51
|
Kong FQ, Zhao SJ, Sun P, Liu H, Jie J, Xu T, Xu AD, Yang YQ, Zhu Y, Chen J, Zhou Z, Qian DF, Gu CJ, Chen Q, Yin GY, Zhang HW, Fan J. Macrophage MSR1 promotes the formation of foamy macrophage and neuronal apoptosis after spinal cord injury. J Neuroinflammation 2020; 17:62. [PMID: 32066456 PMCID: PMC7027125 DOI: 10.1186/s12974-020-01735-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background A sustained inflammatory response following spinal cord injury (SCI) contributes to neuronal damage, inhibiting functional recovery. Macrophages, the major participants in the inflammatory response, transform into foamy macrophages after phagocytosing myelin debris, subsequently releasing inflammatory factors and amplifying the secondary injury. Here, we assessed the effect of macrophage scavenger receptor 1 (MSR1) in phagocytosis of myelin debris after SCI and explained its possible mechanism. Methods The SCI model was employed to determine the critical role of MSR1 in phagocytosis of myelin debris in vivo. The potential functions and mechanisms of MSR1 were explored using qPCR, western blotting, and immunofluorescence after treating macrophages and RAW264.7 with myelin debris in vitro. Results In this study, we found improved recovery from traumatic SCI in MSR1-knockout mice over that in MSR1 wild-type mice. Furthermore, MSR1 promoted the phagocytosis of myelin debris and the formation of foamy macrophage, leading to pro-inflammatory polarization in vitro and in vivo. Mechanistically, in the presence of myelin debris, MSR1-mediated NF-κB signaling pathway contributed to the release of inflammatory mediators and subsequently the apoptosis of neurons. Conclusions Our study elucidates a previously unrecognized role of MSR1 in the pathophysiology of SCI and suggests that its inhibition may be a new treatment strategy for this traumatic condition.
Collapse
Affiliation(s)
- Fan-Qi Kong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Shu-Jie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Peng Sun
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.,Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223001, Jiangsu, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Jian Jie
- Department of Orthopedics, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, 211800, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - An-Di Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Ya-Qing Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Ye Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Ding-Fei Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Chang-Jiang Gu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Guo-Yong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Han-Wen Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
52
|
Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, Shi HY, Sun HT, Chen XY, Zhang S. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 2020; 15:1686-1700. [PMID: 32209773 PMCID: PMC7437585 DOI: 10.4103/1673-5374.276340] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Currently, there is no effective strategy to promote functional recovery after a spinal cord injury. Collagen scaffolds can not only provide support and guidance for axonal regeneration, but can also serve as a bridge for nerve regeneration at the injury site. They can additionally be used as carriers to retain mesenchymal stem cells at the injury site to enhance their effectiveness. Hence, we hypothesized that transplanting human umbilical cord-mesenchymal stem cells on collagen scaffolds would enhance healing following acute complete spinal cord injury. Here, we test this hypothesis through animal studies and a phase I clinical trial. (1) Animal experiments: Models of completely transected spinal cord injury were established in rats and canines by microsurgery. Mesenchymal stem cells derived from neonatal umbilical cord tissue were adsorbed onto collagen scaffolds and surgically implanted at the injury site in rats and canines; the animals were observed after 1 week–6 months. The transplantation resulted in increased motor scores, enhanced amplitude and shortened latency of the motor evoked potential, and reduced injury area as measured by magnetic resonance imaging. (2) Phase I clinical trial: Forty patients with acute complete cervical injuries were enrolled at the Characteristic Medical Center of Chinese People’s Armed Police Force and divided into two groups. The treatment group (n = 20) received collagen scaffolds loaded with mesenchymal stem cells derived from neonatal umbilical cord tissues; the control group (n = 20) did not receive the stem-cell loaded collagen implant. All patients were followed for 12 months. In the treatment group, the American Spinal Injury Association scores and activities of daily life scores were increased, bowel and urinary functions were recovered, and residual urine volume was reduced compared with the pre-treatment baseline. Furthermore, magnetic resonance imaging showed that new nerve fiber connections were formed, and diffusion tensor imaging showed that electrophysiological activity was recovered after the treatment. No serious complication was observed during follow-up. In contrast, the neurological functions of the patients in the control group were not improved over the follow-up period. The above data preliminarily demonstrate that the transplantation of human umbilical cord-mesenchymal stem cells on a collagen scaffold can promote the recovery of neurological function after acute spinal cord injury. In the future, these results need to be confirmed in a multicenter, randomized controlled clinical trial with a larger sample size. The clinical trial was approved by the Ethics Committee of the Characteristic Medical Center of Chinese People’s Armed Police Force on February 3, 2016 (approval No. PJHEC-2016-A8). All animal experiments were approved by the Ethics Committee of the Characteristic Medical Center of Chinese People’s Armed Police Force on May 20, 2015 (approval No. PJHEC-2015-D5).
Collapse
Affiliation(s)
- Wu-Sheng Deng
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Ke Ma
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Bing Liang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Xiao-Yin Liu
- Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Hui-You Xu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Heng-Yuan Shi
- Clinical School of Medicine, Logistics University of People's Armed Police Force, Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| |
Collapse
|
53
|
Maqueda A, Rodriguez FJ. Efficacy of human HC016 cell transplants on neuroprotection and functional recovery in a rat model of acute spinal cord injury. J Tissue Eng Regen Med 2019; 14:319-333. [PMID: 31821721 DOI: 10.1002/term.2995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) is a devastating event with huge personal and social costs, for which there is no effective treatment. Cell therapy constitutes a promising therapeutic approach for SCI; however, its clinical potential is seriously limited by their low survival in the hostile conditions encompassing the acute phase of SCI. Human HC016 (hHC016) cells, generated from expanded human adipose mesenchymal stem cells (hAMSCs) and pulsed with a patented protocol with hydrogen peroxide (H2 O2 ), are expected to acquire improved resistance to oxidative environments which appears as a major limiting factor hampering the engrafting success. Our specific aim was to assess whether H2 O2 -pulsed hHC016 cells had an improved survival and thus therapeutic efficacy in a rat contusion model of acute SCI when grafted 48 hr after injury. Functional recovery was evaluated up to 56 days post-injury (dpi) by locomotor (open field test and CatWalk) and sensory (Von Frey and Hargreaves) tests. Besides, histological evaluation of transplanted cell survival and tissue protection/regeneration was also performed. Functional results showed a statistically significant improvement on locomotor recovery outcomes with hHC016 cells. Accordingly, superior cell survival in correlation with long-term neuroprotection, higher axonal regeneration, and reduced astroglial and microglial reactivity was also observed with hHC016 cells. These results demonstrate an enhanced survival capacity of hHC016 cells resulting in improved functional and histological outcomes as compared with hAMSCs, indicating that hHC016 cell transplants may constitute a promising cell therapy for acute SCI.
Collapse
Affiliation(s)
- Alfredo Maqueda
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | |
Collapse
|
54
|
Batty NJ, Torres-Espín A, Vavrek R, Raposo P, Fouad K. Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Exp Neurol 2019; 324:113136. [PMID: 31786212 DOI: 10.1016/j.expneurol.2019.113136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
Low neuronal cAMP levels in adults and a further decline following traumatic central nervous system (CNS) injury has been associated with the limited ability of neurons to regenerate. An approach to increase neuronal cAMP levels post injury is electrical stimulation. Stimulation as a tool to promote neuronal growth has largely been studied in the peripheral nervous system or in spared fibers of the CNS and this research suggests that a single session of electrical stimulation is sufficient to initiate a long-lasting axonal growth program. Here, we sought to promote plasticity and growth of the injured corticospinal tract with electrical cortical stimulation immediately after its spinal injury. Moreover, given the importance of rehabilitative motor training in the clinical setting and in translating plasticity into functional recovery, we applied training as a standard treatment to all rats (i.e., with or without electrical stimulation). Our findings show that electrical cortical stimulation did improve recovery in forelimb function compared to the recovery in unstimulated animals. This recovery is likely linked to increased corticospinal tract plasticity as evidenced by a significant increase in sprouting of collaterals above the lesion site, but not to increased regenerative growth through the lesion itself.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abel Torres-Espín
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
55
|
He Y, Liu X, Chen Z. Glial Scar-a Promising Target for Improving Outcomes After CNS Injury. J Mol Neurosci 2019; 70:340-352. [PMID: 31776856 DOI: 10.1007/s12031-019-01417-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
After central nervous system (CNS) injury, a series of stress responses induce astrocytes activation. Reactive astrocytes, which are typically different from astrocytes in normal conditions in altered morphology and gene expression, combine with extracellular matrix (ECM) components to form a glial scar at the lesion site, which walls of the injured region from neighboring healthier tissue. However, as a physical and molecular barrier, glial scar can impede patients' functional recovery in the late period of CNS injury. Thus, inhibiting glial scar formation in the chronic stage after CNS injury may be a promising target to improve outcomes. Since the therapeutic strategies targeting on mediating glial scar formation are regarded as an important part on improving functional recovery after CNS injury, in this review, we focus on the regulating effects of related signaling pathways and other molecules on glial scar, and the process of glial scar formation and the roles that it plays during the acute and chronic stages are also expounded in this article. We hope to get a comprehensive understanding of glial scar during CNS injury based on current researches and to open new perspectives for the therapies to promote functional recovery after CNS injury.
Collapse
Affiliation(s)
- Yuanyuan He
- Department of Pharmacy, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, 211700, Jiangsu, People's Republic of China
| | - Xiaoyan Liu
- Department of Pharmacy, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, 211700, Jiangsu, People's Republic of China
| | - Zhongying Chen
- Department of Pharmacy, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, 211700, Jiangsu, People's Republic of China.
| |
Collapse
|
56
|
Fan H, Tang HB, Shan LQ, Liu SC, Huang DG, Chen X, Chen Z, Yang M, Yin XH, Yang H, Hao DJ. Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. J Neuroinflammation 2019; 16:206. [PMID: 31699098 PMCID: PMC6839267 DOI: 10.1186/s12974-019-1613-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Oligodendrocytes (OLs) death after spinal cord injury (SCI) contributes to demyelination, even leading to a permanent neurological deficit. Besides apoptosis, our previous study demonstrated that OLs underwent receptor-interacting serine-threonine kinase 3(RIP3)/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis. Considering that necroptosis is always accompanied with pro-inflammatory response and quercetin has long been used as anti-inflammatory agent, in the present study we investigated whether quercetin could inhibit necroptosis of OLs and suppress the M1 macrophages/microglia-mediated immune response after SCI as well as the possible mechanism. METHODS In this study, we applied quercetin, an important flavonoid component of various herbs, to treat rats with SCI and rats injected with saline were employed as the control group. Locomotor functional recovery was evaluated using Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay. In vivo, the necroptosis, apoptosis, and regeneration of OLs were detected by immunohistochemistry, 5'-bromo-2'-deoxyuridine (BrdU) incorporation. The loss of myelin and axons after SCI were evaluated by Luxol fast blue (LFB) staining, immunohistochemistry, and electron microscopic study. The polarization of macrophages/microglia after SCI and the underlying mechanisms were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. In vitro, the ATP and reactive oxygen species (ROS) level examination, propidium iodide (PI) labeling, and Western blotting were used to analyze the necroptosis of cultured OLs, while the signaling pathways-mediated polarization of cultured macrophages/microglia was detected by qRT-PCR and Western blotting. RESULTS We demonstrated that quercetin treatment improved functional recovery in rats after SCI. We then found that quercetin significantly reduced necroptosis of OLs after SCI without influencing apoptosis and regeneration of OLs. Meanwhile, myelin loss and axon loss were also significantly reduced in quercetin-treated rats, as compared to SCI + saline control. Further, we revealed that quercetin could suppress macrophages/microglia polarized to M1 phenotype through inhibition of STAT1 and NF-κB pathway in vivo and in vitro, which contributes to the decreased necroptosis of OLs. CONCLUSIONS Quercetin treatment alleviated necroptosis of OLs partially by inhibiting M1 macrophages/microglia polarization after SCI. Our findings suggest that necroptosis of OLs may be a potential therapeutic target for clinical SCI.
Collapse
Affiliation(s)
- Hong Fan
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
- Institute of Neurosciences, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi’an Central Hospital, Xi’an Jiaotong University, 161 Xi Wu Road, Xi’an, 710003 Shaanxi China
| | - Le-Qun Shan
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Shi-Chang Liu
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Da-Geng Huang
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Xun Chen
- Department of Bone Microsurgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Zhe Chen
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Ming Yang
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Xin-Hua Yin
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Hao Yang
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| | - Ding-Jun Hao
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, 555 You Yi Dong Road, Xi’an, 710054 Shaanxi China
| |
Collapse
|
57
|
Boraiah V, Modgil S, Sharma K, Podder V, Sivapuram MS, Miranpuri GS, Anand A, Goni V. Altered Expression of Heat Shock Protein-27 and Monocyte Chemoattractant Protein-1 after Acute Spinal Cord Injury: A Pilot Study. J Neurosci Rural Pract 2019; 10:452-458. [PMID: 31595117 PMCID: PMC6779554 DOI: 10.1055/s-0039-1697683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background
Spinal cord injury (SCI) leads to serious complications involving primary trauma and progressive loss due to inflammation, local ischemia, or infection. Despite a worldwide annual incidence of 15 to 40 cases per million, methylprednisolone is the only treatment available to alleviate neurologic dysfunction; therefore, research is currently focused on identifying novel targets by biochemical and molecular studies.
Purpose
Here, we investigated the expression of various molecular markers at the messenger ribonucleic acid (mRNA) and protein level at day 0 and day 30 post-SCI.
Methods
Enzyme-linked immunosorbent assay (ELISA) was performed to determine the expression of CASPASE-3 and heat shock protein-27 (HSP-27) in serum samples. Real-time polymerase chain reaction (RT-PCR) was performed to determine the level of mRNA expression of vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, HSP-27, monocyte chemoattractant protein-1 (MCP-1), and CASPASE-3.
Results
HSP-27 expression at day 30, as compared with day 0, showed significant downregulation. In contrast, there was elevated expression of MCP-1. ELISA analysis showed no significant change in the expression of CASPASE-3 or HSP-27.
Conclusion
There may be possible opposing role of HSP-27 and MCP-1 governing SCI. Their association can be studied by designing in vitro studies.
Collapse
Affiliation(s)
- Vidyasagar Boraiah
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Modgil
- Department of Neurology, Neuroscience Research Laboratory, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Department of Zoology, Panjab University, Chandigarh, India
| | - Kaushal Sharma
- Department of Neurology, Neuroscience Research Laboratory, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Centre for System Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Vivek Podder
- Department of General Medicine, Kamineni Institute of Medical Sciences, Narketpally, Telangana, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Chinna Avutapalli, Andhra Pradesh, India
| | - Gurwattan S Miranpuri
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Akshay Anand
- Department of Neurology, Neuroscience Research Laboratory, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vijay Goni
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
58
|
MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury. Brain Dev 2019; 41:649-661. [PMID: 31036380 DOI: 10.1016/j.braindev.2019.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis is a highly conservative energy demand program for non-inflammatory cell death, which is extremely significant in normal physiology and disease. There are many techniques used for studying apoptosis. MicroRNA (miRNA) is closely related to cell apoptosis, and especially microRNA-31 (miR-31) is involved in apoptosis by regulating a large number of target genes and signaling pathways. In many neurological diseases, cell apoptosis or programmed cell death plays an important role in the reduction of cell number, including the reduction of neurons in spinal cord injuries. In recent years, the phosphoinositol 3-kinase/AKT (PI3K/AKT) signal pathway, as a signal pathway involved in a variety of cell functions, has been studied in spinal cord injury diseases. The PI3K/AKT pathway directly or indirectly affects whether apoptosis occurs in a cell, thereby affecting a significant intracellular event sequence. This paper reviewed the interactions of miR-31 target sites in the PI3K/AKT signaling pathway, and explored new ways to prevent and treat spinal cord injury by regulating the effect of miR-31 on apoptosis.
Collapse
|
59
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
60
|
Li C, Jiao G, Wu W, Wang H, Ren S, Zhang L, Zhou H, Liu H, Chen Y. Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Neuronal Apoptosis and Promote Motor Function Recovery via the Wnt/β-catenin Signaling Pathway. Cell Transplant 2019; 28:1373-1383. [PMID: 31423807 PMCID: PMC6802144 DOI: 10.1177/0963689719870999] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Severe spinal cord injury (SCI) is caused by external mechanical injury, resulting in
unrecoverable neurological injury. Recent studies have shown that exosomes derived from
bone marrow mesenchymal stem cells (BMSCs-Exos) might be valuable paracrine molecules in
the treatment of SCI. In this study, we designed SCI models in vivo and in vitro and then
investigated the possible mechanism of successful repair by BMSCs-Exos. In vivo, we
established one Sham group and two SCI model groups. The Basso, Beattie, Bresnahan (BBB)
scores showed that BMSCs-Exos could effectively promote the recovery of spinal cord
function. The results of the Nissl staining, immunohistochemistry, and TUNEL/NeuN/DAPI
double staining showed that BMSCs-Exos inhibited neuronal apoptosis. Western blot analysis
showed that the protein expression level of Bcl-2 was significantly increased in the
BMSCs-Exos group compared with the PBS group, while the protein expression levels of Bax,
cleaved caspase-3, and cleaved caspase-9 were significantly decreased. The results of
western bolt and qRT-PCR demonstrated that BMSCs-Exos could activate the Wnt/β-catenin
signaling pathway effectively. In vitro, we found that inhibition of the Wnt/β-catenin
signaling pathway could promote neuronal apoptosis following lipopolysaccharide (LPS)
induction. These results demonstrated that BMSCs-Exos may be a promising therapeutic for
SCI by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Wenliang Wu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Shanwu Ren
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongming Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Haichun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| |
Collapse
|
61
|
Şaker D, Sencar L, Yılmaz DM, Polat S. Relationships between microRNA-20a and microRNA-125b expression and apoptosis and inflammation in experimental spinal cord injury. Neurol Res 2019; 41:991-1000. [DOI: 10.1080/01616412.2019.1652014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
62
|
Wang Y, Jiao J, Zhang S, Zheng C, Wu M. RIP3 inhibition protects locomotion function through ameliorating mitochondrial antioxidative capacity after spinal cord injury. Biomed Pharmacother 2019; 116:109019. [DOI: 10.1016/j.biopha.2019.109019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023] Open
|
63
|
Mousavi M, Hedayatpour A, Mortezaee K, Mohamadi Y, Abolhassani F, Hassanzadeh G. Schwann cell transplantation exerts neuroprotective roles in rat model of spinal cord injury by combating inflammasome activation and improving motor recovery and remyelination. Metab Brain Dis 2019; 34:1117-1130. [PMID: 31165391 DOI: 10.1007/s11011-019-00433-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
Inflammasome activation in the traumatic central nervous system (CNS) injuries is responsible for propagation of an inflammatory circuit and neuronal cell death resulting in sensory/motor deficiencies. NLRP1 and NLRP3 are known as activators of inflammasome complex in the spinal cord injury (SCI). In this study, cell therapy using Schwann cells (SCs) was applied for targeting NLRP inflammasome complexes outcomes in the motor recovery. These cells were chosen due to their regenerative roles for CNS injuries. SCs were isolated from sciatic nerves and transplanted to the contusive SCI-induced Wistar rats. NLRP1 and NLRP3 inflammasome complexes and their related pro-inflammatory cytokines were assayed in both mRNA and protein levels. Neuronal cell survival (Nissl staining), motor recovery and myelination (Luxol fast blue/LFB) were also evaluated. The groups were laminectomy, SCI, vehicle and treatment. The treatment group received Schwann cells, and the vehicle group received solvent for the cells. SCI caused increased expressions for both NLRP1 and NLRP3 inflammasome complexes along with their related pro-inflammatory cytokines, all of which were abrogated after administration of SCs (except for IL-18 protein showing no change to the cell therapy). Motor deficits in the hind limb, neuronal cell death and demyelination were also found in the SCI group, which were counteracted in the treatment group. From our findings we conclude promising role for cell therapy with SCs for targeting axonal demyelination and degeneration possibly through attenuation of the activity for inflammasome complexes and related inflammatory circuit.
Collapse
Affiliation(s)
- Mahboubeh Mousavi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
64
|
Castro MVD, Silva MVRD, Chiarotto GB, Volpe BB, Santana MH, Malheiros Luzo ÂC, Oliveira ALRD. Reflex arc recovery after spinal cord dorsal root repair with platelet rich plasma (PRP). Brain Res Bull 2019; 152:212-224. [PMID: 31351157 DOI: 10.1016/j.brainresbull.2019.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 02/01/2023]
Abstract
Spinal dorsal roots can be affected by a wide range of lesions, leading to a significant loss of proprioceptive information transmission and greatly affecting motor behavior. In this context, the reimplantation of lesioned roots with platelet-rich plasma (PRP) may allow nerve regeneration. Therefore, the present study evaluated sensorimotor improvement following dorsal root rhizotomy and repair with PRP. For this purpose, female Lewis rats were subjected to unilateral rhizotomy (RZ) of the L4-L6 dorsal roots and divided into the following groups: (1) the unlesioned control group; (2) the group that underwent rhizotomy (RZ) without repair; and (3) the group that underwent RZ followed by root repair with PRP. PRP was obtained from human blood and characterized regarding platelet concentration, integrity, and viability. Reflex arc recovery was evaluated weekly for eight weeks by the electronic von Frey method. The spinal cords were processed 1 week postlesion to evaluate the in vivo gene expression of TNFα, TGF-β, BDNF, GDNF, VEGF, NGF, IL-4, IL-6, IL-13 by qRT-PCR and eight weeks postlesion to evaluate changes in the glial response (GFAP and Iba-1) and excitatory synaptic circuits (VGLUT1) by immunofluorescence. The results indicated that PRP therapy partially restores the paw withdrawal reflex over time, indicating the reentry of primary afferents from the dorsal root ganglia into the spinal cord without exacerbating glial reactivity. Additionally, the analysis of mRNA levels showed that PRP therapy has immunomodulatory properties. Overall, the present data suggest that the repair of dorsal roots with PRP may be considered a promising approach to improve sensorimotor recovery following dorsal rhizotomy.
Collapse
Affiliation(s)
- Mateus Vidigal de Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Moníze Valéria Ramos da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | - Bruno Bosh Volpe
- Regional Center University of Espirito Santo do Pinhal, Espirito Santo do Pinhal, Sao Paulo, Brazil
| | - Maria Helena Santana
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | |
Collapse
|
65
|
Zhao X, Li Z, Liang S, Li S, Ren J, Li B, Zhu Y, Xia M. Different epidermal growth factor receptor signaling pathways in neurons and astrocytes activated by extracellular matrix after spinal cord injury. Neurochem Int 2019; 129:104500. [PMID: 31295509 DOI: 10.1016/j.neuint.2019.104500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is a serious central nervous system (CNS) trauma that results in permanent and severe disability. The extracellular matrix (ECM) can affect the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) by interacting with the ERK integrin subunits. In this study, we built a model of SCI with glial fibrillary acidic protein-green fluorescent protein (GFAP-GFP) and thymus cell antigen 1-yellow fluorescent protein-H (Thy1-YFPH) in mice that express specific transgenes in their astrocytes or neurons. Then, we collected spinal cord neurons or astrocytes by fluorescence-activated cell sorting (FACS). In this way, we investigated the SCI-induced phosphorylation of ERK1/2 and epidermal growth factor receptor (EGFR) in neurons and astrocytes, and we discovered that the SCI-induced EGFR signaling pathways differed between neurons and astrocytes. In the present study, we found that the Src-dependent phosphorylation of EGFR induced by SCI occurred only in neurons, not in astrocytes. This phenomenon may be due to the involvement of Thy-1, which promoted the binding between Src and EGFR in neurons after SCI. In addition, the expression of the integrin subunits after SCI differed between neurons and astrocytes. Our present study shows that the EGFR signaling pathway triggered by SCI in neurons differed from the EGFR signaling pathway triggered in astrocytes, a finding that may help to pave the way for clinical trials of therapies that inhibit EGFR signaling pathways after SCI.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China; Department of Operating Room, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Zexiong Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Shanshan Liang
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Shuai Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jiaan Ren
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baoman Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China. http://
| | - Yue Zhu
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China. http://
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
66
|
RNA Sequencing of Peripheral Blood Revealed that the Neurotropic TRK Receptor Signaling Pathway Shows Apparent Correlation in Recovery Following Spinal Cord Injury at Small Cohort. J Mol Neurosci 2019; 68:221-233. [PMID: 30993646 DOI: 10.1007/s12031-019-01273-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) can be lethal; however, the precise mechanisms underlying healing are unclear, limiting the development of effective therapies. In this study, the molecular mechanisms involved in SCI were investigated. Clinical peripheral blood samples from normal individuals and patients with incomplete SCI (ISCI) and complete SCI (CSCI) were analyzed by RNA-Seq. The expression levels of EPHA4, CDK16, BAD, MAP2 Normal 2, EGR, and RHOB differed significantly between the SCI group and normal individuals, and these results were verified by q-PCR. A gene ontology (GO) enrichment analysis showed that differentially expressed genes were mostly enriched for the neurotrophin TRK receptor signaling pathway. We verified the expression of neurotrophic factors and found that they were all expressed most highly in the SCI group. The results of this study demonstrate that neurotrophic factors are highly expressed after SCI and the neurotrophin TRK receptor signaling pathway may be involved in the initiation of nerve system regeneration.
Collapse
|
67
|
Pinchi E, Frati A, Cantatore S, D'Errico S, Russa RL, Maiese A, Palmieri M, Pesce A, Viola RV, Frati P, Fineschi V. Acute Spinal Cord Injury: A Systematic Review Investigating miRNA Families Involved. Int J Mol Sci 2019; 20:1841. [PMID: 31013946 PMCID: PMC6515063 DOI: 10.3390/ijms20081841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Acute traumatic spinal cord injury (SCI) involves primary and secondary injury mechanisms. The primary mechanism is related to the initial traumatic damage caused by the damaging impact and this damage is irreversible. Secondary mechanisms, which begin as early as a few minutes after the initial trauma, include processes such as spinal cord ischemia, cellular excitotoxicity, ionic dysregulation, and free radical-mediated peroxidation. SCI is featured by different forms of injury, investigating the pathology and degree of clinical diagnosis and treatment strategies, the animal models that have allowed us to better understand this entity and, finally, the role of new diagnostic and prognostic tools such as miRNA could improve our ability to manage this pathological entity. Autopsy could benefit from improvements in miRNA research: the specificity and sensitivity of miRNAs could help physicians in determining the cause of death, besides the time of death.
Collapse
Affiliation(s)
- Enrica Pinchi
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
| | - Alessandro Frati
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | - Santina Cantatore
- Forensic Pathology Institute, University of Foggia, 71122 Foggia, Italy.
| | - Stefano D'Errico
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- Legal Medicine Division, Ospedale Sant'Andrea, 00189 Rome, Italy.
| | - Raffaele La Russa
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Aniello Maiese
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Mauro Palmieri
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | - Alessandro Pesce
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | | | - Paola Frati
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Vittorio Fineschi
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| |
Collapse
|
68
|
Zupanc GK. Stem‐Cell‐Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish. Dev Neurobiol 2019; 79:406-423. [DOI: 10.1002/dneu.22672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Günther K.H. Zupanc
- Laboratory of Neurobiology, Department of Biology Northeastern University Boston Massachusetts
| |
Collapse
|
69
|
Swieck K, Conta-Steencken A, Middleton FA, Siebert JR, Osterhout DJ, Stelzner DJ. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury. BMC Neurosci 2019; 20:10. [PMID: 30885135 PMCID: PMC6421714 DOI: 10.1186/s12868-019-0491-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background The spinal cord is limited in its capacity to repair after damage caused by injury or disease. However, propriospinal (PS) neurons in the spinal cord have demonstrated a propensity for axonal regeneration after spinal cord injury. They can regrow and extend axonal projections to re-establish connections across a spinal lesion. We have previously reported differential reactions of two distinct PS neuronal populations—short thoracic propriospinal (TPS) and long descending propriospinal tract (LDPT) neurons—following a low thoracic (T10) spinal cord injury in a rat model. Immediately after injury, TPS neurons undergo a strong initial regenerative response, defined by the upregulation of transcripts to several growth factor receptors, and growth associated proteins. Many also initiate a strong apoptotic response, leading to cell death. LDPT neurons, on the other hand, show neither a regenerative nor an apoptotic response. They show either a lowered expression or no change in genes for a variety of growth associated proteins, and these neurons survive for at least 2 months post-axotomy. There are several potential explanations for this lack of cellular response for LDPT neurons, one of which is the distance of the LDPT cell body from the T10 lesion. In this study, we examined the molecular response of LDPT neurons to axotomy caused by a proximal spinal cord lesion. Results Utilizing laser capture microdissection and RNA quantification with branched DNA technology, we analyzed the change in gene expression in LDPT neurons following axotomy near their cell body. Expression patterns of 34 genes selected for their robust responses in TPS neurons were analyzed 3 days following a T2 spinal lesion. Our results show that after axonal injury nearer their cell bodies, there was a differential response of the same set of genes evaluated previously in TPS neurons after proximal axotomy, and LDPT neurons after distal axotomy (T10 spinal transection). The genetic response was much less robust than for TPS neurons after proximal axotomy, included both increased and decreased expression of certain genes, and did not suggest either a major regenerative or apoptotic response within the population of genes examined. Conclusions The data collectively demonstrate that the location of axotomy in relation to the soma of a neuron has a major effect on its ability to mount a regenerative response. However, the data also suggest that there are endogenous differences in the LDPT and TPS neuronal populations that affect their response to axotomy. These phenotypic differences may indicate that different or multiple therapies may be needed following spinal cord injury to stimulate maximal regeneration of all PS axons.
Collapse
Affiliation(s)
- Kristen Swieck
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Amanda Conta-Steencken
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Justin R Siebert
- Department of Biology, Slippery Rock University, 1 Morrow Way, Slippery Rock, PA, 16057, USA
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Dennis J Stelzner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| |
Collapse
|
70
|
Sun G, Zeng S, Liu X, Shi H, Zhang R, Wang B, Zhou C, Yu T. Synthesis and Characterization of a Silica-Based Drug Delivery System for Spinal Cord Injury Therapy. NANO-MICRO LETTERS 2019; 11:23. [PMID: 34137964 PMCID: PMC7770885 DOI: 10.1007/s40820-019-0252-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/19/2019] [Indexed: 06/11/2023]
Abstract
Acute inflammation is a central component in the progression of spinal cord injury (SCI). Anti-inflammatory drugs used in the clinic are often administered systemically at high doses, which can paradoxically increase inflammation and result in drug toxicity. A cluster-like mesoporous silica/arctigenin/CAQK composite (MSN-FC@ARC-G) drug delivery system was designed to avoid systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord. In this nanosystem, mesoporous silica was modified with the FITC fluorescent molecule and CAQK peptides that target brain injury and SCI sites. The size of the nanocarrier was kept at approximately 100 nm to enable penetration of the blood-brain barrier. Arctigenin, a Chinese herbal medicine, was loaded into the nanosystem to reduce inflammation. The in vivo results showed that MSN-FC@ARC-G could attenuate inflammation at the injury site. Behavior and morphology experiments suggested that MSN-FC@ARC-G could diminish local microenvironment damage, especially reducing the expression of interleukin-17 (IL-17) and IL-17-related inflammatory factors, inhibiting the activation of astrocytes, thus protecting neurons and accelerating the recovery of SCI. Our study demonstrated that this novel, silica-based drug delivery system has promising potential for clinical application in SCI therapy.
Collapse
Affiliation(s)
- Guodong Sun
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shenghui Zeng
- College of Chemistry and Material Sciences, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xu Liu
- College of Chemistry and Material Sciences, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Haishan Shi
- College of Chemistry and Material Sciences, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Renwen Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Baocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Changren Zhou
- College of Chemistry and Material Sciences, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Tao Yu
- College of Chemistry and Material Sciences, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
71
|
Altinova H, Hammes S, Palm M, Gerardo-Nava J, Achenbach P, Deumens R, Hermans E, Führmann T, Boecker A, van Neerven SGA, Bozkurt A, Weis J, Brook GA. Fibroadhesive scarring of grafted collagen scaffolds interferes with implant-host neural tissue integration and bridging in experimental spinal cord injury. Regen Biomater 2019; 6:75-87. [PMID: 30967962 PMCID: PMC6447003 DOI: 10.1093/rb/rbz006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
Severe traumatic spinal cord injury (SCI) results in a devastating and permanent loss of function, and is currently an incurable condition. It is generally accepted that future intervention strategies will require combinational approaches, including bioengineered scaffolds, to support axon growth across tissue scarring and cystic cavitation. Previously, we demonstrated that implantation of a microporous type-I collagen scaffold into an experimental model of SCI was capable of supporting functional recovery in the absence of extensive implant–host neural tissue integration. Here, we demonstrate the reactive host cellular responses that may be detrimental to neural tissue integration after implantation of collagen scaffolds into unilateral resection injuries of the adult rat spinal cord. Immunohistochemistry demonstrated scattered fibroblast-like cell infiltration throughout the scaffolds as well as the presence of variable layers of densely packed cells, the fine processes of which extended along the graft–host interface. Few reactive astroglial or regenerating axonal profiles could be seen traversing this layer. Such encapsulation-type behaviour around bioengineered scaffolds impedes the integration of host neural tissues and reduces the intended bridging role of the implant. Characterization of the cellular and molecular mechanisms underpinning this behaviour will be pivotal in the future design of collagen-based bridging scaffolds intended for regenerative medicine.
Collapse
Affiliation(s)
- Haktan Altinova
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Police Headquarters Berlin, Medical Commission, Berlin, Germany
| | - Sebastian Hammes
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Moniek Palm
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jose Gerardo-Nava
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Pascal Achenbach
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ronald Deumens
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Tobias Führmann
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Arne Boecker
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Centre Trauma Centre, BG Trauma Centre Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany.,Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, RWTH Aachen University Hospital, Aachen, Germany
| | - Sabien Geraldine Antonia van Neerven
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.,Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, RWTH Aachen University Hospital, Aachen, Germany
| | - Ahmet Bozkurt
- Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, RWTH Aachen University Hospital, Aachen, Germany.,Department of Plastic, Aesthetic, Hand and Burn Surgery, Helios University Hospital Wuppertal, University Witten/Herdecke, Wuppertal, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Gary Anthony Brook
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
72
|
Tang YJ, Li K, Yang CL, Huang K, Zhou J, Shi Y, Xie KG, Liu J. Bisperoxovanadium protects against spinal cord injury by regulating autophagy via activation of ERK1/2 signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:513-521. [PMID: 30774313 PMCID: PMC6362923 DOI: 10.2147/dddt.s187878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Spinal cord injury (SCI) is a disease of the central nervous system with few restorative treatments. Autophagy has been regarded as a promising therapeutic target for SCI. The inhibitor of phosphatase and tensin homolog deleted on chromosome ten (PTEN) bisperoxovanadium (bpV[pic]) had been claimed to provide a neuroprotective effect on SCI; but the underlying mechanism is still not fully understood. Materials and methods Acute SCI model were generated with SD Rats and were treated with control, acellular spinal cord scaffolds (ASC) obtained from normal rats, bpV(pic), and combined material of ASC and bpV(pic). We used BBB score to assess the motor function of the rats and the motor neurons were stained with Nissl staining. The expressions of the main autophagy markers LC3B, Beclin1 and P62, expressions of apoptosis makers Bax, Bcl2, PARP and Caspase 3 were detected with IF or Western Blot analysis. Results The bpV(pic) showed significant improvement in functional recovery by activating autophagy and accompanied by decreased neuronal apoptosis; combined ASC with bpV(pic) enhanced these effects. In addition, after treatment with ERK1/2 inhibitor SCH772984, we revealed that bpV(pic) promotes autophagy and inhibits apoptosis through activating ERK1/2 signaling after SCI. Conclusion These results illustrated that the bpV(pic) protects against SCI by regulating autophagy via activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Yu-Jin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China,
| | - Kai Li
- Academy of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng-Liang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China,
| | - Ke Huang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China,
| | - Jing Zhou
- Department of Anatomy, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yu Shi
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China,
| | - Ke-Gong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China,
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China,
| |
Collapse
|
73
|
He Z, Zang H, Zhu L, Huang K, Yi T, Zhang S, Cheng S. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury. Int J Nanomedicine 2019; 14:721-732. [PMID: 30705588 PMCID: PMC6342221 DOI: 10.2147/ijn.s187854] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) causes neuronal death, demyelination, axonal degeneration, inflammation, glial scar formation, and cystic cavitation resulting in interruption of neural signaling and loss of nerve function. Multifactorial targeted therapy is a promising strategy for SCI. Methods The anti-inflammatory peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) and brain-derived neurotrophic factor (BDNF)-modified hyaluronan-methylcellulose (HAMC) hydrogel was designed for minimally invasive, localized, and sustained intrathecal protein delivery. The physical and biological characteristics of HAMC-KAFAK/BDNF hydrogel were measured in vitro. SCI model was performed in rats and HAMC-KAFAK/BDNF hydrogel was injected into the injured site of spinal cord. The neuronal regeneration effect was evaluated by inflammatory cytokine levels, behavioral test and histological analysis at 8 weeks post operation. Results HAMC-KAFAK/BDNF hydrogel showed minimally swelling property and sustained release of the KAFAK and BDNF. HAMC-KAFAK/BDNF hydrogel significantly improved the proliferation of PC12 cells in vitro without cytotoxicity. Significant recovery in both neurological function and nerve tissue morphology in SCI rats were observed in HAMC-KAFAK/BDNF group. HAMC-KAFAK/BDNF group showed significant reduction in proinflammatory cytokines expression and cystic cavitation, decreased glial scar formation, and improved neuronal survival in the rat SCI model compared to HAMC group and SCI group. Conclusion The HAMC-KAFAK/BDNF hydrogel promotes functional recovery of rats with spinal cord injury by regulating inflammatory cytokine levels and improving axonal regeneration.
Collapse
Affiliation(s)
- Zhijiang He
- Logistics University of Chinese People's Armed Police Force (PAP), Tianjin 300309, China
| | - Hongxin Zang
- Department of Nursing, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin 300162, China
| | - Lei Zhu
- Department of Orthopaedics Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin 300162, China
| | - Kui Huang
- Logistics University of Chinese People's Armed Police Force (PAP), Tianjin 300309, China
| | - Tailong Yi
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| | - Sai Zhang
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| | - Shixiang Cheng
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| |
Collapse
|
74
|
Campolo M, Siracusa R, Cordaro M, Filippone A, Gugliandolo E, Peritore AF, Impellizzeri D, Crupi R, Paterniti I, Cuzzocrea S. The association of adelmidrol with sodium hyaluronate displays beneficial properties against bladder changes following spinal cord injury in mice. PLoS One 2019; 14:e0208730. [PMID: 30653511 PMCID: PMC6336272 DOI: 10.1371/journal.pone.0208730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023] Open
Abstract
The disruption of coordinated control between the brain, spinal cord and peripheral nervous system caused by spinal cord injury (SCI) leads to several secondary pathological conditions, including lower urinary tract dysfunction. In fact, urinary tract dysfunction associated with SCI is urinary dysfunction could be a consequence of a lack of neuroregeneration of supraspinal pathways that control bladder function. The object of the current research was to explore the effects of adelmidrol + sodium hyaluronate, on bladder damage generated after SCI in mice. Spinal cord was exposed via laminectomy, and SCI was induced by extradural compression at T6 to T7 level, by an aneurysm clip with a closing force of 24 g. Mice were treated intravesically with adelmidrol + sodium hyaluronate daily for 48 h and 7 days after SCI. Adelmidrol + sodium hyaluronate reduced significantly mast cell degranulation and down-regulated the nuclear factor-κB pathway in the bladder after SCI both at 48 h and 7days. Moreover, adelmidrol + sodium hyaluronate reduced nerve growth factor expression, suggesting an association between neurotrophins and bladder pressure. At 7 days after SCI, the bladder was characterized by a marked bacterial infection and proteinuria; surprisingly, adelmidrol + sodium hyaluronate reduced significantly both parameters. These data show the protective roles of adelmidrol + sodium hyaluronate on bladder following SCI, highlighting a potential therapeutic target for the reduction of bladder changes.
Collapse
Affiliation(s)
- Michela Campolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalba Siracusa
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Marika Cordaro
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessia Filippone
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Enrico Gugliandolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessio F. Peritore
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Daniela Impellizzeri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalia Crupi
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Irene Paterniti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Salvatore Cuzzocrea
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
- Saint Louis University School of Medicine, Department of Pharmacological and Physiological Science, Saint Louis, United States of America
- * E-mail:
| |
Collapse
|
75
|
Spejo AB, Teles CB, Zuccoli GDS, Oliveira ALRD. Synapse preservation and decreased glial reactions following ventral root crush (VRC) and treatment with 4‐hydroxy‐tempo (TEMPOL). J Neurosci Res 2018; 97:520-534. [DOI: 10.1002/jnr.24365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Aline Barroso Spejo
- Department of Structural and Functional Biology, Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Caroline Brandão Teles
- Department of Structural and Functional Biology, Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Giuliana da Silva Zuccoli
- Department of Structural and Functional Biology, Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | | |
Collapse
|
76
|
Identification of differentially expressed proteins in rats with spinal cord injury during the transitional phase using an iTRAQ-based quantitative analysis. Gene 2018; 677:66-76. [PMID: 30036659 DOI: 10.1016/j.gene.2018.07.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a disease associated with high disability and mortality rates. The transitional phase from subacute phase to intermediate phase may play a major role in the process of secondary injury. Changes in protein expression levels have been shown to play key roles in many central nervous system (CNS) diseases. Nevertheless, the roles of proteins in the transitional phase of SCI are not clear. METHODS We examined protein expression in a rat model 2 weeks after SCI and identified differentially expressed proteins (DEPs) using isobaric tagging for relative and absolute protein quantification (iTRAQ). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEPs were performed. Furthermore, we constructed a protein-protein interaction (PPI) network, and the top 10 high-degree core nodes were identified. Meanwhile, we validated protein level changes of five high-degree core regulated proteins using Western blots. RESULTS A total of 162 DEPs were identified between the injury group and the control, of which 101 (62.35%) were up-regulated and 61 (37.65%) were down-regulated in the transitional phase of SCI. Key molecular function, cellular components, biological process terms and pathways were identified and may be important mechanisms in the transitional phase of SCI. Alb, Calm1, Vim, Apoe, Syp, P4hb, Cd68, Eef1a2, Rab3a and Lgals3 were the top 10 high-degree core nodes. Western blot analysis performed on five of these proteins showed the same trend as iTRAQ results. CONCLUSION The current study may provide novel insights into how proteins regulate the pathogenesis of the transitional phase after SCI.
Collapse
|
77
|
Javdani M, Ahmadi Dastjerdi M, Shirian S. Effect of Boswellia serrata extract on tissue inflammation and white blood cells responses of spinal cord injury in rat model. JOURNAL OF HERBMED PHARMACOLOGY 2018. [DOI: 10.15171/jhp.2018.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
78
|
Serrano MC, Feito MJ, González-Mayorga A, Diez-Orejas R, Matesanz MC, Portolés MT. Response of macrophages and neural cells in contact with reduced graphene oxide microfibers. Biomater Sci 2018; 6:2987-2997. [PMID: 30255874 DOI: 10.1039/c8bm00902c] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene-based materials are revealing a great promise for biomedical applications and demonstrating attractiveness for neural repair. In the context of neural tissue damage, the dialogue between neural and immune cells appears critical for driving regeneration, thus making the understanding of their relations pivotal. Herein, the acute response of RAW-264.7 macrophages on nanostructured reduced graphene oxide (rGO) microfibers has been evaluated through the analysis of cell parameters including proliferation, viability, intracellular content of reactive oxygen species, cell cycle, apoptosis, and cell size and complexity. The influence of the direct contact of rGO microfibers on their polarization towards M1 and M2 phenotypes has been studied by analyses of both M1 (CD80) and M2 (CD163) markers and the secretion of the inflammatory cytokines TNF-α and IL-6. Finally, the capability of these rGO microfibers to regulate neural stem cell differentiation has been also evaluated. Findings reveal that rGO microfibers inhibit the proliferation of RAW-264.7 macrophages without affecting their viability and cell cycle profiles. The presence of M1 and M2 macrophages on these microfibers was confirmed after 24 and 48 h, respectively, accompanied by a decrease in TNF-α and an increase in IL-6 cytokine secretion. These rGO microfibers were also able to support the formation of a highly interconnected neural culture composed of both neurons (map2+ cells) and glial cells (vimentin+ cells). These findings encourage further investigation of these microfibers as attractive biomaterials to interact with immune and neural cells, attempting to support wound healing and tissue repair after implantation.
Collapse
Affiliation(s)
- M C Serrano
- Group of Materials for Health, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049-Madrid, Spain.
| | - M J Feito
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
| | - A González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071-Toledo, Spain
| | - R Diez-Orejas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - M C Matesanz
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
| | - M T Portolés
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
| |
Collapse
|
79
|
Park CH, Joa KL, Lee MO, Yoon SH, Kim MO. The combined effect of granulocyte-colony stimulating factor (G-CSF) treatment and exercise in rats with spinal cord injury. J Spinal Cord Med 2018; 43:339-346. [PMID: 30230978 PMCID: PMC7241473 DOI: 10.1080/10790268.2018.1521567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: To identify that the combined G-CSF and treadmill exercise is more effective in functional recovery after spinal cord injury (SCI).Design: Rats were divided into 4 groups: a SCI group treated with G-CSF (G-CSF group, n = 6), a SCI group treated with treadmill exercise plus G-CSF (G-CSF/exercise group, n = 6), a SCI group with treadmill exercise (exercise group, n = 6), and a SCI group without treatments (control group, n = 6). We performed laminectomy at the T8-10 spinal levels with compression injury of the spinal cord in all rats. G-CSF (20 μg/ml) was administered intraperitoneally for 5 consecutive days after SCI in G-CSF and G-CSF/exercise groups. From one week after surgery, animals in G-CSF/exercise and exercise groups received 30 min of exercise 5 days per week for 4 weeks. Functional recoveries were assessed using the Basso, Beattie, and Bresnahan (BBB) scale and the inclined plane test. Five weeks after SCI, hematoxylin and eosin staining for cavity size and immunohistochemistry for glial scar formation and neuro-regeneration factor expression were conducted.Setting: Inha University School of medicine, Incheon, KoreaResults: Rats in G-CSF/exercise group showed the most effective functional recovery in the BBB scale and the inclined plane test, and spinal cord cavity size by injury were the smallest, and immunohistochemistry revealed expression of higher BDNF (brain-derived neurotrophic factor) and VEGF (vascular endothelial growth factor) and lower GFAP (glial fibrillary acidic protein) than others.Conclusion: Combined treatment provided more effective neuroplasty and functional recovery than individual treatments.
Collapse
Affiliation(s)
- Chan-Hyuk Park
- Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Mi-Ok Lee
- School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seung-Hwan Yoon
- Department of Neurosurgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Myeong-Ok Kim
- Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Incheon, Republic of Korea,Correspondence to: Myeong-Ok Kim, Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Inha University Hospital, 27, Inhang-ro, Jung-Gu, Incheon, 222–332, Korea; Ph: +82-32-890-2480.
| |
Collapse
|
80
|
Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res Bull 2018; 143:217-224. [PMID: 30243665 DOI: 10.1016/j.brainresbull.2018.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition in which inflammatory responses in the secondary phase of injury leads to long lasting sensory-motor dysfunction. The medicinal therapy of SCI complications is still a clinical challenge. Understanding the molecular pathways underlying the progress of damage will help to find new therapeutic candidates. Astaxanthin (AST) is a ketocarotenoid which has shown anti-inflammatory effects in models of traumatic brain injury. In the present study, we examined its potential in the elimination of SCI damage through glutamatergic-phospo p38 mitogen-activated protein kinase (p-p38MAPK) signaling pathway. Inflammatory response, histopathological changes and sensory-motor function were also investigated in a severe compression model of SCI in male rats. The results of acetone drop and inclined plane tests indicated the promising role of AST in improving sensory and motor function of SCI rats. AST decreased the expression of n-methyl-d-aspartate receptor subunit 2B (NR2B) and p-p38MAPK as inflammatory signaling mediators as well as tumor necrosis factor-α (TNF-α) as an inflammatory cytokine, following compression SCI. The histopathological study culminated in preserved white mater and motor neurons beyond the injury level in rostral and caudal parts. The results show the potential of AST to inhibit glutamate-initiated signaling pathway and inflammatory reactions in the secondary phase of SCI, and suggest it as a promising candidate to enhance functional recovery after SCI.
Collapse
|
81
|
Chen XG, Hua F, Wang SG, Xu YY, Yue HT, Sun J. Zafirlukast in combination with pseudohypericin attenuates spinal cord injury and motor function in experimental mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2389-2402. [PMID: 30122897 PMCID: PMC6078184 DOI: 10.2147/dddt.s154814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Biosynthesis of leukotriene (LT) by arachidonic acid involves 5-lipoxygenase (5-LO) as an important precursor. Here, we evaluated the role of pseudohypericin (PHP) for its postulated 5-LO inhibitory activity along with a Cys-LT receptor antagonist zafirlukast (ZFL) against inflammatory response and tissue injury in mice. Materials and methods The spinal injury was induced by two-level laminectomy of T6 and T7 vertebrae. The inflammation was assessed by histology, inflammatory mediators by enzyme-linked immunosorbent assay, apoptosis by Annexin-V, FAS staining, terminal deoxynucleoti-dyltransferase-mediated UTP end labeling (TUNEL) assay and expression of Bax and Bcl-2 by Western blot. Effect on motor recovery of hind limbs was evaluated for 10 days postinjury. Results The spinal injury resulted in tissue damage, apoptosis, edema, infiltration of neutrophils with increased expression of tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). The spinal tissue showed elevated levels of prostaglandin E2 (PGE2), and LTB4 and increased phosphorylation of injured extracellular signal-regulated kinase-1/2 (ERK1/2). The PHP, ZFL and combination decreased inflammation, tissue injury and infiltration of neutrophils. Treatment also decreased the levels of PGE2, phosphorylation of extracellular signal-regulated kinase-1/2 (pERK 1/2), LT, TNF-α and COX-2 with a marked reduction in apoptosis and improved the motor function. Conclusion The present study confirmed 5-LO antagonist activity of PHP and established its neuroprotective role along with ZFL.
Collapse
Affiliation(s)
- Xiao-Gang Chen
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China,
| | - Fu Hua
- Department of Gynaecology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Shou-Guo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China,
| | - Yong-Yi Xu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China,
| | - Hai-Tao Yue
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China,
| | - Jin Sun
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China,
| |
Collapse
|
82
|
Mollashahi M, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid elicits antinociceptive effects in rats through the activation of opioid and peroxisome proliferator-activated receptors β/δ. Eur J Pharmacol 2018; 832:75-80. [DOI: 10.1016/j.ejphar.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
83
|
Transneuronal Downregulation of the Premotor Cholinergic System After Corticospinal Tract Loss. J Neurosci 2018; 38:8329-8344. [PMID: 30049887 DOI: 10.1523/jneurosci.3410-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Injury to the supraspinal motor systems, especially the corticospinal tract, leads to movement impairments. In addition to direct disruption of descending motor pathways, spinal motor circuits that are distant to and not directly damaged by the lesion undergo remodeling that contributes significantly to the impairments. Knowing which spinal circuits are remodeled and the underlying mechanisms are critical for understanding the functional changes in the motor pathway and for developing repair strategies. Here, we target spinal premotor cholinergic interneurons (IN) that directly modulate motoneuron excitability via their cholinergic C-bouton terminals. Using a model of unilateral medullary corticospinal tract lesion in male rats, we found transneuronal downregulation of the premotor cholinergic pathway. Phagocytic microglial cells were upregulated in parallel with cholinergic pathway downregulation and both were blocked by minocycline, a microglia activation inhibitor. Additionally, we found a transient increase in interneuronal complement protein C1q expression that preceded cell loss. 3D reconstructions showed ongoing phagocytosis of C1q-expressing cholinergic INs by microglia 3 d after injury, which was complete by 10 d after injury. Unilateral motor cortex inactivation using the GABAA receptor agonist muscimol replicated the changes detected at 3 d after lesion, indicating activity dependence. The neuronal loss after the lesion was rescued by increasing spinal activity using cathodal trans-spinal direct current stimulation. Our finding of activity-dependent modulation of cholinergic premotor INs after CST injury provides the mechanistic insight that maintaining activity, possibly during a critical period, helps to protect distant motor circuits from further damage and, as a result, may improve motor functional recovery and rehabilitation.SIGNIFICANCE STATEMENT Supraspinal injury to the motor system disrupts descending motor pathways, leading to movement impairments. Whether and how intrinsic spinal circuits are remodeled after a brain injury is unclear. Using a rat model of unilateral corticospinal tract lesion in the medulla, we show activity-dependent, transneuronal downregulation of the spinal premotor cholinergic system, which is mediated by microglial phagocytosis, possibly involving a rapid and transient increase in neuronal C1q before neuronal loss. Spinal cord neuromodulation after injury to augment spinal activity rescued the premotor cholinergic system. Our findings provide the mechanistic insight that maintaining activity, possibly during an early critical period, could protect distant motor circuits from further damage mediated by microglia and interneuronal complement protein and improve motor functional outcomes.
Collapse
|
84
|
Chen X, Zhao Y, Li X, Xiao Z, Yao Y, Chu Y, Farkas B, Romano I, Brandi F, Dai J. Functional Multichannel Poly(Propylene Fumarate)-Collagen Scaffold with Collagen-Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury. Adv Healthc Mater 2018; 7:e1800315. [PMID: 29920990 DOI: 10.1002/adhm.201800315] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/11/2018] [Indexed: 01/12/2023]
Abstract
Many factors contribute to the poor axonal regrowth and ineffective functional recovery after spinal cord injury (SCI). Biomaterials have been used for SCI repair by promoting bridge formation and reconnecting the neural tissue at the lesion site. The mechanical properties of biomaterials are critical for successful design to ensure the stable support as soon as possible when compressed by the surrounding spine and musculature. Poly(propylene fumarate) (PPF) scaffolds with high mechanical strength have been shown to provide firm spatial maintenance and to promote repair of tissue defects. A multichannel PPF scaffold is combined with collagen biomaterial to build a novel biocompatible delivery system coated with neurotrophin-3 containing an engineered collagen-binding domain (CBD-NT3). The parallel-aligned multichannel structure of PPF scaffolds guide the direction of neural tissue regeneration across the lesion site and promote reestablishment of bridge connectivity. The combinatorial treatment consisting of PPF and collagen loaded with CBD-NT3 improves the inhibitory microenvironment, facilitates axonal and neuronal regeneration, survival of various types of functional neurons and remyelination and synapse formation of regenerated axons following SCI. This novel treatment strategy for SCI repair effectively promotes neural tissue regeneration after transected spinal injury by providing a regrowth-supportive microenvironment and eventually induces functional improvement.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Combined Injury; State Key Laboratory of Trauma; Burns and Combined Injury; Chongqing Engineering Research Center for Nanomedicine; Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine; College of Preventive Medicine; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
| | - Yannan Zhao
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Xing Li
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Yuanjiang Yao
- Department of Neurobiology; Chongqing Key Laboratory of Neurobiology; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
| | - Yun Chu
- Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Balázs Farkas
- Istituto Italiano di Tecnologia; Via Morego 30 Genova 16163 Italy
| | - Ilaria Romano
- Istituto Italiano di Tecnologia; Via Morego 30 Genova 16163 Italy
| | - Fernando Brandi
- Istituto Italiano di Tecnologia; Via Morego 30 Genova 16163 Italy
- Istituto Nazionale di Ottica; Consiglio Nazionale delle Ricerche; Via Moruzzi 1 Pisa 56124 Italy
| | - Jianwu Dai
- Institute of Combined Injury; State Key Laboratory of Trauma; Burns and Combined Injury; Chongqing Engineering Research Center for Nanomedicine; Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine; College of Preventive Medicine; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
- State Key Laboratory of Molecular; Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
- Department of Neurobiology; Chongqing Key Laboratory of Neurobiology; Army Medical University (Third Military Medical University); 30th Gaotanyan street Chongqing 400038 China
| |
Collapse
|
85
|
Muñoz-Galdeano T, Reigada D, Del Águila Á, Velez I, Caballero-López MJ, Maza RM, Nieto-Díaz M. Cell Specific Changes of Autophagy in a Mouse Model of Contusive Spinal Cord Injury. Front Cell Neurosci 2018; 12:164. [PMID: 29946241 PMCID: PMC6005838 DOI: 10.3389/fncel.2018.00164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an essential process of cellular waist clearance that becomes altered following spinal cord injury (SCI). Details on these changes, including timing after injury, underlying mechanisms, and affected cells, remain controversial. Here we present a characterization of autophagy in the mice spinal cord before and after a contusive SCI. In the undamaged spinal cord, analysis of LC3 and Beclin 1 autophagic markers reveals important differences in basal autophagy between neurons, oligodendrocytes, and astrocytes and even within cell populations. Following moderate contusion, western blot analyses of LC3 indicates that autophagy increases to a maximum at 7 days post injury (dpi), whereas unaltered Beclin 1 expression and increase of p62 suggests a possible blockage of autophagosome clearance. Immunofluorescence analyses of LC3 and Beclin 1 provide additional details that reveal a complex, cell-specific scenario. Autophagy is first activated (1 dpi) in the severed axons, followed by a later (7 dpi) accumulation of phagophores and/or autophagosomes in the neuronal soma without signs of increased initiation. Oligodendrocytes and reactive astrocytes also accumulate phagophores and autophagosomes at 7 dpi, but whereas the accumulation in astrocytes is associated with an increased autophagy initiation, it seems to result from a blockage of the autophagic flux in oligodendrocytes. Comparison with previous studies highlights the complex and heterogeneous autophagic responses induced by the SCI, leading in many cases to contradictory results and interpretations. Future studies should consider this complexity in the design of therapeutic interventions based on the modulation of autophagy to treat SCI.
Collapse
Affiliation(s)
- Teresa Muñoz-Galdeano
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - David Reigada
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Ángela Del Águila
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Irene Velez
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Marcos J Caballero-López
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rodrigo M Maza
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Manuel Nieto-Díaz
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
86
|
Tica J, Bradbury EJ, Didangelos A. Combined Transcriptomics, Proteomics and Bioinformatics Identify Drug Targets in Spinal Cord Injury. Int J Mol Sci 2018; 19:E1461. [PMID: 29758010 PMCID: PMC5983596 DOI: 10.3390/ijms19051461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) causes irreversible tissue damage and severe loss of neurological function. Currently, there are no approved treatments and very few therapeutic targets are under investigation. Here, we combined 4 high-throughput transcriptomics and proteomics datasets, 7 days and 8 weeks following clinically-relevant rat SCI to identify proteins with persistent differential expression post-injury. Out of thousands of differentially regulated entities our combined analysis identified 40 significantly upregulated versus 48 significantly downregulated molecules, which were persistently altered at the mRNA and protein level, 7 days and 8 weeks post-SCI. Bioinformatics analysis was then utilized to identify currently available drugs with activity against the filtered molecules and to isolate proteins with known or unknown function in SCI. Our findings revealed multiple overlooked therapeutic candidates with important bioactivity and established druggability but with unknown expression and function in SCI including the upregulated purine nucleoside phosphorylase (PNP), cathepsins A, H, Z (CTSA, CTSH, CTSZ) and proteasome protease PSMB10, as well as the downregulated ATP citrate lyase (ACLY), malic enzyme (ME1) and sodium-potassium ATPase (ATP1A3), amongst others. This work reveals previously unappreciated therapeutic candidates for SCI and available drugs, thus providing a valuable resource for further studies and potential repurposing of existing therapeutics for SCI.
Collapse
Affiliation(s)
- Jure Tica
- Imperial College London, Alexander Fleming Building, London SW7 2AZ, UK.
| | - Elizabeth J Bradbury
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, UK.
| | - Athanasios Didangelos
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
87
|
Lapuente-Chala C, Céspedes-Rubio A. Biochemical events related to glial response in spinal cord injury. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.15446/revfacmed.v66n2.61701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introducción. La lesión de la médula espinal (LME) es un evento devastador con implicaciones físicas, psicológicas y socioeconómicas. En el tejido cercano a la lesión se instauran cambios morfofisiológicos que determinan la recuperación funcional del segmento medular y de los órganos efectores dependientes de los tractos axonales lesionados.Objetivo. Describir los eventos bioquímicos secuenciales más relevantes de la respuesta de las células gliales posterior a la LME.Materiales y métodos. Se realizó una búsqueda de publicaciones científicas de los últimos 18 años en las bases de datos PubMed y ScienceDirect, bajo los términos en inglés spinal cord injury (SCI), SCI pathophysiology, SCI inflammation, microglia in SCI, glial scar y chondroitin sulfate proteoglycans (CSPG).Resultados. Los procesos fisiopatológicos que se producen después de la LME determinan la recuperación neurológica de los pacientes. La activación de las células gliales juega un papel importante, ya que promueve la producción de moléculas bioactivas y la formación de barreras físicas que inhiben la regeneración neural.Conclusión. El conocimiento de los cambios neurobiológicos ocurridos tras la LME permite una mayor comprensión de la fisiopatología y favorece la búsqueda de nuevas alternativas terapéuticas que limiten la progresión de la lesión primaria y que minimicen el daño secundario responsable de la disfunción neurológica.
Collapse
|
88
|
Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 2018; 661:119-125. [PMID: 29580899 DOI: 10.1016/j.gene.2018.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) is a serious devastating condition and it has a high mortality rate and morbidity rate. The early pathological changes in the immediate phase of SCI may play a major part in the development of secondary injury. Alterations in the expression of many long noncoding RNAs (lncRNAs) have been shown to play fundamental roles in the diseases of the central nervous system. However, the roles of lncRNAs and messenger RNAs (mRNAs) in the immediate phase of SCI are not clear. We examined the expression of mRNAs and lncRNAs in a rat model at 2 h after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. 772 DE lncRNAs and 992 DE mRNAs were identified in spinal cord samples in the immediate phase following SCI compared with control samples. Moreover, Gene Ontology (GO) term annotation results showed that CXCR chemokine receptor binding, neutrophil apoptotic process, neutrophil migration, neutrophil extravasation, macrophage differentiation, monocyte chemotaxis and cellular response to interleukin-1 (IL-1) were the main significantly enriched GO terms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were enriched in toll-like receptor signaling pathway, p53 signaling pathway, MAPK signaling pathway and Jak-STAT signaling pathway. IL6, MBOAT4, FOS, TNF, JUN, STAT3, CSF2, MYC, CCL2 and FGF2 were the top 10 high-degree hub nodes and may be important targets in the immediate phase of SCI. The current study on provides novel insights into how lncRNAs and mRNAs regulate the pathogenesis of the immediate phase after SCI.
Collapse
Affiliation(s)
- Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, PR China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
89
|
Shi Z, Pan B, Feng S. The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 2018; 22:2055-2061. [PMID: 29392896 PMCID: PMC5867120 DOI: 10.1111/jcmm.13515] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non-coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopaedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
90
|
Angeloni C, Malaguti M, Barbalace MC, Hrelia S. Bioactivity of Olive Oil Phenols in Neuroprotection. Int J Mol Sci 2017; 18:ijms18112230. [PMID: 29068387 PMCID: PMC5713200 DOI: 10.3390/ijms18112230] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
91
|
Filous AR, Schwab JM. Determinants of Axon Growth, Plasticity, and Regeneration in the Context of Spinal Cord Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:53-62. [PMID: 29030051 DOI: 10.1016/j.ajpath.2017.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022]
Abstract
The mechanisms that underlie recovery after injury of the central nervous system have rarely been definitively established. Axon regrowth remains the major prerequisite for plasticity, regeneration, circuit formation, and eventually functional recovery. The attributed functional relevance of axon regrowth, however, will depend on several subsequent conditional neurobiological modifications, including myelination and synapse formation, but also pruning of aberrant connectivity. Despite the ability to revamp axon outgrowth by altering an increasing number of extracellular and intracellular targets, disentangling which axons are responsible for the recovery of function from those that are functionally silent, or even contributing to aberrant functions, represents a pertinent void in our understanding, challenging the intuitive translational link between anatomical and functional regeneration. Anatomic hallmarks of regeneration are not static and are largely activity dependent. Herein, we survey mechanisms leading to the formation of dystrophic growth cone at the injured axonal tip, the subsequent axonal dieback, and the molecular determinants of axon growth, plasticity, and regeneration in the context of spinal cord injury.
Collapse
Affiliation(s)
- Angela R Filous
- Spinal Cord Injury Division, Department of Neurology, The Ohio State University, Wexner Medical Center, Columbus, Ohio.
| | - Jan M Schwab
- Spinal Cord Injury Division, Department of Neurology, The Ohio State University, Wexner Medical Center, Columbus, Ohio; Department of Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, Ohio; Department of Physical Medicine and Rehabilitation, The Ohio State University, Wexner Medical Center, Columbus, Ohio; Center for Brain and Spinal Cord Repair, Spinal Cord Injury Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
92
|
The toll-like receptor 2 agonist Pam3CSK4 is neuroprotective after spinal cord injury. Exp Neurol 2017; 294:1-11. [DOI: 10.1016/j.expneurol.2017.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 12/21/2022]
|
93
|
Oral Administration of Red Ginseng Extract Promotes Neurorestoration after Compressive Spinal Cord Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1265464. [PMID: 28828029 PMCID: PMC5554560 DOI: 10.1155/2017/1265464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/23/2017] [Indexed: 01/23/2023]
Abstract
Red ginseng and its active ingredients have been shown to decrease neuron death after brain ischemia in experimental animals. However, little is known about the effects of orally administered ginseng extract on spinal cord injury. We orally gave red ginseng extract (RGE) to rats with compressed spinal cord injury (SCI). Open-field locomotor scores were measured as indices of motor function. Histopathological changes and cytokine expressions in situ after SCI were evaluated. Compared to vehicle treatment, RGE treatment (350 mg/kg/day) significantly improved locomotor score up to levels close to those pre-SCI, prevented neuron loss, and facilitated the restoration of white matter in the spinal cord at 14 days after SCI. Treatment with RGE caused less aggregation of Iba-1-positive microglia in grey and white matter at 7 days after SCI, upregulated the expression levels of VEGF and Bcl-xL, and reduced IL-1β and TNFα expressions in the spinal cord at 7 and 14 days after SCI. We concluded that oral administration of RGE facilitates almost complete functional recovery from motor and behavioral abnormalities in rats with SCI and prevents neuron death in situ, possibly through inhibition of inflammation and upregulation of neuroprotective factors in the injured spinal cord.
Collapse
|
94
|
Fernández R, González P, Lage S, Garate J, Maqueda A, Marcaida I, Maguregui M, Ochoa B, Rodríguez FJ, Fernández JA. Influence of the Cation Adducts in the Analysis of Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry Data from Injury Models of Rat Spinal Cord. Anal Chem 2017; 89:8565-8573. [DOI: 10.1021/acs.analchem.7b02650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Roberto Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Pau González
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Sergio Lage
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jone Garate
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Alfredo Maqueda
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Iker Marcaida
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Maite Maguregui
- Department
of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Begoña Ochoa
- Department
of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - F. Javier Rodríguez
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - José A. Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| |
Collapse
|
95
|
Liu G, Fan G, Guo G, Kang W, Wang D, Xu B, Zhao J. FK506 Attenuates the Inflammation in Rat Spinal Cord Injury by Inhibiting the Activation of NF-κB in Microglia Cells. Cell Mol Neurobiol 2017; 37:843-855. [PMID: 27572744 PMCID: PMC11482064 DOI: 10.1007/s10571-016-0422-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
Abstract
FK-506 (Tacrolimus) is a very commonly used immunomodulatory agent that plays important roles in modulating the calcium-dependent phosphoserine-phosphothreonine protein phosphatase calcineurin and thus inhibits calcineurin-mediated secondary neuronal damage. The biological function of FK-506 in the spinal cord has not been fully elucidated. To clarify the anti-inflammatory action of FK-506 in spinal cord injury (SCI), we performed an acute spinal cord contusion injury model in adult rats and hypoxia-treated primary spinal cord microglia cultures. This work studied the activation of NF-κB and proinflammatory cytokine (TNF-a, IL-1b, and IL-6) expression. ELISA and q-PCR analysis revealed that TNF-a, IL-1b, and IL-6 levels significantly increased 3 days after spinal cord contusion and decreased after 14 days, accompanied by the increased activation of NF-κB. This increase was reversed by an FK-506 treatment. Double immunofluorescence labeling suggested that NF-κB activation was especially prominent in microglia. Immunohistochemistry confirmed no alteration in the number of microglia. Moreover, the results in hypoxia-treated primary spinal cord microglia confirmed the effect of FK-506 on TNF-a, IL-1b, and IL-6 expression and NF-κB activation. These findings suggest that FK-506 may be involved in microglial activation after SCI.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Gentao Fan
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Guodong Guo
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Wenbo Kang
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Dongsheng Wang
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Bin Xu
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Jianning Zhao
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
96
|
Astrocytic expression of the RNA regulator HuR accentuates spinal cord injury in the acute phase. Neurosci Lett 2017; 651:140-145. [DOI: 10.1016/j.neulet.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023]
|
97
|
Shi Z, Zhou H, Lu L, Li X, Fu Z, Liu J, Kang Y, Wei Z, Pan B, Liu L, Kong X, Feng S. The roles of microRNAs in spinal cord injury. Int J Neurosci 2017; 127:1104-1115. [PMID: 28436759 DOI: 10.1080/00207454.2017.1323208] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, P. R. China
| | - Zheng Fu
- Department of Immunology, Tianjin Medical University, Tianjin, P. R. China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Bin Pan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, P. R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
98
|
An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury. J Neurosci 2017; 37:2916-2930. [PMID: 28193684 DOI: 10.1523/jneurosci.3046-16.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
Targeting posttraumatic inflammation is crucial for improving locomotor function. SIRT1 has been shown to play a critical role in disease processes such as hepatic inflammation, rheumatoid arthritis, and acute lung inflammation by regulating inflammation. However, the role of SIRT1 in spinal cord injury (SCI) is unknown. We hypothesized that SIRT1 plays an important role in improving locomotor function after SCI by regulating neuroinflammation. In this study, we investigate the effect of SIRT1 in SCI using pharmacological intervention (SRT1720) and the Mx1-Cre/loxP recombination system to knock out target genes. First, we found that SIRT1 expression at the injured lesion site of wild-type (WT) mice (C57BL/6) decreased 4 h after SCI and lasted for 3 d. Moreover, administration of SRT1720, an agonist of SIRT1, to WT mice significantly improved functional recovery for up to 28 d after injury by reducing the levels of proinflammatory cytokines, the number of M1 macrophages, the number of macrophages/microglia, and the accumulation of perivascular macrophages. In contrast, administration of SRT1720 to SIRT1 knock-out (KO) mice did not improve locomotor recovery or attenuate inflammation. Furthermore, SIRT1 KO mice exhibited worse locomotor recovery, increased levels of inflammatory cytokines, and more M1 macrophages and perivascular macrophages than those of WT mice after SCI. Together, these findings indicate that SRT1720, an SIRT1 agonist, can improve functional recovery by attenuating inflammation after SCI. Therefore, SIRT1 is not only a protective factor but also an anti-inflammatory molecule that exerts beneficial effects on locomotor function after SCI.SIGNIFICANCE STATEMENT Posttraumatic inflammation plays a central role in regulating the pathogenesis of spinal cord injury (SCI). Here, new data show that administration of SRT1720, an SIRT1 agonist, to wild-type (WT) mice significantly improved outcomes after SCI, most likely by reducing the levels of inflammatory cytokines, the number of macrophages/microglia, perivascular macrophages, and M1 macrophages. In contrast, SIRT1 KO mice exhibited worse locomotor recovery than that of WT mice due to aggravated inflammation. Taken together, the results of this study expand upon the previous understanding of the functions and mechanisms of SIRT1 in neuroinflammation following injury to the CNS, suggesting that SIRT1 plays a critical role in regulating neuroinflammation following CNS injury and may be a novel therapeutic target for post-SCI intervention.
Collapse
|
99
|
Kwan T, Floyd CL, Kim S, King PH. RNA Binding Protein Human Antigen R Is Translocated in Astrocytes following Spinal Cord Injury and Promotes the Inflammatory Response. J Neurotrauma 2017; 34:1249-1259. [PMID: 27852147 DOI: 10.1089/neu.2016.4757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammation plays a prominent role in the events following traumatic injury to the central nervous system (CNS). The initial inflammatory response is driven by mediators such as tumor necrosis factor α and interleukin 1β, which are produced by activated astrocytes and microglia at the site of injury. These factors are regulated post-transcriptionally by RNA binding proteins (RBP) that interact with adenylate and uridylate-rich elements (ARE) in the 3'-untranslated region of the messenger RNA (mRNA). Human antigen R (HuR) is one of these RBPs and generally functions as a positive regulator of ARE-containing mRNAs. Here, we hypothesized that HuR plays an important role in the induction of cytokine and chemokines in astrocytes following traumatic injury. Using a mouse model of spinal cord injury, we found HuR to be extensively translocated to the cytoplasm in astrocytes at the level of injury, consistent with its activation. In an in vitro stretch injury model of CNS trauma, we observed a similar cytoplasmic shift of HuR in astrocytes and an attenuation of cytokine induction with HuR knockdown. RNA kinetics and luciferase assays suggested that the effect was more related to transcription than RNA destabilization. A small molecule inhibitor of HuR suppressed cytokine induction of injured astrocytes and reduced chemoattraction for neutrophils and microglia. In summary, HuR is activated in astrocytes in the early stages of CNS trauma and positively regulates the molecular response of key inflammatory mediators in astrocytes. Our findings suggest that HuR may be a therapeutic target in acute CNS trauma for blunting secondary tissue injury triggered by the inflammatory response.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama
| | - Candace L Floyd
- 2 Department of Physical Medicine and Rehabilitation, University of Alabama , Birmingham, Alabama
| | - Soojin Kim
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Peter H King
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,3 Department of Cell, Developmental and Integrative Biology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
100
|
Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J. ADAMTS-4 in central nervous system pathologies. J Neurosci Res 2017; 95:1703-1711. [DOI: 10.1002/jnr.24021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sighild Lemarchant
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Denis Vivien
- INSERM, INSERM UMR-S 919, “Serine Proteases and Pathophysiology of the Neurovascular Unit”; University of Caen Basse-Normandie; GIP Cyceron, Bd H. Becquerel, BP 5229 14074 Caen Cedex France
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| |
Collapse
|