51
|
Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 2016; 10:836-60. [PMID: 27027670 DOI: 10.3109/17435390.2016.1153165] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multifunctional nanomaterials are rapidly emerging for ophthalmic delivery of therapeutics to facilitate safe and effective targeting with improved patient compliance. Because of their extremely high area to volume ratio, nanomaterials often have physicochemical properties that are different from those of their larger counterparts. There exists a complex relationship between the physicochemical properties (composition, size, shape, charge, roughness, and porosity) of the nanomaterials and their interaction with the biological system. The eye is a very sensitive accessible organ and is subjected to intended and unintended exposure to nanomaterials. Currently, various ophthalmic formulations are available in the market, while some are underway in preclinical and clinical phases. However, the data on safety, efficacy, and toxicology of these advanced nanomaterials for ocular drug delivery are sparse. Focus of the present review is to provide a comprehensive report on the safety, biocompatibility and toxicities of nanomaterials in the eye.
Collapse
Affiliation(s)
- Neelesh K Mehra
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| | - Defu Cai
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| | - Lih Kuo
- b Department of Medical Physiology, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA ;,c Department of Surgery and Scott & White Eye Institute, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA
| | - Travis Hein
- c Department of Surgery and Scott & White Eye Institute, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA
| | - Srinath Palakurthi
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| |
Collapse
|
52
|
A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans. Sci Rep 2016; 6:23234. [PMID: 26984256 PMCID: PMC4794644 DOI: 10.1038/srep23234] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeq(TM) 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.
Collapse
|
53
|
Andujar P, Lacourt A, Brochard P, Pairon JC, Jaurand MC, Jean D. Five years update on relationships between malignant pleural mesothelioma and exposure to asbestos and other elongated mineral particles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:151-172. [PMID: 27705546 DOI: 10.1080/10937404.2016.1193361] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite the reduction of global asbestos consumption and production due to the ban or restriction of asbestos uses in more than 50 countries since the 1970s, malignant mesothelioma remains a disease of concern. Asbestos is still used, imported, and exported in several countries, and the number of mesothelioma deaths may be expected to increase in the next decades in these countries. Asbestos exposure is the main risk factor for malignant pleural mesothelioma, but other types of exposures are linked to the occurrence of this type of cancer. Although recent treatments improve the quality of life of patients with mesothelioma, malignant pleural mesothelioma remains an aggressive disease. Recent treatments have not resulted in appreciable improvement in survival, and thus development of more efficient therapies is urgently needed. The development of novel therapeutic strategies is dependent on our level of knowledge of the physiopathological and molecular changes that mesothelial cells acquired during the neoplastic process. During the past 5 years, new findings have been published on the etiology, epidemiology, molecular changes, and innovative treatments of malignant pleural mesothelioma. This review aims to update the findings of recent investigations on etiology, epidemiology, and molecular changes with a focus on (1) attributable risk of asbestos exposure in men and women and (2) coexposure to other minerals and other elongated mineral particles or high aspect ratio nanoparticles. Recent data obtained on genomic and gene alterations, pathways deregulations, and predisposing factors are summarized.
Collapse
Affiliation(s)
- Pascal Andujar
- a Institut Santé Travail Paris-Est , Université Paris-Est , Créteil , France
- b CHI Créteil , Service de Pneumologie et Pathologie Professionnelle, DHU A-TVB , Créteil , France
- c INSERM U955 , Equipe 4 , Créteil , France
- d Universite Paris-Est Créteil , Faculté de Médecine , Créteil , France
| | - Aude Lacourt
- e INSERM U1219 , EPICENE , Bordeaux , France
- f ISPED , Université de Bordeaux , Bordeaux , France
| | - Patrick Brochard
- f ISPED , Université de Bordeaux , Bordeaux , France
- g CHU Bordeaux , Bordeaux , France
| | - Jean-Claude Pairon
- a Institut Santé Travail Paris-Est , Université Paris-Est , Créteil , France
- b CHI Créteil , Service de Pneumologie et Pathologie Professionnelle, DHU A-TVB , Créteil , France
- c INSERM U955 , Equipe 4 , Créteil , France
- d Universite Paris-Est Créteil , Faculté de Médecine , Créteil , France
| | - Marie-Claude Jaurand
- h INSERM , UMR-1162, Génomique fonctionnelle des tumeurs solides , Paris , France
- i Université Paris Descartes , Labex Immuno-Oncology , Sorbonne Paris Cité, Paris , France
- j Université Paris Diderot , IUH , Paris , France
- k Université Paris 13 , Sorbonne Paris Cité , Bobigny , France
| | - Didier Jean
- h INSERM , UMR-1162, Génomique fonctionnelle des tumeurs solides , Paris , France
- i Université Paris Descartes , Labex Immuno-Oncology , Sorbonne Paris Cité, Paris , France
- j Université Paris Diderot , IUH , Paris , France
- k Université Paris 13 , Sorbonne Paris Cité , Bobigny , France
| |
Collapse
|
54
|
Zhi L, Fu W, Wang X, Wang D. ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of the toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 2016. [DOI: 10.1039/c5ra23543j] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ACS-22 plays an essential role in regulating toxicity and translocation of MWCNTs.
Collapse
Affiliation(s)
- Lingtong Zhi
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Wei Fu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Xiong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| |
Collapse
|
55
|
Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem A. Different Technical Applications of Carbon Nanotubes. NANOSCALE RESEARCH LETTERS 2015; 10:358. [PMID: 26377211 PMCID: PMC4573081 DOI: 10.1186/s11671-015-1056-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/25/2015] [Indexed: 05/17/2023]
Abstract
Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.
Collapse
Affiliation(s)
- S Abdalla
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - F Al-Marzouki
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ahmed A Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - A Abdel-Daiem
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
56
|
Leonis G, Avramopoulos A, Papavasileiou KD, Reis H, Steinbrecher T, Papadopoulos MG. A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes. J Phys Chem B 2015; 119:14971-85. [PMID: 26523956 DOI: 10.1021/acs.jpcb.5b05998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human serum albumin (HSA) is the most abundant blood plasma protein, which transports fatty acids, hormones, and drugs. We consider nanoparticle-HSA interactions by investigating the binding of HSA with three fullerene analogs. Long MD simulations, quantum mechanical (fragment molecular orbital, energy decomposition analysis, atoms-in-molecules), and free energy methods elucidated the binding mechanism in these complexes. Such a systematic study is valuable due to the lack of comprehensive theoretical approaches to date. The main elements of the mechanism include the following: binding to IIA site results in allosteric modulation of the IIIA and heme binding sites with an increase in α-helical structure of IIIA. Fullerenes displayed high binding affinities for HSA; therefore, HSA can be used as a fullerene carrier, facilitating any toxic function the fullerene may exert. Complex formation is driven by hydrogen bonding, van der Waals, nonpolar, charge transfer, and dispersion energy contributions. Proper functionalization of C60 has enhanced its binding to HSA by more than an order of magnitude. This feature may be important for biological applications (e.g., photodynamic therapy of cancer). Satisfactory agreement with relevant experimental and theoretical data has been obtained.
Collapse
Affiliation(s)
- Georgios Leonis
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Aggelos Avramopoulos
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Konstantinos D Papavasileiou
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Heribert Reis
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Thomas Steinbrecher
- Institut für Physikalische Chemie, KIT , Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Manthos G Papadopoulos
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| |
Collapse
|
57
|
Bergamaschi E, Murphy F, Poland CA, Mullins M, Costa AL, McAlea E, Tran L, Tofail SAM. Impact and effectiveness of risk mitigation strategies on the insurability of nanomaterial production: evidences from industrial case studies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:839-55. [PMID: 25808636 PMCID: PMC6680359 DOI: 10.1002/wnan.1340] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Workers involved in producing nanomaterials or using nanomaterials in manufacturing plants are likely to have earlier and higher exposure to manufactured/engineered nanomaterials (ENM) than the general population. This is because both the volume handled and the probability of the effluence of 'free' nanoparticles from the handled volume are much higher during a production process than at any other stage in the lifecycle of nanomaterials and nanotechnology-enabled products. Risk assessment (RA) techniques using control banding (CB) as a framework for risk transfer represents a robust theory but further progress on implementing the model is required so that risk can be transferred to insurance companies. Following a review of RA in general and hazard measurement in particular, we subject a Structural Alert Scheme methodology to three industrial case studies using ZrO2 , TiO2 , and multi-walled carbon nanotubes (MWCNT). The materials are tested in a pristine state and in a remediated (coated) state, and the respective emission and hazard rates are tested alongside the material performance as originally designed. To our knowledge, this is the first such implementation of a CB RA in conjunction with an ENM performance test and offers both manufacturers and underwriters an insight into future applications.
Collapse
Affiliation(s)
- Enrico Bergamaschi
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Parma, Parma, Italy
| | - Finbarr Murphy
- Kemmy Business School, University of Limerick, Limerick, Ireland
| | | | - Martin Mullins
- Kemmy Business School, University of Limerick, Limerick, Ireland
| | | | - Eamonn McAlea
- Kemmy Business School, University of Limerick, Limerick, Ireland
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Syed A M Tofail
- Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland
| |
Collapse
|
58
|
Christou A, Stec AA, Ahmed W, Aschberger K, Amenta V. A review of exposure and toxicological aspects of carbon nanotubes, and as additives to fire retardants in polymers. Crit Rev Toxicol 2015; 46:74-95. [PMID: 26482549 DOI: 10.3109/10408444.2015.1082972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbon nanotubes (CNTs) have attracted considerable interest due to their unique physical, chemical, optical and electrical properties opening avenues for a large number of industrial applications. They have shown potential as fire retardant additives in polymers, reducing heat release rate and increasing time to ignition in a number of polymers. Relevant work on the types, properties and applications has been reviewed particularly considering their application in fire situations. There are concerns over the health risks associated with CNTs and many papers have likened CNTs to the health problems associated with asbestos. There are contradictions relating to the toxicity of CNTs with some papers reporting that they are toxic while others state the opposite. Directly comparing various studies is difficult because CNTs come in many combinations of size, type, purity levels and source. CNTs can potentially be released from polymers during the combustion process where human exposure may occur. While this review has shed some light regarding issues relating to toxicity under different fire scenarios much more thorough work is needed to investigate toxicity of CNTs and their evolution from CNT-polymer nanocomposites in order to reach firm conclusions.
Collapse
Affiliation(s)
- Antonis Christou
- a Centre for Fire and Hazards Sciences, University of Central Lancashire , Preston , UK
| | - Anna A Stec
- a Centre for Fire and Hazards Sciences, University of Central Lancashire , Preston , UK
| | - Waqar Ahmed
- b School of Medicine, College of Clinical and Biomedical Sciences, University of Central Lancashire , Preston , UK
| | - Karin Aschberger
- c Nanobiosciences Unit, European Commission - DG Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy , and
| | - Valeria Amenta
- d European Chemical Agency , Annankatu 18 , Helsinki , Finland
| |
Collapse
|
59
|
Abstract
Nucleic acids show immense potential to treat cancer, acquired immune deficiency syndrome, neurological diseases and other incurable human diseases. Upon systemic administration, they encounter a series of barriers and hence barely reach the site of action, the cell. Intracellular delivery of nucleic acids is facilitated by nanovectors, both viral and non-viral. A major advantage of non-viral vectors over viral vectors is safety. Nanovectors evaluated specifically for nucleic acid delivery include polyplexes, lipoplexes and other cationic carrier-based vectors. However, more recently there is an increased interest in inorganic nanovectors for nucleic acid delivery. Nevertheless, there is no comprehensive review on the subject. The present review would cover in detail specific properties and types of inorganic nanovectors, their preparation techniques and various biomedical applications as therapeutics, diagnostics and theranostics. Future prospects are also suggested.
Collapse
|
60
|
Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Roszek K, Czarnecka J, Bolibok P, Rychlicki G. Conscious Changes of Carbon Nanotubes Cytotoxicity by Manipulation with Selected Nanofactors. Appl Biochem Biotechnol 2015; 176:730-41. [PMID: 25894948 PMCID: PMC4500856 DOI: 10.1007/s12010-015-1607-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/06/2015] [Indexed: 12/14/2022]
Abstract
We discuss eight major challenges in the field of carbon nanomaterial toxicity. Generally, we pick up some of them, and the most important challenge is searching of the qualitative relationships between nanofactors and cytotoxicity. This is important since it can provide the possibility of conscious changes of carbon nanotubes cytotoxicity by manipulation with selected nanofactors. Therefore, the toxicity of a series of gradually oxidized carbon nanotubes is studied. We show, for the first time, that toxicity of those materials depends strongly on the ratio of acidic to basic group concentration—the higher is this ratio value, the more toxic are nanotubes. In this way, by changing this ratio, one can change toxicity. This correlation is more evident after ultrasonication, and it is connected with the accessibility of charged groups for interactions with proteins. Toxicity also depends on the ability of nanotubes for protein adsorption. We suggest that the changes in the protein composition of medium, especially lack of important growth factors, inhibit cell proliferation.
Collapse
Affiliation(s)
- Karolina Werengowska-Ciećwierz
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100, Toruń, Poland
| | | | | | | | | | | | | |
Collapse
|
61
|
Wang X, Duch MC, Mansukhani N, Ji Z, Liao YP, Wang M, Zhang H, Sun B, Chang CH, Li R, Lin S, Meng H, Xia T, Hersam MC, Nel AE. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS NANO 2015; 9:3032-43. [PMID: 25646681 PMCID: PMC4539018 DOI: 10.1021/nn507243w] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Engineered carbonaceous nanomaterials (ECNs), including single-wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO), are potentially hazardous to the lung. With incremental experience in the use of predictive toxicological approaches, seeking to relate ECN physicochemical properties to adverse outcome pathways (AOPs), it is logical to explore the existence of a common AOP that allows comparative analysis of broad ECN categories. We established an ECN library comprising three different types of SWCNTs, graphene, and graphene oxide (two sizes) for comparative analysis according to a cell-based AOP that also plays a role in the pathogenesis of pulmonary fibrosis. SWCNTs synthesized by Hipco, arc discharge and Co-Mo catalyst (CoMoCAT) methods were obtained in their as-prepared (AP) state, following which they were further purified (PD) or coated with Pluronic F108 (PF108) or bovine serum albumin (BSA) to improve dispersal and colloidal stability. GO was prepared as two sizes, GO-small (S) and GO-large (L), while the graphene samples were coated with BSA and PF108 to enable dispersion in aqueous solution. In vitro screening showed that AP- and PD-SWCNTs, irrespective of the method of synthesis, as well as graphene (BSA) and GO (S and L) could trigger interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) production in myeloid (THP-1) and epithelial (BEAS-2B) cell lines, respectively. Oropharyngeal aspiration in mice confirmed that AP-Hipco tubes, graphene (BSA-dispersed), GO-S and GO-L could induce IL-1β and TGF-β1 production in the lung in parallel with lung fibrosis. Notably, GO-L was the most pro-fibrogenic material based on rapid kinetics of pulmonary injury. In contrast, PF108-dispersed SWCNTs and -graphene failed to exert fibrogenic effects. Collectively, these data indicate that the dispersal state and surface reactivity of ECNs play key roles in triggering a pro-fibrogenic AOP, which could prove helpful for hazard ranking and a proposed tiered testing approach for large ECN categories.
Collapse
Affiliation(s)
- Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Matthew C. Duch
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Nikhita Mansukhani
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Haiyuan Zhang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Sijie Lin
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
- Corresponding Author: André E. Nel, M.D./Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|
62
|
Zhang T, Tang M, Kong L, Li H, Zhang T, Xue Y, Pu Y. Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:73-82. [PMID: 25463220 DOI: 10.1016/j.jhazmat.2014.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Carbon nanotubes (CNTs) are widely used in industry and biomedicine. While several studies have focused on biological matters, attempts to systematically elucidate the toxicity mechanisms of CNTs are limited. The aim of the present study was to evaluate and compare the cytotoxicity of raw multi-walled carbon nanotubes (MWCNTs) and MWCNTs functionalized with carboxylation (MWCNTs-COOH) or polyethylene glycol (MWCNTs-PEG) in murine macrophages. Our results show that only MWCNTs-COOH and raw MWCNTs alter the oxidative potential of macrophages by increasing reactive oxygen species and the expression of pro-inflammatory factors in both a concentration- and surface coating-dependent manner. The data suggest that compare with raw MWCNTs and MWCNTs-PEG, the MWCNTs-COOH produces a significant increase in ROS generation, interruption of ATP synthesis, and activation of the MAPK and NF-κB signaling pathways, which in turn upregulates IL-1β, IL-6, TNF-α, and iNOS to trigger cell death. These findings suggest that contributory cellar uptake caused by physicochemical factors rather than residual metal catalysts plays a role in ROS-mediated pro-inflammatory responses in vitro.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Han Li
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210032, China.
| | - Tao Zhang
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210032, China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| |
Collapse
|
63
|
Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicol In Vitro 2015; 29:352-62. [DOI: 10.1016/j.tiv.2014.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
|
64
|
Thakur S, Kesharwani P, Tekade RK, Jain NK. Impact of pegylation on biopharmaceutical properties of dendrimers. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
65
|
Yan J, Lin Z, Lin B, Yang H, Zhang W, Tian L, Liu H, Zhang H, Liu X, Xi Z. Respiratory exposure to single-walled carbon nanotubes induced changes in vascular homeostasis and the expression of peripheral blood related genes in a rat model. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00039d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies have demonstrated that nanometre particles in polluted air can increase the risk of CVD, which is dangerous to mankind.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Zhiqing Lin
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Bencheng Lin
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Honglian Yang
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Wei Zhang
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Lei Tian
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Huanliang Liu
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Huashan Zhang
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Xiaohua Liu
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Zhuge Xi
- Tianjin Institute of Health and Environmental Medicine
- China
| |
Collapse
|
66
|
Nezakati T, Cousins BG, Seifalian AM. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol 2014; 88:1987-2012. [PMID: 25234085 PMCID: PMC4201927 DOI: 10.1007/s00204-014-1361-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
This review article aims to provide an overview of chemically modified graphene, and graphene oxide (GO), and their impact on toxicology when present in biological systems. Graphene is one of the most promising nanomaterials due to unique physicochemical properties including enhanced optical, thermal, and electrically conductive behavior in addition to mechanical strength and high surface-to-volume ratio. Graphene-based nanomaterials have received much attention over the last 5 years in the biomedical field ranging from their use as polymeric conduits for nerve regeneration, carriers for targeted drug delivery and in the treatment of cancer via photo-thermal therapy. Both in vitro and in vivo biological studies of graphene-based nanomaterials help understand their relative toxicity and biocompatibility when used for biomedical applications. Several studies investigating important material properties such as surface charge, concentration, shape, size, structural defects, and chemical functional groups relate to their safety profile and influence cyto- and geno-toxicology. In this review, we highlight the most recent studies of graphene-based nanomaterials and outline their unique properties, which determine their interactions under a range of environmental conditions. The advent of graphene technology has led to many promising new opportunities for future applications in the field of electronics, biotechnology, and nanomedicine to aid in the diagnosis and treatment of a variety of debilitating diseases.
Collapse
Affiliation(s)
- Toktam Nezakati
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Brian G. Cousins
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
67
|
Gencoglu MF, Spurri A, Franko M, Chen J, Hensley DK, Heldt CL, Saha D. Biocompatibility of soft-templated mesoporous carbons. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15068-15077. [PMID: 25144129 DOI: 10.1021/am503076u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer-Emmett-Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (∼ 70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2-0.6 mg/m(2) and 2-4 mg/m(2) for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.
Collapse
Affiliation(s)
- Maria F Gencoglu
- Department of Chemical Engineering, Michigan Technological University , 1400 Townsend Dr., Houghton, Michigan 49931, United States
| | | | | | | | | | | | | |
Collapse
|
68
|
Huy PDQ, Li MS. Binding of fullerenes to amyloid beta fibrils: size matters. Phys Chem Chem Phys 2014; 16:20030-40. [DOI: 10.1039/c4cp02348j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Czarny B, Georgin D, Berthon F, Plastow G, Pinault M, Patriarche G, Thuleau A, L'Hermite MM, Taran F, Dive V. Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ (14)C-radiolabeling and tissue radioimaging. ACS NANO 2014; 8:5715-5724. [PMID: 24853551 DOI: 10.1021/nn500475u] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Few approaches are available to investigate the potential of carbon nanotubes (CNTs) to translocate to distant organs following lung exposure, although this needs to be taken into account to evaluate potential CNT toxicity. Here, we report a method for quantitative analysis of the tissue biodistribution of multiwalled CNTs (MWCNTs) as a function of time. The method relies on the use of in situ (14)C-radiolabeled MWCNTs and combines radioimaging of organ tissue sections to ex vivo analysis of MWCNTs by electron microscopy. To illustrate the usefulness of this approach, mice were exposed to a single dose of 20 μg of (14)C-labeled MWCNTs by pharyngeal aspiration and were subjected to a follow-up study over one year. After administration, MWCNT were cleared from the lungs, but there was a concomitant relocation of these nanoparticles to distant organs starting throughout the follow-up period, with nanoparticle accumulation increasing with time. After one year, accumulation of MWCNTs was documented in several organs, including notably the white pulp of the spleen and the bone marrow. This study shows that the proposed method may be useful to complement other approaches to address unresolved toxicological issues associated with CNTs. These issues include their persistence over long periods in extrapulmonary organs, the relationship between the dose and the extent of translocation, and the effects of "safety by design" on those processes. The same approach could be used to study the translocation propensity of other nanoparticles containing carbon atoms.
Collapse
Affiliation(s)
- Bertrand Czarny
- CEA-Saclay, Service d'Ingénierie Moléculaire des Protéines, Labex LERMIT, CEA-DSV-iBiTecS , 91191 Gif/Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Rotoli BM, Gatti R, Movia D, Bianchi MG, Di Cristo L, Fenoglio I, Sonvico F, Bergamaschi E, Prina-Mello A, Bussolati O. Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay. Nanotoxicology 2014; 9:230-41. [PMID: 24873759 DOI: 10.3109/17435390.2014.918203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aggregates of multiwalled carbon nanotubes (MWCNT) impair the barrier properties of human airway cell monolayers. To resolve the mechanism of the barrier alteration, monolayers of Calu-3 human airway epithelial cells were exposed to aggregated MWCNT. At the cell-population level, trans-epithelial electrical resistance (TEER) was used as an indicator of barrier competence, caspase activity was assessed with standard biochemical assays, and cell viability was investigated by biochemical techniques and high-throughput screening (HTS) technique based on automated epifluorescence microscopy. At cell level, the response to MWCNT was investigated with confocal microscopy, by evaluating cell death (calcein/propidium iodide (PI)), proliferation (Ki-67), and apoptosis (caspase activity). At the cell-population level, exposure to aggregated MWCNT caused a decrease in TEER, which was not associated with a decrease in cell viability or onset of apoptosis even after an 8-d exposure. In contrast, confocal imaging demonstrated contact with MWCNT aggregates triggered cell death after 24 h of exposure. In the presence of a natural surfactant, both TEER decrease and contact-mediated toxicity were mitigated. With confocal imaging, increased proliferation and apoptosis were detected in Calu-3 cells next to the aggregates. Contact-mediated cytotoxicity was recorded in two additional cell lines (BEAS-2B and A549) derived from human airways. Similar results were confirmed by adopting two additional MWCNT preparations with different physico-chemical features. This indicates MWCNT caused localized damage to airway epithelial monolayers in vitro and altered the apoptotic and proliferative rate of epithelial cells in close proximity to the aggregates. These findings provide evidence on the pathway by which MWCNT aggregates impair airway barrier function, and support the use of imaging techniques as a possible regulatory-decision supporting tool to identify effects of aggregated nanomaterials not readily detected at cell population level.
Collapse
|
71
|
Zhao Y, Wu Q, Li Y, Nouara A, Jia R, Wang D. In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs. NANOSCALE 2014; 6:4275-4284. [PMID: 24614909 DOI: 10.1039/c3nr06784j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We employed an in vivo Caenorhabditis elegans assay system to perform SOLiD sequencing analysis to identify the possible microRNA (miRNA) targets of multi-walled carbon nanotubes (MWCNTs). Bioinformatics analysis on targeted genes for the identified dysregulated miRNAs in MWCNT exposed nematodes demonstrates their involvement in many aspects of biological processes. We used loss-of-function mutants for the identified dysregulated miRNAs to perform toxicity assessment by evaluating functions of primary and secondary targeted organs, and found the miRNA mutants with susceptible or resistant property towards MWCNT toxicity. Both the physiological state of the intestine and defecation behavior were involved in the control of the susceptible or resistant property occurrence for specific miRNA mutants towards MWCNT toxicity. This work provides the molecular basis at the miRNA level for future chemical design to reduce the nanotoxicity of MWCNTs and further elucidation of the related toxicological mechanism.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
72
|
Jain S, Kesharwani P, Tekade RK, Jain NK. One platform comparison of solubilization potential of dendrimer with some solubilizing agents. Drug Dev Ind Pharm 2014; 41:722-7. [DOI: 10.3109/03639045.2014.900077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
73
|
Kato H, Nakamura A, Horie M. Behavior of surfactants in aqueous dispersions of single-walled carbon nanotubes. RSC Adv 2014. [DOI: 10.1039/c3ra45181j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
74
|
Chatterjee N, Yang J, Kim HM, Jo E, Kim PJ, Choi K, Choi J. Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1399-1408. [PMID: 25343289 DOI: 10.1080/15287394.2014.951756] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate in vitro (human bronchial epithelial cells, BEAS2B cells) and in vivo (the nematode Caenorhabditis elegans, C. elegans) toxicity outcomes following exposure to pristine as well as surface-functionalized multiwalled carbon nanotubes (MWCNT) following hydroxylation-oxygenation (O(+)), amination (NH2), or carboxylation (COOH) of the carbon nanotubes (CNT). Cell viability and proliferation were measured by Ez-Cytox, trypan blue exclusion, and colony formation assays. The genotoxic potential of the MWCNT was determined by using the alkaline comet assay. In addition, survival and reproduction were used as endpoints for detection of toxicity of MWCNT in C. elegans. The carboxylated (COOH)-MWCNT was found most toxic as evidenced by cytotoxic and genotoxic among all tested compounds. The order of sensitivity was COOH > O(+) > NH2 > pristine. There were almost no marked changes in survival following exposure of C. elegans to MWCNT. It is of interest that only pristine MWCNT exerted significant reduction in reproductive capacity of C. elegans. Surface functionalization significantly influenced the bioactivity of MWCNT, which displayed species as well as target-organ specificity. The mechanisms underlying these specific modes of nano-biological interactions need to be elucidated.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- a School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering , University of Seoul , Seoul , Korea
| | | | | | | | | | | | | |
Collapse
|
75
|
Mehra NK, Mishra V, Jain N. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 2014; 35:1267-83. [DOI: 10.1016/j.biomaterials.2013.10.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
|
76
|
Todorova N, Makarucha AJ, Hine NDM, Mostofi AA, Yarovsky I. Dimensionality of carbon nanomaterials determines the binding and dynamics of amyloidogenic peptides: multiscale theoretical simulations. PLoS Comput Biol 2013; 9:e1003360. [PMID: 24339760 PMCID: PMC3854483 DOI: 10.1371/journal.pcbi.1003360] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Abstract
Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth.
Collapse
Affiliation(s)
| | | | - Nicholas D. M. Hine
- Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, United Kingdom
| | - Arash A. Mostofi
- Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, United Kingdom
| | - Irene Yarovsky
- Health Innovations Research Institute, Melbourne, Australia
| |
Collapse
|
77
|
WU W, ICHIHARA G, SUZUKI Y, IZUOKA K, OIKAWA-TADA S, CHANG J, SAKAI K, MIYAZAWA K, PORTER D, CASTRANOVA V, KAWAGUCHI M, ICHIHARA S. Dispersion method for safety research on manufactured nanomaterials. INDUSTRIAL HEALTH 2013; 52:54-65. [PMID: 24305513 PMCID: PMC4202770 DOI: 10.2486/indhealth.2012-0218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 11/22/2013] [Indexed: 05/30/2023]
Abstract
Nanomaterials tend to agglomerate in aqueous media, resulting in inaccurate safety assessment of the biological response to these substances. The present study searched for suitable dispersion methods for the preparation of nanomaterial suspensions. Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles were dispersed in a biocompatible dispersion medium by direct probe-type sonicator and indirect cup-type sonicator. Size characterization was completed using dynamic light scattering and transmission electron microscopy. A series of dispersion time and output power, as well as two different particle concentrations were tested. Microscopic contamination of metal titanium that broke away from the tip of the probe into the suspension was found. Size of agglomerated nanoparticles decreased with increase in sonication time or output power. Particle concentration did not show obvious effect on size distribution of TiO2 nanoparticles, while significant reduction of secondary diameter of ZnO was observed at higher concentration. A practicable protocol was then adopted and sizes of well-dispersed nanoparticles increased by less than 10% at 7 d after sonication. Multi-walled carbon nanotubes were also well dispersed by the same protocol. The cup-type sonicator might be a useful alternative to the traditional bath-type sonicator or probe-type sonicator based on its effective energy delivery and assurance of suspension purity.
Collapse
Affiliation(s)
- Wenting WU
- Department of Occupational and Environmental Health, Nagoya
University Graduate School of Medicine, Japan
- Graduate School of Regional Innovation Studies, Mie
University, Japan
| | - Gaku ICHIHARA
- Department of Occupational and Environmental Health, Nagoya
University Graduate School of Medicine, Japan
| | - Yuka SUZUKI
- Graduate School of Regional Innovation Studies, Mie
University, Japan
| | - Kiyora IZUOKA
- Graduate School of Regional Innovation Studies, Mie
University, Japan
| | - Saeko OIKAWA-TADA
- Graduate School of Regional Innovation Studies, Mie
University, Japan
| | - Jie CHANG
- Department of Occupational and Environmental Health, Nagoya
University Graduate School of Medicine, Japan
- Graduate School of Regional Innovation Studies, Mie
University, Japan
| | | | | | - Dale PORTER
- National Institute for Occupational Safety and Health,
USA
| | | | - Masami KAWAGUCHI
- Division of Chemistry for Materials, Graduate School of
Engineering, Mie University, Japan
| | - Sahoko ICHIHARA
- Graduate School of Regional Innovation Studies, Mie
University, Japan
| |
Collapse
|
78
|
Madani SY, Mandel A, Seifalian AM. A concise review of carbon nanotube's toxicology. NANO REVIEWS 2013; 4:21521. [PMID: 24319547 PMCID: PMC3851535 DOI: 10.3402/nano.v4i0.21521] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 12/27/2022]
Abstract
Carbon nanotubes can be either single-walled or multi-walled, each of which is known to have a different electron arrangement and as a result have different properties. However, the shared unique properties of both types of carbon nanotubes (CNT) allow for their potential use in various biomedical devices and therapies. Some of the most common properties of these materials include the ability to absorb near-infra-red light and generate heat, the ability to deliver drugs in a cellular environment, their light weight, and chemical stability. These properties have encouraged scientists to further investigate CNTs as a tool for thermal treatment of cancer and drug delivery agents. Various promising data have so far been obtained about the usage of CNTs for cancer treatment; however, toxicity of pure CNTs represents a major challenge for clinical application. Various techniques both in vivo and in in vitro have been conducted by a number of different research groups to establish the factors which have a direct effect on CNT-mediated cytotoxicity. The main analysis techniques include using Alamar blue, MTT, and Trypan blue assays. Successful interpretation of these results is difficult because the CNTs can significantly disrupt the emission of the certain particles, which these assays detect. In contrast, in vivo studies allow for the measurement of toxicity and pathology caused by CNTs on an organismal level. Despite the drawbacks of in vitro studies, they have been invaluable in identifying important toxicity factors, such as size, shape, purity, and functionalisation, the latter of which can attenuate CNT toxicity.
Collapse
Affiliation(s)
- Seyed Yazdan Madani
- UCL Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | | | | |
Collapse
|
79
|
Look M, Saltzman WM, Craft J, Fahmy TM. The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials 2013; 35:1089-95. [PMID: 24183697 DOI: 10.1016/j.biomaterials.2013.10.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Targeting dendritic cells with nanoparticles is an attractive modality for instigating immunity or inducing immunosuppression. An important aspect of successful delivery of antigen and immune modulators to these cells is the efficacy of nanoparticle internalization, which can dictate the strength and robustness of immune responses; optimizing particulate uptake is thus key. We compared the internalization of two nanoparticulate platforms: a vesicular "nanogel" platform with a lipid exterior, and the widely-used solid biodegradable poly(lactic-co-glycolic acid) (PLGA) system. We found that nanogels were more effectively internalized by dendritic cells in vitro, as demonstrated by fluorescent tracer measurements. Additionally, the magnitude of dendritic cell immunosuppression achieved by nanogels loaded with mycophenolic acid, an immunosuppressant, was greater than similarly drug-loaded PLGA. Although both types of particles could mitigate the production of inflammatory cytokines and the up-regulation of stimulatory surface markers, nanogels yielded greater reductions. These in vitro measurements correlated with in vivo efficacy, where immunosuppressive therapy with nanogels extended the survival of lupus-prone NZB/W F1 mice whereas PLGA particles did not. Our results highlight the importance of material on nanoparticle uptake by dendritic cells, which impacts the quality of therapeutic immunosuppression.
Collapse
Affiliation(s)
- Michael Look
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
80
|
Characterization of an assortment of commercially available multiwalled carbon nanotubes. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
81
|
STAT6 siRNA matrix-loaded gelatin nanocarriers: formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:858946. [PMID: 24191252 PMCID: PMC3806510 DOI: 10.1155/2013/858946] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/13/2013] [Indexed: 12/22/2022]
Abstract
The clinical utility of siRNA therapy has been hampered due to poor cell penetration, nonspecific effects, rapid degradation, and short half-life. We herewith proposed the formulation development of STAT6 siRNA (S6S) nanotherapeutic agent by encapsulating them within gelatin nanocarriers (GNC). The prepared nanoformulation was characterized for size, charge, loading efficiency, release kinetics, stability, cytotoxicity, and gene silencing assay. The stability of S6S-GNC was also assessed under conditions of varying pH, serum level, and using electrophoretic assays. In vitro cytotoxicity performance was evaluated in human adenocarcinoma A549 cells following MTT assay. The developed formulation resulted in an average particle size, surface charge, and encapsulation efficiency as 70 ± 6.5 nm, +10 ± 1.5 mV, and 85 ± 4.0%, respectively. S6S-GNC showed an insignificant (P < 0.05) change in the size and charge in the presence of buffer solutions (pH 6.4 to 8.4) and FBS (10% v/v). A549 cells were treated with native S6S, S6S-lipofectamine, placebo-GNC, and S6S-GNC using untreated cells as a control. It was observed that cell viability was decreased significantly with S6S-GNC by 55 ± 4.1% (P < 0.001) compared to native S6S (2.0 ± 0.55%) and S6S-lipofectamine complex (40 ± 3.1%). This investigation infers that gelatin polymer-based nanocarriers are a robust, stable, and biocompatible strategy for the delivery of siRNA.
Collapse
|
82
|
Subbiah R, Ramasundaram S, Du P, Hyojin K, Sung D, Park K, Lee NE, Yun K, Choi KJ. Evaluation of cytotoxicity, biophysics and biomechanics of cells treated with functionalized hybrid nanomaterials. J R Soc Interface 2013; 10:20130694. [PMID: 23985739 DOI: 10.1098/rsif.2013.0694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hybrids consisting of carboxylated, single-walled carbon nanotube (c-SWNT)-silver nanoparticles (AgNPs)-DNA-poly vinyl alcohol (PVA) are synthesized via sequential functionalization to mimic the theragnostic (therapy and diagnosis) system. Carboxylation of SWNT has minimized the metal impurities with plenty of -COOH groups to produce hybrid (c-SWNT-AgNPs). The hybrid is further wrapped with DNA (hybrid-DNA) and encapsulated with PVA as hybrid composite (HC). Materials were tested against human alveolar epithelial cells (A549), mouse fibroblasts cells (NIH3T3) and human bone marrow stromal cells (HS-5). The composition-sensitive physico-chemical interactions, biophysics and biomechanics of materials-treated cells are evaluated. The cell viability was improved for HC, hybrid-PVA and c-SWNT when compared with SWNT and hybrid. SWNT and hybrid showed cell viability less than 60% at high dose (40 µg ml(-1)) and hybrid-PVA and HC retained 80% or more cell viability. The treatment of hybrid nanomaterials considerably changed cell morphology and intercellular interaction with respect to the composition of materials. Peculiarly, PVA-coated hybrid was found to minimize the growth of invadopodia of A549 cells, which is responsible for the proliferation of cancer cells. Surface roughness of cells increased after treatment with hybrid, where cytoplasmic regions specifically showed higher roughness. Nanoindentation results suggest that changes in biomechanics occurred owing to possible internalization of the hybrid. The changes in force spectra of treated cells indicated a possible greater interaction between the cells and hybrid with distinct stiffness and demonstrated the surface adherence and internalization of hybrid on or inside the cells.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Department of Biomedical Engineering, University of Science and Technology (UST), 113 Gwahangno, Daejon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 2013; 4:177-86. [PMID: 24422173 PMCID: PMC3889076 DOI: 10.1016/j.shaw.2013.07.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations.
Collapse
|
84
|
Toward a comprehensive framework for nanomaterials: An interdisciplinary assessment of the current Environmental Health and Safety Regulation regarding the handling of carbon nanotubes. ACS CHEMICAL HEALTH & SAFETY 2013. [DOI: 10.1016/j.jchas.2013.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Song M, Zeng L, Yuan S, Yin J, Wang H, Jiang G. Study of cytotoxic effects of single-walled carbon nanotubes functionalized with different chemical groups on human MCF7 cells. CHEMOSPHERE 2013; 92:576-582. [PMID: 23648328 DOI: 10.1016/j.chemosphere.2013.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
Functionalization is an important technique to increase the solubility and biocompatibility of single-wall carbon nanotubes (SWCNTs). In this study, we investigated the cytotoxicity of four types of SWCNTs functionalized with hydroxyl, amino, carboxyl and polyethyleneglycol on MCF7 cells. These functionalized SWCNTs (f-SWCNTs) have insignificant effects on mitochondrial activity and ROS production in MCF7 cells at all test concentrations. However, explicit results revealed that all the tested f-SWCNTs could cause changes of cell morphology, induce cell membrane damage, decrease cell adhesion, and increase cell apoptosis. Therefore, this study shows the potential side effects of f-SWCNTs accompanying with the increase of dispersibility and stability in environment or serum (to prevent their aggregation), and highlights the need for further research to examine the potential toxicity of f-SWCNTs before they are used in the environmental and biomedical fields.
Collapse
Affiliation(s)
- Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
86
|
Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 2013; 193-194:24-34. [PMID: 23579224 DOI: 10.1016/j.cis.2013.03.003] [Citation(s) in RCA: 555] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/16/2013] [Accepted: 03/16/2013] [Indexed: 12/07/2022]
Abstract
Adsorption is a widely used technique for the separation and removal of pollutants from wastewaters. Carbon nanotubes (CNTs) are emerging as potential adsorbents because of its well defined cylindrical hollow structure, large surface area, high aspect ratios, hydrophobic wall and easily modified surfaces. In this review, dye adsorption capability of CNTs and CNT based composites from aqueous system has been compiled. This article provides the information about the defect, adsorption sites on CNTs and batch adsorption studies under the influence of various operational parameters such as contact time, solution pH, temperatures etc. and deals with mechanisms involved in adsorption of dyes onto CNTs. From the literature reviewed, it is observed that single walled carbon nanotubes (SWCNTs) show higher adsorption capacity than multi walled carbon nanotubes (MWCNTs) and functionalized and CNT composite have better sorption capacity than as grown CNTs. It is evident from the literature that CNT based nanosorbents have shown good potential for the removal of dyes from aqueous solution. However, still more research work should be focused on the development of cost effective, higher efficient and environmental friendly CNT based nanosorbents for their commercial applications.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
| | | | | | | | | |
Collapse
|
87
|
Qiao Y, An J, Ma L. Single Cell Array Based Assay for in Vitro Genotoxicity Study of Nanomaterials. Anal Chem 2013; 85:4107-12. [DOI: 10.1021/ac400242w] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Qiao
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Jincui An
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Liyuan Ma
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
88
|
Kim JS, Song KS, Yu IJ. Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes. Toxicol Ind Health 2013; 31:747-57. [DOI: 10.1177/0748233713483201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) have extensive potential industrial applications due to their unique physical and chemical properties; yet this also increases the chance of human and environment exposure to SWCNTs. Due to the current lack of hazardous effect information on SWNCTs, a standardized genotoxicity battery test was conducted to clarify the genetic toxicity potential of SWCNTs (diameter: 1–1.2 nm, length: ∼20 μm) according to Organization for Economic Cooperation and Development test guidelines 471 (bacterial reverse mutation test), 473 ( in vitro chromosome aberration test), and 474 ( in vivo micronuclei test) with a good laboratory practice system. The test results showed that the SWCNTs did not induce significant bacterial reverse mutations at 31.3–500 μg/plate in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 or in Escherichia coli strain WP2uvrA, with and without a metabolic activation system. Furthermore, the in vitro chromosome aberration test showed no significant increase in structural or numerical chromosome aberration frequencies at SWCNT dose levels of 12.5–50 μg/ml in the presence and absence of metabolic activation. However, dose-dependent cell growth inhibition was found at all the SWCNT dose levels and statistically significant cytotoxic effects observed at certain concentrations in the presence and absence of metabolic activation. Finally, the SWCNTs did not evoke significant in vivo micronuclei frequencies in the polychromatic erythrocytes of an imprinting control region mice at 25–100 mg/kg. Thus, according to the results of the present study, the SWCNTs were not found to have a genotoxic effect on the in vitro and in vivo test systems.
Collapse
Affiliation(s)
- Jin Sik Kim
- Toxicity Evaluation Center, Korea Conformity Laboratories, Incheon, Republic of Korea
| | - Kyung Seuk Song
- Toxicity Evaluation Center, Korea Conformity Laboratories, Incheon, Republic of Korea
| | - Il Je Yu
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
89
|
Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1380-8. [DOI: 10.1016/j.msec.2012.12.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/08/2012] [Accepted: 12/04/2012] [Indexed: 11/24/2022]
|
90
|
Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao YP, Wang M, Li Z, Hwang A, Song TB, Xu R, Yang Y, Zink JI, Nel AE, Xia T. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS NANO 2013; 7:2352-68. [PMID: 23414138 PMCID: PMC4012619 DOI: 10.1021/nn305567s] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung.
Collapse
Affiliation(s)
- Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Haiyuan Zhang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Sijie Lin
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Zongxi Li
- Department of chemistry & Biochemisty, University of California, Los Angeles, CA 90095, United States
| | - Angela Hwang
- Department of chemistry & Biochemisty, University of California, Los Angeles, CA 90095, United States
| | - Tze-Bin Song
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, United States
| | - Run Xu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, United States
| | - Yang Yang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, United States
| | - Jeffrey I. Zink
- Department of chemistry & Biochemisty, University of California, Los Angeles, CA 90095, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
- Corresponding Author: Tian Xia, Ph.D. Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 983-3359, Fax: (310) 206-8107
| |
Collapse
|
91
|
Singh R, Mehra NK, Jain V, Jain NK. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target 2013; 21:581-92. [DOI: 10.3109/1061186x.2013.778264] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
92
|
Abstract
Carbon nanotubes (CNTs) consist of a family of carbon built nanoparticles, whose biological effects depend on their physical characteristics and other constitutive chemicals (impurities and functions attached). CNTs are considered the twenty first century material due to their unique physicochemical characteristics and applicability to industrial product. The use of these materials steadily increases worldwide and toxic outcomes need to be studied for each nanomaterial in depth to prevent adverse effects to humans and the environment. Entrance into the body is physical, and usually few nanoparticles enter the body; however, once there, they are persistent due to their limited metabolisms, so their removal is slow, and chronic cumulative health effects are studied. Oxidative stress is the main mechanism of toxicity but size, agglomeration, chirality as well as impurities and functionalization are some of the structural and chemical characteristic contributing to the CNTs toxicity outcomes. Among the many toxicity pathways, interference with cytoskeleton and fibrous mechanisms, cell signaling, membrane perturbations and the production of cytokines, chemokines and inflammation are some of the effects resulting from exposure to CNTs. The aim of this review is to offer an up-to-date scope of the effects of CNTs on biological systems with attention to mechanisms of toxicity.
Collapse
Affiliation(s)
- Yury Rodriguez-Yañez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | | |
Collapse
|
93
|
|
94
|
Abstract
Among beneficial applications of nanotechnology, nanomedicine offers perhaps the greatest potential for improving human conditions and quality of life. Engineered nanomaterials (ENMs), with their unique properties, have potential to improve therapy of many human disorders. The properties that make ENMs so useful could also lead to unintentional adverse health effects. Challenges arising from physicochemical properties of ENMs, their characterization, exposure, and hazard assessment and other key issues of ENM safety are discussed. There is still scant knowledge about ENM cellular uptake, transport across biological barriers, distribution within the body, and possible mechanisms of toxicity. The safety of ENMs should be tested to minimize possible risk before the application. However, existing toxicity tests need to be adapted to fit to the unique features related to the nanosized material and appropriate controls and reference material should be considered.
Collapse
|
95
|
Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J. Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 2012; 64:1663-93. [PMID: 22664229 DOI: 10.1016/j.addr.2012.05.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/20/2012] [Accepted: 05/25/2012] [Indexed: 02/06/2023]
Abstract
Nanotechnology that develops novel materials at size of 100nm or less has become one of the most promising areas of human endeavor. Because of their intrinsic properties, nanoparticles are commonly employed in electronics, photovoltaic, catalysis, environmental and space engineering, cosmetic industry and - finally - in medicine and pharmacy. In that sense, nanotechnology creates great opportunities for the progress of modern medicine. However, recent studies have shown evident toxicity of some nanoparticles to living organisms (toxicity), and their potentially negative impact on environmental ecosystems (ecotoxicity). Lack of available data and low adequacy of experimental protocols prevent comprehensive risk assessment. The purpose of this review is to present the current state of knowledge related to the risks of the engineered nanoparticles and to assess the potential of efficient expansion and development of new approaches, which are offered by application of theoretical and computational methods, applicable for evaluation of nanomaterials.
Collapse
Affiliation(s)
- Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
96
|
Bussy C, Pinault M, Cambedouzou J, Landry MJ, Jegou P, Mayne-L'hermite M, Launois P, Boczkowski J, Lanone S. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part Fibre Toxicol 2012. [PMID: 23181604 PMCID: PMC3515433 DOI: 10.1186/1743-8977-9-46] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Given the increasing use of carbon nanotubes (CNT) in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT) specifically synthesized following a similar production process (aerosol-assisted CVD), and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects) and chemical (i.e. oxidation) modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized) compared to long (pristine) MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.
Collapse
|
97
|
Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target 2012; 21:67-76. [DOI: 10.3109/1061186x.2012.729213] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
98
|
Kesharwani P, Ghanghoria R, Jain NK. Carbon nanotube exploration in cancer cell lines. Drug Discov Today 2012; 17:1023-30. [DOI: 10.1016/j.drudis.2012.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/10/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
99
|
Cytotoxicity of functionalized carbon nanotubes in J774A macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:853-9. [DOI: 10.1016/j.nano.2011.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/31/2011] [Accepted: 10/02/2011] [Indexed: 01/09/2023]
|
100
|
Luo Y, Wang C, Hossain M, Qiao Y, Ma L, An J, Su M. Three-Dimensional Microtissue Assay for High-Throughput Cytotoxicity of Nanoparticles. Anal Chem 2012; 84:6731-8. [DOI: 10.1021/ac301191j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang Luo
- Department
of Laboratory Medicine,
Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|