|
Carvacho I, Lee HC, Fissore RA, Clapham DE. TRPV3 channels mediate strontium-induced mouse-egg activation. Cell Rep 2013; 5:1375-86. [PMID: 24316078 DOI: 10.1016/j.celrep.2013.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/02/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022] Open
Abstract
In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a transient receptor potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3(-/-) eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, because TrpV3(-/-) eggs failed to conduct Sr(2+) or undergo strontium-induced activation. We propose that TRPV3 is a major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Kim KD, Srikanth S, Tan YV, Yee MK, Jew M, Damoiseaux R, Jung ME, Shimizu S, An DS, Ribalet B, Waschek JA, Gwack Y. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. THE JOURNAL OF IMMUNOLOGY 2013; 192:110-22. [PMID: 24307733 DOI: 10.4049/jimmunol.1302586] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Orai1 is the pore subunit of Ca(2+) release-activated Ca(2+) (CRAC) channels that stimulate downstream signaling pathways crucial for T cell activation. CRAC channels are an attractive therapeutic target for alleviation of autoimmune diseases. Using high-throughput chemical library screening targeting Orai1, we identified a novel class of small molecules that inhibit CRAC channel activity. One of these molecules, compound 5D, inhibited CRAC channel activity by blocking ion permeation. When included during differentiation, Th17 cells showed higher sensitivity to compound 5D than Th1 and Th2 cells. The selectivity was attributable to high dependence of promoters of retinoic-acid-receptor-related orphan receptors on the Ca(2+)-NFAT pathway. Blocking of CRAC channels drastically decreased recruitment of NFAT and histone modifications within key gene loci involved in Th17 differentiation. The impairment in Th17 differentiation by treatment with CRAC channel blocker was recapitulated in Orai1-deficient T cells, which could be rescued by exogenous expression of retinoic-acid-receptor-related orphan receptors or a constitutive active mutant of NFAT. In vivo administration of CRAC channel blockers effectively reduced the severity of experimental autoimmune encephalomyelitis by suppression of differentiation of inflammatory T cells. These results suggest that CRAC channel blockers can be considered as chemical templates for the development of therapeutic agents to suppress inflammatory responses.
Collapse
Affiliation(s)
- Kyun-Do Kim
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yossan-Var Tan
- The NPI-Semel Institute and Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Ma-Khin Yee
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Marcus Jew
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Robert Damoiseaux
- Molecular Screening Shared Resources, UC CEIN, NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095, USA
| | - Saki Shimizu
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Dong Sung An
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA.,UCLA School of Nursing, Los Angeles, CA 90095, USA
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James A Waschek
- The NPI-Semel Institute and Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
59
|
CRAC channel inhibition produces greater anti-inflammatory effects than glucocorticoids in CD8 cells from COPD patients. Clin Sci (Lond) 2013; 126:223-32. [PMID: 23905758 DOI: 10.1042/cs20130152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are increased numbers of pulmonary CD8 lymphocytes in COPD (chronic obstructive pulmonary disease). CRAC (calcium release-activation calcium) channels play a central role in lymphocyte activation though the regulation of the transcription factor NFAT (nuclear factor of activated T-cells). We studied the expression of NFAT in lungs from COPD patients compared with controls, and evaluated the effects of CRAC channel inhibition compared with corticosteroids on NFAT activation and cytokine production in CD8 cells from COPD patients. The effects of the corticosteroid dexamethasone, the calcineurin inhibitor cyclosporin and the CRAC channel inhibitor Synta 66 were studied on cytokine production and NFAT activation using peripheral blood and isolated pulmonary CD8 cells. NFAT1 and CD8 co-expression in the lungs was compared in COPD patients and controls using combined immunohistochemistry and immunofluorescence. NFAT inhibition with either cyclosporin or Synta 66 resulted in significantly greater maximal inhibition of cytokines than dexamethasone in both peripheral blood and pulmonary CD8 cells [e.g. >95% inhibition of IFNγ (interferon γ) production from pulmonary CD8 cells using cyclosporin and Synta 66 compared with <50% using dexamethasone]. The absolute number of pulmonary CD8 cells co-expressing NFAT1 was significantly raised in lungs from COPD patients compared with controls, but the percentage of CD8 cells co-expressing NFAT1 was similar between COPD patients and controls (80.7% compared with 78.5% respectively, P=0.3). Inhibition of NFAT using the CRAC channel Synta 66 produces greater anti-inflammatory effects on CD8 cells from COPD patients than corticosteroids. NFAT is expressed at a high level in pulmonary CD8 cells in COPD.
Collapse
|
60
|
Jairaman A, Prakriya M. Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 2013; 7:402-14. [PMID: 23807116 DOI: 10.4161/chan.25292] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Calcium influx through store-operated Ca(2+) release-activated Ca(2+) channels (CRAC channels) is a well-defined mechanism of generating cellular Ca(2+) elevations that regulates many functions including gene expression, exocytosis and cell proliferation. The identifications of the ER Ca(2+) sensing proteins, STIM1-2 and the CRAC channel proteins, Orai1-3, have led to improved understanding of the physiological roles and the activation mechanism of CRAC channels. Defects in CRAC channel function are associated with serious human diseases such as immunodeficiency and auto-immunity. In this review, we discuss several pharmacological modulators of CRAC channels, focusing specifically on the molecular mechanism of drug action and their utility in illuminating the mechanism of CRAC channel operation and their physiological roles in different cells.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Molecular Pharmacology and Biological Chemistry; Northwestern University, Feinberg School of Medicine; Chicago, IL USA
| | - Murali Prakriya
- Department of Molecular Pharmacology and Biological Chemistry; Northwestern University, Feinberg School of Medicine; Chicago, IL USA
| |
Collapse
|
61
|
Jin S, Chin J, Kitson C, Woods J, Majmudar R, Carvajal V, Allard J, DeMartino J, Narula S, Thomas-Karyat DA. Natural regulatory T cells are resistant to calcium release-activated calcium (CRAC/ORAI) channel inhibition. Int Immunol 2013; 25:497-506. [DOI: 10.1093/intimm/dxt013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|