51
|
Gene Regulations upon Hydrogel-Mediated Drug Delivery Systems in Skin Cancers-An Overview. Gels 2022; 8:gels8090560. [PMID: 36135270 PMCID: PMC9498739 DOI: 10.3390/gels8090560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence of skin cancer has increased dramatically in recent years, particularly in Caucasian populations. Specifically, the metastatic melanoma is one of the most aggressive cancers and is responsible for more than 80% of skin cancer deaths around the globe. Though there are many treatment techniques, and drugs have been used to cure this belligerent skin cancer, the side effects and reduced bioavailability of drug in the targeted area makes it difficult to eradicate. In addition, cellular metabolic pathways are controlled by the skin cancer driver genes, and mutations in these genes promote tumor progression. Consequently, the MAPK (RAS-RAF-MEK-ERK pathway), WNT and PI3K signaling pathways are found to be important molecular regulators in melanoma development. Even though hydrogels have turned out to be a promising drug delivery system in skin cancer treatment, the regulations at the molecular level have not been reported. Thus, we aimed to decipher the molecular pathways of hydrogel drug delivery systems for skin cancer in this review. Special attention has been paid to the hydrogel systems that deliver drugs to regulate MAPK, PI3K-AKT-mTOR, JAK-STAT and cGAS-STING pathways. These signaling pathways can be molecular drivers of skin cancers and possible potential targets for the further research on treatment of skin cancers.
Collapse
|
52
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
53
|
Massoudi S, Bagheri M, Beygi Khosrowshahi Y, Hosseini M. Antibacterial and cytotoxicity assessment of poly (N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogels. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
54
|
Pourjalili N, Bagheri Marandi G, Kurdtabar M, Rezanejade Bardajee G. Synthesis and characterization of double network hydrogel based on gellan-gum for drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N. Pourjalili
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - G. Bagheri Marandi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - M. Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
55
|
Krieg S, Essing T, Krieg A, Roderburg C, Luedde T, Loosen SH. Recent Trends and In-Hospital Mortality of Transarterial Chemoembolization (TACE) in Germany: A Systematic Analysis of Hospital Discharge Data between 2010 and 2019. Cancers (Basel) 2022; 14:cancers14092088. [PMID: 35565218 PMCID: PMC9100764 DOI: 10.3390/cancers14092088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Transarterial chemoembolization (TACE) is a minimally invasive procedure, characterized by the selective occlusion of tumor-feeding hepatic arteries, via injection of an embolizing agent and an anticancer drug. It represents a standard of care for intermediate-stage hepatocellular carcinoma (HCC), and it is also increasingly performed in cholangiocarcinoma (CCA), as well as in liver metastases. Apart from the original method, based on intra-arterial infusion of a liquid drug followed by embolization, newer particle-based TACE procedures have been introduced recently. As yet, comprehensive data on current trends of TACE, as well as its in-hospital mortality in Germany, which could help to further improve outcome following TACE, are missing. (2) Methods: Based on standardized hospital discharge data, provided by the German Federal Statistical Office from 2010 to 2019, we aimed at systematically evaluating current clinical developments and in-hospital mortality related to TACE in Germany. (3) Results: A total of 49,595 individual cases undergoing TACE were identified within the observation period. The overall in-hospital mortality was 1.00% and significantly higher in females compared to males (1.12 vs. 0.93%; p < 0.001). We identified several post-interventional complications, such as liver failure (51.49%), sepsis (33.87%), renal failure (23.9%), and liver abscess (15.87%), which were associated with a significantly increased in-hospital mortality. Moreover, in-hospital mortality significantly differed between the underlying indications for TACE (HCC: 0.83%, liver metastases: 1.22%, and CCA: 1.40%), as well as between different embolization agents (liquid embolization: 0.80%, loaded microspheres: 0.92%, spherical particles: 1.54%, and non-spherical particles: 2.84%), for which we observed large geographic differences in their frequency of use. Finally, in-hospital mortality was significantly increased in centers with a low annual TACE case volume (<15 TACE/year: 2.08% vs. >275 TACE/year: 0.45%). (4) Conclusion: Our data provide a systematic overview of indications and embolization methods for TACE in Germany. We identified a variety of factors, such as post-interventional complications, the embolization method used, and the hospitals’ annual case volume, which are associated with an increased in-hospital mortality following TACE. These data might help to further reduce the mortality of this routinely performed local-ablative procedure in the future.
Collapse
Affiliation(s)
- Sarah Krieg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (T.E.); (C.R.)
| | - Tobias Essing
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (T.E.); (C.R.)
- Paracelsus Medical University, Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (T.E.); (C.R.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (T.E.); (C.R.)
- Correspondence: (T.L.); (S.H.L.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (T.E.); (C.R.)
- Correspondence: (T.L.); (S.H.L.)
| |
Collapse
|
56
|
Rashidi Z, Bagheri Marandi G, Taghvay Nakhjiri M. Carboxymethyl cellulose-based nanocomposite hydrogel grafted with vinylic comonomers: synthesis, swelling behavior and drug delivery investigation. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2056049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zahra Rashidi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | | |
Collapse
|
57
|
Kheiri K, Sohrabi N, Mohammadi R, Amini-Fazl MS. Preparation and characterization of magnetic nanohydrogel based on chitosan for 5-fluorouracil drug delivery and kinetic study. Int J Biol Macromol 2022; 202:191-198. [PMID: 35033524 DOI: 10.1016/j.ijbiomac.2022.01.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy is currently used for most cancer treatments, but one of the significant problems of this treatment is that it affects the healthy tissues of the body. Therefore, designing new systems for the intelligent and controlled release of these drugs in cancer tissues is one of the major challenges in the world. Hence, today, huge costs are spent designing appropriate new drug delivery systems (DDS) with controlled drug release. In this study, chitosan-polyacrylic acid encapsulated Fe3O4 magnetic nanogelic core-shell (Fe3O4@CS-PAA) was synthesized in the presence of glutaraldehyde used for loaded anticancer 5-fluorouracil (5-FU) drug. Also, the prepared Fe3O4@CS-PAA was characterized by using FT-IR, SEM, XRD, and VSM analysis. Then, drug delivery tests were carried out in the in-vitro conditions that are the simulated physiological environment and tumor tissue conditions. The drug release tests indicated that the Fe3O4@CS-PAA upgraded the rate of 5-FU release from nanogelic core-shell under tumor tissue conditions (pH 4.5) than physiological environments (pH 7.4). In addition, various models were used to investigate the drug release mechanism. Results of modeling studies of drug release showed the mechanism of 5-FU release from Fe3O4@CS-PAA controlled by Fickian diffusion.
Collapse
Affiliation(s)
- Karim Kheiri
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Negin Sohrabi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Biosystem Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
58
|
Pooresmaeil M, Namazi H, Salehi R. Dual anticancer drug delivery of D-galactose-functionalized stimuli-responsive nanogels for targeted therapy of the liver hepatocellular carcinoma. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
59
|
Zhou W, Hu Z, Wei J, Dai H, Chen Y, Liu S, Duan Z, Xie F, Zhang W, Guo R. Quantum dots-hydrogel composites for biomedical applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
60
|
Pooresmaeil M, Namazi H. Folic acid-modified photoluminescent dialdehyde carboxymethyl cellulose crosslinked bionanogels for pH-controlled and tumor-targeted co-drug delivery. Int J Biol Macromol 2022; 200:247-262. [PMID: 35007630 DOI: 10.1016/j.ijbiomac.2022.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 01/21/2023]
Abstract
This work aimed to fabricate a new photoluminescent bionanogel with both targeted anticancer drug delivery and bioimaging potentials. Briefly, at first photoluminescent carbon dots (CDs) were synthesized from the low-cost and more available black pepper with traditional medicinal properties. The as-synthesized dialdehyde carboxymethyl cellulose (DCMC) was used as a safe crosslinker for gelatin crosslinking in the presence of CDs (CDs/DCMC-Gel). Eventually, the residual amine functional groups of gelatin were used for the conjugation of CDs/DCMC-Gel with folic acid (FA) ((CDs/DCMC-Gel)-FA bionanogels). All employed physicochemical characterization methods approved the (CDs/DCMC-Gel)-FA bionanogels fabrication route. SEM analysis specified the spherical morphology with a diameter of ~70-90 nm for it. Curcumin (CUR) and doxorubicin (DOX) respectively were loaded with drug entrapment efficiency of about 44.0% and 41.4%. The release rate for both drugs in acidic conditions was higher than in physiological conditions. In vitro antitumor experiments; MTT, DAPI staining, cellular uptake, and cell cycle tests showed the superior anticancer effect of the CUR@DOX@(CDs/DCMC-Gel)-FA in comparison with free CUR@DOX. Moreover, the (CDs/DCMC-Gel)-FA acted as a hopeful bio-imaging tool. Taken together, the designed (CDs/DCMC-Gel)-FA could be proposed as a promising nanosystem for efficient chemotherapy.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
61
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Omidifar N, Bahrani S, Vijayakameswara Rao N, Babapoor A, Gholami A, Chiang WH. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers (Basel) 2022; 14:617. [PMID: 35160606 PMCID: PMC8839953 DOI: 10.3390/polym14030617] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Today, nanomedicine seeks to develop new polymer composites to overcome current problems in diagnosing and treating common diseases, especially cancer. To achieve this goal, research on polymer composites has expanded so that, in recent years, interdisciplinary collaborations between scientists have been expanding day by day. The synthesis and applications of bioactive GQD-based polymer composites have been investigated in medicine and biomedicine. Bioactive GQD-based polymer composites have a special role as drug delivery carriers. Bioactive GQDs are one of the newcomers to the list of carbon-based nanomaterials. In addition, the antibacterial and anti-diabetic potentials of bioactive GQDs are already known. Due to their highly specific surface properties, π-π aggregation, and hydrophobic interactions, bioactive GQD-based polymer composites have a high drug loading capacity, and, in case of proper correction, can be used as an excellent option for the release of anticancer drugs, gene carriers, biosensors, bioimaging, antibacterial applications, cell culture, and tissue engineering. In this paper, we summarize recent advances in using bioactive GQD-based polymer composites in drug delivery, gene delivery, thermal therapy, thermodynamic therapy, bioimaging, tissue engineering, bioactive GQD synthesis, and GQD green resuscitation, in addition to examining GQD-based polymer composites.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (S.B.)
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (S.B.)
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil 56199-11367, Iran;
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
62
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
Agrawal A, Bhattacharya S. Cutting-edge Nanotechnological Approaches for Lung Cancer Therapy. Curr Drug Res Rev 2022; 14:171-187. [PMID: 35440332 DOI: 10.2174/2589977514666220418085658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Lung cancer is the second leading cancer with a high rate of mortality. It can be treated using different intervention techniques such as chemotherapy, radiation therapy, surgical removal, and photodynamic therapy. All of these interventions lack specificity, implying that it harms the normal cells adjacent to the infected ones. Nanotechnology provides a promising solution that increases the bioavailability of anticancer drugs at the tumor site with reduced toxicity and improved therapeutic efficacy. Nanotechnology also improves the way lung cancer is diagnosed and treated. Various nanocarriers like liposomes, polymeric nanoparticles, magnetic nanoparticles, and different theranostic approaches are already approved for medical use, while various are under clinical and preclinical stages. This review article covers the details about lung cancer, types of overexpressed receptors, and cutting-edge nanocarriers used for treating lung cancer at its specific target.
Collapse
Affiliation(s)
- Amaiyya Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| |
Collapse
|
64
|
Javanbakht S, Khodkari V, Nazeri MT, Shaabani A. Efficient anchoring CuO nanoparticles on Ugi four-component-functionalized graphene quantum dots: Colloidal soluble nanoplatform with great photoluminescent and antibacterial properties. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00455g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, sustainable functionalization of graphene quantum dots (GQDs) obtained citric acid via a neoteric green, facile, and straightforward approach for effectively anchoring CuO nanoparticles (CuO NPs) and accordingly...
Collapse
|
65
|
Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed Pharmacother 2021; 146:112492. [PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of clinical complications and therapeutic challenges for treating various diseases necessitate the discovery of novel restorative functional materials. Polymer-based drug delivery systems have been extensively reported in the last two decades. Recently, there has been an increasing interest in the progression of natural biopolymers based controlled therapeutic strategies, especially in drug delivery and tissue engineering applications. However, the solubility and functionalisation due to their complex network structure and intramolecular bonding seem challenging. This review explores the current advancement and prospects of the most promising natural polymers such as cellulose, starch and their derivatives-based drug delivery vehicles like hydrogels, films and composites, in combating major ailments such as bone infections, microbial infections, and cancers. In addition, selective drug targeting using metal-drug (MD) and MD-based polymeric missiles have been exciting but challenging for its application in cancer therapeutics. Owing to high biocompatibility of starch and cellulose, these materials have been extensively evaluated in biomedical and pharmaceutical applications. This review presents a detailed impression of the current trends for the construction of biopolymer-based tissue engineering, drug/gene/protein delivery vehicles.
Collapse
Affiliation(s)
- V Gopinath
- University of Malaya Centre for Proteomics Research, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - S Manjunath Kamath
- Department of Translational Medicine and Research, SRM Medical College Hospital and Research, SRMIST, Kattankulathur 603203, India.
| | - S Priyadarshini
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdurahman H Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
66
|
Developing a new photoluminescent, nanoporous, and biocompatible glycodendrimer for smart hepatic cancer treatment. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
67
|
Farhad-Gholami N, Hashemi-Moghaddam H, Shaabanzadeh M, Zavareh S, Madanchi H. Sustained doxorubicin delivery system to breast tumor cancer cell based on a novel cationic molecularly imprinted polymer. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2008392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Nahid Farhad-Gholami
- Department of Chemical Enginnering, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Masoud Shaabanzadeh
- Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
| | - Hamid Madanchi
- Department and Research Center of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
68
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
69
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
70
|
3D Printed Multi-Functional Scaffolds Based on Poly(ε-Caprolactone) and Hydroxyapatite Composites. NANOMATERIALS 2021; 11:nano11092456. [PMID: 34578772 PMCID: PMC8465550 DOI: 10.3390/nano11092456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
3D Printed biodegradable polymeric scaffolds are critical to repair a bone defect, which can provide the individual porous and network microenvironments for cell attachment and bone tissue regeneration. Biodegradable PCL/HA composites were prepared with the blending of poly(ε-caprolactone) (PCL) and hydroxyapatite nanoparticles (HA). Subsequently, the PCL/HA scaffolds were produced by the melting deposition-forming method using PCL/HA composites as the raw materials in this work. Through a serial of in vitro assessments, it was found that the PCL/HA composites possessed good biodegradability, low cell cytotoxicity, and good biocompatibility, which can improve the cell proliferation of osteoblast cells MC3T3-E1. Meanwhile, in vivo experiments were carried out for the rats with skull defects and rabbits with bone defects. It was observed that the PCL/HA scaffolds allowed the adhesion and penetration of bone cells, which enabled the growth of bone cells and bone tissue regeneration. With a composite design to load an anticancer drug (doxorubicin, DOX) and achieve sustained drug release performance, the multifunctional 3D printed PCL/HA/DOX scaffolds can enhance bone repair and be expected to inhibit probably the tumor cells after malignant bone tumor resection. Therefore, this work signifies that PCL/HA composites can be used as the potential biodegradable scaffolds for bone repairing.
Collapse
|
71
|
Slepičková Kasálková N, Slepička P, Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2368. [PMID: 34578684 PMCID: PMC8466887 DOI: 10.3390/nano11092368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 01/15/2023]
Abstract
The versatility of the arrangement of C atoms with the formation of different allotropes and phases has led to the discovery of several new structures with unique properties. Carbon nanomaterials are currently very attractive nanomaterials due to their unique physical, chemical, and biological properties. One of these is the development of superconductivity, for example, in graphite intercalated superconductors, single-walled carbon nanotubes, B-doped diamond, etc. Not only various forms of carbon materials but also carbon-related materials have aroused extraordinary theoretical and experimental interest. Hybrid carbon materials are good candidates for high current densities at low applied electric fields due to their negative electron affinity. The right combination of two different nanostructures, CNF or carbon nanotubes and nanoparticles, has led to some very interesting sensors with applications in electrochemical biosensors, biomolecules, and pharmaceutical compounds. Carbon materials have a number of unique properties. In order to increase their potential application and applicability in different industries and under different conditions, they are often combined with other types of material (most often polymers or metals). The resulting composite materials have significantly improved properties.
Collapse
Affiliation(s)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (N.S.K.); (V.Š.)
| | | |
Collapse
|
72
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
73
|
Javanbakht S, Nabi M, Shadi M, Amini MM, Shaabani A. Carboxymethyl cellulose/tetracycline@UiO-66 nanocomposite hydrogel films as a potential antibacterial wound dressing. Int J Biol Macromol 2021; 188:811-819. [PMID: 34390748 DOI: 10.1016/j.ijbiomac.2021.08.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 01/17/2023]
Abstract
Designing an antibacterial agent with a suitable water vapor permeability, good mechanical properties, and controlled antibiotic release is a promising method for stopping bacterial infection in wound tissue. In this respect, this work aims to prepare novel flexible polymeric hydrogel films via integrating UiO-66 into the polymeric carboxymethyl cellulose (CMC) hydrogel for improving the mechanical and antibiotic release performances. First, we performed a green hydrothermal synthetic method to synthesis UiO-66 and followed by encapsulating Tetracycline (TC) through immersion in its aqueous solution. Also, the casting technique was utilized to integrate different concentrations of the TC-encapsulated UiO-66 (TC@UiO-66, 5% to 15%) in the polymeric CMC matrix (CMC/TC@UiO-66) cross-linked by citric acid and plasticized by glycerol. The release performance showed a low initial burst release with a controlled release over 72 h in the artificial sweat and simulated wound exudate (PBS, pH 7.4) media. The in vitro cytotoxicity and antibacterial activity results revealed a good cytocompatibility toward Human skin fibroblast (HFF-1) cells and a significant activity against both E. coli and S. aureus with 1.3 and 1.7 cm inhibition zone, respectively. The obtained results recommend CMC/TC@UiO-66 films as a potential antibacterial wound dressing.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mohadese Nabi
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mehrdad Shadi
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mostafa M Amini
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran; Рeoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
74
|
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021; 21:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Collapse
Affiliation(s)
- Wenzhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qida Zong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
75
|
CHAI P, SONG Z, LIU W, XUE J, WANG S, LIU J, LI J. [Application of carbon dots in analysis and detection of antibiotics]. Se Pu 2021; 39:816-826. [PMID: 34212582 PMCID: PMC9404157 DOI: 10.3724/sp.j.1123.2021.04022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/25/2022] Open
Abstract
Antibiotics have been overused in recent years because of their remarkable curative effect, but this has led to considerable environmental pollution. Therefore, the development of approaches aimed at the effective detection and control of the antibiotics is vital for protecting the environment and human health. Many conventional strategies (such as high-performance liquid chromatography (HPLC), gas chromatography (GC), high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)) are currently in use for the detection of antibiotics. These strategies have aroused a great deal of interest because of their outstanding features of high efficiency and speed, good reproducibility, automation, etc. However, various problems such as tedious sample pretreatment, low detection sensitivity, and high cost must be overcome for the effective detection of antibiotics in environmental samples. Consequently, it is of great significance to improve the detection sensitivity of antibiotics. The development of new materials combined with the existing detection technology has great potential to improve the detection results for antibiotics. Carbon dots (CDs) are a new class of nanomaterials with particle sizes in the range of 0-10 nm. In addition, CDs have desirable properties such as small particle effect, excellent electrical properties, unique optical properties, and good biocompatibility. Hence, they have been widely utilized for the detection of antibiotics in environmental samples. In this review, the application of CDs combined with sensors and chromatographic technology for the detection of antibiotics in the last five years are summarized. The development prospects of CD-based materials and their application to the analysis and detection of antibiotics are presented. In this review, many new sensors (CDs combined with molecularly imprinted polymer sensors, aptamer sensors, electrochemiluminescence sensors, fluorescence sensors, and electrochemical sensors) combined with CD-based materials and their use in the detection of antibiotics are summarized. Furthermore, advanced analysis methods such as ratiometric sensor and array sensor methods are reviewed. The novel analysis methods provide a new direction toward the detection of antibiotics by CDs combined with a sensor. Moreover, CD-based chromatographic stationary phases for the separation of antibiotics are also summarized in this manuscript. It is reported that the detection sensitivity for antibiotics can be greatly improved by the combination of CDs and a sensor. Nevertheless, a literature survey reveals that the detection of antibiotics in complex environmental samples is confronted with numerous challenges, including the fabrication of highly sensitive sensors in combination with CDs. Furthermore, the development of novel high-performance materials is of imperative. In addition, it is important to develop new methods for effective data processing. The separation of antibiotics with CDs as the chromatographic stationary phases is in the preliminary stage, and the separation mechanism remains to be clarified. In conclusion, there are still many problems to be overcome when using CDs as novel materials for the detection of antibiotics in environmental samples. Nowadays, CD-based materials are being intensively studied, and various analytical detection technologies are being rapidly developed. In the future, CD-based materials are expected to play an important role in the detection of antibiotics and other environmental pollutants.
Collapse
|
76
|
Ayucitra A, Angkawijaya AE, Ju Y, Gunarto C, Go AW, Ismadji S. Graphene oxide‐carboxymethyl cellulose hydrogel beads for uptake and release study of doxorubicin. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aning Ayucitra
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Yi‐Hsu Ju
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
- Taiwan Building Technology Center National Taiwan University of Science and Technology Taipei Taiwan
| | - Chintya Gunarto
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Alchris Woo Go
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
| |
Collapse
|
77
|
Fabrication and Application of SERS-Active Cellulose Fibers Regenerated from Waste Resource. Polymers (Basel) 2021; 13:polym13132142. [PMID: 34209824 PMCID: PMC8272151 DOI: 10.3390/polym13132142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022] Open
Abstract
The flexible SERS substrate were prepared base on regenerated cellulose fibers, in which the Au nanoparticles were controllably assembled on fiber through electrostatic interaction. The cellulose fiber was regenerated from waste paper through the dry-jet wet spinning method, an eco-friendly and convenient approach by using ionic liquid. The Au NPs could be controllably distributed on the surface of fiber by adjusting the conditions during the process of assembling. Finite-difference time-domain theoretical simulations verified the intense local electromagnetic fields of plasmonic composites. The flexible SERS fibers show excellent SERS sensitivity and adsorption capability. A typical Raman probe molecule, 4-Mercaptobenzoicacid (4-MBA), was used to verify the SERS cellulose fibers, the sensitivity could achieve to 10−9 M. The flexible SERS fibers were successfully used for identifying dimetridazole (DMZ) from aqueous solution. Furthermore, the flexible SERS fibers were used for detecting DMZ from the surface of fish by simply swabbing process. It is clear that the fabricated plasmonic composite can be applied for the identifying toxins and chemicals.
Collapse
|
78
|
Iannazzo D, Espro C, Celesti C, Ferlazzo A, Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers (Basel) 2021; 13:3194. [PMID: 34206792 PMCID: PMC8269110 DOI: 10.3390/cancers13133194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (C.C.); (A.F.); (G.N.)
| | | | | | | | | |
Collapse
|
79
|
Son I, Son SR, An J, Choi JW, Kim S, Lee WY, Lee JH. Photoluminescent surface-functionalized graphene quantum dots for spontaneous interfacial homeotropic orientation of liquid crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
80
|
El-Shahawy AAG, Elnagar N, Zohery M, Abd Elhafeez MS, El-Dek SI. Smart nanocarrier-based chitosan @silica coated carbon nanotubes composite for breast cancer treatment approach. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1925277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ahmed A. G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Noha Elnagar
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
- Drug Research Center, Assiut University, Asyut, Egypt
| | - Medhat Zohery
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
- Drug Research Center, Assiut University, Asyut, Egypt
| | | | - S. I. El-Dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
81
|
Pereira AT, Henriques PC, Schneider KH, Pires AL, Pereira AM, Martins MCL, Magalhães FD, Bergmeister H, Gonçalves IC. Graphene-based materials: the key for the successful application of pHEMA as a blood-contacting device. Biomater Sci 2021; 9:3362-3377. [PMID: 33949373 DOI: 10.1039/d0bm01699c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombosis and infection are the leading causes of blood-contacting device (BCD) failure, mainly due to the poor performance of existing biomaterials. Poly(2-hydroxyethyl methacrylate) (pHEMA) has excellent hemocompatibility but the weak mechanical properties impair its use as a bulk material for BCD. As such, pHEMA has been explored as a coating, despite the instability and difficulty of attachment to the underlying polymer compromise its success. This work describes the hydrogel composites made of pHEMA and graphene-based materials (GBM) that meet the biological and mechanical requirements for a stand-alone BCD. Five GBM differing in thickness, oxidation degree, and lateral size were incorporated in pHEMA, revealing that only oxidized-GBM can reinforce pHEMA. pHEMA/oxidized-GBM composites are cytocompatible and prevent the adhesion of endothelial cells, blood platelets, and bacteria (S. aureus), thus maintaining pHEMA's anti-adhesive properties. As a proof of concept, the thrombogenicity of the tubular prototypes of the best formulation (pHEMA/Graphene oxide (GO)) was evaluated in vivo, using a porcine arteriovenous-shunt model. pHEMA/GO conduits withstand the blood pressure and exhibit negligible adhesion of blood components, revealing better hemocompatibility than ePTFE, a commercial material for vascular access. Our findings reveal pHEMA/GO, a synthetic and off-the-shelf hydrogel, as a preeminent material for the design of blood-contacting devices that prevent thrombosis and bacterial adhesion.
Collapse
Affiliation(s)
- Andreia T Pereira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal and GABBA - Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Patrícia C Henriques
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal and FEUP - Faculty of Engineering, University of Porto, Porto, Portugal and LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Portugal
| | - Karl H Schneider
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria and Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Ana L Pires
- IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - André M Pereira
- IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Maria Cristina L Martins
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal and ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria and Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Inês C Gonçalves
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
82
|
Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
83
|
Zhang Y, Huang Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front Chem 2021; 8:615665. [PMID: 33614595 PMCID: PMC7889811 DOI: 10.3389/fchem.2020.615665] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogels are polymeric three-dimensional network structures with high water content. Due to their superior biocompatibility and low toxicity, hydrogels play a significant role in the biomedical fields. Hydrogels are categorized by the composition from natural polymers to synthetic polymers. To meet the complicated situation in the biomedical applications, suitable host–guest supramolecular interactions are rationally selected. This review will have an introduction of hydrogel classification based on the formulation molecules, and then a discussion over the rational design of the intelligent hydrogel to the environmental stimuli such as temperature, irradiation, pH, and targeted biomolecules. Further, the applications of rationally designed smart hydrogels in the biomedical field will be presented, such as tissue repair, drug delivery, and cancer therapy. Finally, the perspectives and the challenges of smart hydrogels will be outlined.
Collapse
Affiliation(s)
- Yanyu Zhang
- Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen, China.,Engineering Research Center of Fujian Province, Xiamen Huaxia University, Xiamen, China
| | - Yishun Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen, China.,Engineering Research Center of Fujian Province, Xiamen Huaxia University, Xiamen, China
| |
Collapse
|
84
|
Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021; 175:495-515. [PMID: 33539959 DOI: 10.1016/j.ijbiomac.2021.01.196] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
Cartilage is a connective tissue, which is made up of ~80% of water. It is alymphatic, aneural and avascular with only one type of cells present, chondrocytes. They constitute about 1-5% of the entire cartilage tissue. It has a very limited capacity for spontaneous repair. Articular cartilage defects are quite common due to trauma, injury or aging and these defects eventually lead to osteoarthritis, affecting the daily activities. Tissue engineering (TE) is a promising strategy for the regeneration of articular cartilage when compared to the existing invasive treatment strategies. Cellulose is the most abundant natural polymer and has desirable properties for the development of a scaffold, which can be used for the regeneration of cartilage. This review discusses about (i) the basic science behind cartilage TE and the study of cellulose properties that can be exploited for the construction of the engineered scaffold with desired properties for cartilage tissue regeneration, (ii) about the requirement of scaffolds properties, fabrication mechanisms and assessment of cellulose based scaffolds, (iii) details about the modification of cellulose surface by employing various chemical approaches for the production of cellulose derivatives with enhanced characteristics and (iv) limitations and future research prospects of cartilage TE.
Collapse
Affiliation(s)
- Madhavi Latha Chinta
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | | | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
85
|
Sha X, Dai Y, Song X, Liu S, Zhang S, Li J. The Opportunities and Challenges of Silica Nanomaterial for Atherosclerosis. Int J Nanomedicine 2021; 16:701-714. [PMID: 33536755 PMCID: PMC7850448 DOI: 10.2147/ijn.s290537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis (AS) as the leading cause of cardiovascular and cerebrovascular events has been paid much attention all the time. With the continuous development of modern medical drug treatment, surgical treatment, interventional treatment and other methods, the mortality rate of AS has shown a downward trend, while the morbidity rate is still increasing. Oral lipid-lowering or anti-inflammatory drugs are generally used for early AS, but the relatively low accumulation efficiency in lesions and the unavoidable side effects required researchers to develop more effective drug delivery approaches for the therapy of AS. Mesoporous silica nanoparticles as nanocarrier for drug delivery have received extensive attentions due to their flexible size, high specific surface area, controlled pore volume, high drug loading capacity and excellent biocompatibility. Series of good reviews about the mesoporous silica nanoparticles loaded drugs for cancer therapy have been well documented. However, their roles as nanocarrier for drug delivery to treat AS have few reports. In this review, the applications and challenges of mesoporous silica nanomaterials in the field of the diagnosis and therapy of AS have been summarized. The classification, synthesis, formation mechanism, surface modification and functionalization of mesoporous silica nanomaterials which were closely related to the theranostic effect of AS have also been included. Last but not the least, the future prospects’ suggestions of mesoporous silica nanomaterial-based drug delivery system for AS are also provided.
Collapse
Affiliation(s)
- Xuan Sha
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yue Dai
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoxi Song
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Siwen Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shuai Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Jingjing Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
86
|
Effects of Doxorubicin Delivery by Nitrogen-Doped Graphene Quantum Dots on Cancer Cell Growth: Experimental Study and Mathematical Modeling. NANOMATERIALS 2021; 11:nano11010140. [PMID: 33435595 PMCID: PMC7827955 DOI: 10.3390/nano11010140] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
With 18 million new cases diagnosed each year worldwide, cancer strongly impacts both science and society. Current models of cancer cell growth and therapeutic efficacy in vitro are time-dependent and often do not consider the Emax value (the maximum reduction in the growth rate), leading to inconsistencies in the obtained IC50 (concentration of the drug at half maximum effect). In this work, we introduce a new dual experimental/modeling approach to model HeLa and MCF-7 cancer cell growth and assess the efficacy of doxorubicin chemotherapeutics, whether alone or delivered by novel nitrogen-doped graphene quantum dots (N-GQDs). These biocompatible/biodegradable nanoparticles were used for the first time in this work for the delivery and fluorescence tracking of doxorubicin, ultimately decreasing its IC50 by over 1.5 and allowing for the use of up to 10 times lower doses of the drug to achieve the same therapeutic effect. Based on the experimental in vitro studies with nanomaterial-delivered chemotherapy, we also developed a method of cancer cell growth modeling that (1) includes an Emax value, which is often not characterized, and (2), most importantly, is measurement time-independent. This will allow for the more consistent assessment of the efficiency of anti-cancer drugs and nanomaterial-delivered formulations, as well as efficacy improvements of nanomaterial delivery.
Collapse
|
87
|
Reduced graphene oxide-grafted bovine serum albumin/bredigite nanocomposites with high mechanical properties and excellent osteogenic bioactivity for bone tissue engineering. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00113-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
88
|
Wei W, Tang J, Li H, Huang Y, Yin C, Li D, Tang F. Antitumor Effects of Self-Assembling Peptide-Emodin in situ Hydrogels in vitro and in vivo. Int J Nanomedicine 2021; 16:47-60. [PMID: 33442249 PMCID: PMC7797320 DOI: 10.2147/ijn.s282154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To study the in vitro and in vivo antitumor effects of the colloidal suspension-in situ hydrogel of emodin (EM) constructed with the self-assembling peptide RADA16-I and systematically evaluate the feasibility of the delivery system. METHODS The MTT and colony-formation assays were used to determine the viability of normal cells NCTC 1469 and tumor cells Hepa1-6. The uptake of EM in the RADA16-I-EM in situ hydrogel by tumor cells was analyzed by laser confocal microscope and flow cytometry. Flow cytometry was used to detect the cell apoptosis and cell cycle distribution. Transwell assay was used to detect the migration and invasion of tumor cells. The antitumor efficacy of the RADA16-I-EM in situ hydrogel and its toxic effects was further assessed in vivo on Hepa1-6 tumor-bearing C57 mice. RESULTS The results showed that the RADA16-I-EM in situ hydrogels could obviously reduce the toxicity of EM to normal cells and the survival of tumor cells. The uptake of EM by the cells from the hydrogels was obviously increased and could significantly induce apoptosis and arrest cell cycle in the G2/M phase, and reduce the migration, invasion and clone-formation ability of the cells. The RADA16-I-EM in situ hydrogel could also effectively inhibit the tumor growth and obviously decrease the toxic effects of EM on normal tissues in vivo. CONCLUSION Our results demonstrated that RADA16-I has the potential to be a carrier for the hydrophobic drug EM and can effectively improve the delivery of hydrophobic antitumor drugs with enhanced antitumor effects and reduced toxic effects of the drugs on normal cells and tissues.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Jianhua Tang
- Cancer Research UK Manchester Institute, The University of Manchester, CheshireSK10 4TG, UK
| | - Hongfang Li
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Yongsheng Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing100005, People’s Republic of China
| | - Chengchen Yin
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, People’s Republic of China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| |
Collapse
|
89
|
Mallakpour S, Sirous F, Hussain CM. Green synthesis of nano-Al 2O 3, recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: various technological applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj05578f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmentally friendly fabrication of nano-Al2O3, recent functionalization, and preparation of polymer nanocomposites including natural and man-made polymers with various industrial applications are reviewed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
90
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|
91
|
Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111353. [PMID: 33254973 DOI: 10.1016/j.msec.2020.111353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
The synthesis of graphene-based materials has attracted considerable attention in drug delivery strategies. Indeed, the conductivity and mechanical stability of graphene have been investigated for controlled and tunable drug release via electric or mechanical stimuli. However, the design of a thermo-sensitive scaffold using pristine graphene (without distortions related to the oxidation processes) has not been deeply investigated yet, although it may represent a promising approach for several therapeutic treatments. Here, few-layer graphene was used as a nanofiller in a hydrogel system with a thermally tunable drug release profile. In particular, varying the temperature (25 °C, 37 °C and 44 °C), responsive drug releases were noticed and hypothesized depending on the formation and perturbation of π-π interactions involving graphene, the polymeric matrix and the model drug (diclofenac). As a result, these hybrid hydrogels show a potential application as thermally triggered drug release systems in several healthcare scenarios.
Collapse
|
92
|
Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini AA, Malek Khachatourian A, Toprak MS, Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111756. [PMID: 33545897 DOI: 10.1016/j.msec.2020.111756] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.
Collapse
Affiliation(s)
| | - Omid Sedighi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Tabatabaei Rezaei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Abbas Abedini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) London BioScience Innovation Centre 2 Royal College Street, London NW1 0NH, UK.
| |
Collapse
|
93
|
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020; 15:9469-9496. [PMID: 33281443 PMCID: PMC7710865 DOI: 10.2147/ijn.s265876] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Graphene, a wonder material, has made far-reaching developments in many different fields such as materials science, electronics, condensed physics, quantum physics, energy systems, etc. Since its discovery in 2004, extensive studies have been done for understanding its physical and chemical properties. Owing to its unique characteristics, it has rapidly became a potential candidate for nano-bio researchers to explore its usage in biomedical applications. In the last decade, remarkable efforts have been devoted to investigating the biomedical utilization of graphene and graphene-based materials, especially in smart drug and gene delivery as well as cancer therapy. Inspired by a great number of successful graphene-based materials integrations into the biomedical area, here we summarize the most recent developments made about graphene applications in biomedicine. In this paper, we review the up-to-date advances of graphene-based materials in drug delivery applications, specifically targeted drug/ gene delivery, delivery of antitumor drugs, controlled and stimuli-responsive drug release, photodynamic therapy applications and optical imaging and theranostics, as well as investigating the future trends and succeeding challenges in this topic to provide an outlook for future researches.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Naeimeh Mozaffari
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra2601, Australia
| | | | - Amir Ghasemi
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbaspour
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Karimi
- Iran Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
94
|
Oprea M, Voicu SI. Cellulose Composites with Graphene for Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5347. [PMID: 33255827 PMCID: PMC7728350 DOI: 10.3390/ma13235347] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering is an interdisciplinary field that combines principles of engineering and life sciences to obtain biomaterials capable of maintaining, improving, or substituting the function of various tissues or even an entire organ. In virtue of its high availability, biocompatibility and versatility, cellulose was considered a promising platform for such applications. The combination of cellulose with graphene or graphene derivatives leads to the obtainment of superior composites in terms of cellular attachment, growth and proliferation, integration into host tissue, and stem cell differentiation toward specific lineages. The current review provides an up-to-date summary of the status of the field of cellulose composites with graphene for tissue engineering applications. The preparation methods and the biological performance of cellulose paper, bacterial cellulose, and cellulose derivatives-based composites with graphene, graphene oxide and reduced graphene oxide were mainly discussed. The importance of the cellulose-based matrix and the contribution of graphene and graphene derivatives fillers as well as several key applications of these hybrid materials, particularly for the development of multifunctional scaffolds for cell culture, bone and neural tissue regeneration were also highlighted.
Collapse
Affiliation(s)
- Madalina Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
| | - Stefan Ioan Voicu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
95
|
Ciolacu DE, Nicu R, Ciolacu F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5270. [PMID: 33233413 PMCID: PMC7700533 DOI: 10.3390/ma13225270] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Hydrogels, three-dimensional (3D) polymer networks, present unique properties, like biocompatibility, biodegradability, tunable mechanical properties, sensitivity to various stimuli, the capacity to encapsulate different therapeutic agents, and the ability of controlled release of the drugs. All these characteristics make hydrogels important candidates for diverse biomedical applications, one of them being drug delivery. The recent achievements of hydrogels as safe transport systems, with desired therapeutic effects and with minimum side effects, brought outstanding improvements in this area. Moreover, results from the utilization of hydrogels as target therapy strategies obtained in clinical trials are very encouraging for future applications. In this regard, the review summarizes the general concepts related to the types of hydrogel delivery systems, their properties, the main release mechanisms, and the administration pathways at different levels (oral, dermal, ocular, nasal, gastrointestinal tract, vaginal, and cancer therapy). After a general presentation, the review is focused on recent advances in the design, preparation and applications of innovative cellulose-based hydrogels in controlled drug delivery.
Collapse
Affiliation(s)
| | - Raluca Nicu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Florin Ciolacu
- Natural and Synthetic Polymers Department, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
96
|
Davoodi-Monfared P, Akbari-Birgani S, Mohammadi S, Kazemi F, Nikfarjam N, Nikbakht M, Mousavi SA. Synthesis, characterization, and in vitro evaluation of the starch-based α-amylase responsive hydrogels. J Cell Physiol 2020; 236:4066-4075. [PMID: 33151570 DOI: 10.1002/jcp.30148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022]
Abstract
Controlled-release drug delivery systems are promising platforms in medicine. Among various types of material in drug delivery, hydrogels are interesting ones. They are water-soluble and tissue compatible polymers with a high capacity to carry and release drugs in a controllable manner. In this study, we introduce the synthesis, characterization, and application of an α-amylase responsive hydrogel in controlled drug delivery. The newly synthesized starch-based hydrogels structurally characterized by means of Fourier-transform infrared spectroscopy and scanning electron microscopy. A proapoptotic drug, doxorubicin, was loaded into the hydrogels and the controlled release of the drug was assessed in the presence of α-amylase and ultimately it was evaluated to controlled-drug release in vitro and subsequently in killing cancer cells. Our results highlight the effectiveness of temporal drug delivery using α-amylase responsive hydrogels in killing cancer cells.
Collapse
Affiliation(s)
- Parviz Davoodi-Monfared
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Foad Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohsen Nikbakht
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Bordallo E, Torneiro M, Lazzari M. Dissolution of amorphous nifedipine from micelle-forming carboxymethylcellulose derivatives. Carbohydr Polym 2020; 247:116699. [PMID: 32829827 DOI: 10.1016/j.carbpol.2020.116699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
We show that a novel amphiphilic graft copolymer combining the biodegradability and biocompatibility of oxidized carboxymethylcellulose (CMC) with that of hydrophilic poly(ethylene glycol) (PEG), and hydrophobic dodecylamine (DDA), improves the solubility and dissolution performance of nifedipine (NIF), considered as a model hydrophobic drug. The hydrophobic components of the graft copolymer have the multiple effect of favouring micelle formation and loading. At the same time, the interaction between the hydrophobic core and NIF has the secondary effect to suppress drug crystallization, favouring its dissolution, and to increase photostability. Oxidized CMC-g-PEG-DDA micelles reached values of drug concentration, loading capacity and encapsulation efficiency as high as 340 μg mL-1, 6.4 % and 34.1 %, respectively. Loaded micelles showed a good stability with a limited release profile at pH 1.2, whereas at pH 7.4 the swollen cores enable much higher and progressive release, that reaches 3.4 and 6.6 % after 3 and 5 h, respectively, corresponding to very competitive concentration of 34 and 66 μg mL-1.
Collapse
Affiliation(s)
- Eduardo Bordallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mercedes Torneiro
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Massimo Lazzari
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
98
|
DOX-conjugated CQD-based nanosponges for tumor intracellular pH-triggered DOX release and imaging. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
99
|
Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
100
|
Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int J Biol Macromol 2020; 165:1422-1430. [PMID: 32987067 DOI: 10.1016/j.ijbiomac.2020.09.166] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 01/25/2023]
Abstract
Nowadays, nanotechnology contributes diminishing side effects rather than traditional therapeutic methods like chemotherapy. Thus, designing a biocompatible specific targeted nanocarrier with prolonged half-life and enhanced bio-availability using simultaneous cell imaging seems urgent. To meet this demand, 5-fluorouracil-chitosan‑carbon quantum dot-aptamer (5-FU-CS-CQD-Apt) nanoparticle was successfully synthesized for specific targeted delivery of 5-FU anti-cancer drug used in breast cancer treatment and this was done by following facile water-in-oil (W/O) emulsification method. Physicochemical properties were characterized and high drug loading and entrapment efficiency were achieved. The average size and zeta potential of the nanoparticle were 122.7 nm and + 31.2 mV, respectively. According to the in-vitro drug release profile, 5-FU-CS-CQD-Apt released the drug in a controlled manner. MTT assay, flow cytometry, fluorescence microscopy, and gene expression results demonstrated that the blank nanoparticle was biocompatible, and 5-FU-CS-CQD-Apt could kill tumor cells efficiently. Bcl-2/Bax ratio was decreased after 5-FU-CS-CQD-Apt treatment in MCF-7 cells. It was concluded that 5-FU-CS-CQD-Apt could be used as a potential nanocarrier in breast cancer treatment.
Collapse
|