51
|
Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med 2019; 8:jcm8060854. [PMID: 31208019 PMCID: PMC6617388 DOI: 10.3390/jcm8060854] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.
Collapse
|
52
|
Qiao Y, Liu L, Yin L, Xu L, Tang Z, Qi Y, Mao Z, Zhao Y, Ma X, Peng J. FABP4 contributes to renal interstitial fibrosis via mediating inflammation and lipid metabolism. Cell Death Dis 2019; 10:382. [PMID: 31097687 PMCID: PMC6522534 DOI: 10.1038/s41419-019-1610-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Fatty acid binding protein 4 (FABP4), a subtype of fatty acid-binding protein family, shows critical roles in metabolism and inflammation. However, its roles on regulating renal interstitial fibrosis (RIF) remain unclear. In this work, LPS-stimulated in vitro models on NRK-52E and NRK-49F cells, and in vivo UUO models in rats and mice were established. The results showed that comparing with control groups or sham groups, the expression levels of α-SMA, COL1A, COL3A, IL-1β, IL-6, and TNF-α in LPS-stimulated cells or UUO animals were significantly increased. Meanwhile, the levels of TC, TG, and free fatty acid were also significantly increased as well as the obvious lipid droplets, and the serum levels of BUN, Cr were significantly increased with large amounts of collagen deposition in renal tissues. Further investigation showed that compared with control groups or sham groups, the expression levels of FABP4 in LPS-stimulated cells and UUO animals were significantly increased, resulting in down- regulating the expression levels of PPARγ, upregulating the levels of p65 and ICAM-1, and decreasing the expression levels of ACADM, ACADL, SCP-2, CPT1, EHHADH, and ACOX1. To deeply explore the mechanism of FABP4 in RIF, FABP4 siRNA and inhibitor interfered cell models, and UUO model on FABP4 knockout (KO) mice were used. The results showed that the expression levels of α-SMA, COL1A, and COL3A were significantly decreased, the deposition of lipid droplets decreased, and the contents of TC, TG, and free fatty acids were significantly decreased after gene silencing. Meanwhile, the expression levels of PPAR-γ, ACADM, ACADL, SCP-2, CPT1, EHHADH, and ACOX1 were upregulated, the levels of p65 and ICAM-1 were downregulated, and the mRNA levels of IL-1β, IL-6, and TNF-α were decreased. Our results supported that FABP4 contributed to RIF via promoting inflammation and lipid metabolism, which should be considered as one new drug target to treat RIF.
Collapse
Affiliation(s)
- Yujie Qiao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Liping Liu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Zeyao Tang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, 116044, Dalian, China.
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China.
- National-Local Joint Engineering Research Center for Drug Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
| |
Collapse
|
53
|
A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion. Nat Commun 2019; 10:1955. [PMID: 31028268 PMCID: PMC6486587 DOI: 10.1038/s41467-019-09943-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Organisms adapt their metabolism and growth to the availability of nutrients and oxygen, which are essential for development, yet the mechanisms by which this adaptation occurs are not fully understood. Here we describe an RNAi-based body-size screen in Drosophila to identify such mechanisms. Among the strongest hits is the fibroblast growth factor receptor homolog breathless necessary for proper development of the tracheal airway system. Breathless deficiency results in tissue hypoxia, sensed primarily in this context by the fat tissue through HIF-1a prolyl hydroxylase (Hph). The fat relays its hypoxic status through release of one or more HIF-1a-dependent humoral factors that inhibit insulin secretion from the brain, thereby restricting systemic growth. Independently of HIF-1a, Hph is also required for nutrient-dependent Target-of-rapamycin (Tor) activation. Our findings show that the fat tissue acts as the primary sensor of nutrient and oxygen levels, directing adaptation of organismal metabolism and growth to environmental conditions. The mechanisms by which organisms adapt their growth according to the availability of oxygen are incompletely understood. Here the authors identify the Drosophila fat body as a tissue regulating growth in response to oxygen sensing via a mechanism involving Hph inhibition, HIF1-a activation and insulin secretion.
Collapse
|
54
|
Trojnar M, Patro-Małysza J, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Mosiewicz J. Associations between Fatty Acid-Binding Protein 4⁻A Proinflammatory Adipokine and Insulin Resistance, Gestational and Type 2 Diabetes Mellitus. Cells 2019; 8:cells8030227. [PMID: 30857223 PMCID: PMC6468522 DOI: 10.3390/cells8030227] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 12/12/2022] Open
Abstract
There is ample scientific evidence to suggest a link between the fatty acid-binding protein 4 (FABP4) and insulin resistance, gestational (GDM), and type 2 (T2DM) diabetes mellitus. This novel proinflammatory adipokine is engaged in the regulation of lipid metabolism at the cellular level. The molecule takes part in lipid oxidation, the regulation of transcription as well as the synthesis of membranes. An involvement of FABP4 in the pathogenesis of obesity and insulin resistance seems to be mediated via FABP4-dependent peroxisome proliferator-activated receptor γ (PPARγ) inhibition. A considerable number of studies have shown that plasma concentrations of FABP4 is increased in obesity and T2DM, and that circulating FABP4 levels are correlated with certain clinical parameters, such as body mass index, insulin resistance, and dyslipidemia. Since plasma-circulating FABP4 has the potential to modulate the function of several types of cells, it appears to be of extreme interest to try to develop potential therapeutic strategies targeting the pathogenesis of metabolic diseases in this respect. In this manuscript, representing a detailed review of the literature on FABP4 and the abovementioned metabolic disorders, various mechanisms of the interaction of FABP4 with insulin signaling pathways are thoroughly discussed. Clinical aspects of insulin resistance in diabetic patients, including women diagnosed with GDM, are analyzed as well.
Collapse
Affiliation(s)
- Marcin Trojnar
- Chair and Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Jolanta Patro-Małysza
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | | | - Jerzy Mosiewicz
- Chair and Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| |
Collapse
|
55
|
Patro-Małysza J, Trojnar M, Kimber-Trojnar Ż, Mierzyński R, Bartosiewicz J, Oleszczuk J, Leszczyńska-Gorzelak B. FABP4 in Gestational Diabetes-Association between Mothers and Offspring. J Clin Med 2019; 8:jcm8030285. [PMID: 30818771 PMCID: PMC6462903 DOI: 10.3390/jcm8030285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Fetuses exposed to gestational diabetes mellitus (GDM) have a higher risk of abnormal glucose homeostasis in later life. The molecular mechanisms of this phenomenon are still not fully understood. Fatty acid binding protein 4 (FABP4) appears to be one of the most probable candidates involved in the pathophysiology of GDM. The main aim of the study was to investigate whether umbilical cord serum FABP4 concentrations are altered in term neonates born to GDM mothers. Two groups of subjects were selected—28 healthy controls and 26 patients with GDM. FABP4, leptin, and ghrelin concentrations in the umbilical cord serum, maternal serum, and maternal urine were determined via an enzyme-linked immunosorbent assay. The umbilical cord serum FABP4 levels were higher in the GDM offspring and were directly associated with the maternal serum FABP4 and leptin levels, as well as the prepregnancy body mass index (BMI) and the BMI at and after delivery; however, they correlated negatively with birth weight and lipid parameters. In the multiple linear regression models, the umbilical cord serum FABP4 concentrations depended positively on the maternal serum FABP4 and negatively on the umbilical cord serum ghrelin levels and the high-density lipoprotein cholesterol. There are many maternal variables that can affect the level of FABP4 in the umbilical cord serum, thus, their evaluation requires further investigation.
Collapse
Affiliation(s)
- Jolanta Patro-Małysza
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Marcin Trojnar
- Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Radzisław Mierzyński
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jacek Bartosiewicz
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jan Oleszczuk
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | | |
Collapse
|
56
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
57
|
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperones, contribute to systemic metabolic regulation via several lipid signaling pathways. Fatty acid-binding protein 4 (FABP4), known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays important roles in the development of insulin resistance and atherosclerosis in relation to metabolically driven low-grade and chronic inflammation, referred to as ‘metaflammation’. FABP4 is secreted from adipocytes in a non-classical pathway associated with lipolysis and acts as an adipokine for the development of insulin resistance and atherosclerosis. Circulating FABP4 levels are associated with several aspects of metabolic syndrome and cardiovascular disease. Ectopic expression and function of FABP4 in cells and tissues are also related to the pathogenesis of several diseases. Pharmacological modification of FABP4 function by specific inhibitors, neutralizing antibodies or antagonists of unidentified receptors would be novel therapeutic strategies for several diseases, including obesity, diabetes mellitus, atherosclerosis and cardiovascular disease. Significant roles of FABP4 as a lipid chaperone in physiological and pathophysiological conditions and the possibility of FABP4 being a therapeutic target for metabolic and cardiovascular diseases are discussed in this review.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| |
Collapse
|
58
|
Wadey RM, Connolly KD, Mathew D, Walters G, Rees DA, James PE. Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis 2019; 283:19-27. [PMID: 30771557 DOI: 10.1016/j.atherosclerosis.2019.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Obesity is associated with an increased risk of cardiovascular disease, but the mechanisms involved are not completely understood. In obesity, the adipocyte microenvironment is characterised by both hypoxia and inflammation. Therefore, we sought to determine whether extracellular vesicles (EVs) derived from adipocytes in this setting might be involved in mediating cardiovascular disease, specifically by promoting leukocyte attachment to vascular endothelial cells. METHODS Mature 3T3-L1 adipocytes were incubated for 24 h under control, TNF-α (30 ng/mL), hypoxia (1% O2), or TNF-α+hypoxia (30 ng/mL, 1% O2) conditions. EVs were isolated by differential ultracentrifugation and analysed by nanoparticle tracking analysis. Primary human umbilical vein endothelial cells (HUVECs) were treated with EVs for 6 h before being lysed for Western blotting to investigate changes in adhesion molecule production, or for use in leukocyte attachment assays. RESULTS EVs from adipocytes treated with TNF-α and TNF-α+hypoxia increased vascular cell adhesion molecule (VCAM-1) production in HUVECs compared to basal level (4.2 ± 0.6 and 3.8 ± 0.3-fold increase, respectively (p < 0.05)), an effect that was inhibited by an anti-TNF-α neutralising antibody. Production of other adhesion molecules (E-selectin, P-selectin, platelet endothelial cell adhesion molecule and VE-Cadherin) was unchanged. Pre-incubating HUVECs with TNF-α+hypoxia EVs significantly increased leukocyte attachment compared to basal level (3.0 ± 0.4-fold increase (p < 0.05)). CONCLUSIONS Inflammatory adipocyte EVs induce VCAM-1 production in vascular endothelial cells, accompanied by enhanced leukocyte attachment. Preventing adipocyte derived EV-induced VCAM-1 upregulation may offer a novel therapeutic target in the prevention of obesity-driven cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca M Wadey
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - Katherine D Connolly
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - Donna Mathew
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - Gareth Walters
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Philip E James
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff, CF5 2YB, UK.
| |
Collapse
|
59
|
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3805-3823. [PMID: 30251697 DOI: 10.1016/j.bbadis.2018.08.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.
Collapse
Affiliation(s)
- Laura L Gonzalez
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karin Garrie
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
60
|
Saavedra-García P, Nichols K, Mahmud Z, Fan LYN, Lam EWF. Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis. Mol Cell Endocrinol 2018; 462:82-92. [PMID: 28087388 DOI: 10.1016/j.mce.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023]
Abstract
Obesity and cachexia represent divergent states of nutritional and metabolic imbalance but both are intimately linked to cancer. There is an extensive overlap in their signalling pathways and molecular components involved such as fatty acids (FAs), which likely play a crucial role in cancer. Forkhead box (FOX) proteins are responsible of a wide range of transcriptional programmes during normal development, and the FOXO3-FOXM1 axis is associated with cancer initiation, progression and drug resistance. Free fatty acids (FFAs), FA synthesis and β-oxidation are associated with cancer development and progression. Meanwhile, insulin and some adipokines, that are up-regulated by FAs, are also involved in cancer development and poor prognosis. In this review, we discuss the role of FA metabolism in cancer and how FA metabolism integrates with the FOXO3-FOXM1 axis. These new insights may provide leads to better cancer diagnostics as well as strategies for tackling cancer development, progression and drug resistance.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Katie Nichols
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Zimam Mahmud
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
61
|
Burchfield JG, Kebede MA, Meoli CC, Stöckli J, Whitworth PT, Wright AL, Hoffman NJ, Minard AY, Ma X, Krycer JR, Nelson ME, Tan SX, Yau B, Thomas KC, Wee NKY, Khor EC, Enriquez RF, Vissel B, Biden TJ, Baldock PA, Hoehn KL, Cantley J, Cooney GJ, James DE, Fazakerley DJ. High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. J Biol Chem 2018; 293:5731-5745. [PMID: 29440390 DOI: 10.1074/jbc.ra117.000808] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with metabolic dysfunction, including insulin resistance and hyperinsulinemia, and with disorders such as cardiovascular disease, osteoporosis, and neurodegeneration. Typically, these pathologies are examined in discrete model systems and with limited temporal resolution, and whether these disorders co-occur is therefore unclear. To address this question, here we examined multiple physiological systems in male C57BL/6J mice following prolonged exposure to a high-fat/high-sucrose diet (HFHSD). HFHSD-fed mice rapidly exhibited metabolic alterations, including obesity, hyperleptinemia, physical inactivity, glucose intolerance, peripheral insulin resistance, fasting hyperglycemia, ectopic lipid deposition, and bone deterioration. Prolonged exposure to HFHSD resulted in morbid obesity, ectopic triglyceride deposition in liver and muscle, extensive bone loss, sarcopenia, hyperinsulinemia, and impaired short-term memory. Although many of these defects are typically associated with aging, HFHSD did not alter telomere length in white blood cells, indicating that this diet did not generally promote all aspects of aging. Strikingly, glucose homeostasis was highly dynamic. Glucose intolerance was evident in HFHSD-fed mice after 1 week and was maintained for 24 weeks. Beyond 24 weeks, however, glucose tolerance improved in HFHSD-fed mice, and by 60 weeks, it was indistinguishable from that of chow-fed mice. This improvement coincided with adaptive β-cell hyperplasia and hyperinsulinemia, without changes in insulin sensitivity in muscle or adipose tissue. Assessment of insulin secretion in isolated islets revealed that leptin, which inhibited insulin secretion in the chow-fed mice, potentiated glucose-stimulated insulin secretion in the HFHSD-fed mice after 60 weeks. Overall, the excessive calorie intake was accompanied by deteriorating function of numerous physiological systems.
Collapse
Affiliation(s)
- James G Burchfield
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Melkam A Kebede
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Christopher C Meoli
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Jacqueline Stöckli
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - P Tess Whitworth
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Amanda L Wright
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Nolan J Hoffman
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Annabel Y Minard
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Xiuquan Ma
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - James R Krycer
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Marin E Nelson
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Shi-Xiong Tan
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Belinda Yau
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Kristen C Thomas
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Natalie K Y Wee
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Ee-Cheng Khor
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Ronaldo F Enriquez
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Bryce Vissel
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Trevor J Biden
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Paul A Baldock
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Kyle L Hoehn
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - James Cantley
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| | - Gregory J Cooney
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Charles Perkins Centre, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - David E James
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia, .,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and.,Charles Perkins Centre, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Daniel J Fazakerley
- From the Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales 2006, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, and
| |
Collapse
|
62
|
Villeneuve J, Bassaganyas L, Lepreux S, Chiritoiu M, Costet P, Ripoche J, Malhotra V, Schekman R. Unconventional secretion of FABP4 by endosomes and secretory lysosomes. J Cell Biol 2017; 217:649-665. [PMID: 29212659 PMCID: PMC5800802 DOI: 10.1083/jcb.201705047] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
Adipocytes secrete fatty acid binding protein 4, which influences glucose production in hepatocytes and insulin secretion in pancreatic β-cells, but the mechanisms of its secretion are unclear. Villeneuve et al. show that FABP4 is secreted unconventionally through enclosure within endosomes and secretory lysosomes. An appreciation of the functional properties of the cytoplasmic fatty acid binding protein 4 (FABP4) has advanced with the recent demonstration that an extracellular form secreted by adipocytes regulates a wide range of physiological functions. Little, however, is known about the mechanisms that mediate the unconventional secretion of FABP4. Here, we demonstrate that FABP4 secretion is mediated by a membrane-bounded compartment, independent of the conventional endoplasmic reticulum–Golgi secretory pathway. We show that FABP4 secretion is also independent of GRASP proteins, autophagy, and multivesicular bodies but involves enclosure within endosomes and secretory lysosomes. We highlight the physiological significance of this pathway with the demonstration that an increase in plasma levels of FABP4 is inhibited by chloroquine treatment of mice. These findings chart the pathway of FABP4 secretion and provide a potential therapeutic means to control metabolic disorders associated with its dysregulated secretion.
Collapse
Affiliation(s)
- Julien Villeneuve
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| | - Laia Bassaganyas
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Sebastien Lepreux
- Institut National de la Santé et de la Recherche Médicale U1026, Université de Bordeaux, Bordeaux, France
| | - Marioara Chiritoiu
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pierre Costet
- Service des Animaleries, Université de Bordeaux, Bordeaux, France
| | - Jean Ripoche
- Institut National de la Santé et de la Recherche Médicale U1026, Université de Bordeaux, Bordeaux, France
| | - Vivek Malhotra
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra, Barcelona, Spain.,Institutio Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
63
|
Fuseya T, Furuhashi M, Matsumoto M, Watanabe Y, Hoshina K, Mita T, Ishimura S, Tanaka M, Miura T. Ectopic Fatty Acid-Binding Protein 4 Expression in the Vascular Endothelium is Involved in Neointima Formation After Vascular Injury. J Am Heart Assoc 2017; 6:JAHA.117.006377. [PMID: 28903937 PMCID: PMC5634290 DOI: 10.1161/jaha.117.006377] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Fatty acid‐binding protein 4 (FABP4) is expressed in adipocytes, macrophages, and endothelial cells of capillaries but not arteries. FABP4 is secreted from adipocytes in association with lipolysis, and an elevated circulating FABP4 level is associated with obesity, insulin resistance, and atherosclerosis. However, little is known about the link between FABP4 and endovascular injury. We investigated the involvement of ectopic FABP4 expression in endothelial cells in neointima hyperplasia after vascular injury. Methods and Results Femoral arteries of 8‐week‐old male mice were subjected to wire‐induced vascular injury. After 4 weeks, immunofluorescence staining showed that FABP4 was ectopically expressed in endothelial cells of the hyperplastic neointima. Neointima formation determined by intima area and intima to media ratio was significantly decreased in FABP4‐defficient mice compared with that in wild‐type mice. Adenovirus‐mediated overexpression of FABP4 in human coronary artery endothelial cells (HCAECs) in vitro increased inflammatory cytokines and decreased phosphorylation of nitric oxide synthase 3. Furthermore, FABP4 was secreted from HCAECs. Treatment of human coronary smooth muscle cells or HCAECs with the conditioned medium of Fabp4‐overexpressed HCAECs or recombinant FABP4 significantly increased gene expression of inflammatory cytokines and proliferation‐ and adhesion‐related molecules in cells, promoted cell proliferation and migration of human coronary smooth muscle cells, and decreased phosphorylation of nitric oxide synthase 3 in HCAECs, which were attenuated in the presence of an anti‐FABP4 antibody. Conclusions Ectopic expression and secretion of FABP4 in vascular endothelial cells contribute to neointima formation after vascular injury. Suppression of ectopic FABP4 in the vascular endothelium would be a novel strategy against post‐angioplasty vascular restenosis.
Collapse
Affiliation(s)
- Takahiro Fuseya
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Watanabe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kyoko Hoshina
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohiro Mita
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shutaro Ishimura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
64
|
Chen MC, Hsu BG, Lee CJ, Yang CF, Wang JH. High serum adipocyte fatty acid binding protein level as a potential biomarker of aortic arterial stiffness in hypertensive patients with metabolic syndrome. Clin Chim Acta 2017; 473:166-172. [PMID: 28860092 DOI: 10.1016/j.cca.2017.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/02/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The adipocyte-fatty-acid-binding protein (A-FABP) has been implicated in arterial stiffness, metabolic syndrome (MetS), and cardiovascular disease. We aimed to determine the relationship among serum A-FABP concentration, cardiometabolic risk factors, and central arterial stiffness in a hypertensive population. METHODS Fasting blood samples and baseline characteristics were obtained from 110 hypertensive patients. Serum A-FABP concentrations were determined by enzyme immunoassay kit. High arterial stiffness was defined as carotid-femoral pulse wave velocity values >10m/s via the SphygmoCor system. RESULTS Patients with MetS and high arterial stiffness accounted for 67.3% and 42.7% of the study population, respectively. Serum A-FABP was positively associated with MetS and high arterial stiffness (P=0.006 and P<0.001, respectively). Multivariable stepwise linear regression analysis of the significant variables of arterial stiffness revealed that logarithmically transformed A-FABP (log-A-FABP, β=0.278, P=0.002) was positively correlated arterial stiffness in hypertensive patients. Subgroup analysis revealed that log-A-FABP (β=0.327, P=0.003), age (β=0229, P=0.032), and triglyceride (β=0.307, P=0.004) were significantly positively correlated with arterial stiffness in hypertensive patients with MetS. CONCLUSIONS Elevated A-FABP concentration could be a predictor for MetS and arterial stiffness in hypertensive patients.
Collapse
Affiliation(s)
- Ming-Chun Chen
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Chiu-Fen Yang
- Division of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Ji-Hung Wang
- School of Medicine, Tzu Chi University, Hualien, Taiwan; Division of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| |
Collapse
|
65
|
Chang L, Zhang J, Liu L, Huang Z, Han Y, Zhu Y. Fatty acid binding protein 4 is associated with stroke risk and severity in patients with acute ischemic stroke. J Neuroimmunol 2017; 311:29-34. [PMID: 28781090 DOI: 10.1016/j.jneuroim.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The role of fatty acid-binding proteins (FABPs) in atherosclerosis has been investigated. The aim of this study was to verify the hypothesis that higher levels of serum FABP4 could be a biomarker for stroke and associated with stroke severity in Chinese patients with ischemic stroke. METHODS All consecutive patients with first-ever acute ischemic stroke from September 2015 to August 2016 were recruited to participate in the study. Serum FABP4 levels and routine tests were examined at admission. The National Institutes of Health Stroke Scale (NIHSS) score was assessed on admission blinded to FABP4 levels. RESULTS We recorded 277 stroke patients. There was a significant difference in median serum FABP4 levels between stroke patients and control cases (P<0.001). Serum FABP4 levels increased with increasing severity of stroke as defined by the NIHSS score. The result illustrates the time course of serum FABP4, showing significant changes with day of sampling, with peak levels on day 1, falling to a plateau by days 2 to 5. At admission, 129 patients (46.6%) had a minor stroke (NIHSS≤5). In these patients, the median serum FABP4 level was lower than that observed in patients with moderate-to-sever clinical severity (P<0.001). In multivariate models comparing the second, third, and fourth quartiles against the first quartile of the FABP4, levels of FABP4 were associated with stroke risk and severity. CONCLUSION High levels of FABP4 are significantly related to stroke risk and severity, independent from other traditional and emerging risk factors, suggesting that they may play a role in stroke pathogenesis.
Collapse
Affiliation(s)
- Li Chang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Jianlong Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Li Liu
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhen Huang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingbo Han
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanyan Zhu
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
66
|
Nakamura R, Okura T, Fujioka Y, Sumi K, Matsuzawa K, Izawa S, Ueta E, Kato M, Taniguchi SI, Yamamoto K. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study. PLoS One 2017; 12:e0179737. [PMID: 28654680 PMCID: PMC5487042 DOI: 10.1371/journal.pone.0179737] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/02/2017] [Indexed: 01/22/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis.
Collapse
Affiliation(s)
- Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Yohei Fujioka
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Keisuke Sumi
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiko Matsuzawa
- Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masahiko Kato
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shin-ichi Taniguchi
- Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
67
|
Tu WJ, Zeng XW, Deng A, Zhao SJ, Luo DZ, Ma GZ, Wang H, Liu Q. Circulating FABP4 (Fatty Acid-Binding Protein 4) Is a Novel Prognostic Biomarker in Patients With Acute Ischemic Stroke. Stroke 2017; 48:1531-1538. [PMID: 28487339 DOI: 10.1161/strokeaha.117.017128] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE FABP4 (fatty acid-binding protein 4) is an intracellular lipid chaperone involved in coordination of lipid transportation and atherogenesis. This study aimed at observing the effect of FABP4 on the 3-month outcomes in Chinese patients with acute ischemic stroke. METHODS In a prospective multicenter observational study, serum concentrations of FABP4 were on admission measured in plasma of 737 consecutive patients with acute ischemic stroke. Serum concentrations of FABP4, National Institutes of Health Stroke Scale score, and conventional risk factors were evaluated to determine their value to predict functional outcome and mortality within 3 months. RESULTS During follow-up, an unfavorable functional outcome was found in 260 patients (35.3%), and 94 patients (12.8%) died. In multivariate models comparing the third and fourth quartiles to the first quartile of FABP4, the concentrations of FABP4 were associated with poor functional outcome and mortality. Compared with the reference category (Q1-Q3), the concentrations of FABP4 in Q4 had a relative risk of 4.77 (95% confidence interval [CI], 2.02-8.15; P<0.001) for poor functional outcome and mortality (odds ratio, 6.15; 95% CI, 3.43-12.68) after adjusting for other significant outcome predictors in univariate logistic regression analysis. Receiver-operating characteristic curves to predict poor functional outcome and mortality demonstrated areas under the curve of FABP4 of 0.78 (95% CI, 0.75-0.82) and 0.83 (95% CI, 0.79-0.88), which improved the prognostic accuracy of National Institutes of Health Stroke Scale score with combined areas under the curve of 0.83 (95% CI, 0.76-0.89; P<0.01) and 0.86 (95% CI, 0.81-0.92), respectively. CONCLUSIONS Data show that FABP4 is a novel independent prognostic marker improving the currently used risk stratification of stroke patients.
Collapse
Affiliation(s)
- Wen-Jun Tu
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.)
| | - Xian-Wei Zeng
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.)
| | - Aijun Deng
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.)
| | - Sheng-Jie Zhao
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.)
| | - Ding-Zhen Luo
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.)
| | - Guo-Zhao Ma
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.)
| | - Hong Wang
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.)
| | - Qiang Liu
- From the Institute of Radiation Medicine, China Academy of Medical Science and Peking Union Medical College, Tianjin, China (W.-J.T., Q.L.); Department of Neurology, China Rehabilitation Research Center, Beijing, China (W.-J.T., S.-J.Z.); School of Rehabilitation Medicine, Capital Medical University, Beijing, China (W.-J.T., H.W.); Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China (X.-W.Z., A.D.); and Department of Neurology, Provincial Hospital of Shandong University, Jinan, China (D.-Z.L., G.-Z.M.).
| |
Collapse
|
68
|
Sulston RJ, Cawthorn WP. Bone marrow adipose tissue as an endocrine organ: close to the bone? Horm Mol Biol Clin Investig 2017; 28:21-38. [PMID: 27149203 DOI: 10.1515/hmbci-2016-0012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
Abstract
White adipose tissue (WAT) is a major endocrine organ, secreting a diverse range of hormones, lipid species, cytokines and other factors to exert diverse local and systemic effects. These secreted products, known as 'adipokines', contribute extensively to WAT's impact on physiology and disease. Adipocytes also exist in the bone marrow (BM), but unlike WAT, study of this bone marrow adipose tissue (MAT) has been relatively limited. We recently discovered that MAT contributes to circulating adiponectin, an adipokine that mediates cardiometabolic benefits. Moreover, we found that MAT expansion exerts systemic effects. Together, these observations identify MAT as an endocrine organ. Additional studies are revealing further secretory functions of MAT, including production of other adipokines, cytokines and lipids that exert local effects within bone. These observations suggest that, like WAT, MAT has secretory functions with diverse potential effects, both locally and systemically. A major limitation is that these findings are often based on in vitro approaches that may not faithfully recapitulate the characteristics and functions of BM adipocytes in vivo. This underscores the need to develop improved methods for in vivo analysis of MAT function, including more robust transgenic models for MAT targeting, and continued development of techniques for non-invasive analysis of MAT quantity and quality in humans. Although many aspects of MAT formation and function remain poorly understood, MAT is now attracting increasing research focus; hence, there is much promise for further advances in our understanding of MAT as an endocrine organ, and how MAT impacts human health and disease.
Collapse
|
69
|
Shu L, Hoo RLC, Wu X, Pan Y, Lee IPC, Cheong LY, Bornstein SR, Rong X, Guo J, Xu A. A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes. Nat Commun 2017; 8:14147. [PMID: 28128199 PMCID: PMC5290165 DOI: 10.1038/ncomms14147] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
The adipokine adipocyte fatty acid-binding protein (A-FABP) has been implicated in obesity-related cardio-metabolic complications. Here we show that A-FABP increases thermogenesis by promoting the conversion of T4 to T3 in brown adipocytes. We find that A-FABP levels are increased in both white (WAT) and brown (BAT) adipose tissues and the bloodstream in response to thermogenic stimuli. A-FABP knockout mice have reduced thermogenesis and whole-body energy expenditure after cold stress or after feeding a high-fat diet, which can be reversed by infusion of recombinant A-FABP. Mechanistically, A-FABP induces the expression of type-II iodothyronine deiodinase in BAT via inhibition of the nuclear receptor liver X receptor α, thereby leading to the conversion of thyroid hormone from its inactive form T4 to active T3. The thermogenic responses to T4 are abrogated in A-FABP KO mice, but enhanced by A-FABP. Thus, A-FABP acts as a physiological stimulator of BAT-mediated adaptive thermogenesis.
Collapse
Affiliation(s)
- Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ruby L. C. Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ida P. C. Lee
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Xianglu Rong
- Joint Laboratory of Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, 510000 Guangzhou, China
| | - Jiao Guo
- Joint Laboratory of Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, 510000 Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
70
|
Yamamoto T, Furuhashi M, Sugaya T, Oikawa T, Matsumoto M, Funahashi Y, Matsukawa Y, Gotoh M, Miura T. Transcriptome and Metabolome Analyses in Exogenous FABP4- and FABP5-Treated Adipose-Derived Stem Cells. PLoS One 2016; 11:e0167825. [PMID: 27936164 PMCID: PMC5148007 DOI: 10.1371/journal.pone.0167825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Adipose-derived stem cells (ADSC), which exist near adipocytes in adipose tissue, have been used as a potential tool of regenerative medicine. Lipid chaperones, fatty acid-binding protein 4 (FABP4) and 5 (FABP5), are abundantly expressed in adipocytes. FABP4 has recently been shown to be secreted from adipocytes during lipolysis in a non-classical pathway and may act as an adipokine. Here, we investigated the role of exogenous FABP4 and FABP5 in transcriptional and metabolic regulation in ADSC. FABP4 and FABP5 were little expressed in ADSC. However, both FABP4 and FABP5 were significantly induced after adipocyte differentiation of ADSC and were secreted from the differentiated adipocytes. Analysis of microarray data, including gene ontology enrichment analysis and cascade analysis of the protein-protein interaction network using a transcription factor binding site search, demonstrated that treatment of ADSC with FABP4 or FABP5 affected several kinds of genes related to inflammatory and metabolic responses and the process of cell differentiation. Notably, myogenic factors, including myocyte enhancer factors, myogenic differentiation 1 and myogenin, were modulated by treatment of ADSC with FABP4, indicating that exogenous FABP4 treatment is partially associated with myogenesis in ADSC. Metabolome analysis showed that treatment of ADSC with FABP4 and with FABP5 similarly, but differently in extent, promoted hydrolysis and/or uptake of lipids, consequentially together with enhancement of β oxidation, inhibition of downstream of the glycolysis pathway, accumulation of amino acids, reduction of nucleic acid components and increase in the ratio of reduced and oxidized nicotinamide adenine dinucleotide phosphates (NADPH/NADP+), an indicator of reducing power, and the ratio of adenosine triphosphate and adenosine monophosphate (ATP/AMP), an indicator of the energy state, in ADSC. In conclusion, secreted FABP4 and FABP5 from adipocytes as adipokines differentially affect transcriptional and metabolic regulation in ADSC near adipocytes. The adiposity condition in the host of regenerative medicine may affect characteristics of ADSC by exposure of the balance of FABP4 and FABP5.
Collapse
Affiliation(s)
- Tokunori Yamamoto
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | - Takeshi Sugaya
- Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
- CIMIC Co., Ltd; Mass Building Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Oikawa
- CIMIC Co., Ltd; Mass Building Yushima, Bunkyo-ku, Tokyo, Japan
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | - Yasuhito Funahashi
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| |
Collapse
|
71
|
Yan F, Shen N, Pang JX, Zhang YW, Rao EY, Bode AM, Al-Kali A, Zhang DE, Litzow MR, Li B, Liu SJ. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia 2016; 31:1434-1442. [PMID: 27885273 PMCID: PMC5457366 DOI: 10.1038/leu.2016.349] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Abstract
Obesity is becoming more prevalent worldwide and is a major risk factor for cancer development. Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a frequently fatal disease. Here we investigated the molecular mechanisms by which obesity favors AML growth and uncovered the fatty acid-binding protein 4 (FABP4) and DNA methyltransferase 1 (DNMT1) regulatory axis that mediates aggressive AML in obesity. We showed that leukemia burden was much higher in high-fat diet-induced obese mice, which had higher levels of FABP4 and interleukin (IL)-6 in the sera. Upregulation of environmental and cellular FABP4 accelerated AML cell growth in both a cell-autonomous and cell-non-autonomous manner. Genetic disruption of FABP4 in AML cells or in mice blocked cell proliferation in vitro and induced leukemia regression in vivo. Mechanistic investigations showed that FABP4 upregulation increased IL-6 expression and signal transducer and activator of transcription factor 3 phosphorylation leading to DNMT1 overexpression and further silencing of the p15INK4B tumor-suppressor gene in AML cells. Conversely, FABP4 ablation reduced DNMT1-dependent DNA methylation and restored p15INK4B expression, thus conferring substantial protection against AML growth. Our findings reveal the FABP4/DNMT1 axis in the control of AML cell fate in obesity and suggest that interference with the FABP4/DNMT1 axis might be a new strategy to treat leukemia.
Collapse
Affiliation(s)
- F Yan
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - N Shen
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - J X Pang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Y W Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - E Y Rao
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - A M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - A Al-Kali
- Hematology Division, Mayo Clinic, Rochester, MN, USA
| | - D E Zhang
- Department of Pathology, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA.,Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - M R Litzow
- Hematology Division, Mayo Clinic, Rochester, MN, USA
| | - B Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - S J Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
72
|
Adipose-specific inactivation of JNK alleviates atherosclerosis in apoE-deficient mice. Clin Sci (Lond) 2016; 130:2087-2100. [DOI: 10.1042/cs20160465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/10/2016] [Indexed: 02/05/2023]
Abstract
Both atherosclerosis and obesity, an independent atherosclerotic risk factor, are associated with enhanced systemic inflammation. Obesity is also characterized by increased adipose tissue inflammation. However, the molecular mechanism underlying the accelerated atherosclerosis in obesity remains unclear. In obesity, activation of c-Jun N-terminal kinase (JNK) contributes to adipose tissue inflammation. The present study investigated whether the suppression of fat inflammation through adipose-specific JNK inactivation could protect against atherosclerosis in mice. ApoE−/− mice were cross-bred with transgenic mice with adipose-specific expression of a dominant negative form of JNK (dnJNK) to generate apoE−/−/dnJNK (ADJ) mice. ADJ mice treated with a high-fat–high-cholesterol diet exhibited significant attenuations of visceral fat and systemic inflammation without changes in lipid or glucose metabolism, and were protected against atherosclerosis, when compared with apoE−/− mice. Lean apoE−/− mice that received transplantation of visceral fat from obese wild-type donor mice for 4 weeks showed exacerbated systemic inflammation and atherosclerotic plaque formation. Conversely, apoE−/− recipients carrying a visceral fat graft from obese dnJNK donors were protected against enhanced systemic inflammation and atherogenesis. The beneficial effects of adipose-specific JNK inactivation on atherogenesis in apoE−/− recipients were significantly compromised by continuous infusion of recombinant adipocyte–fatty acid-binding protein (A-FABP), previously shown to interact with JNK via a positive feedback loop to modulate inflammatory responses. Together these data suggested that enhanced atherosclerosis in obesity can be attributed, at least in part, to a distant cross-talk between visceral fat and the vasculature, mediated by the release of proinflammatory cytokines, such as A-FABP, from the inflamed visceral adipose tissue with JNK activation.
Collapse
|
73
|
Minatel IO, Francisqueti FV, Corrêa CR, Lima GPP. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions. Int J Mol Sci 2016; 17:E1107. [PMID: 27517904 PMCID: PMC5000585 DOI: 10.3390/ijms17081107] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022] Open
Abstract
γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.
Collapse
Affiliation(s)
- Igor Otavio Minatel
- Department of Chemistry and Biochemistry, Institute of Bioscience, Sao Paulo State University, Botucatu 18618-689, Brazil.
| | | | - Camila Renata Corrêa
- Department of Pathology, Botucatu Medical School, Sao Paulo State University, Botucatu 18618-970, Brazil.
| | - Giuseppina Pace Pereira Lima
- Department of Chemistry and Biochemistry, Institute of Bioscience, Sao Paulo State University, Botucatu 18618-689, Brazil.
| |
Collapse
|
74
|
Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 2016; 57:2099-2114. [PMID: 27330055 DOI: 10.1194/jlr.r066514] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Lipids encompass a wide variety of molecules such as fatty acids, sterols, phospholipids, and triglycerides. These molecules represent a highly efficient energy resource and can act as structural elements of membranes or as signaling molecules that regulate metabolic homeostasis through many mechanisms. Cells possess an integrated set of response systems to adapt to stresses such as those imposed by nutrient fluctuations during feeding-fasting cycles. While lipids are pivotal for these homeostatic processes, they can also contribute to detrimental metabolic outcomes. When metabolic stress becomes chronic and adaptive mechanisms are overwhelmed, as occurs during prolonged nutrient excess or obesity, lipid influx can exceed the adipose tissue storage capacity and result in accumulation of harmful lipid species at ectopic sites such as liver and muscle. As lipid metabolism and immune responses are highly integrated, accumulation of harmful lipids or generation of signaling intermediates can interfere with immune regulation in multiple tissues, causing a vicious cycle of immune-metabolic dysregulation. In this review, we summarize the role of lipotoxicity in metaflammation at the molecular and tissue level, describe the significance of anti-inflammatory lipids in metabolic homeostasis, and discuss the potential of therapeutic approaches targeting pathways at the intersection of lipid metabolism and immune function.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| |
Collapse
|
75
|
Guaita-Esteruelas S, Bosquet A, Saavedra P, Gumà J, Girona J, Lam EWF, Amillano K, Borràs J, Masana L. Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins. Mol Carcinog 2016; 56:208-217. [PMID: 27061264 DOI: 10.1002/mc.22485] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 11/11/2022]
Abstract
Adipose tissue plays an important role in tumor progression, because it provides nutrients and adipokines to proliferating cells. Fatty acid binding protein 4 (FABP4) is a key adipokine for fatty acid transport. In metabolic pathologies, plasma levels of FABP4 are increased. However, the role of this circulating protein is unknown. Recent studies have demonstrated that FABP4 might have a role in tumor progression, but the molecular mechanisms involved are still unclear. In this study, we analysed the role of eFABP4 (exogenous FABP4) in breast cancer progression. MCF-7 and MDA-MB-231 breast cancer cells did not express substantial levels of FABP4 protein, but intracellular FABP4 levels increased after eFABP4 incubation. Moreover, eFABP4 enhanced the proliferation of these breast cancer cells but did not have any effect on MCF-7 and MDA-MB-231 cell migration. Additionally, eFABP4 induced the AKT and MAPK signaling cascades in breast cancer cells, and the inhibition of these pathways reduced the eFBAP4-mediated cell proliferation. Interestingly, eFABP4 treatment in MCF-7 cells increased levels of the transcription factor FoxM1 and the fatty acid transport proteins CD36 and FABP5. In summary, we showed that eFABP4 plays a key role in tumor proliferation and activates the expression of fatty acid transport proteins in MCF-7 breast cancer cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra Guaita-Esteruelas
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Centre d'R+D+I en Nutrició i Salut. Avda. de la Universitat, Reus, Spain.,Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, carrer Sant Llorenç, Reus, Spain.,Oncology Research Group, "Sant Joan" University Hospital, Oncology Institute of Southern Catalonia (IOCS), Av. del Dr. Josep Laporte, Reus, Spain
| | - Alba Bosquet
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Centre d'R+D+I en Nutrició i Salut. Avda. de la Universitat, Reus, Spain.,Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, carrer Sant Llorenç, Reus, Spain
| | - Paula Saavedra
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, carrer Sant Llorenç, Reus, Spain
| | - Josep Gumà
- Oncology Research Group, "Sant Joan" University Hospital, Oncology Institute of Southern Catalonia (IOCS), Av. del Dr. Josep Laporte, Reus, Spain
| | - Josefa Girona
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, carrer Sant Llorenç, Reus, Spain
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, London W12 0NN, United Kingdom
| | - Kepa Amillano
- Oncology Research Group, "Sant Joan" University Hospital, Oncology Institute of Southern Catalonia (IOCS), Av. del Dr. Josep Laporte, Reus, Spain
| | - Joan Borràs
- Oncology Research Group, "Sant Joan" University Hospital, Oncology Institute of Southern Catalonia (IOCS), Av. del Dr. Josep Laporte, Reus, Spain
| | - Lluís Masana
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, carrer Sant Llorenç, Reus, Spain
| |
Collapse
|
76
|
Cabia B, Andrade S, Carreira MC, Casanueva FF, Crujeiras AB. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes Rev 2016; 17:361-76. [PMID: 26914773 DOI: 10.1111/obr.12377] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Obesity, a pandemic disease, is caused by an excessive accumulation of fat that can have detrimental effects on health. Adipose tissue plays a very important endocrine role, secreting different molecules that affect body physiology. In obesity, this function is altered, leading to a dysfunctional production of several factors, known as adipocytokines. This process has been linked to various comorbidities associated with obesity, such as carcinogenesis. In fact, several classical adipocytokines with increased levels in obesity have been demonstrated to exert a pro-carcinogenic role, including leptin, TNF-α, IL-6 and resistin, whereas others like adiponectin, with decreased levels in obesity, might have an anti-carcinogenic function. In this expanding field, new proteomic techniques and approaches have allowed the identification of novel adipocytokines, a number of which exhibit an altered production in obesity and type 2 diabetes and thus are related to adiposity. Many of these novel adipocytokines have also been identified in various tumour types, such as that of the breast, liver or endometrium, thereby increasing the list of potential contributors to carcinogenesis. This review is focused on the regulation of these novel adipocytokines by obesity, including apelin, endotrophin, FABP4, lipocalin 2, omentin-1, visfatin, chemerin, ANGPTL2 or osteopontin, emphasizing its involvement in tumorigenesis.
Collapse
Affiliation(s)
- B Cabia
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - S Andrade
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - M C Carreira
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - F F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - A B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
77
|
Furuhashi M, Fuseya T, Murata M, Hoshina K, Ishimura S, Mita T, Watanabe Y, Omori A, Matsumoto M, Sugaya T, Oikawa T, Nishida J, Kokubu N, Tanaka M, Moniwa N, Yoshida H, Sawada N, Shimamoto K, Miura T. Local Production of Fatty Acid-Binding Protein 4 in Epicardial/Perivascular Fat and Macrophages Is Linked to Coronary Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:825-34. [PMID: 27013610 DOI: 10.1161/atvbaha.116.307225] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/14/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Fatty acid-binding protein 4 (FABP4) is expressed in adipocytes and macrophages, and elevated circulating FABP4 level is associated with obesity-mediated metabolic phenotype. We systematically investigated roles of FABP4 in the development of coronary artery atherosclerosis. APPROACH AND RESULTS First, by immunohistochemical analyses, we found that FABP4 was expressed in macrophages within coronary atherosclerotic plaques and epicardial/perivascular fat in autopsy cases and macrophages within thrombi covering ruptured coronary plaques in thrombectomy samples from patients with acute myocardial infarction. Second, we confirmed that FABP4 was secreted from macrophages and adipocytes cultured in vitro. Third, we investigated the effect of exogenous FABP4 on macrophages and human coronary artery-derived smooth muscle cells and endothelial cells in vitro. Treatment of the cells with recombinant FABP4 significantly increased gene expression of inflammatory markers in a dose-dependent manner. Finally, we measured serum FABP4 level in the aortic root (Ao-FABP4) and coronary sinus (CS-FABP4) of 34 patients with suspected or known coronary artery disease. Coronary stenosis score assessed by the modified Gensini score was weakly correlated with CS-FABP4 but was not correlated with Ao-FABP4. A stronger correlation (r=0.59, P<0.01) was observed for the relationship between coronary stenosis score and coronary veno-arterial difference in FABP4 level, (CS-Ao)-FABP4, indicating local production of FABP4 during coronary circulation in the heart. Multivariate analysis indicated that (CS-Ao)-FABP4 was an independent predictor of the severity of coronary stenosis after adjustment of conventional risk factors. CONCLUSIONS FABP4 locally produced by epicardial/perivascular fat and macrophages in vascular plaques contributes to the development of coronary atherosclerosis.
Collapse
Affiliation(s)
- Masato Furuhashi
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.).
| | - Takahiro Fuseya
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Masaki Murata
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Kyoko Hoshina
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Shutaro Ishimura
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Tomohiro Mita
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Yuki Watanabe
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Akina Omori
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Megumi Matsumoto
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Takeshi Sugaya
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Tsuyoshi Oikawa
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Junichi Nishida
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Nobuaki Kokubu
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Marenao Tanaka
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Norihito Moniwa
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Hideaki Yoshida
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Norimasa Sawada
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Kazuaki Shimamoto
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| | - Tetsuji Miura
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine (M.F., T.F., K.H., S.I., T.M., Y.W., A.O., M.M., J.N., N.K., M.T., N.M., H.Y., T.M.) and Molecular and Cellular Pathology (M.M., N.S.), Sapporo Medical University School of Medicine, Sapporo, Japan; Sapporo Medical University, Chuo-ku, Sapporo, Japan (K.S.); Department of Cardiovascular Internal Medicine, Obihiro Kosei Hospital, Obihiro, Japan (S.I., T.M.); Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan (T.S.); and CIMIC Co, Ltd, Yushima, Bunkyo-ku, Tokyo, Japan (T.S., T.O.)
| |
Collapse
|
78
|
Canas JA, Damaso L, Hossain J, Balagopal PB. Fatty acid binding proteins 4 and 5 in overweight prepubertal boys: effect of nutritional counselling and supplementation with an encapsulated fruit and vegetable juice concentrate. J Nutr Sci 2015; 4:e39. [PMID: 26688725 PMCID: PMC4678767 DOI: 10.1017/jns.2015.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Elevated fatty acid binding proteins (FABP) may play a role in obesity and co-morbidities. The role of nutritional interventions in modulating these levels remains unclear. The aim of this post hoc study was to determine the effect of overweight (OW) on FABP4 and FABP5 in boys in relation to indices of adiposity, insulin resistance and inflammation, and to investigate the effects of a 6-month supplementation with an encapsulated fruit and vegetable juice concentrate (FVJC) plus nutritional counselling (NC) on FABP levels. A post hoc analysis of a double-blind, randomised, placebo-controlled study of children recruited from the general paediatric population was performed. A total of thirty age-matched prepubertal boys (nine lean and twenty-one OW; aged 6-10 years) were studied. Patients received NC by a registered dietitian and were randomised to FVJC or placebo capsules for 6 months. FABP4, FABP5, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), glucose-induced acute insulin response (AIR), lipid-corrected β-carotene (LCβC), adiponectin, leptin, high-sensitivity C-reactive protein (hs-CRP), IL-6 and body composition by dual-energy X-ray absorptiometry were determined before and after the intervention. FABP were higher (P < 0·01) in the OW v. lean boys and correlated directly with HOMA-IR, abdominal fat mass (AFM), hs-CRP, IL-6, and LCβC (P < 0·05 for all). FABP4 was associated with adiponectin and AIR (P < 0·05). FVJC plus NC reduced FABP4, HOMA-IR and AFM (P < 0·05 for all) but not FABP5. OW boys showed elevated FABP4 and FABP5, but only FABP4 was lowered by the FVJC supplement.
Collapse
Affiliation(s)
- Jose A. Canas
- Pediatric Endocrinology and Metabolism, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - L. Damaso
- Pediatric Endocrinology and Metabolism, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - J. Hossain
- Bioinformatics Core Facility, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - P. Babu Balagopal
- Biomedical Research, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| |
Collapse
|
79
|
Abstract
Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
80
|
Moore WT, Bowser SM, Fausnacht DW, Staley LL, Suh KS, Liu D. Beta Cell Function and the Nutritional State: Dietary Factors that Influence Insulin Secretion. Curr Diab Rep 2015; 15:76. [PMID: 26294335 DOI: 10.1007/s11892-015-0650-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 366 million people worldwide have been diagnosed with type-2 diabetes (T2D). Chronic insulin resistance, decreased functional β-cell mass, and elevated blood glucose are defining characteristics of T2D. Great advances have been made in understanding the pathogenesis of T2D with respect to the effects of dietary macronutrient composition and energy intake on β-cell physiology and glucose homeostasis. It has been further established that obesity is a leading pathogenic factor for developing insulin resistance. However, insulin resistance may not progress to T2D unless β-cells are unable to secret an adequate amount of insulin to compensate for decreased insulin sensitivity. Therefore, pancreatic β-cell dysfunction plays an important role in the development of overt diabetes. This paper reviews recent research findings on the effects of several micronutrients (zinc, vitamin D, iron, vitamin A), leucine, and the phytochemical, genistein on pancreatic β-cell physiology with emphasis on their effects on insulin secretion, specifically in the context of T2D.
Collapse
Affiliation(s)
- William T Moore
- Department of Human Nutrition, Foods and Exercises, College of Agricultural and Life Sciences, Virginia Tech Corporate Research Center, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | | | | | | | | | | |
Collapse
|
81
|
Wu LE, Fazakerley DJ, Cantley J. Circulating AFABP promotes insulin secretion. Obesity (Silver Spring) 2015; 23:1525. [PMID: 26147140 DOI: 10.1002/oby.21175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Lindsay E Wu
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Daniel J Fazakerley
- The Charles Perkins Centre, School of Molecular Biosciences, University of Sydney, Australia
| | - James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
82
|
Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans. Genetics 2015; 200:167-84. [PMID: 25762526 DOI: 10.1534/genetics.115.174631] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases.
Collapse
|
83
|
Abstract
n-3 polyunsaturated fatty acids (PUFAs) are a subgroup of fatty acids with broad health benefits, such as lowering blood triglycerides and decreasing the risk of some types of cancer. A beneficial effect of n-3 PUFAs in diabetes is indicated by results from some studies. Defective insulin secretion is a fundamental pathophysiological change in both types 1 and 2 diabetes. Emerging studies have provided evidence of a connection between n-3 PUFAs and improved insulin secretion from pancreatic β-cells. This review summarizes the recent findings in this regard and discusses the potential mechanisms by which n-3 PUFAs influence insulin secretion from pancreatic β-cells.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Catherine B Chan
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| |
Collapse
|
84
|
Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 8:23-33. [PMID: 25674026 PMCID: PMC4315049 DOI: 10.4137/cmc.s17067] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeyuki Saitoh
- Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
85
|
Ertunc ME, Sikkeland J, Fenaroli F, Griffiths G, Daniels MP, Cao H, Saatcioglu F, Hotamisligil GS. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J Lipid Res 2014; 56:423-34. [PMID: 25535287 DOI: 10.1194/jlr.m055798] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, fatty liver disease, asthma, and cancer. Although the biological functions of aP2 have classically been attributed to its intracellular action, recent studies demonstrated that aP2 acts as an adipokine to regulate systemic metabolism. However, the mechanism and regulation of aP2 secretion remain unknown. Here, we demonstrate a specific role for lipase activity in aP2 secretion from adipocytes in vitro and ex vivo. Our results show that chemical inhibition of lipase activity, genetic deficiency of adipose triglyceride lipase and, to a lesser extent, hormone-sensitive lipase blocked aP2 secretion from adipocytes. Increased lipolysis and lipid availability also contributed to aP2 release as determined in perilipin1-deficient adipose tissue explants ex vivo and upon treatment with lipids in vivo and in vitro. In addition, we identify a nonclassical route for aP2 secretion in exosome-like vesicles and show that aP2 is recruited to this pathway upon stimulation of lipolysis. Given the effect of circulating aP2 on glucose metabolism, these data support that targeting aP2 or the lipolysis-dependent secretory pathway may present novel mechanistic and translational opportunities in metabolic disease.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases Harvard School of Public Health, Boston, MA Sabri Ülker Center, Harvard School of Public Health, Boston, MA
| | - Jørgen Sikkeland
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Federico Fenaroli
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Gareth Griffiths
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Mathew P Daniels
- University of Oslo, Oslo, Norway; and National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Haiming Cao
- University of Oslo, Oslo, Norway; and National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Fahri Saatcioglu
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases Harvard School of Public Health, Boston, MA Sabri Ülker Center, Harvard School of Public Health, Boston, MA
| |
Collapse
|
86
|
Azimifar SB, Nagaraj N, Cox J, Mann M. Cell-type-resolved quantitative proteomics of murine liver. Cell Metab 2014; 20:1076-87. [PMID: 25470552 DOI: 10.1016/j.cmet.2014.11.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Mass spectrometry (MS)-based proteomics provides a powerful approach to globally investigate the biological function of individual cell types in mammalian organs. Here, we applied this technology to the in-depth analysis of purified hepatic cell types from mouse. We quantified 11,520 proteins, making this the most comprehensive proteomic resource of any organ to date. Global protein copy number determination demonstrated that a large proportion of the hepatocyte proteome is dedicated to fatty acid and xenobiotic metabolism. We identified as-yet-unknown components of the TGF-β signaling pathway and extracellular matrix in hepatic stellate cells, uncovering their regulative role in liver physiology. Moreover, our high-resolution proteomic data set enabled us to compare the distinct functional roles of hepatic cell types in cholesterol flux, cellular trafficking, and growth factor receptor signaling. This study provides a comprehensive resource for liver biology and biomedicine.
Collapse
Affiliation(s)
- S Babak Azimifar
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Juergen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
87
|
Aigner E, Feldman A, Datz C. Obesity as an emerging risk factor for iron deficiency. Nutrients 2014; 6:3587-600. [PMID: 25215659 PMCID: PMC4179177 DOI: 10.3390/nu6093587] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022] Open
Abstract
Iron homeostasis is affected by obesity and obesity-related insulin resistance in a many-facetted fashion. On one hand, iron deficiency and anemia are frequent findings in subjects with progressed stages of obesity. This phenomenon has been well studied in obese adolescents, women and subjects undergoing bariatric surgery. On the other hand, hyperferritinemia with normal or mildly elevated transferrin saturation is observed in approximately one-third of patients with metabolic syndrome (MetS) or nonalcoholic fatty liver disease (NAFLD). This constellation has been named the “dysmetabolic iron overload syndrome (DIOS)”. Both elevated body iron stores and iron deficiency are detrimental to health and to the course of obesity-related conditions. Iron deficiency and anemia may impair mitochondrial and cellular energy homeostasis and further increase inactivity and fatigue of obese subjects. Obesity-associated inflammation is tightly linked to iron deficiency and involves impaired duodenal iron absorption associated with low expression of duodenal ferroportin (FPN) along with elevated hepcidin concentrations. This review summarizes the current understanding of the dysregulation of iron homeostasis in obesity.
Collapse
Affiliation(s)
- Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Alexandra Feldman
- First Department of Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Christian Datz
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria.
| |
Collapse
|
88
|
Cantley J. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis. Mamm Genome 2014; 25:442-54. [PMID: 25146550 DOI: 10.1007/s00335-014-9538-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/21/2014] [Indexed: 12/23/2022]
Abstract
Metabolic homeostasis is maintained by the coordinated action of multiple organ systems. Insulin secretion is often enhanced during obesity or insulin resistance to maintain glucose and lipid homeostasis, whereas a loss of insulin secretion is associated with type 2 diabetes. Adipocytes secrete hormones known as adipokines which act on multiple cell types to regulate metabolism. Many adipokines have been shown to influence beta cell function by enhancing or inhibiting insulin release or by influencing beta cell survival. Insulin, in turn, regulates lipolysis and promotes glucose uptake and lipid storage in adipocytes. As adipokine secretion and action is strongly influenced by obesity, this provides a potential route by which beta cell function is coordinated with adiposity, independently of alterations in blood glucose or lipid levels. In this review, I assess the evidence for the direct regulation of beta cell function by the adipokines leptin, adiponectin, extracellular nicotinamide phosphoribosyltransferase, apelin, resistin, retinol binding protein 4, fibroblast growth factor 21, nesfatin-1 and fatty acid binding protein 4. I summarise in vitro and in vivo data and discuss the influence of obesity and diabetes on circulating adipokine concentrations, along with the potential for influencing beta cell function in human physiology. Finally, I highlight future research questions that are likely to yield new insights into the exciting field of insulinotropic adipokines.
Collapse
Affiliation(s)
- James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK,
| |
Collapse
|
89
|
|