51
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
52
|
Jarmasz JS, Stirton H, Davie JR, Del Bigio MR. DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clin Epigenetics 2019; 11:5. [PMID: 30635019 PMCID: PMC6330433 DOI: 10.1186/s13148-018-0596-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Epigenetic (including DNA and histone) modifications occur in a variety of neurological disorders. If epigenetic features of brain autopsy material are to be studied, it is critical to understand the post-mortem stability of the modifications. Methods Pig and mouse brain tissue were formalin-fixed and paraffin-embedded, or frozen after post-mortem delays of 0, 24, 48, and 72 h. Epigenetic modifications frequently reported in the literature were studied by DNA agarose gel electrophoresis, DNA methylation enzyme-linked immunosorbent assays, Western blotting, and immunohistochemistry. We constructed a tissue microarray of human neocortex samples with devitalization or death to fixation times ranging from < 60 min to 5 days. Results In pig and mouse brain tissue, we found that DNA cytosine modifications (5mC, 5hmC, 5fC, and 5caC) were stable for ≥ 72 h post-mortem. Histone methylation was generally stable for ≥ 48 h (H3K9me2/K9me3, H3K27me2, H3K36me3) or ≥ 72 h post-mortem (H3K4me3, H3K27me3). Histone acetylation was generally less stable. The levels of H3K9ac, H3K27ac, H4K5ac, H4K12ac, and H4K16ac declined as early as ≤ 24 h post-mortem, while the levels of H3K14ac did not change at ≥ 48 h. Immunohistochemistry showed that histone acetylation loss occurred primarily in the nuclei of large neurons, while immunoreactivity in glial cell nuclei was relatively unchanged. In the human brain tissue array, immunoreactivity for DNA cytosine modifications and histone methylation was stable, while subtle changes were apparent in histone acetylation at 4 to 5 days post-mortem. Conclusion We conclude that global epigenetic studies on human post-mortem brain tissue are feasible, but great caution is needed for selection of post-mortem delay matched controls if histone acetylation is of interest. Electronic supplementary material The online version of this article (10.1186/s13148-018-0596-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Room 674 JBRC - 727 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Hannah Stirton
- Max Rady College of Medicine, University of Manitoba, Room 260 Brodie Centre - 727 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Room 333A BMSB, 745 McDermot Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Room 401 Brodie Centre - 727 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| |
Collapse
|
53
|
Luo W, Wang Y. Hypoxia Mediates Tumor Malignancy and Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:1-18. [PMID: 31201713 DOI: 10.1007/978-3-030-12734-3_1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of the tumor microenvironment and contributes to tumor malignant phenotypes. Hypoxia-inducible factor (HIF) is a master regulator of intratumoral hypoxia and controls hypoxia-mediated pathological processes in tumors, including angiogenesis, metabolic reprogramming, epigenetic reprogramming, immune evasion, pH homeostasis, cell migration/invasion, stem cell pluripotency, and therapy resistance. In this book chapter, we reviewed the causes and types of intratumoral hypoxia, hypoxia detection methods, and the oncogenic role of HIF in tumorigenesis and chemo- and radio-therapy resistance.
Collapse
Affiliation(s)
- Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
54
|
Hepp P, Hutter S, Knabl J, Hofmann S, Kuhn C, Mahner S, Jeschke U. Histone H3 lysine 9 acetylation is downregulated in GDM Placentas and Calcitriol supplementation enhanced this effect. Int J Mol Sci 2018; 19:ijms19124061. [PMID: 30558244 PMCID: PMC6321349 DOI: 10.3390/ijms19124061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-rising incidence of Gestational Diabetes Mellitus (GDM) and its implications for long-term health of mothers and offspring, the underlying molecular mechanisms remain to be elucidated. To contribute to this, the present study's objectives are to conduct a sex-specific analysis of active histone modifications in placentas affected by GDM and to investigate the effect of calcitriol on trophoblast cell's transcriptional status. The expression of Histone H3 lysine 9 acetylation (H3K9ac) and Histone H3 lysine 4 trimethylation (H3K4me3) was evaluated in 40 control and 40 GDM (20 male and 20 female each) placentas using immunohistochemistry and immunofluorescence. The choriocarcinoma cell line BeWo and primary human villous trophoblast cells were treated with calcitriol (48 h). Thereafter, western blots were used to quantify concentrations of H3K9ac and the transcription factor FOXO1. H3K9ac expression was downregulated in GDM placentas, while H3K4me3 expression was not significantly different. Cell culture experiments showed a slight downregulation of H3K9ac after calcitriol stimulation at the highest concentration. FOXO1 expression showed a dose-dependent increase. Our data supports previous research suggesting that epigenetic dysregulations play a key role in gestational diabetes mellitus. Insufficient transcriptional activity may be part of its pathophysiology and this cannot be rescued by calcitriol.
Collapse
Affiliation(s)
- Paula Hepp
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Stefan Hutter
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
- Department of Obstetrics, Klinik Hallerwiese, 90419 Nürnberg, Germany.
| | - Simone Hofmann
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Christina Kuhn
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Sven Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| |
Collapse
|
55
|
Desmettre T. [Epigenetics in age-related macular degeneration (AMD) - French translation of the article]. J Fr Ophtalmol 2018; 41:981-990. [PMID: 30454959 DOI: 10.1016/j.jfo.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial condition involving multiple genetic, environmental and constitutional factors. Inflammation, oxidative stress and lipid metabolism seem to be the most important factors in the pathogenesis of the disease. The importance of genetic factors has mainly been revealed with the influence of histocompatibility complement factor H (CFH) variations and the ARSM2 susceptibility gene. Another component, epigenetics, could help to explain some of the relationships between environmental and genetic factors. Epigenetics is defined as the study of modulations of gene activity that can be transmitted over cell divisions without involving mutation of the DNA sequence. The molecules that are involved in these mechanisms are referred to as the epigenome. The mechanisms involve DNA methylation, histone modification, chromatin remodeling, and gene inhibition by non-coding RNA. Epigenetics could explain how the environment may induce relatively stable changes in traits or even diseases, possibly inheritable over several generations. Epigenetic traits established during development, and/or acquired under the influence of nutritional factors or other environmental factors, could influence the interactions between genes and the environment. Several authors have recently shown the influence of epigenetic factors in the pathogenesis of ocular diseases such as cataract, dry eye, glaucoma, diabetic retinopathy and more recently AMD. A better understanding of the involvement of genetic variants at risk, their relationship with epigenetics and environmental factors would certainly help to better assess the risk of developing AMD or better understand recent changes in the incidence of the disease.
Collapse
Affiliation(s)
- T Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France; London International Medical Centre, 18-22 Queen Anne Street, London, W1G 8HU, Royaume-Uni.
| |
Collapse
|
56
|
Desmettre TJ. Epigenetics in Age-related Macular Degeneration (AMD). J Fr Ophtalmol 2018; 41:e407-e415. [PMID: 30458925 DOI: 10.1016/j.jfo.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023]
Abstract
Age-related Macular Degeneration (AMD) is a complex multifactorial condition involving multiple genetic, environmental and constitutional factors. Inflammation, oxidative stress and lipid metabolism seem to be the most important factors in the pathogenesis of the disease. The importance of genetic factors has mainly been revealed with the influence of histocompatibility complement factor H (CFH) variations and the ARSM2 susceptibility gene. Another component, epigenetics, could help to explain some of the relationships between environmental and genetic factors. Epigenetics is defined as the study of modulations of gene activity that can be transmitted over cell divisions without involving mutation of the DNA sequence. The molecules that are involved in these mechanisms are referred to as the epigenome. The mechanisms involve DNA methylation, histone modification, chromatin remodeling, and gene inhibition by non-coding RNA. Epigenetics could explain how the environment may induce relatively stable changes in traits or even diseases, possibly inheritable over several generations. Epigenetic traits established during development, and/or acquired under the influence of nutritional factors or other environmental factors, could influence the interactions between genes and the environment. Several authors have recently shown the influence of epigenetic factors in the pathogenesis of ocular diseases such as cataract, dry eye, glaucoma, diabetic retinopathy and more recently AMD. A better understanding of the involvement of genetic variants at risk, their relationship with epigenetics and environmental factors would certainly help to better assess the risk of developing AMD or better understand recent changes in the incidence of the disease.
Collapse
Affiliation(s)
- T J Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France; London International Medical Centre, 18-22 Queen Anne Street, London, W1G 8HU, United Kingdom.
| |
Collapse
|
57
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Jerónimo C. Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets. Front Genet 2018; 9:427. [PMID: 30356832 PMCID: PMC6190739 DOI: 10.3389/fgene.2018.00427] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Alterations in the epigenome and metabolism affect molecular rewiring of cancer cells facilitating cancer development and progression. Modulation of histone and DNA modification enzymes occurs owing to metabolic reprogramming driven by oncogenes and expression of metabolism-associated genes is, in turn, epigenetically regulated, promoting the well-known metabolic reprogramming of cancer cells and, consequently, altering the metabolome. Thus, several malignant traits are supported by the interplay between metabolomics and epigenetics, promoting neoplastic transformation. In this review we emphasize the importance of tumour metabolites in the activity of most chromatin-modifying enzymes and implication in neoplastic transformation. Furthermore, candidate targets deriving from metabolism of cancer cells and altered epigenetic factors is emphasized, focusing on compounds that counteract the epigenomic-metabolic interplay in cancer.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
58
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
59
|
Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings. Mol Neurobiol 2018; 56:1749-1769. [PMID: 29926377 DOI: 10.1007/s12035-018-1141-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are the key gasotransmitters with an imperious role in the maintenance of cerebrovascular homeostasis. A decline in their levels contributes to endothelial dysfunction that portends ischemic stroke (IS) or cerebral ischemia/reperfusion (CI/R). Nevertheless, their exorbitant production during CI/R is associated with exacerbation of cerebrovascular injury in the post-stroke epoch. NO-producing nitric oxide synthases are implicated in IS pathology and their activity is regulated, inter alia, by various post-translational modifications and chromatin-based mechanisms. These account for heterogeneous alterations in NO production in a disease setting like IS. Interestingly, NO per se has been posited as an endogenous epigenetic modulator. Further, there is compelling evidence for an ingenious crosstalk between NO and H2S in effecting the canonical (direct) and non-canonical (off-target collateral) functions. In this regard, NO-mediated S-nitrosylation and H2S-mediated S-sulfhydration of specific reactive thiols in an expanding array of target proteins are the principal modalities mediating the all-pervasive influence of NO and H2S on cell fate in an ischemic brain. An integrated stress response subsuming unfolded protein response and autophagy to cellular stressors like endoplasmic reticulum stress, in part, is entrenched in such signaling modalities that substantiate the role of NO and H2S in priming the cells for stress response. The precis presented here provides a comprehension on the multifarious actions of NO and H2S and their epigenetic underpinnings, their crosstalk in maintenance of cerebrovascular homeostasis, and their "Janus bifrons" effect in IS milieu together with plausible therapeutic implications.
Collapse
|
60
|
Batie M, Del Peso L, Rocha S. Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms. Biomedicines 2018; 6:biomedicines6020047. [PMID: 29690561 PMCID: PMC6027312 DOI: 10.3390/biomedicines6020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Hypoxia or reduced oxygen availability has been studied extensively for its ability to activate specific genes. Hypoxia-induced gene expression is mediated by the HIF transcription factors, but not exclusively so. Despite the extensive knowledge about how hypoxia activates genes, much less is known about how hypoxia promotes gene repression. In this review, we discuss the potential mechanisms underlying hypoxia-induced transcriptional repression responses. We highlight HIF-dependent and independent mechanisms as well as the potential roles of dioxygenases with functions at the nucleosome and DNA level. Lastly, we discuss recent evidence regarding the involvement of transcriptional repressor complexes in hypoxia.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| | - Luis Del Peso
- Department of Biochemistry, Institute of Biomedical Research, Autonomous Madrid University, Arturo Duperier, 4. 28029 Madrid, Spain.
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| |
Collapse
|
61
|
Chen C, Lou T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget 2018; 8:46691-46703. [PMID: 28493839 PMCID: PMC5542303 DOI: 10.18632/oncotarget.17358] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most prevalent and lethal cancers with limited therapeutic options. Pathogenesis of this disease involves tumor hypoxia and the activation of hypoxia inducible factors. In this review, we describe the current understanding of hypoxia signaling pathway and summarize the expression, function and target genes of hypoxia inducible factors in hepatocellular carcinoma. We also highlight the recent progress in hypoxia-targeted therapeutic strategies in hepatocellular carcinoma and discuss further the future efforts for the study of hypoxia and/or hypoxia inducible factors in this deadly disease.
Collapse
Affiliation(s)
- Chu Chen
- Department of Internal Medicine, Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Tao Lou
- Department of Internal Medicine, Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, 322000, Zhejiang, China
| |
Collapse
|
62
|
Luo W, Wang Y. Epigenetic regulators: multifunctional proteins modulating hypoxia-inducible factor-α protein stability and activity. Cell Mol Life Sci 2018; 75:1043-1056. [PMID: 29032501 PMCID: PMC5984203 DOI: 10.1007/s00018-017-2684-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
The hypoxia-inducible factor (HIF) is a heterodimeric transcription factor governing a transcriptional program in response to reduced O2 availability in metazoans. It contributes to physiology and pathogenesis of many human diseases through its downstream target genes. Emerging studies have shown that the transcriptional activity of HIF is highly regulated at multiple levels and the epigenetic regulators are essential for HIF-mediated transactivation. In this review, we will discuss the comprehensive regulation of HIF transcriptional activity by different types of epigenetic regulators.
Collapse
Affiliation(s)
- Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Pharmacology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
63
|
Robinson CM, Lefebvre F, Poon BP, Bousard A, Fan X, Lathrop M, Tost J, Kim WY, Riazalhosseini Y, Ohh M. Consequences of VHL Loss on Global DNA Methylome. Sci Rep 2018; 8:3313. [PMID: 29463811 PMCID: PMC5820357 DOI: 10.1038/s41598-018-21524-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
In clear-cell renal cell carcinoma (ccRCC), loss of von Hippel-Lindau (VHL) tumour suppressor gene and reduced oxygen tension promote stabilisation of hypoxia-inducible factor (HIF) family of transcription factors, which promote changes in the expression of genes that contribute to oncogenesis. Multiple studies have demonstrated significant perturbations in DNA methylation in ccRCC via largely unclear mechanisms that modify the transcriptional output of tumour cells. Here, we show that the methylation status of the CpG dinucleotide within the consensus hypoxia-responsive element (HRE) markedly influences the binding of HIF and that the loss of VHL results in significant alterations in the DNA methylome. Surprisingly, hypoxia, which likewise promotes HIF stabilisation and activation, has relatively few effects on global DNA methylation. Gene expression analysis of ccRCC patient samples highlighted expression of a group of genes whose transcription correlated with methylation changes, including hypoxic responsive genes such as VEGF and TGF. These results suggest that the loss of VHL alters DNA methylation profile across the genome, commonly associated with and contributing to ccRCC progression.
Collapse
Affiliation(s)
- Claire M Robinson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics (C3G), 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Betty P Poon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada
| | - Aurelie Bousard
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Xiaojun Fan
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, 2 rue Gaston Crémieux, 91000, Evry, France
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, North Carolina, USA
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.
| |
Collapse
|
64
|
Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab 2018; 27:281-298. [PMID: 29129785 DOI: 10.1016/j.cmet.2017.10.005] [Citation(s) in RCA: 568] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF), a central regulator for detecting and adapting to cellular oxygen levels, transcriptionally activates genes modulating oxygen homeostasis and metabolic activation. Beyond this, HIF influences many other processes. Hypoxia, in part through HIF-dependent mechanisms, influences epigenetic factors, including DNA methylation and histone acetylation, which modulate hypoxia-responsive gene expression in cells. Hypoxia profoundly affects expression of many noncoding RNAs classes that have clinicopathological implications in cancer. HIF can regulate noncoding RNAs production, while, conversely, noncoding RNAs can modulate HIF expression. There is recent evidence for crosstalk between circadian rhythms and hypoxia-induced signaling, suggesting involvement of molecular clocks in adaptation to fluxes in nutrient and oxygen sensing. HIF induces increased production of cellular vesicles facilitating intercellular communication at a distance-for example, promoting angiogenesis in hypoxic tumors. Understanding the complex networks underlying cellular and genomic regulation in response to hypoxia via HIF may identify novel and specific therapeutic targets.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
65
|
Scanlon SE, Hegan DC, Sulkowski PL, Glazer PM. Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity in VHL-deficient human renal cell carcinoma. Oncotarget 2018; 9:4647-4660. [PMID: 29435132 PMCID: PMC5797003 DOI: 10.18632/oncotarget.23470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 11/25/2022] Open
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is inactivated in the vast majority of human clear cell renal carcinomas. The pathogenesis of VHL loss is currently best understood to occur through stabilization of the hypoxia-inducible factors, activation of hypoxia-induced signaling pathways, and transcriptional reprogramming towards a pro-angiogenic and pro-growth state. However, hypoxia also drives other pro-tumorigenic processes, including the development of genomic instability via down-regulation of DNA repair gene expression. Here, we find that DNA repair genes involved in double-strand break repair by homologous recombination (HR) and in mismatch repair, which are down-regulated by hypoxic stress, are decreased in VHL-deficient renal cancer cells relative to wild type VHL-complemented cells. Functionally, this gene repression is associated with impaired DNA double-strand break repair in VHL-deficient cells, as determined by the persistence of ionizing radiation-induced DNA double-strand breaks and reduced repair activity in a homology-dependent plasmid reactivation assay. Furthermore, VHL deficiency conferred increased sensitivity to PARP inhibitors, analogous to the synthetic lethality observed between hypoxia and these agents. Finally, we discovered a correlation between VHL inactivation and reduced HR gene expression in a large panel of human renal carcinoma samples. Together, our data elucidate a novel connection between VHL-deficient renal carcinoma and hypoxia-induced down-regulation of DNA repair, and identify potential opportunities for targeting DNA repair defects in human renal cell carcinoma.
Collapse
Affiliation(s)
- Susan E. Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Denise C. Hegan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Parker L. Sulkowski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
66
|
FIH Is an Oxygen Sensor in Ovarian Cancer for G9a/GLP-Driven Epigenetic Regulation of Metastasis-Related Genes. Cancer Res 2017; 78:1184-1199. [DOI: 10.1158/0008-5472.can-17-2506] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
|
67
|
Raudenska M, Krejcova L, Richtera L, Heger Z, Hrabeta J, Eckschlager T, Stiborova M, Adam V, Kratochvilova M, Masarik M, Gumulec J. VPA does not enhance platinum binding to DNA in cisplatin-resistant neuroblastoma cancer cells. Tumour Biol 2017; 39:1010428317711656. [PMID: 28945187 DOI: 10.1177/1010428317711656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuroblastoma represents a malignancy of the sympathetic nervous system characteristic by biological heterogeneity. Thus, chemotherapy exhibits only low effectivity in curing high-risk forms. Previous studies revealed the cytotoxic potential of valproate on neuroblastoma cells. Nevertheless, these studies omitted effects of hypoxia, despite its undeniable tumorigenic role. In this study, we addressed the question whether valproate promotes binding of platinum-based anti-cancer drugs (cisplatin, carboplatin and oxaliplatin) to DNA and role of hypoxia, cellular antioxidant capacity and cisplatin resistance in this process. Following parameters differed significantly when cells were exposed to treatment with platinum-based drugs: elevation of platinum content bound to DNA, elevation of total thiol content, GSH/GSSG ratio, glutathione reductase and peroxidase, superoxide dismutase and elevation of antioxidant capacity. Hypoxia caused a decrease in cytosine/adenine peak, and no changes in platinum-DNA binding properties were observed. After valproate co-treatment, oxidative stress-related parameters and cytosine/adenine peak were only elevated. The amount of platinum bound to DNA was not changed significantly. Valproate is not able to enhance platinum binding to DNA in neuroblastoma cells, neither in case of intrinsic resistance (UKF-NB-4) nor in case of acquired resistance (UKF-NB-4CDDP). Therefore, another mechanism different from increase in platinum binding to DNA should be considered as a synergistic effect of valproate by cisplatin treatment.
Collapse
Affiliation(s)
- Martina Raudenska
- 1 Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ludmila Krejcova
- 2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,3 Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Lukas Richtera
- 2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,3 Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Zbynek Heger
- 2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,3 Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Hrabeta
- 4 Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Tomas Eckschlager
- 4 Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Marie Stiborova
- 5 Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vojtech Adam
- 2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,3 Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Monika Kratochvilova
- 1 Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michal Masarik
- 1 Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jaromir Gumulec
- 1 Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,2 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
68
|
Marzook H, Deivendran S, George B, Reshmi G, Santhoshkumar TR, Kumar R, Pillai MR. Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells. Oncogene 2017; 36:5263-5273. [PMID: 28504714 DOI: 10.1038/onc.2017.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
Chromatin remodeling factor metastatic tumor protein 1 (MTA1), one of the most upregulated oncogene in human cancer, has an important role in gene expression, cell survival and promoting hypoxic response. Successful cancer progression is dependent on the ability of cells to utilize its survival pathways for adapting to hypoxic microenvironment. Although MTA1 is a stress-responsive gene, but whether hypoxia modulates its function and its role in engaging other core stress-responsive survival pathway(s) remains unknown. Here we have discovered that MTA1 is a novel corepressor of serum and glucocorticoid-inducible kinase 1 (SGK1). Surprisingly, this regulatory corepressive function of MTA1 is lost under hypoxia, allowing upregulation of SGK1 expression and engaging the MTA1-SGK1 axis for the benefit of the cell survival. The underlying mechanism of the noticed stimulation of SGK1 expression by hypoxia includes de-repression of SGK1 transcription because of hypoxia-triggered nucleus-to-cytoplasmic translocation of MTA1. In addition, the newly recognized cytoplasmic translocation of MTA1 was dependent on the chaperoning function of heat shock protein 90 (HSP90) and co-accompanied by the formation of MTA1, HSP90 and HIF1α complex under hypoxic condition but not under normoxic condition. Hypoxia-triggered redistribution of MTA1, SGK1 upregulation and cell survival functions were compromised by a pharmacological SGK1 inhibitor. In summary, for the first time, we report MTA1 regulation of SGK1 expression, hypoxia-dependent MTA1 translocation to the cytoplasm and de-repression of SGK1 transcription. These findings illustrate how cancer cells utilize a chromatin remodeling factor to engage a core survival pathway to support its cancerous phenotypes, and reveal new facets of MTA1-SGK1 axis by a physiologic signal in cancer progression.
Collapse
Affiliation(s)
- H Marzook
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - S Deivendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - B George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - G Reshmi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - M R Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
69
|
Scanlon SE, Scanlon CD, Hegan DC, Sulkowski PL, Glazer PM. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis 2017; 38:627-637. [PMID: 28472268 DOI: 10.1093/carcin/bgx038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/22/2017] [Indexed: 11/14/2022] Open
Abstract
The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways.
Collapse
Affiliation(s)
- Susan E Scanlon
- Department of Therapeutic Radiology and.,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Christine D Scanlon
- Department of Therapeutic Radiology and.,Department of Chemistry, Miss Porter's School, Farmington, CT 06032, USA and
| | - Denise C Hegan
- Department of Therapeutic Radiology and.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Parker L Sulkowski
- Department of Therapeutic Radiology and.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology and.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| |
Collapse
|
70
|
Samoilov MO, Churilova AV, Glushchenko TS, Rybnikova EA. The influence of different types of hypobaric hypoxia on histone H3 methylation in rat neocortical and hippocampal neurons. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
71
|
Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: An epigenetic connection. Mol Cell Neurosci 2017; 82:176-194. [DOI: 10.1016/j.mcn.2017.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
|
72
|
Molina F, Del Moral ML, Peinado MÁ, Rus A. Angiogenesis is VEGF-independent in the aged striatum of male rats exposed to acute hypoxia. Biogerontology 2017; 18:759-768. [PMID: 28501895 DOI: 10.1007/s10522-017-9709-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Brain hypoxia is involved in many diseases. The activation of angiogenesis is one of the major adaptive mechanisms to counteract the adverse effects of hypoxia. In a previous work, we have shown that the adult rat striatum promotes angiogenesis in response to hypoxia via upregulation of the most important proangiogenic factor, the vascular endothelial growth factor (VEGF). However, the effects of hypoxia on angiogenesis in the aged striatum remain unknown and constitute our aim. Here we show the upregulation of hypoxia-inducible factor-1α in the striatum of aged (24-25 months old) Wistar rats exposed to acute hypoxia and analysed during a reoxygenation period ranging from 0 h to 5 days. While the mRNA expression of the proangiogenic factors VEGF, transforming growth factor-β1 (TGF-β1), and adrenomedullin dropped at 0 h post-hypoxia compared to normoxic control, no changes were detected at the protein level, showing an impaired response of these proangiogenic factors to hypoxia in the aged striatum. However, the striatal blood vessel network increased at 24 h of reoxygenation, suggesting that mechanisms independent from these proangiogenic factors may be involved in hypoxia-induced angiogenesis in the striatum of aged rats. A thorough understanding of the factors involved in the response to hypoxia is essential to guide the design of therapies for hypoxia-related diseases in the aged brain.
Collapse
Affiliation(s)
- Francisco Molina
- Department of Health Science, University of Jaén, Paraje Las Lagunillas s/n, 23071, Jaén, Spain
| | - M Luisa Del Moral
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071, Jaén, Spain
| | - M Ángeles Peinado
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071, Jaén, Spain
| | - Alma Rus
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
73
|
D'Ignazio L, Batie M, Rocha S. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines 2017; 5:E21. [PMID: 28536364 PMCID: PMC5489807 DOI: 10.3390/biomedicines5020021] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer is often characterised by the presence of hypoxia and inflammation. Paramount to the mechanisms controlling cellular responses under such stress stimuli, are the transcription factor families of Hypoxia Inducible Factor (HIF) and Nuclear Factor of κ-light-chain-enhancer of activated B cells (NF-κB). Although, a detailed understating of how these transcription factors respond to their cognate stimulus is well established, it is now appreciated that HIF and NF-κB undergo extensive crosstalk, in particular in pathological situations such as cancer. Here, we focus on the current knowledge on how HIF is activated by inflammation and how NF-κB is modulated by hypoxia. We summarise the evidence for the possible mechanism behind this activation and how HIF and NF-κB function impacts cancer, focusing on colorectal, breast and lung cancer. We discuss possible new points of therapeutic intervention aiming to harness the current understanding of the HIF-NF-κB crosstalk.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| |
Collapse
|
74
|
Wang KCW, Botting KJ, Zhang S, McMillen IC, Brooks DA, Morrison JL. Akt signaling as a mediator of cardiac adaptation to low birth weight. J Endocrinol 2017; 233:R81-R94. [PMID: 28219933 DOI: 10.1530/joe-17-0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Intrauterine insults, such as poor nutrition and placental insufficiency, can alter cardiomyocyte development, and this can have significant long-term implications for heart health. Consequently, epidemiological studies have shown that low-birth-weight babies have an increased risk of death from cardiovascular disease in adult life. In addition, intrauterine growth restriction can result in increased left ventricular hypertrophy, which is the strongest predictor for poor health outcomes in cardiac patients. The mechanisms responsible for these associations are not clear, but a suboptimal intrauterine environment can program alternative expression of genes such as cardiac IGF-2/H19, IGF-2R and AT1R through either an increase or decrease in DNA methylation or histone acetylation at specific loci. Furthermore, hypoxia and other intrauterine insults can also activate the IGF-1 receptor via IGF-1 and IGF-2, and the AT1 receptor via angiotensin signaling pathways; both of which can result in the phosphorylation of Akt and the activation of a range of downstream pathways. In turn, Akt activation can increase cardiac angiogenesis and cardiomyocyte apoptosis and promote a reversion of metabolism in postnatal life to a fetal phenotype, which involves increased reliance on glucose. Cardiac Akt can also be indirectly regulated by microRNAs and conversely can target microRNAs that will eventually affect other specific cardiac genes and proteins. This review aims to discuss our understanding of this complex network of interactions, which may help explain the link between low birth weight and the increased risk of cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
75
|
Hancock R, Masson N, Dunne K, Flashman E, Kawamura A. The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. ACS Chem Biol 2017; 12:1011-1019. [PMID: 28051298 PMCID: PMC5404277 DOI: 10.1021/acschembio.6b00958] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
Abstract
The JmjC histone lysine demethylases (KDMs) are epigenetic regulators involved in the removal of methyl groups from post-translationally modified lysyl residues within histone tails, modulating gene transcription. These enzymes require molecular oxygen for catalytic activity and, as 2-oxoglutarate (2OG)-dependent oxygenases, are related to the cellular oxygen sensing HIF hydroxylases PHD2 and FIH. Recent studies have indicated that the activity of some KDMs, including the pseudogene-encoded KDM4E, may be sensitive to changing oxygen concentrations. Here, we report detailed analysis of the effect of oxygen availability on the activity of the KDM4 subfamily member KDM4A, importantly demonstrating a high level of O2 sensitivity both with isolated protein and in cells. Kinetic analysis of the recombinant enzyme revealed a high KMapp(O2) of 173 ± 23 μM, indicating that the activity of the enzyme is able to respond sensitively to a reduction in oxygen concentration. Furthermore, immunofluorescence experiments in U2OS cells conditionally overexpressing KDM4A showed that the cellular activity of KDM4A against its primary substrate, H3K9me3, displayed a graded response to depleting oxygen concentrations in line with the data obtained using isolated protein. These results suggest that KDM4A possesses the potential to act as an oxygen sensor in the context of chromatin modifications, with possible implications for epigenetic regulation in hypoxic disease states. Importantly, this correlation between the oxygen sensitivity of the catalytic activity of KDM4A in biochemical and cellular assays demonstrates the utility of biochemical studies in understanding the factors contributing to the diverse biological functions and varied activity of the 2OG oxygenases.
Collapse
Affiliation(s)
- Rebecca
L Hancock
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Norma Masson
- Target Discovery Institute, NDM Research Building, University
of Oxford, Roosevelt
Drive, Oxford OX3 7BN, United Kingdom
| | - Kate Dunne
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Emily Flashman
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Akane Kawamura
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
76
|
Tran TQ, Lowman XH, Kong M. Molecular Pathways: Metabolic Control of Histone Methylation and Gene Expression in Cancer. Clin Cancer Res 2017; 23:4004-4009. [PMID: 28404599 DOI: 10.1158/1078-0432.ccr-16-2506] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations contribute to tumor development, progression, and therapeutic response. Many epigenetic enzymes use metabolic intermediates as cofactors to modify chromatin structure. Emerging evidence suggests that fluctuation in metabolite levels may regulate activities of these chromatin-modifying enzymes. Here, we summarize recent progress in understanding the cross-talk between metabolism and epigenetic control of gene expression in cancer. We focus on how metabolic changes, due to diet, genetic mutations, or tumor microenvironment, regulate histone methylation status and, consequently, affect gene expression profiles to promote tumorigenesis. Importantly, we also suggest some potential therapeutic approaches to target the oncogenic role of metabolic alterations and epigenetic modifications in cancer. Clin Cancer Res; 23(15); 4004-9. ©2017 AACR.
Collapse
Affiliation(s)
- Thai Q Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California
| | - Xazmin H Lowman
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California
| | - Mei Kong
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California.
| |
Collapse
|
77
|
Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36:3359-3374. [PMID: 28092669 PMCID: PMC5485177 DOI: 10.1038/onc.2016.485] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer.
Collapse
|
78
|
Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev 2017; 109:45-62. [PMID: 27771366 DOI: 10.1016/j.addr.2016.10.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/02/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Hypoxia (low O2) is an essential microenvironmental driver of phenotypic diversity in human solid cancers. Hypoxic cancer cells hijack evolutionarily conserved, O2- sensitive pathways eliciting molecular adaptations that impact responses to radiotherapy, tumor recurrence and patient survival. In this review, we summarize the radiobiological, genetic, epigenetic and metabolic mechanisms orchestrating oncogenic responses to hypoxia. In addition, we outline emerging hypoxia- targeting strategies that hold promise for individualized cancer therapy in the context of radiotherapy and drug delivery.
Collapse
|
79
|
Sølvsten CAE, de Paoli F, Christensen JH, Nielsen AL. Voluntary Physical Exercise Induces Expression and Epigenetic Remodeling of VegfA in the Rat Hippocampus. Mol Neurobiol 2016; 55:567-582. [DOI: 10.1007/s12035-016-0344-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
|
80
|
Gene Co-Expression Network Analysis Unraveling Transcriptional Regulation of High-Altitude Adaptation of Tibetan Pig. PLoS One 2016; 11:e0168161. [PMID: 27936142 PMCID: PMC5148111 DOI: 10.1371/journal.pone.0168161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023] Open
Abstract
Tibetan pigs have survived at high altitude for millennia and they have a suite of adaptive features to tolerate the hypoxic environment. However, the molecular mechanisms underlying the regulation of hypoxia-adaptive phenotypes have not been completely elucidated. In this study, we analyzed differentially expressed genes (DEGs), biological pathways and constructed co-expression regulation networks using whole-transcriptome microarrays from lung tissues of Tibetan and Duroc pigs both at high and low altitude. A total of 3,066 DEGs were identified and this list was over-represented for the ontology terms including metabolic process, catalytic activity, and KEGG pathway including metabolic pathway and PI3K-Akt signaling pathway. The regulatory (RIF) and phenotypic (PIF) impact factor analysis identified several known and several potentially novel regulators of hypoxia adaption, including: IKBKG, KLF6 and RBPJ (RIF1), SF3B1, EFEMP1, HOXB6 and ATF6 (RIF2). These findings provide new details of the regulatory architecture of hypoxia-adaptive genes and also insight into which genes may undergo epigenetic modification for further study in the high-altitude adaptation.
Collapse
|
81
|
Prickaerts P, Adriaens ME, Beucken TVD, Koch E, Dubois L, Dahlmans VEH, Gits C, Evelo CTA, Chan-Seng-Yue M, Wouters BG, Voncken JW. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenetics Chromatin 2016; 9:46. [PMID: 27800026 PMCID: PMC5080723 DOI: 10.1186/s13072-016-0086-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
Background Trimethylation at histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) controls gene activity during development and differentiation. Whether H3K4me3 and H3K27me3 changes dynamically in response to altered microenvironmental conditions, including low-oxygen conditions commonly present in solid tumors, is relatively unknown. Demethylation of H3K4me3 and H3K27me3 is mediated by oxygen and 2-oxoglutarate dioxygenases enzymes, suggesting that oxygen deprivation (hypoxia) may influence histone trimethylation. Using the MCF7 breast epithelial adenocarcinoma cell model, we have determined the relationship between epigenomic and transcriptomic reprogramming as a function of fluctuating oxygen tension. Results We find that in MCF7, H3K4me3 and H3K27me3 marks rapidly increase at specific locations throughout the genome and are largely reversed upon reoxygenation. Whereas dynamic changes are relatively highest for H3K27me3 marking under hypoxic conditions, H3K4me3 occupation is identified as the defining epigenetic marker of transcriptional control. In agreement with the global increase of H3K27 trimethylation, we provide direct evidence that the histone H3K27me3 demethylase KDM6B/JMJD3 is inactivated by limited oxygen. In situ immunohistochemical analysis confirms a marked rise of histone trimethylation in hypoxic tumor areas. Acquisition of H3K27me3 at H3K4me3-marked loci results in a striking increase in “bivalent” epigenetic marking. Hypoxia-induced bivalency substantially overlaps with embryonal stem cell-associated genic bivalency and is retained at numerous loci upon reoxygenation. Transcriptional activity is selectively and progressively dampened at bivalently marked loci upon repeated exposure to hypoxia, indicating that this subset of genes uniquely maintains the potential for epigenetic regulation by KDM activity. Conclusions These data suggest that dynamic regulation of the epigenetic state within the tumor environment may have important consequences for tumor plasticity and biology. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0086-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peggy Prickaerts
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel E Adriaens
- Department of Bioinformatics (BiGCaT), Maastricht University Medical Centre, Maastricht, The Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Twan van den Beucken
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands.,Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada
| | - Elizabeth Koch
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Ludwig Dubois
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vivian E H Dahlmans
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Caroline Gits
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chris T A Evelo
- Department of Bioinformatics (BiGCaT), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michelle Chan-Seng-Yue
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Bradly G Wouters
- Maastricht Radiation Oncology (MaastRO) Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands.,Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
82
|
Molina F, Del Moral ML, Peinado MÁ, Rus A. Response of the Nitric Oxide System to Hypobaric Hypoxia in the Aged Striatum. Gerontology 2016; 63:36-44. [PMID: 27760428 DOI: 10.1159/000450607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) appears to play a key role in the hypoxic injury to the brain. We have previously reported that hypoxia/reoxygenation downregulated NO synthases (NOS) in the adult striatum. Until now, no data were available concerning the influence of aging in conjunction with hypoxia/reoxygenation on the NO system in the striatum. OBJECTIVE The aim of this study was to assess the role of the NO pathway in the hypoxic aged striatum. METHODS Wistar rats 24-25 months old were submitted to hypobaric hypoxia (20 min)/reoxygenation (0 h, 24 h, 5 days). Expression (PCR, immunohistochemistry/image analysis) and activity (NADPH-diaphorase/image analysis) of NOS isoforms (neuronal NOS or nNOS, endothelial NOS or eNOS, inducible NOS or iNOS) were analyzed together with nitrated protein expression (immunohistochemistry/image analysis). NO levels were indirectly quantified as nitrates/nitrites (NOx). RESULTS The mRNA levels of NOS isoforms were undetectable at 0 h after hypoxia in the striatum compared to the control. At later reoxygenation times, nNOS mRNA decreased, while eNOS mRNA augmented. Protein levels of nNOS and eNOS rose at 24 h after hypoxia, and iNOS protein increased at 5 days. NOx levels remained unchanged, whereas in situ NOS activity and protein nitration diminished during reoxygenation in the aged striatum. CONCLUSION The aged striatum may overexpress NOS isoforms as a neuroprotective-adaptive mechanism to hypoxia. However, this mechanism may not work properly in the aged striatum, since no changes in NO levels were detected after hypoxia. This may be related to the low activity of NOS isoforms in the hypoxic striatum.
Collapse
|
83
|
Lai KP, Li JW, Chan CYS, Chan TF, Yuen KWY, Chiu JMY. Transcriptomic alterations in Daphnia magna embryos from mothers exposed to hypoxia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:454-463. [PMID: 27399157 DOI: 10.1016/j.aquatox.2016.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Hypoxia occurs when dissolved oxygen (DO) falls below 2.8mgL(-1) in aquatic environments. It can cause trans-generational effects not only in fish, but also in the water fleas Daphnia. In this study, transcriptome sequencing analysis was employed to identify transcriptomic alterations induced by hypoxia in embryos of Daphnia magna, with an aim to investigate the mechanism underlying the trans-generational effects caused by hypoxia in Daphnia. The embryos (F1) were collected from adults (F0) that were previously exposed to hypoxia (or normoxia) for their whole life. De novo transcriptome assembly identified 18270 transcripts that were matched to the UniProtKB/Swiss-Prot database and resulted in 7419 genes. Comparative transcriptome analysis showed 124 differentially expressed genes, including 70 up- and 54 down-regulated genes under hypoxia. Gene ontology analysis further highlighted three clusters of genes which revealed acclimatory changes of haemoglobin, suppression in vitellogenin gene family and histone modifications. Specifically, the expressions of histone H2B, H3, H4 and histone deacetylase 4 (HDAC4) were deregulated. This study suggested that trans-generational effects of hypoxia on Daphnia may be mediated through epigenetic regulations of histone modifications.
Collapse
Affiliation(s)
- Keng-Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Jing-Woei Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | | | - Ting-Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
84
|
Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine. BMC Cancer 2016; 16:485. [PMID: 27422173 PMCID: PMC4947293 DOI: 10.1186/s12885-016-2539-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patients with clear cell renal cell carcinoma (ccRCC) have few therapeutic options, as ccRCC is unresponsive to chemotherapy and is highly resistant to radiation. Recently targeted therapies have extended progression-free survival, but responses are variable and no significant overall survival benefit has been achieved. Commercial ccRCC cell lines are often used as model systems to develop novel therapeutic approaches, but these do not accurately recapitulate primary ccRCC tumors at the genomic and transcriptional levels. Furthermore, ccRCC exhibits significant intertumor genetic heterogeneity, and the limited cell lines available fail to represent this aspect of ccRCC. Our objective was to generate accurate preclinical in vitro models of ccRCC using tumor tissues from ccRCC patients. METHODS ccRCC primary single cell suspensions were cultured in fetal bovine serum (FBS)-containing media or defined serum-free media. Established cultures were characterized by genomic verification of mutations present in the primary tumors, expression of renal epithelial markers, and transcriptional profiling. RESULTS The apparent efficiency of primary cell culture establishment was high in both culture conditions, but genotyping revealed that the majority of cultures contained normal, not cancer cells. ccRCC characteristically shows biallelic loss of the von Hippel Lindau (VHL) gene, leading to accumulation of hypoxia-inducible factor (HIF) and expression of HIF target genes. Purification of cells based on expression of carbonic anhydrase IX (CA9), a cell surface HIF target, followed by culture in FBS enabled establishment of ccRCC cell cultures with an efficiency of >80 %. Culture in serum-free conditions selected for growth of normal renal proximal tubule epithelial cells. Transcriptional profiling of ccRCC and matched normal cell cultures identified up- and down-regulated networks in ccRCC and comparison to The Cancer Genome Atlas confirmed the clinical validity of our cell cultures. CONCLUSIONS The ability to establish primary cultures of ccRCC cells and matched normal kidney epithelial cells from almost every patient provides a resource for future development of novel therapies and personalized medicine for ccRCC patients.
Collapse
|
85
|
Evensen NA, Li Y, Kuscu C, Liu J, Cathcart J, Banach A, Zhang Q, Li E, Joshi S, Yang J, Denoya PI, Pastorekova S, Zucker S, Shroyer KR, Cao J. Hypoxia promotes colon cancer dissemination through up-regulation of cell migration-inducing protein (CEMIP). Oncotarget 2016; 6:20723-39. [PMID: 26009875 PMCID: PMC4653038 DOI: 10.18632/oncotarget.3978] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hypoxic stress drives cancer progression by causing a transcriptional reprogramming. Recently, KIAA1199 was discovered to be a cell-migration inducing protein (renamed CEMIP) that is upregulated in human cancers. However, the mechanism of induction of CEMIP in cancer was hitherto unknown. Here we demonstrate that hypoxia induces CEMIP expression leading to enhanced cell migration. Immunohistochemistry of human colon cancer tissues revealed that CEMIP is upregulated in cancer cells located at the invasive front or in the submucosa. CEMIP localization inversely correlated with E-cadherin expression, which is characteristic of the epithelial-to-mesenchymal transition. Mechanistically, hypoxia-inducible-factor-2α (HIF-2α), but not HIF-1α binds directly to the hypoxia response element within the CEMIP promoter region resulting in increased CEMIP expression. Functional characterization reveals that CEMIP is a downstream effector of HIF-2α-mediated cell migration. Expression of CEMIP was demonstrated to negatively correlate with the expression of Jarid1A, a histone demethylase that removes methyl groups from H3K4me3 (an activation marker for transcription), resulting in altered gene repression. Low oxygen tension inhibits the function of Jarid1A, leading to increased presence of H3K4me3 within the CEMIP promoter. These results provide insight into the upregulation of CEMIP within cancer and can lead to novel treatment strategies targeting this cancer cell migration-promoting gene.
Collapse
Affiliation(s)
- Nikki A Evensen
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Pediatrics, NYU Medical School, New York, NY 10016, USA
| | - Yiyi Li
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cem Kuscu
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jingxuan Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jillian Cathcart
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anna Banach
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qian Zhang
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ellen Li
- Department of Medicine/Division of Gastroenterology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sonia Joshi
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jie Yang
- Department of Preventative Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Paula I Denoya
- Department of Surgery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic
| | - Stanley Zucker
- Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jian Cao
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
86
|
Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents. Biomolecules 2016; 6:biom6030032. [PMID: 27384589 PMCID: PMC5039418 DOI: 10.3390/biom6030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 01/02/2023] Open
Abstract
First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity.
Collapse
|
87
|
Nowak RP, Tumber A, Johansson C, Che KH, Brennan P, Owen D, Oppermann U. Advances and challenges in understanding histone demethylase biology. Curr Opin Chem Biol 2016; 33:151-9. [PMID: 27371875 DOI: 10.1016/j.cbpa.2016.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023]
Abstract
Within the last decade we have witnessed significant progress in the field of chromatin methylation, ranging from the discovery that chromatin methylation is reversible, to the identification of two classes of oxidative chromatin demethylases. Multiple genetic and cellular studies emphasize the role of members of the amine oxidase and 2-oxoglutarate oxygenase enzyme families involved in methyl-lysine in physiology and disease. Advances in understanding of the underlying biochemistry have resulted in development of first series of clinical inhibitors and tool compounds which continue to resolve and help understand the complex relationships between chromatin modification, control of gene expression and metabolic states.
Collapse
Affiliation(s)
- Radoslaw P Nowak
- Structural Genomics Consortium, University of Oxford, Headington OX3 7DQ, UK; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Oxford OX3 7LD, UK
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Headington OX3 7DQ, UK; Target Discovery Institute, University of Oxford, OX3 7FZ, UK
| | - Catrine Johansson
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Oxford OX3 7LD, UK; Department of Chemistry, University of Oxford, OX1 3TA, UK
| | - Ka Hing Che
- Structural Genomics Consortium, University of Oxford, Headington OX3 7DQ, UK; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Oxford OX3 7LD, UK
| | - Paul Brennan
- Structural Genomics Consortium, University of Oxford, Headington OX3 7DQ, UK; Target Discovery Institute, University of Oxford, OX3 7FZ, UK
| | - Dafydd Owen
- Pfizer Worldwide Medicinal Chemistry, 610 Main Street, Cambridge, MA 02139, USA
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Headington OX3 7DQ, UK; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Oxford OX3 7LD, UK.
| |
Collapse
|
88
|
The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell Rep 2016; 16:37-47. [PMID: 27320910 DOI: 10.1016/j.celrep.2016.05.082] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are critical regulators of the cellular response to hypoxia. Despite their established roles in normal physiology and numerous pathologies, the molecular mechanisms by which they control gene expression remain poorly understood. We report here a conserved role for the TIP60 complex as a HIF1 transcriptional cofactor in Drosophila and human cells. TIP60 (KAT5) is required for HIF1-dependent gene expression in fly cells and embryos and colorectal cancer cells. HIF1A interacts with and recruits TIP60 to chromatin. TIP60 is dispensable for HIF1A association with its target genes but is required for HIF1A-dependent chromatin modification and RNA polymerase II activation in hypoxia. In human cells, global analysis of HIF1A-dependent gene activity reveals that most HIF1A targets require either TIP60, the CDK8-Mediator complex, or both as coactivators for full expression in hypoxia. Thus, HIF1A employs functionally diverse cofactors to regulate different subsets of genes within its transcriptional program.
Collapse
|
89
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. Aging Dis 2016; 7:180-200. [PMID: 27114850 PMCID: PMC4809609 DOI: 10.14336/ad.2015.0929] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in pathological processes emphasizing that long-term stress-related insults can impair the maintenance of chromatin landscape and provoke cellular senescence and tissue fibrosis associated with aging and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Kuopio University Hospital, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
90
|
Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016; 14:15-39. [PMID: 26847481 PMCID: PMC4851450 DOI: 10.3121/cmr.2015.1282] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Qiangwei Fu
- Kabara Cancer Research Institute, La Crosse, WI
| | - Sean P Colgan
- Mucosal Inflammation Program and University of Colorado School of Medicine, Aurora, CO
| | - Carl Simon Shelley
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
91
|
Chen HF, Wu KJ. Epigenetics, TET proteins, and hypoxia in epithelial-mesenchymal transition and tumorigenesis. Biomedicine (Taipei) 2016; 6:1. [PMID: 26869355 PMCID: PMC4751095 DOI: 10.7603/s40681-016-0001-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia in tumors is primarily a pathophysiologic consequence of structurally and functionally disturbed microcirculation with inadequate supply of oxygen. Tumor hypoxia is strongly associated with tumor propagation, malignant progression, and resistance to therapy. Aberrant epigenetic regulation plays a crucial role in the process of hypoxia-driven malignant progression. Convert of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family enzymes plays important biological functions in embryonic stem cells, development, aging and disease. Recent reports showed that level of 5hmC and TET proteins was altered in various types of cancers. There is a strong correlation between loss of 5hmC and cancer development but research to date indicates that loss of TET activity is associated with the cancer phenotype but it is not clear whether TET proteins function as tumor suppressors or oncogenes. While loss of TET1 and TET2 expression is associated with solid cancers, implying a tumor suppressor role, TET1 exhibits a clear oncogenic role in the context of genomic rearrangements such as in MLL-fusion rearranged leukemia. Interestingly, hypoxia increases global 5hmC levels and upregulates TET1 expression in a HIF1α-dependent manner. Recently, hypoxia-induced TET1 has been demonstrated to play another important role for regulating hypoxia-responsive gene expression and epithelial-mesenchymal transition (EMT) by serving as a transcription co-activator. Furthermore, hypoxia-induced TET1 also regulates glucose metabolism and hypoxia-induced EMT through enhancing the expression of insulin induced gene 1 (INSIG1). The roles and mechanisms of action of 5hmC and TET proteins in ES cell biology and during embryonic development, as well as in cancer biology, will be the main focus in this review.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan.
| |
Collapse
|
92
|
Abstract
There is an important and strong, but complex influence of the tumor microenvironment on tumor cells' phenotype, aggressiveness, and treatment sensitivity. One of the most frequent and best-studied aspects of the tumor microenvironment is hypoxia. Low oxygen tension often occurs in tumor cells by several mechanisms, for example, poor angiogenesis and increased oxygen consumption. Hypoxia is a heterogeneous concept with oxygen tensions ranging from <0.01% (anoxia) to 5%, and can be chronic, acute, or cycling, all with differential effects on tumor cells. Quantification of tumor hypoxia can be performed directly or indirectly, and with exogenous or endogenous markers. Tumor cells launch different intracellular signaling pathways to survive hypoxia, such as hypoxia-inducible factor 1-mediated gene expression, the unfolded protein response, and AKT-mammalian target of rapamycin signaling. These pathways induce aggressive, metastatic, and treatment-insensitive tumors and are considered potential targets for (additive) therapy. Hypoxia leads to important, yet currently not well-understood changes in microRNA expression, epigenetics, and metabolism. Further, treatment-insensitive tumors arise through hypoxia-induced Darwinian selection of apoptosis-deficient, p53-mutated tumor cells. In conclusion, hypoxia has profound and largely still poorly understood effects on tumor cells with a major effect on the tumor's biology.
Collapse
Affiliation(s)
- Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
93
|
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G. A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 2015; 16:246. [PMID: 26541514 PMCID: PMC4635527 DOI: 10.1186/s13059-015-0802-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Results Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40–700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. Conclusions These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0802-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ina Kirmes
- Institute for Molecular Biology, 55128, Mainz, Germany
| | | | - Kirti Prakash
- Institute for Molecular Biology, 55128, Mainz, Germany.,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | | | | | | | - Karolina Fornalczyk
- Institute for Molecular Biology, 55128, Mainz, Germany.,Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Dongyu Ma
- Institute for Molecular Biology, 55128, Mainz, Germany.,Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, 68167, Mannheim, Germany
| | - Udo Birk
- Institute for Molecular Biology, 55128, Mainz, Germany
| | - Christoph Cremer
- Institute for Molecular Biology, 55128, Mainz, Germany. .,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - George Reid
- Institute for Molecular Biology, 55128, Mainz, Germany.
| |
Collapse
|
94
|
Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, Nostro C, Wang R, Muthuswamy LB, Crawford HC, Arrowsmith C, Kalloger SE, Renouf DJ, Connor AA, Cleary S, Schaeffer DF, Roehrl M, Tsao MS, Gallinger S, Keller G, Muthuswamy SK. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med 2015; 21:1364-71. [PMID: 26501191 PMCID: PMC4753163 DOI: 10.1038/nm.3973] [Citation(s) in RCA: 569] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53(R175H) induces cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. We also define culture conditions for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption, epigenetic marks and differences in sensitivity to inhibition of the histone methyltransferase EZH2. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies.
Collapse
Affiliation(s)
- Ling Huang
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Audrey Holtzinger
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Ishaan Jagan
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Michael BeGora
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Ines Lohse
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Nicholas Ngai
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Cristina Nostro
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Rennian Wang
- Departments of Physiology & Pharmacology, Western University, London, ON, Canada
| | - Lakshmi B. Muthuswamy
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Howard C. Crawford
- Departments of Molecular & Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Cheryl Arrowsmith
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Steve E. Kalloger
- Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, BC, Canada
- The University of British Columbia, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Daniel J. Renouf
- The University of British Columbia, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
- Division of Medical Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Ashton A Connor
- Division of General Surgery, University of Toronto, Toronto, ON, Canada
| | - Sean Cleary
- Division of General Surgery, University of Toronto, Toronto, ON, Canada
| | - David F. Schaeffer
- Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, BC, Canada
- The University of British Columbia, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Michael Roehrl
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Steven Gallinger
- Division of General Surgery, University of Toronto, Toronto, ON, Canada
| | - Gordon Keller
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Senthil K. Muthuswamy
- Princess Margaret Cancer Center, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
95
|
Ramachandran S, Ient J, Göttgens EL, Krieg AJ, Hammond EM. Epigenetic Therapy for Solid Tumors: Highlighting the Impact of Tumor Hypoxia. Genes (Basel) 2015; 6:935-56. [PMID: 26426056 PMCID: PMC4690023 DOI: 10.3390/genes6040935] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
In the last few decades, epigenetics has emerged as an exciting new field in development and disease, with a more recent focus towards cancer. Epigenetics has classically referred to heritable patterns of gene expression, primarily mediated through DNA methylation patterns. More recently, it has come to include the reversible chemical modification of histones and DNA that dictate gene expression patterns. Both the epigenetic up-regulation of oncogenes and downregulation of tumor suppressors have been shown to drive tumor development. Current clinical trials for cancer therapy include pharmacological inhibition of DNA methylation and histone deacetylation, with the aim of reversing these cancer-promoting epigenetic changes. However, the DNA methyltransferase and histone deacetylase inhibitors have met with less than promising results in the treatment of solid tumors. Regions of hypoxia are a common occurrence in solid tumors. Tumor hypoxia is associated with increased aggressiveness and therapy resistance, and importantly, hypoxic tumor cells have a distinct epigenetic profile. In this review, we provide a summary of the recent clinical trials using epigenetic drugs in solid tumors, discuss the hypoxia-induced epigenetic changes and highlight the importance of testing the epigenetic drugs for efficacy against the most aggressive hypoxic fraction of the tumor in future preclinical testing.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Jonathan Ient
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Eva-Leonne Göttgens
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
96
|
Qin T, Si J, Raynal NJM, Wang X, Gharibyan V, Ahmed S, Hu X, Jin C, Lu Y, Shu J, Estecio MR, Jelinek J, Issa JPJ. Epigenetic synergy between decitabine and platinum derivatives. Clin Epigenetics 2015; 7:97. [PMID: 26366234 PMCID: PMC4567801 DOI: 10.1186/s13148-015-0131-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
Background Aberrant epigenetic silencing of tumor suppressor genes has been recognized as a driving force in cancer. Epigenetic drugs such as the DNA methylation inhibitor decitabine reactivate genes and are effective in myeloid leukemia, but resistance often develops and efficacy in solid tumors is limited. To improve their clinical efficacy, we searched among approved anti-cancer drugs for an epigenetic synergistic combination with decitabine. Results We used the YB5 cell line, a clonal derivative of the SW48 colon cancer cell line that contains a single copy of a hypermethylated cytomegalovirus (CMV) promoter driving green fluorescent protein (GFP) to screen for drug-induced gene reactivation and synergy with decitabine. None of the 16 anti-cancer drugs tested had effects on their own. However, in combination with decitabine, platinum compounds showed striking synergy in activating GFP. This was dose dependent, observed both in concurrent and sequential combinations, and also seen with other alkylating agents. Clinically achievable concentrations of carboplatin at (25 μM) and decitabine reactivated GFP in 28 % of the YB5 cells as compared to 15 % with decitabine alone. Epigenetic synergy was also seen at endogenously hypermethylated tumor suppressor genes such as MLH1 and PDLIM4. Genome-wide studies showed that reactivation of hypermethylated genes by the combination was significantly better than that induced by decitabine alone or carboplatin alone. Platinum compounds did not enhance decitabine-induced hypomethylation. Rather, we found significantly inhibited HP1α expression by carboplatin and the combination. This was accompanied by increased histone H3 lysine 4 (H3K4) trimethylation and histone H3 lysine 9 (H3K9) acetylation at reactivated genes (P < 0.0001) and reduced occupancy by methyl-binding proteins including MeCP2 and methyl-CpG-binding domain protein 2 (MBD2) (P < 0.0001). Conclusions Our results suggest that the combination of decitabine with platinum analogs shows epigenetic synergy that might be exploited in the treatment of different cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0131-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taichun Qin
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jiali Si
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Noël J-M Raynal
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.,Fels Institute for Cancer Research and Molecular Biology, Temple University, 3307 North Broad Street, Rm 154, PAHB, Philadelphia, PA 19140 USA
| | - Xiaodan Wang
- Harbin Institute of Hematology & Oncology, Harbin, 150010 China
| | - Vazganush Gharibyan
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Saira Ahmed
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xin Hu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Chunlei Jin
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Yue Lu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.,Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jingmin Shu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Marcos Rh Estecio
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.,Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jaroslav Jelinek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.,Fels Institute for Cancer Research and Molecular Biology, Temple University, 3307 North Broad Street, Rm 154, PAHB, Philadelphia, PA 19140 USA
| | - Jean-Pierre J Issa
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.,Fels Institute for Cancer Research and Molecular Biology, Temple University, 3307 North Broad Street, Rm 154, PAHB, Philadelphia, PA 19140 USA
| |
Collapse
|
97
|
Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 2015; 7:791-811. [PMID: 25832587 DOI: 10.2217/epi.15.24] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The response to hypoxia is primarily mediated by the hypoxia-inducible transcription factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG oxygenase family, are key epigenetic regulators that modulate the methylation levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act in an oxygen-sensitive manner. This may have important implications for epigenetic regulation in hypoxia. In this review we examine evidence that the levels and activity of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence their roles in early development and hypoxic disease states including cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca L Hancock
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Dunne
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Louise J Walport
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Emily Flashman
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
98
|
Scanlon SE, Glazer PM. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair (Amst) 2015; 32:180-189. [PMID: 25956861 DOI: 10.1016/j.dnarep.2015.04.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia, as a pervasive feature in the microenvironment of solid tumors, plays a significant role in cancer progression, metastasis, and ultimately clinical outcome. One key cellular consequence of hypoxic stress is the regulation of DNA repair pathways, which contributes to the genomic instability and mutator phenotype observed in human cancers. Tumor hypoxia can vary in severity and duration, ranging from acute fluctuating hypoxia arising from temporary blockages in the immature microvasculature, to chronic moderate hypoxia due to sparse vasculature, to complete anoxia at distances more than 150 μM from the nearest blood vessel. Paralleling the intra-tumor heterogeneity of hypoxia, the effects of hypoxia on DNA repair occur through diverse mechanisms. Acutely, hypoxia activates DNA damage signaling pathways, primarily via post-translational modifications. On a longer timescale, hypoxia leads to transcriptional and/or translational downregulation of most DNA repair pathways including DNA double-strand break repair, mismatch repair, and nucleotide excision repair. Furthermore, extended hypoxia can lead to long-term persistent silencing of certain DNA repair genes, including BRCA1 and MLH1, revealing a mechanism by which tumor suppressor genes can be inactivated. The discoveries of the hypoxic modulation of DNA repair pathways have highlighted many potential ways to target susceptibilities of hypoxic cancer cells. In this review, we will discuss the multifaceted hypoxic control of DNA repair at the transcriptional, post-transcriptional, and epigenetic levels, and we will offer perspective on the future of its clinical implications.
Collapse
Affiliation(s)
- Susan E Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
99
|
The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clin Sci (Lond) 2015; 128:537-58. [PMID: 25671777 DOI: 10.1042/cs20140491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Athero-thrombosis of the arteries supplying the brain and lower limb are the main causes of stroke and limb loss. New therapies are needed to improve the outcomes of athero-thrombosis. Recent evidence suggests a role for epigenetic changes in the development and progression of ischaemic injury due to atherosclerotic occlusion of peripheral arteries. DNA hypermethylation have been associated with cardiovascular diseases. Histone post-translational modifications have also been implicated in atherosclerosis. Oxidized low-density lipoprotein regulated pro-inflammatory gene expression within endothelial cells is controlled by phosphorylation/acetylation of histone H3 and acetylation of histone H4 for example. There are a number of challenges in translating the growing evidence implicating epigenetics in atherosclerosis to improved therapies for patients. These include the small therapeutic window in conditions such as acute stroke and critical limb ischaemia, since interventions introduced in such patients need to act rapidly and be safe in elderly patients with many co-morbidities. Pre-clinical animal experiments have also reported conflicting effects of some novel epigenetic drugs, which suggest that further in-depth studies are required to better understand their efficacy in resolving ischaemic injury. Effective ways of dealing with these challenges are needed before epigenetic approaches to therapy can be introduced into practice.
Collapse
|
100
|
Heberle AM, Prentzell MT, van Eunen K, Bakker BM, Grellscheid SN, Thedieck K. Molecular mechanisms of mTOR regulation by stress. Mol Cell Oncol 2015; 2:e970489. [PMID: 27308421 PMCID: PMC4904989 DOI: 10.4161/23723548.2014.970489] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 04/12/2023]
Abstract
Tumors are prime examples of cell growth in unfavorable environments that elicit cellular stress. The high metabolic demand and insufficient vascularization of tumors cause a deficiency of oxygen and nutrients. Oncogenic mutations map to signaling events via mammalian target of rapamycin (mTOR), metabolic pathways, and mitochondrial function. These alterations have been linked with cellular stresses, in particular endoplasmic reticulum (ER) stress, hypoxia, and oxidative stress. Yet tumors survive these challenges and acquire highly energy-demanding traits, such as overgrowth and invasiveness. In this review we focus on stresses that occur in cancer cells and discuss them in the context of mTOR signaling. Of note, many tumor traits require mTOR complex 1 (mTORC1) activity, but mTORC1 hyperactivation eventually sensitizes cells to apoptosis. Thus, mTORC1 activity needs to be balanced in cancer cells. We provide an overview of the mechanisms contributing to mTOR regulation by stress and suggest a model wherein stress granules function as guardians of mTORC1 signaling, allowing cancer cells to escape stress-induced cell death.
Collapse
Affiliation(s)
- Alexander Martin Heberle
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
| | - Mirja Tamara Prentzell
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Faculty of Biology; Institute for Biology 3; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Freiburg, Germany
| | - Karen van Eunen
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Top Institute Food and Nutrition; Wageningen, The Netherlands
| | - Barbara Marleen Bakker
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
| | | | - Kathrin Thedieck
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Faculty of Biology; Institute for Biology 3; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- School of Medicine and Health Sciences; Carl von Ossietzky University Oldenburg; Oldenburg, Germany
- BIOSS Centre for Biological Signaling Studies; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- Correspondence to: Kathrin Thedieck; E-mail: ;
| |
Collapse
|