51
|
Pereira RR, Testi M, Rossi F, Silva Junior JOC, Ribeiro-Costa RM, Bettini R, Santi P, Padula C, Sonvico F. Ucuùba ( Virola surinamensis) Fat-Based Nanostructured Lipid Carriers for Nail Drug Delivery of Ketoconazole: Development and Optimization Using Box-Behnken Design. Pharmaceutics 2019; 11:pharmaceutics11060284. [PMID: 31212993 PMCID: PMC6630981 DOI: 10.3390/pharmaceutics11060284] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Ucuùba fat is fat obtained from a plant found in South America, mainly in Amazonian Brazil. Due to its biocompatibility and bioactivity, Ucuùba fat was used for the production of ketoconazole-loaded nanostructured lipid carriers (NLC) in view of an application for the treatment of onychomycosis and other persistent fungal infections. The development and optimization of Ucuùba fat-based NLC were performed using a Box-Behnken design of experiments. The independent variables were surfactant concentration (% w/v), liquid lipids concentration (% w/v), solid lipids concentration (% w/v), while the outputs of interest were particle size, polydispersity index (PDI) and drug encapsulation efficiency (EE). Ucuùba fat-based NLC were produced and the process was optimized by the development of a predictive mathematical model. Applying the model, two formulations with pre-determined particle size, i.e., 30 and 85 nm, were produced for further evaluation. The optimized formulations were characterized and showed particle size in agreement to the predicted value, i.e., 33.6 nm and 74.6 nm, respectively. The optimized formulations were also characterized using multiple techniques in order to investigate the solid state of drug and excipients (DSC and XRD), particle morphology (TEM), drug release and interactions between the formulation components (FTIR). Furthermore, particle size, surface charge and drug loading efficiency of the formulations were studied during a one-month stability study and did not show evidence of significant modification.
Collapse
Affiliation(s)
- Rayanne R Pereira
- Pharmaceutical Sciences Faculty, Federal University of Para, 66075-110 Belem, Brazil.
- Food and Drug Department, University of Parma, 43124 Parma, Italy.
| | - Matteo Testi
- Food and Drug Department, University of Parma, 43124 Parma, Italy.
| | - Francesca Rossi
- Institute of Materials for Electronics and Magnetism (IMEM), CNR-Italian National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Jose O C Silva Junior
- Pharmaceutical Sciences Faculty, Federal University of Para, 66075-110 Belem, Brazil.
| | | | - Ruggero Bettini
- Food and Drug Department, University of Parma, 43124 Parma, Italy.
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy.
| | - Patrizia Santi
- Food and Drug Department, University of Parma, 43124 Parma, Italy.
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy.
| | - Cristina Padula
- Food and Drug Department, University of Parma, 43124 Parma, Italy.
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, 43124 Parma, Italy.
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
52
|
Shakeri M, Razavi SH, Shakeri S. Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti-biofilm activities. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
53
|
Hanafy AF, Abdalla AM, Guda TK, Gabr KE, Royall PG, Alqurshi A. Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles. Int J Nanomedicine 2019; 14:3679-3689. [PMID: 31239660 PMCID: PMC6556883 DOI: 10.2147/ijn.s195892] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
Background and purpose: Conventional topical ophthalmic aqueous solutions and suspensions are often associated with low bioavailability and high administration frequency, pulsatile dose and poor exposure to certain ocular parts. The aim of this study was to develop an ophthalmic nanoparticles loaded gel, for delivering prednisolone acetate (PA), to increase dosing accuracy, bioavailability, and accordingly, efficiency of PA in treating inflammatory ocular diseases. Methods: A novel formulation of self-assembled nanoparticles was prepared by the complexation of chitosan (CS) and, the counter-ion, sodium deoxycholate (SD), loaded with the poorly-water-soluble PA. Particle size, zeta potential, encapsulation efficiency (EE) and drug loading content (LC) of prepared nanoparticles were assessed. Moreover, the nanoparticles were characterized using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Drug release and eye anti-inflammatory potential of the prepared novel formulation was investigated. Results: Mean particle size of the nanoparticles have dropped from 976 nm ±43 (PDI 1.285) to 480 nm ±28 (PDI 1.396) when the ratio of CS-SD was decreased. The incorporation of 0.1-0.3% of polyvinyl alcohol (PVA), in the preparation stages, resulted in smaller nanoparticles: 462 nm ±19 (PDI 0.942) and 321 nm ±22 (PDI 0.454) respectively. DSC and FTIR results demonstrated the interaction between CS and SD, however, no interactions were detected between PA and CS or SD. Drug release of PA as received, in simulated tears fluid (pH 7.4), showed a twofold increase (reaching an average of 98.6% in 24 hours) when incorporated into an optimized nanoparticle gel formulation (1:5 CS-SD). Conclusion: The anti-inflammatory effect of PA nanoparticles loaded gel on female guinea pig eyes was significantly superior to that of the micronized drug loaded gel (P < 0.05).
Collapse
Affiliation(s)
- Ahmed F Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA.,Research and Development Department, Al Andalous for Pharmaceutical Industries, Giza, Egypt
| | - Ahmed M Abdalla
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA
| | - Tawheda K Guda
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA
| | - Khairy E Gabr
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA.,Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Paul G Royall
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Abdulmalik Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, KSA
| |
Collapse
|
54
|
Improved synthesis and characterization of cholesteryl oleate-loaded cationic solid lipid nanoparticles with high transfection efficiency for gene therapy applications. Colloids Surf B Biointerfaces 2019; 180:159-167. [PMID: 31048241 DOI: 10.1016/j.colsurfb.2019.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 11/23/2022]
Abstract
The development of new nanoparticle formulations that are capable of high transfection efficiency without toxicity is essential to provide new tools for gene therapy. However, the issues of complex, poorly reproducible manufacturing methods, and low efficiencies during in vivo testing have prevented translation to the clinic. We have previously reported the use of cholesteryl oleate as a novel excipient for solid lipid nanoparticles (SLNs) for the development of highly efficient and nontoxic nucleic acid delivery carriers. Here, we performed an extensive characterization of this novel formulation to make the scale up under Good Manufacturing Practice (GMP) possible. We also describe the complete physicochemical and biological characterization of cholesteryl oleate-loaded SLNs to ensure the reproducibility of this formula and the preservation of its characteristics before and after the lyophilization process. We defined the best manufacturing method and studied the influence of some parameters on the obtained nanoparticles using the Quality by Design (ICH Q8) guideline to obtain cholesteryl oleate-loaded SLNs that remain stable during storage and guarantee in vitro nucleic acid delivery efficacy. Our results indicate that this improved formulation is suitable for gene therapy with the possibility of scale-up the manufacturing of nanoparticles under GMP conditions.
Collapse
|
55
|
Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133:285-308. [DOI: 10.1016/j.ejpb.2018.10.017] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
|
56
|
Ahmed TA, Badr-Eldin SM, Ahmed OA, Aldawsari H. Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: Effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:772-784. [DOI: 10.1016/j.msec.2018.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 11/19/2022]
|
58
|
Barua S, Lee DI, Kim H, Jo K, Yeo S, Yoo SY, Jeon H, Lee JY, Lee J. Solid Lipid Nanoparticles of Serine Designed by Evaluating Affinity of Solid Lipids to Stratum Corneum for Enhanced Skin Hydration in Combination with Reed Root Extract. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sonia Barua
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Dong Il Lee
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Hyeongmin Kim
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Kanghee Jo
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Sooho Yeo
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Seung-Yup Yoo
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Hyojin Jeon
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Ji-Yun Lee
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| | - Jaehwi Lee
- College of Pharmacy; Chung-Ang University; Seoul 06974 South Korea
| |
Collapse
|
59
|
Kumar R, Singh A, Garg N, Siril PF. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. ULTRASONICS SONOCHEMISTRY 2018; 40:686-696. [PMID: 28946474 DOI: 10.1016/j.ultsonch.2017.08.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 05/16/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBP) are among the most prescribed drugs across the globe. However, most NSAIDs are insoluble in water leading them to have poor bioavailability and erratic absorption. Moreover, NSAIDs such as IBP and ketoprofen (KP) have to be administered very frequently due to their short plasma half-life leading to side effects. Controlled release formulations of IBP, KP and nabumetone (NBT) based on solid lipid nanoparticles (SLNs) were successfully synthesised in the present study to solve the above-mentioned challenges that are associated with NSAIDs. SLNs were prepared in two steps; hot-melt homogenization followed by sonication to formulate SLNs with spherical morphology. While capmul® GMS-50K (capmul) was used as the lipid due to the high solubility of the studied drugs in it, gelucire® 50/13 (gelucire) was used as the surfactant. It was found that particle size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. Ultrasonication in a pulse mode with optimum duration of 15min was essential to obtain smaller nanoparticles through the formation of a nanoemulsion. Drug loaded SLNs with small particle size and narrow size distribution with good solid loading, encapsulation efficiency and drug loading percentage could be prepared using the optimised conditions. SLNs prepared at the optimised condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The cytotoxicity results showed that the prepared SLNs are non-toxic to Raw cell line. The drugs IBP, KP and NBT showed 53, 74 and 69% of percentage entrapment efficiency with drug loading of 6, 2 and 7% respectively. Slow, steady and sustained drug release was observed from the SLNs for over 6days.
Collapse
Affiliation(s)
- Raj Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India; Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India; Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India; Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Prem Felix Siril
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India; Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India.
| |
Collapse
|
60
|
Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. J Control Release 2017; 270:65-75. [PMID: 29196044 DOI: 10.1016/j.jconrel.2017.11.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Little is known about the in vivo fate of drug particles taken orally, in particular, the drug release kinetics and interaction with the gastrointestinal (GI) membrane. Lacking is analytical means that can reliably identify the integrity of drug particles under the complexity of biological environment. Herein, we explored fluorescent probes whose signals become quenched upon being released from drug carriers. Taking advantage of so-called the aggregation caused quenching (ACQ), particles may be identified by the integrated fluorophores, which are "turned off" when the particles become destructed and dyes are released. In the current study, ultrafine amorphous particles (UAPs) of cyclosporin A (CsA) were prepared with synthesized ACQ dyes physically entrapped. The fluorescence intensity of suspension of these UAPs was found correlated well with the dissolution of the particles. When given to rats orally, it was found that some of the administered UAPs could survive the animal's GI tracts for as long as 18h. Whole-body fluorescence imaging detected fluorescent signals in the liver and lungs. Particularly noticed in sections of jejunum and ileum, the detection suggested the possibility of direct absorption of UAPs through epithelial membranes. Moreover, 250nm particles were absorbed faster via transepithelia than larger ones (550nm), while the latter were preferably taken up by M cells in the follicle-associated epithelium (FAE) region of Peyer's patches. In vitro permeation studies with Caco-2 cells confirmed the transmembrane transport of the dye-integrated UAPs. Our study supports the idea of using ACQ fluorophores for imaging and characterizing the fate of intact particles in a biological environment.
Collapse
|
61
|
Kumar V, Chaudhary H, Kamboj A. Nano-colloidal carrier via polymeric coating for oral delivery of isradipine. Interv Med Appl Sci 2017; 9:222-234. [PMID: 29951291 PMCID: PMC6016206 DOI: 10.1556/1646.9.2017.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/01/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022] Open
Abstract
Our research objective was to develop, characterize, and optimize stable form of nano-colloidal carrier with Eudragit-coated solid lipid nanobioparticles (SLNbp) for oral delivery of isradipine (ISR). To achieve, a three factors, i.e., lipid-to-surfactant ratio (A, % w/w), Eudragit L100 (B, % w/w), and sonication time (C, minutes) at three levels (-1 and +1 levels of quality central level) was applied to develop SLNbp using response surface methodology at constant ratio of ISR and rutin. The second-order polynomial quadratic equations of responses [R1, R2, and R3; entrapment efficiency (EE), particle size, and drug release] were constructed and also plotted response surface (two- and three-dimensional) plots. The derived polynomial equation and 2D and 3D model were showed the relationship between the responses of the selected independent variables (A, B, and C). The model validation and optimization was performed by numerical checkpoint analysis to predict the optimized solid lipid nanobioparticle formulas (ONbp 1-10). The optimized formulations prepared and during evaluation ONbp 3 has better smaller particle size (106 nm), sustainable release (95.61% up to 40 h), higher EE (97.85%), and drug content (99.92% ± 0.08%) during 3-month storage showed good stability. Therefore, its performance can be considered for further development of stable oral drug delivery system of ISR.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of RIC, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India
| | - Hema Chaudhary
- PDM College of Pharmacy, PDM University, Bahadurgarh, Haryana, India
| | - Anjoo Kamboj
- Chandigarh College of Pharmacy, Chandigarh, India
| |
Collapse
|
62
|
Mhango EKG, Kalhapure RS, Jadhav M, Sonawane SJ, Mocktar C, Vepuri S, Soliman M, Govender T. Preparation and Optimization of Meropenem-Loaded Solid Lipid Nanoparticles: In Vitro Evaluation and Molecular Modeling. AAPS PharmSciTech 2017; 18:2011-2025. [PMID: 27933586 DOI: 10.1208/s12249-016-0675-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Encapsulation of antibiotics into nanocarriers has the potential to overcome resistance and disadvantages associated with conventional dosage forms as well as increase half-life of an antibiotic. Encapsulation of meropenem (MRPN) into solid lipid nanoparticles (SLNs) remains unexplored among the limited work reported on nanoformulation incorporating MRPN. The study aimed to use an experimental design, to optimize MRPN-loaded SLNs, and to undertake in vitro and in silico evaluations. A Box-Behnken design (BBD) was used to optimize manufacturing conditions of glycerol monostearate (GMS) SLNs loaded with MRPN. The SLNs were prepared using hot homogenization and ultrasonication method. Optimized MRPN-SLNs showed particle size, zeta potential, and entrapment efficiency of 112.61 ± 0.66 nm, -20.43 ± 0.99 mV, and 89.94 ± 1.26%, respectively. The morphology of the SLNs revealed nearly spherical shaped particles. Differential scanning calorimetry and X-ray diffraction analysis showed that meropenem was present in amorphous form in the SLNs. Controlled in vitro MRPN release from SLNs was achieved and followed the Korsmeyer-Peppas model (R 2 = 0.9679). Prolonged in vitro antibacterial activity against Escherichia coli was also observed. The molecular modeling showed that both hydrophobic interactions and hydrogen bonding led to a stable MRPN-GMS complex formation, which was confirmed by its low heat of formation (-5536.13 kcal/mol). This stable complex could have contributed to the controlled release of MRPN from the SLNs and subsequent sustained antibacterial activity.
Collapse
|
63
|
Esposito E, Sguizzato M, Drechsler M, Mariani P, Carducci F, Nastruzzi C, Cortesi R. Progesterone lipid nanoparticles: Scaling up and in vivo human study. Eur J Pharm Biopharm 2017; 119:437-446. [PMID: 28760448 DOI: 10.1016/j.ejpb.2017.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022]
Abstract
This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy.
| | - Maddalena Sguizzato
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- BIMF/Soft Matter Electronmicroscopy, University of Bayreuth, Germany
| | - Paolo Mariani
- Department of Life and Environmental Sciences and CNISM, Università Politecnica delle Marche, I-60100 Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences and CNISM, Università Politecnica delle Marche, I-60100 Ancona, Italy
| | - Claudio Nastruzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy.
| | - Rita Cortesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
64
|
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25:219-234. [PMID: 28911663 PMCID: PMC9332520 DOI: 10.1016/j.jfda.2017.02.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
Abstract
Chemical and enzymatic barriers in the gastrointestinal (GI) tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs) are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.
Collapse
|
65
|
Systematic Approach for the Formulation and Optimization of Solid Lipid Nanoparticles of Efavirenz by High Pressure Homogenization Using Design of Experiments for Brain Targeting and Enhanced Bioavailability. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5984014. [PMID: 28243600 PMCID: PMC5294220 DOI: 10.1155/2017/5984014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/04/2016] [Accepted: 11/23/2016] [Indexed: 11/19/2022]
Abstract
The nonnucleoside reverse transcriptase inhibitors, used for the treatment of HIV infections, are reported to have low bioavailability pertaining to high first-pass metabolism, high protein binding, and enzymatic metabolism. They also show low permeability across blood brain barrier. The CNS is reported to be the most important HIV reservoir site. In the present study, solid lipid nanoparticles of efavirenz were prepared with the objective of providing increased permeability and protection of drug due to biocompatible lipidic content and nanoscale size and thus developing formulation having potential for enhanced bioavailability and brain targeting. Solid lipid nanoparticles were prepared by high pressure homogenization technique using a systematic approach of design of experiments (DoE) and evaluated for particle size, polydispersity index, zeta potential, and entrapment efficiency. Particles of average size 108.5 nm having PDI of 0.172 with 64.9% entrapment efficiency were produced. Zeta potential was found to be −21.2 mV and the formulation was found stable. The in-vivo pharmacokinetic studies revealed increased concentration of the drug in brain, as desired, when administered through intranasal route indicating its potential for an attempt towards complete eradication of HIV and cure of HIV-infected patients.
Collapse
|
66
|
Badea G, Badea N, Brasoveanu LI, Mihaila M, Stan R, Istrati D, Balaci T, Lacatusu I. Naringenin improves the sunscreen performance of vegetable nanocarriers. NEW J CHEM 2017. [DOI: 10.1039/c6nj02318e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Naringenin enhances the UV protection, photostability and cell viability of lipid based vegetable nanocarriers.
Collapse
Affiliation(s)
- Gabriela Badea
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | - Nicoleta Badea
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | | | - Mirela Mihaila
- Romanian Academy
- Stefan S. Nicolau Institute of Virology
- 030304 Bucharest
- Romania
| | - Raluca Stan
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | - Daniela Istrati
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | - Teodora Balaci
- University of Medicine and Pharmacy Carol Davila
- 70183 Bucharest
- Romania
| | - Ioana Lacatusu
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| |
Collapse
|
67
|
Oliveira MS, Goulart GCA, Ferreira LAM, Carneiro G. Hydrophobic ion pairing as a strategy to improve drug encapsulation into lipid nanocarriers for the cancer treatment. Expert Opin Drug Deliv 2016; 14:983-995. [DOI: 10.1080/17425247.2017.1266329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mariana Silva Oliveira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Castro Assis Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| |
Collapse
|
68
|
Trapani A, Tripodo G, Mandracchia D, Cioffi N, Ditaranto N, Cerezuela R, Esteban MA. Glutathione loaded solid lipid nanoparticles: Preparation and in vitro evaluation as delivery systems of the antioxidant peptide to immunocompetent fish cells. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/jcb-15022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, via Orabona, Bari, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, viale Taramelli, Pavia, Italia
| | - Delia Mandracchia
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, via Orabona, Bari, Italy
| | - Nicola Cioffi
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona, Bari, Italy
| | - Nicoletta Ditaranto
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona, Bari, Italy
| | - Rebeca Cerezuela
- Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Maria Angeles Esteban
- Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| |
Collapse
|
69
|
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:982-994. [PMID: 27524099 DOI: 10.1016/j.msec.2016.05.119] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/24/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems.
Collapse
Affiliation(s)
| | - Michał Moritz
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
70
|
Otarola J, Garrido M, Correa NM, Molina PG. Square Wave Voltammetry: An Alternative Technique to Determinate Piroxicam Release Profiles from Nanostructured Lipid Carriers. Chemphyschem 2016; 17:2322-8. [DOI: 10.1002/cphc.201600226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Jessica Otarola
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3 C.P. X5804BYA Río Cuarto Argentina), Fax: (+54) 358-4676233
| | - Mariano Garrido
- Departamento de Química; Universidad Nacional del Sur; INQUISUR (UNS-CONICET); Avenida Alem 1253 8000 Bahia Blanca Argentina
| | - N. Mariano Correa
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3 C.P. X5804BYA Río Cuarto Argentina), Fax: (+54) 358-4676233
| | - Patricia G. Molina
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3 C.P. X5804BYA Río Cuarto Argentina), Fax: (+54) 358-4676233
| |
Collapse
|
71
|
Kurakula M, Ahmed OAA, Fahmy UA, Ahmed TA. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J Liposome Res 2016; 26:288-96. [PMID: 26784833 DOI: 10.3109/08982104.2015.1117490] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Avanafil (AVA) is used in the treatment of erectile dysfunction, but is reported for its poor aqueous solubility. Solid lipid nanoparticles (SLNs) are lipid carriers that can greatly enhance drug solubility and bioavailability. OBJECTIVE This work was aimed to formulate and optimize AVA SLNs with subsequent loading into hydrogel films for AVA transdermal delivery. MATERIALS AND METHODS AVA SLNs were prepared utilizing homogenization followed by ultra-sonication technique. The prepared SLNs were characterized for particle size, charge, surface morphology and drug content. The optimized SLNs formulation was incorporated into transdermal films prepared using HPMC and chitosan. Hydrogel films were evaluated for ex-vivo rat skin permeation using automated Franz diffusion cells. The permeation parameters and the release mechanism were evaluated. The transdermal permeation of the prepared AVA SLNs through the skin layers was studied using confocal laser scanning microscope. RESULTS Lipid concentration and % of oil in lipid had a pronounced effect on particle size while, entrapment efficiency was significantly affected by lipid concentration and % of cholesterol. The optimized AVA SLNs showed particle size and entrapment efficiency of 86 nm and 85.01%, respectively. TEM images revealed spherecity of the particles. High permeation parameters were observed from HPMC films loaded with AVA SLNs. The release data were in favor of Higuchi diffusion model. The prepared AVA SLNs were able to penetrate deeper in skin layers. CONCLUSION HPMC transdermal film-loaded AVA SLNs is an effective and alternative to per-oral drug administration.
Collapse
Affiliation(s)
- Mallesh Kurakula
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia .,b Department of Chemistry , Faculty of Science, Polymer Research Lab, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Osama A A Ahmed
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia .,c Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Minia University , Minia , Egypt , and
| | - Usama A Fahmy
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Tarek A Ahmed
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia .,d Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Al-Azhar University , Cairo , Egypt
| |
Collapse
|
72
|
Radaic A, Barbosa L, Jaime C, Kapila Y, Pessine F, de Jesus M. How Lipid Cores Affect Lipid Nanoparticles as Drug and Gene Delivery Systems. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/bs.abl.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
73
|
Pedro AS, Villa SD, Caliceti P, Melo SAVD, Albuquerque EC, Bertucco A, Salmaso S. Curcumin-loaded solid lipid particles by PGSS technology. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
74
|
Becker Peres L, Becker Peres L, de Araújo PHH, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B Biointerfaces 2015; 140:317-323. [PMID: 26764112 DOI: 10.1016/j.colsurfb.2015.12.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/24/2022]
Abstract
Encapsulation of hydrophilic compounds for drug delivery systems with high loading efficiency is not easily feasible and remains a challenge, mainly due to the leaking of the drug to the outer aqueous phase during nanoparticle production. Usually, encapsulation of hydrophilic drugs is achieved by using double emulsion or inverse miniemulsion systems that often require the use of organic solvents, which may generate toxicological issues arising from solvent residues. Herein, we present the preparation of solid lipid nanoparticles loaded with a hydrophilic compound by a novel organic solvent free double emulsion/melt dispersion technique. The main objective of this study was to investigate the influence of important process and formulation variables, such as lipid composition, surfactant type, sonication parameters and lipid solidification conditions over physicochemical characteristics of SLN dispersion. Particle size and dispersity, as well as dispersion stability were used as responses. SLN dispersions with average size ranging from 277 to 550 nm were obtained, showing stability for over 60 days at 4 °C depending on the chosen emulsifying system. Entrapment efficiency of fluorescent dyes used as model markers was assessed by fluorescence microscopy and UV-vis spectrophotometry and results suggest that the obtained lipid based nanoparticles could be potentially applied as a delivery system of water soluble drugs.
Collapse
Affiliation(s)
- Luana Becker Peres
- Chemical Engineering Department, Federal University of Santa Catarina-UFSC, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil.
| | - Laize Becker Peres
- Chemical Engineering Department, Federal University of Santa Catarina-UFSC, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil.
| | - Pedro Henrique Hermes de Araújo
- Chemical Engineering Department, Federal University of Santa Catarina-UFSC, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil.
| | - Claudia Sayer
- Chemical Engineering Department, Federal University of Santa Catarina-UFSC, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
75
|
Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV. Lipid-based nanocarriers for breast cancer treatment – comprehensive review. Drug Deliv 2015; 23:1291-305. [DOI: 10.3109/10717544.2015.1092183] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Siddartha Venkata Talluri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | | | - Shashank Tummala
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | | |
Collapse
|
76
|
Li M, Zahi MR, Yuan Q, Tian F, Liang H. Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400650] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miaomiao Li
- State key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology, Beijing; P. R. China
| | - Mohamed Reda Zahi
- State key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology, Beijing; P. R. China
| | - Qipeng Yuan
- State key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology, Beijing; P. R. China
| | - Feibao Tian
- State key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology, Beijing; P. R. China
| | - Hao Liang
- State key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology, Beijing; P. R. China
| |
Collapse
|
77
|
Hwang TL, Aljuffali IA, Hung CF, Chen CH, Fang JY. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem Biol Interact 2015; 235:106-14. [PMID: 25920576 DOI: 10.1016/j.cbi.2015.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
Cationic solid lipid nanoparticles (cSLNs) are extensively employed as the nanocarriers for drug/gene targeting to tumors and the brain. Investigation into the possible immune response of cSLNs is still lacking. The aim of this study was to evaluate the impact of cSLNs upon the activation of human polymorphonuclear neutrophil cells (PMNs). The cytotoxicity, pro-inflammatory mediators, Ca(2+) mobilization, mitogen-activated protein kinases (MAPKs), and neutrophil extracellular traps (NETs) as the indicators of PMN stimulation were examined in this work. The cSLNs presented a diameter of 195 nm with a zeta potential of 44 mV. The cSLNs could interact with the cell membrane to produce a direct membrane lysis and the subsequent cytotoxicity according to lactate dehydrogenase (LDH) elevation. The interaction of cSLNs with the membrane also triggered a Ca(2+) influx, followed by the induction of oxidative stress and degranulation. The cationic nanoparticles elevated the levels of superoxide anion and elastase by 24- and 9-fold, respectively. The PMN activation by cSLNs promoted the phosphorylation of p38 and Jun-N-terminal kinases (JNK) but not extracellular signal-regulated kinases (ERK). The imaging of scanning electron microscopy (SEM) and immunofluorescence demonstrated the production of NETs by cSLNs. This phenomenon was not significant for the neutral SLNs (nSLNs), although histones in NETs also increased after treatment of nSLNs. Our results suggest an important role of cSLNs in governing the activation of human neutrophils.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Cell Pharmacology Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City, Taiwan, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
78
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
79
|
Pinto MF, Moura CC, Nunes C, Segundo MA, Costa Lima SA, Reis S. A new topical formulation for psoriasis: Development of methotrexate-loaded nanostructured lipid carriers. Int J Pharm 2014; 477:519-26. [DOI: 10.1016/j.ijpharm.2014.10.067] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 01/12/2023]
|
80
|
Fàbregas A, Sánchez-Hernández N, Ticó JR, García-Montoya E, Pérez-Lozano P, Suñé-Negre JM, Hernández-Munain C, Suñé C, Miñarro M. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: Development, characterization and DNA binding efficiency of TCERG1 expression plasmid. Int J Pharm 2014; 473:270-9. [DOI: 10.1016/j.ijpharm.2014.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
81
|
Influence of vegetable oil on the synthesis of bioactive nanocarriers with broad spectrum photoprotection. OPEN CHEM 2014. [DOI: 10.2478/s11532-014-0503-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractDue to their unique features, most nanostructured lipid carriers (NLCs) in association with vegetable oils that exhibit UV filtering properties and bioactivity could be used in many cosmetic formulations. Therefore, in this work, a new application of pomegranate seed oil (PSO) in the cosmetic sector was developed, based on the synthesis of bioactive lipid nanocarriers loaded with various UV filters by the hot high pressure homogenization technique. To get broad spectrum photoprotection, different UVA and UVB filters have been used (Avobenzone — AVO, Octocrylen-OCT, Bemotrizinol — BEMT). The influence of the solid lipids combined with PSO on the particle size, physical stability and entrapment efficiency was investigated using 8 nanocarrier systems. An improved physical stability and an appropriate size were obtained for NLCs prepared with Emulgade, carnauba wax and PSO (e.g. −30.9÷-36.9 mV and 160÷185 nm). NLCs showed an entrapment efficiency above 90% and assured slow release rates of UV filters, especially for BEMT (5%). The developed nanocarriers have been formulated into safe and effective sunscreens containing low amounts of synthetic UV filters coupled with a high percent of natural ingredients. The highest SPF of 34.3 was obtained for a cream comprising of 11% PSO and 3.7% BEMT
Collapse
|
82
|
Pensado A, Seijo B, Sanchez A. Current strategies for DNA therapy based on lipid nanocarriers. Expert Opin Drug Deliv 2014; 11:1721-31. [DOI: 10.1517/17425247.2014.935337] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Andrea Pensado
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
| | - Begoña Seijo
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
- Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Molecular Image Group,
A Choupana, 15706 Santiago de Compostela, Spain
| | - Alejandro Sanchez
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
- Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Molecular Image Group,
A Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
83
|
Schoonen L, van Hest JCM. Functionalization of protein-based nanocages for drug delivery applications. NANOSCALE 2014; 6:7124-41. [PMID: 24860847 DOI: 10.1039/c4nr00915k] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.
Collapse
Affiliation(s)
- Lise Schoonen
- Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | |
Collapse
|
84
|
Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 2014; 11:1285-98. [PMID: 24830814 DOI: 10.1517/17425247.2014.919253] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Natural products have seen a wide range of acceptability for the prevention and treatment of diseases throughout history. Resveratrol, a member of the stilbene family, has been found to potentially exhibit anticancer, antiangiogenic, immunomodulatory and cardioprotective activities as well as being an antioxidant. This is in addition to its usefulness in the treatment of neurodegenerative disease, diabetes and cardiac ailments. Currently, various studies have revealed that resveratrol is a potential drug candidate with multi-spectrum therapeutic application. AREAS COVERED This review aims to describe the various studies supporting the wide range of pharmacological activities of resveratrol. In addition, it includes a section devoted to discussing the challenges associated with the drug and strategies to improve the properties of resveratrol such as solubility, stability and bioavailability. EXPERT OPINION Resveratrol demonstrated its ability to be a potential drug candidate for the treatment of different ailments due to its potent antioxidant properties. To improve the drug stability, increase the bioavailability and minimize side-effects of resveratrol, novel drug delivery systems have been formulated to bring this potential candidate to the first line of disease treatment.
Collapse
Affiliation(s)
- Rudra Pangeni
- Faculty of Pharmacy, Jamia Hamdard University, Department of Pharmaceutics , New Delhi , India
| | | | | | | | | |
Collapse
|
85
|
Kathe N, Henriksen B, Chauhan H. Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations. Drug Dev Ind Pharm 2014; 40:1565-75. [DOI: 10.3109/03639045.2014.909840] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Abstract
Gelucire® 50/13, a macrogol glyceride, was used as a surfactant for the preparation and stabilization of paliperidone-loaded Capmul® GMS-50K matrix-based solid lipid nanoparticles (SLNs). The homogeneously distributed paliperidone did not affect the crystal structure of the lipid matrix in the SLNs.
Collapse
Affiliation(s)
- Sacheen Kumar
- Centre for Material Science and Engineering
- National Institute of Technology Hamirpur
- , India
| | - Jaspreet K. Randhawa
- Centre for Material Science and Engineering
- National Institute of Technology Hamirpur
- , India
| |
Collapse
|