51
|
Lin T, Zhang Q, Yuan A, Wang B, Zhang F, Ding Y, Cao W, Chen W, Guo H. Synergy of Tumor Microenvironment Remodeling and Autophagy Inhibition to Sensitize Radiation for Bladder Cancer Treatment. Am J Cancer Res 2020; 10:7683-7696. [PMID: 32685013 PMCID: PMC7359086 DOI: 10.7150/thno.45358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/07/2020] [Indexed: 01/23/2023] Open
Abstract
Tumor hypoxia, acidosis, and excessive reactive oxygen species (ROS) were the main characteristics of the bladder tumor microenvironment (TME), and abnormal TME led to autophagy activation, which facilitated cancer cell proliferation. The therapeutic efficacy of autophagy inhibitors might also be impeded by abnormal TME. To address these issues, we proposed a new strategy that utilized manganese dioxide (MnO2) nanoparticles to optimize the abnormal TME and revitalize autophagy inhibitors, and both oxygenation and autophagy inhibition may sensitize the tumor cells to radiation therapy. Methods: By taking advantage of the strong affinity between negatively charged MnO2 and positively charged chloroquine (CQ), the nanoparticles were fabricated by integrating MnO2 and CQ in human serum albumin (HSA)-based nanoplatform (HSA-MnO2-CQ NPs). Results: HSA-MnO2-CQ NPs NPs efficiently generated O2 and increased pH in vitro after reaction with H+/H2O2 and then released the encapsulated CQ in a H+/H2O2 concentration-dependent manner. The NPs restored the autophagy-inhibiting activity of chloroquine in acidic conditions by increasing its intracellular uptake, and markedly blocked hypoxia-induced autophagic flux. In vivo studies showed the NPs improved pharmacokinetic behavior of chloroquine and effectively accumulated in tumor tissues. The NPs exhibited significantly decreased tumor hypoxia areas and increased tumor pH, and had remarkable autophagy inhibition efficacy on bladder tumors. Finally, a significant anti-tumor effect achieved by the enhanced autophagy inhibition and radiation sensitization. Conclusions: HSA-MnO2-CQ NPs synergistically regulated the abnormal TME and inhibited autophagic flux, and effectively sensitized radiation therapy to treat bladder cancers.
Collapse
|
52
|
Uras IZ, Moll HP, Casanova E. Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. Int J Mol Sci 2020; 21:E4325. [PMID: 32560574 PMCID: PMC7352653 DOI: 10.3390/ijms21124325] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most frequent cancer with an aggressive clinical course and high mortality rates. Most cases are diagnosed at advanced stages when treatment options are limited and the efficacy of chemotherapy is poor. The disease has a complex and heterogeneous background with non-small-cell lung cancer (NSCLC) accounting for 85% of patients and lung adenocarcinoma being the most common histological subtype. Almost 30% of adenocarcinomas of the lung are driven by an activating Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation. The ability to inhibit the oncogenic KRAS has been the holy grail of cancer research and the search for inhibitors is immensely ongoing as KRAS-mutated tumors are among the most aggressive and refractory to treatment. Therapeutic strategies tailored for KRAS+ NSCLC rely on the blockage of KRAS functional output, cellular dependencies, metabolic features, KRAS membrane associations, direct targeting of KRAS and immunotherapy. In this review, we provide an update on the most recent advances in anti-KRAS therapy for lung tumors with mechanistic insights into biological diversity and potential clinical implications.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Herwig P. Moll
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; (H.P.M.); (E.C.)
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; (H.P.M.); (E.C.)
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
| |
Collapse
|
53
|
Zhang Z, Ren L, Zhao Q, Lu G, Ren M, Lu X, Yin Y, He S, Zhu C. TRPC1 exacerbate metastasis in gastric cancer via ciRS-7/miR-135a-5p/TRPC1 axis. Biochem Biophys Res Commun 2020; 529:85-90. [PMID: 32560824 DOI: 10.1016/j.bbrc.2020.05.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Metastasis is frequently occurred in end-stage GC. Nevertheless, the initiation and progression of metastasis in GC remains unclear. The transient receptor potential canonical (TRPC) has been confirmed to be crucial for metastasis in many kinds of tumors, including GC. However, the molecular mechanisms regulating TRPC1 is unclear. Therefore, we investigated the role and mechanisms of TRPC1 in GC metastasis. We first evaluated the role of TRPC1 in GC by searching the public database, and tested the expression of TRPC1 in 50 paired GC tissues by qRT-PCR and IHC assays. Then, we generated BGC-823-shTRPC1 cells and MKN-45-TRPC1 cells to investigate the effects of TRPC1 on metastasis in vitro. For the mechanism study, we applied luciferase reporter assay, RNA pull-down assay, as well as RIP assay to validate the interation of ciRS-7, miR-135a-5p and TRPC1 in GC cells. This study, we showed that TRPC1 exacerbate EMT in gastric cancer via ciRS-7/miR-135a-5p/TRPC1 axis, and target TRPC1 could be beneficial for end-stage GC patients.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Li Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Qian Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Xinlan Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yan Yin
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Shuixiang He
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| | - Cailin Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|
54
|
Li Z, Jiang L, Toyokuni S. Role of carbonic anhydrases in ferroptosis-resistance. Arch Biochem Biophys 2020; 689:108440. [PMID: 32485154 DOI: 10.1016/j.abb.2020.108440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Iron is essential for all the lives on earth but may trigger a switch toward ferroptosis, a novel form of regulated necrosis. Carbonic anhydrases (CAs) are ubiquitous enzymes from microbes to humans. The primary function of CAs is to regulate cellular pH by hydrating carbon dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3-). Furthermore, CAs play roles in biosynthetic reactions, such as gluconeogenesis, lipogenesis, ureagenesis and are also associated with tumor metabolism, suggesting that CAs may be a potential target for the treatment of cancers. We have recently revealed a novel function of CA IX in ferroptosis-resistance by using human malignant mesothelioma cells. Herein, we aim to review the potential molecular association between ferroptosis and CAs, from the viewpoint of iron-metabolism, lipogenesis and signaling pathways both under physiological and pathological contexts.
Collapse
Affiliation(s)
- Zan Li
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
55
|
Condello M, Mancini G, Meschini S. The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Front Pharmacol 2020; 11:787. [PMID: 32547395 PMCID: PMC7272661 DOI: 10.3389/fphar.2020.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism involved in many human diseases and in cancers can have a cytotoxic/cytostatic or protective action, being in the latter case involved in multidrug resistance. Understanding which of these roles autophagy has in cancer is thus fundamental for therapeutical decisions because it permits to optimize the therapeutical approach by activating or inhibiting autophagy according to the progression of the disease. However, a serious drawback of cancer treatment is often the scarce availability of drugs and autophagy modulators at the sites of interest. In the recent years, several nanocarriers have been developed and investigated to improve the solubility, bioavailability, controlled release of therapeutics and increase their cytotoxic effect on cancer cell. Here we have reviewed only liposomes as carriers of chemotherapeutics and autophagy inhibitors because they have low toxicity and immunogenicity and they are biodegradable and versatile. In this review after the analysis of the dual role of autophagy, of the main autophagic pathways, and of the role of autophagy in multidrug resistance, we will focus on the most effective liposomal formulations, thus highlighting the great potential of these targeting systems to defeat cancer diseases.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Giovanna Mancini
- Institute for Biological Systems, National Research Council, Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
56
|
Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res 2020; 159:104943. [PMID: 32461185 DOI: 10.1016/j.phrs.2020.104943] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Spermidine, as a natural component from polyamine members, is originally isolated from semen and also existed in many natural plants, and can be responsible for cell growth and development in eukaryotes. The supplementation of spermidine can extend health and lifespan across species. Although the elevated levels of polyamines and the regulation of rate-limiting enzymes for polyamine metabolism have been identified as the biomarkers in many cancers, recent epidemiological data support that an increased uptake of spermidine as a caloric restriction mimic can reduce overall mortality associated with cancers. The possible mechanisms between spermidine and cancer development may be related to the precise regulation of polyamine metabolism, anti-cancer immunosurveillance, autophagy, and apoptosis. Increased intake of polyamine seems to suppress tumorigenesis, but appears to accelerate the growth of established tumors. Based on these observations and the absolute requirement for polyamines in tumor growth, spermidine could be a rational target for chemoprevention and clinical therapeutics of cancers.
Collapse
Affiliation(s)
- Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ziyuan Feng
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
57
|
Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 2020; 27:843-857. [PMID: 31836831 PMCID: PMC7206017 DOI: 10.1038/s41418-019-0474-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy allows for cellular material to be delivered to lysosomes for degradation resulting in basal or stress-induced turnover of cell components that provide energy and macromolecular precursors. These activities are thought to be particularly important in cancer where both tumor-promoting and tumor-inhibiting functions of autophagy have been described. Autophagy has also been intricately linked to apoptosis and programmed cell death, and understanding these interactions is becoming increasingly important in improving cancer therapy and patient outcomes. In this review, we consider how recent discoveries about how autophagy manipulation elicits its effects on cancer cell behavior can be leveraged to improve therapeutic responses.
Collapse
Affiliation(s)
- Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
58
|
Vanzo R, Bartkova J, Merchut-Maya JM, Hall A, Bouchal J, Dyrskjøt L, Frankel LB, Gorgoulis V, Maya-Mendoza A, Jäättelä M, Bartek J. Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ 2020; 27:1134-1153. [PMID: 31409894 PMCID: PMC7206042 DOI: 10.1038/s41418-019-0403-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that captures aberrant intracellular proteins and/or damaged organelles for delivery to lysosomes, with implications for cellular and organismal homeostasis, aging and diverse pathologies, including cancer. During cancer development, autophagy may play both tumour-supporting and tumour-suppressing roles. Any relationships of autophagy to the established oncogene-induced replication stress (RS) and the ensuing DNA damage response (DDR)-mediated anti-cancer barrier in early tumorigenesis remain to be elucidated. Here, assessing potential links between autophagy, RS and DDR, we found that autophagy is enhanced in both early and advanced stages of human urinary bladder and prostate tumorigenesis. Furthermore, a high-content, single-cell-level microscopy analysis of human cellular models exposed to diverse genotoxic insults showed that autophagy is enhanced in cells that experienced robust DNA damage, independently of the cell-cycle position. Oncogene- and drug-induced RS triggered first DDR and later autophagy. Unexpectedly, genetic inactivation of autophagy resulted in RS, despite cellular retention of functional mitochondria and normal ROS levels. Moreover, recovery from experimentally induced RS required autophagy to support DNA synthesis. Consistently, RS due to the absence of autophagy could be partly alleviated by exogenous supply of deoxynucleosides. Our results highlight the importance of autophagy for DNA synthesis, suggesting that autophagy may support cancer progression, at least in part, by facilitating tumour cell survival and fitness under replication stress, a feature shared by most malignancies. These findings have implications for better understanding of the role of autophagy in tumorigenesis, as well as for attempts to manipulate autophagy as an anti-tumour therapeutic strategy.
Collapse
Affiliation(s)
- Riccardo Vanzo
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | | | - Arnaldur Hall
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lisa B Frankel
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Marja Jäättelä
- Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
59
|
Elzamzamy OM, Penner R, Hazlehurst LA. The Role of TRPC1 in Modulating Cancer Progression. Cells 2020; 9:cells9020388. [PMID: 32046188 PMCID: PMC7072717 DOI: 10.3390/cells9020388] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Calcium ions (Ca2+) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca2+-permeable ion channels are implicated in mediating Ca2+ signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca2+ entry (SOCE) pathways. While TRPC1 is ubiquitously expressed in most tissues, its dysregulated activity may contribute to the hallmarks of various types of cancers, including breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma, and thyroid cancer. A range of pharmacological and genetic tools have been developed to address the functional role of TRPC1 in cancer. Interestingly, the unique role of TRPC1 has elevated this channel as a promising target for modulation both in terms of pharmacological inhibition leading to suppression of tumor growth and metastasis, as well as for agonistic strategies eliciting Ca2+ overload and cell death in aggressive metastatic tumor cells.
Collapse
Affiliation(s)
- Osama M Elzamzamy
- Clinical and Translational Sciences Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Reinhold Penner
- The Queen’s Medical Center and University of Hawaii, Honolulu, HI 96813, USA;
| | - Lori A Hazlehurst
- Pharmaceutical Sciences, School of Pharmacy and WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-3398
| |
Collapse
|
60
|
CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK ½/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis 2019; 10:745. [PMID: 31582727 PMCID: PMC6776509 DOI: 10.1038/s41419-019-1971-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/18/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, as an important non-selective degradation mechanism, could promote tumor initiation and progression by maintaining cellular homeostasis and the cell metabolism as well as cell viability. CircCDR1as has been shown to function as an oncogene in cancer progression, however, it remains largely unknown as to how autophagy is regulated by circCDR1as in oral squamous cell carcinoma (OSCC). In this study, we validated the functional roles of circCDR1as in regulation of autophagy in OSCC cells and further investigated how circCDR1as contributed to cell survival via up-regulating autophagy under a hypoxic microenvironment by using combination of human tissue model, in vitro cell experiments and in vivo mice model. We found that hypoxia promoted the expression level of circCDR1as in OSCC cells and elevated autophagy. In addition, circCDR1as further increased hypoxia-mediated autophagy by targeting multiple key regulators of autophagy. We revealed that circCDR1as enhanced autophagy in OSCC cells via inhibition of rapamycin (mTOR) activity and upregulation of AKT and ERK½ pathways. Overexpression of circCDR1as enhanced OSCC cells viability, endoplasmic reticulum (ER) stress, and inhibited cell apoptosis under a hypoxic microenvironment. Moreover, circCDR1as promoted autophagy in OSCC cells by sponging miR-671-5p. Collectively, these results revealed that high expression of circCDR1as enhanced the viability of OSCC cells under a hypoxic microenvironment by promoting autophagy, suggesting a novel treatment strategy involving circCDR1as and the inhibition of autophagy in OSCC cells.
Collapse
|
61
|
Matsuo T, Daishaku S, Sadzuka Y. Lactic Acid Promotes Cell Survival by Blocking Autophagy of B16F10 Mouse Melanoma Cells under Glucose Deprivation and Hypoxic Conditions. Biol Pharm Bull 2019; 42:837-839. [PMID: 31061328 DOI: 10.1248/bpb.b18-00919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In solid tumors, cancer cells are exposed to microenvironment stress, including hypoxia and insufficient nutrients. An acidic microenvironment in tumors is facilitated by the increase in synthesis of lactic acid; this is known as Warburg effect. We previously showed that B16F10 melanoma cells were induced autophagic cell death by glucose-deprivation stress, and lactic acid suppressed the cell death through the inhibition of autophagy. In this study, effects of lactic acid on cell death of B16F10 cells under hypoxic and glucose-depleted double stress conditions were investigated. The double stress promoted autophagic cell death earlier than glucose-depleted stress alone. Lactic acid repressed the double stress-induced cell death by inhibiting autophagy. These results suggest that lactic acid serves for cell survival under microenvironmental stress conditions in B16F10 melanoma cells.
Collapse
Affiliation(s)
- Taisuke Matsuo
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University
| | - Shun Daishaku
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University
| | - Yasuyuki Sadzuka
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University
| |
Collapse
|
62
|
Das CK, Banerjee I, Mandal M. Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer. Semin Cancer Biol 2019; 66:59-74. [PMID: 31430557 DOI: 10.1016/j.semcancer.2019.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that regulates the cellular homeostasis by targeting damaged cellular contents and organelles for lysosomal degradation and sustains genomic integrity, cellular metabolism, and cell survival during diverse stress and adverse conditions. Recently, the role of autophagy is extremely debated in the regulation of cancer initiation and progression. Although autophagy has a dichotomous role in the regulation of cancer, growing numbers of studies largely indicate the pro-survival role of autophagy in cancer progression and metastasis. In this review, we discuss the detailed mechanisms of autophagy, the role of pro-survival autophagy that positively drives several classical as well as emerging hallmarks of cancer for tumorigenic progression, and also we address various autophagy inhibitors that could be harnessed against pro-survival autophagy for effective cancer therapeutics. Finally, we highlight some outstanding problems that need to be deciphered extensively in the future to unravel the role of autophagy in tumor progression.
Collapse
Affiliation(s)
- Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
63
|
Li C, Chen Q, Tian Z, Li S, Gong Z, Lin Z, Wang B, Liu H. Expression of MIF, Beclin1, and LC3 in human salivary gland adenoid cystic carcinoma and its prognostic value. Medicine (Baltimore) 2019; 98:e15402. [PMID: 31096436 PMCID: PMC6531071 DOI: 10.1097/md.0000000000015402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is an uncommon salivary gland malignancy with a poor long-term prognosis. Clinical reports show the high rates of local recurrences and distant metastases. This study aimed to investigate the expression of MIF, Beclin1, and light-chain 3 (LC3) in salivary adenoid cystic carcinoma (SACC).Tissue specimens were obtained from 48 salivary glands adenoid cystic carcinoma (SACC) patients and 15 oral squamous cell carcinoma (OSCC) patients. Immunohistochemical staining was performed to estimate the level of LC3, Beclin1, and MIF. All SACC patients were followed up. The Kaplan-Meier method was used to compare the prognosis of patients after treatment.The 3-year, 5 year-, and 10 year-survival rates of the SACC patients were 83.9%, 69.9%, and 46.6%, respectively. MIF, LC3, and Beclin1 in SACC were all obviously over-expressed. MIF showed an increased tendency in cases with advanced TNM stages, and at the same time, there was an inversely proportional relationship between MIF and LC3, Beclin1.The long-term survival of SACC patients is poor. MIF might be a risk factor for SACC patients, whereas, LC3 and Beclin1 might be an effective strategy for treatment of SACC.
Collapse
Affiliation(s)
- Chenxi Li
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Stomatology School of Xinjiang Medical University, Urumqi, China
- Department of Oral and Maxillofacial Surgery, Laboratory for Tumor Genetics and Regenerative Medicine, The Head and Neurocenter, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Qingli Chen
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Stomatology School of Xinjiang Medical University, Urumqi, China
| | - Zhongqi Tian
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Stomatology School of Xinjiang Medical University, Urumqi, China
| | - Shixiao Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhongcheng Gong
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Stomatology School of Xinjiang Medical University, Urumqi, China
| | - Zhaoquan Lin
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Stomatology School of Xinjiang Medical University, Urumqi, China
| | - Bing Wang
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Stomatology School of Xinjiang Medical University, Urumqi, China
| | - Hui Liu
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Stomatology School of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
64
|
Denk H, Stumptner C, Abuja PM, Zatloukal K. Sequestosome 1/p62-related pathways as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:393-406. [PMID: 30987486 DOI: 10.1080/14728222.2019.1601703] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Protein sequestosome 1/p62 (p62) plays a crucial role in vital complex and interacting signaling pathways in normal and neoplastic cells. P62 is involved in autophagy, defense against oxidative stress via activation of the Keap1/Nrf2 system, in protein aggregation and sequestration, and in apoptosis. Autophagy contributes to cell survival and proliferation by eliminating damaged organelles, potentially toxic protein aggregates and invading microorganisms, and by providing nutrients under starvation conditions. The same holds true for oxidative stress defense, which may prevent genomic alterations and tumor initiation but also protect established tumor cells and promote tumor progression. Cross-talk between autophagy and apoptosis is regulated by a signaling network with the involvement of p62. Areas covered: The review deals with structure, function, and regulation of p62 and its role in liver carcinogenesis. Emphasis is placed on mechanisms leading to overexpression of p62 and its accumulation as inclusion bodies in HCC and on the impact of p62-dependent signaling pathways in tumor cells with the aim to explore the possible role of p62 as the therapeutic target. Expert opinion: Depending on the context, targeting p62 or interference with related pathways, such as autophagy, is a potential therapeutic strategy in HCC. However, the heterogeneity of this tumor entity and the complexity and mutual interactions of the p62-dependent pathways involved are challenges for a targeted therapy since interference with p62-mediated regulatory processes could result likewise in inhibition of tumorigenesis and in its promotion and thus provoke harmful side effects. Therapy-related patient stratification based on reliable markers to better define pathogenic principles of the tumor is a necessity when this type of treatment is considered.
Collapse
Affiliation(s)
- Helmut Denk
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Conny Stumptner
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Peter M Abuja
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Kurt Zatloukal
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| |
Collapse
|
65
|
Hansen AR, Tannock IF, Templeton A, Chen E, Evans A, Knox J, Prawira A, Sridhar SS, Tan S, Vera-Badillo F, Wang L, Wouters BG, Joshua AM. Pantoprazole Affecting Docetaxel Resistance Pathways via Autophagy (PANDORA): Phase II Trial of High Dose Pantoprazole (Autophagy Inhibitor) with Docetaxel in Metastatic Castration-Resistant Prostate Cancer (mCRPC). Oncologist 2019; 24:1188-1194. [PMID: 30952818 DOI: 10.1634/theoncologist.2018-0621] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Enhancing the effectiveness of docetaxel for men with metastatic castration-resistant prostate cancer (mCRPC) is an unmet clinical need. Preclinical studies demonstrated that high-dose pantoprazole can prevent or delay resistance to docetaxel via the inhibition of autophagy in several solid tumor xenografts. MATERIALS AND METHODS Men with chemotherapy-naive mCRPC with a prostate-specific antigen (PSA) >10 ng/mL were eligible for enrolment. Men received intravenous pantoprazole (240 mg) prior to docetaxel (75 mg/m2) every 21 days, with continuous prednisone 5 mg twice daily. Primary endpoint was a confirmed ≥50% decline of PSA. The trial used a Simon's two-stage design. RESULTS Between November 2012 and March 2015, 21 men with a median age of 70 years (range, 58-81) were treated (median, 6 cycles; range, 2-11). Men had received prior systemic therapies (median, 1; range, 0-3), and 14 had received abiraterone and/or enzalutamide. PSA response rate was 52% (11/21), which did not meet the prespecified criterion (≥13/21 responders) to proceed to stage 2 of the study. At interim analysis with a median follow-up of 17 months, 18 (86%) men were deceased (15 castration-resistant prostate cancer, 2 unknown, 1 radiation complication). Of the men with RECIST measurable disease, the radiographic partial response rate was 31% (4/13). The estimated median overall survival was 15.7 months (95% confidence interval [CI], 9.3-19.6) and median PFS was 5.3 months (95% CI, 2.6-12.9). There were no toxic deaths, and all adverse events were attributed to docetaxel. CONCLUSION The combination of docetaxel and pantoprazole was tolerable, but the resultant clinical activity was not sufficient to meet the ambitious predefined target to warrant further testing. IMPLICATIONS FOR PRACTICE To date, no docetaxel combination regimen has reported superior efficacy over docetaxel alone in men with metastatic castration-resistant prostate cancer (mCRPC). The PANDORA trial has demonstrated that the combination of high dose pantoprazole with docetaxel is tolerable, but the clinical activity was not sufficient to warrant further testing. The chemotherapy standard of care for men with mCRPC remains docetaxel with prednisone. Future studies of autophagy inhibitors will need to measure autophagy inhibition accurately and determine the degree of autophagy inhibition required to produce a meaningful clinical response.
Collapse
Affiliation(s)
- Aaron R Hansen
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ian F Tannock
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arnoud Templeton
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Eric Chen
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Andrew Evans
- Department of Pathology, University Health Network, Toronto, Canada
| | - Jennifer Knox
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Amy Prawira
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney, Australia
| | - Srikala S Sridhar
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Susie Tan
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Francisco Vera-Badillo
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lisa Wang
- Department of Biomedical Statistics, University of Toronto, Canada
| | - Bradly G Wouters
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anthony M Joshua
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
66
|
Che J, Wang W, Huang Y, Zhang L, Zhao J, Zhang P, Yuan X. miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog 2019; 58:1234-1247. [PMID: 30883936 DOI: 10.1002/mc.23006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a highly conserved lysosome-mediated protective cellular process in which cytosolic components, including damaged organelles and long-lived proteins, are cleared. Many studies have shown that autophagy was upregulated in hypoxic regions. However, the precise molecular mechanism of hypoxia-induced autophagy in colorectal cancer (CRC) is still elusive. In this study, we found that miR-20a was significantly downregulated under hypoxia in colon cancer cells, and overexpression of miR-20a alleviated hypoxia-induced autophagy. Moreover, miR-20a inhibits the hypoxia-induced autophagic flux by targeting multiple key regulators of autophagy, including ATG5 and FIP200. Furthermore, by dual-luciferase assay we demonstrated that miR-20a directly targeted the 3'-untranslated region of ATG5 and FIP200, regulating their messenger RNA and protein levels. In addition, reintroduction of exogenous ATG5 or FIP200 partially reversed miR-20a-mediated autophagy inhibition under hypoxia. A negative correlation between miR-20a and its target genes is observed in the hypoxic region of colon cancer tissues. Taken together, our findings suggest that hypoxia-mediated autophagy was regulated by miR-20a/ATG5/FI200 signaling pathway in CRC. miR-20a-mediated autophagy defect that might play an important role in hypoxia-induced autophagy during colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jing Che
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenshan Wang
- Department of Cell and Developmental Biology, Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
67
|
Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting Autophagy to Overcome Human Diseases. Int J Mol Sci 2019; 20:E725. [PMID: 30744021 PMCID: PMC6387456 DOI: 10.3390/ijms20030725] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process, through which damaged organelles and superfluous proteins are degraded, for maintaining the correct cellular balance during stress insult. It involves formation of double-membrane vesicles, named autophagosomes, that capture cytosolic cargo and deliver it to lysosomes, where the breakdown products are recycled back to cytoplasm. On the basis of degraded cell components, some selective types of autophagy can be identified (mitophagy, ribophagy, reticulophagy, lysophagy, pexophagy, lipophagy, and glycophagy). Dysregulation of autophagy can induce various disease manifestations, such as inflammation, aging, metabolic diseases, neurodegenerative disorders and cancer. The understanding of the molecular mechanism that regulates the different phases of the autophagic process and the role in the development of diseases are only in an early stage. There are still questions that must be answered concerning the functions of the autophagy-related proteins. In this review, we describe the principal cellular and molecular autophagic functions, selective types of autophagy and the main in vitro methods to detect the role of autophagy in the cellular physiology. We also summarize the importance of the autophagic behavior in some diseases to provide a novel insight for target therapies.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena, 00161 Rome, Italy.
| | - Evelin Pellegrini
- National Center for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena, 00161 Rome, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena, 00161 Rome, Italy.
| |
Collapse
|
68
|
Cai Y, Huang J, Xing H, Li B, Li L, Wang X, Peng D, Chen J. Contribution of FPR and TLR9 to hypoxia-induced chemoresistance of ovarian cancer cells. Onco Targets Ther 2018; 12:291-301. [PMID: 30643427 PMCID: PMC6314315 DOI: 10.2147/ott.s190118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background/purpose The aim of this study was to investigate the role and mechanisms of the formyl peptide receptor (FPR) and the toll-like receptor 9 (TLR9) in hypoxia-induced chemoresistance of human ovarian cancer cells. Materials and methods SKOV3 cells were exposed to hypoxia for 24 hours, the supernatant was collected to stimulate normoxia-cultured SKOV3, and the inhibition rate of cell growth was detected with CCK8 test. The agonist of TLR9 CpG ODN and the agonist of FPR fMLF were applied to investigate the chemosensitivity of SKOV3 cells to cisplatin. The cells were also treated with FPR antagonist t-Boc or TLR9 antagonist CQ. Western blot was applied to detect protein levels of FPR, TLR9, MRP, P-gp, p53 and Beclin-1. Immunofluorescence staining was applied to observe the distribution of TLR9 in SKOV3 cells. Results Hypoxia exposure reduced the inhibition rate of cisplatin on SKOV3 cells. WB showed that FPR and TLR9 were expressed in human ovarian cancer tissues and SKOV3 cells, and the levels were increased with longer hypoxia time. After SKOV3 was stimulated with fMLF or ODN2006, cisplatin-induced inhibition rate was significantly decreased. tBoc and CQ significantly attenuated hypoxia supernatant-induced chemoresistance of SKOV3 cells. Hypoxia supernatants significantly increased MRP, P-gp, p53 and Beclin-1 proteins in SKOV3 cells, which were significantly reduced by tBoc. Conclusion Hypoxia upregulates the expression of FPR and TLR9, and promotes the release of ligands for both receptors in human ovarian cancer cell line. FPR and TLR9 may be noval targets for chemosensitizing to ovarian cancer cells.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing 400042, China,
| | - Jian Huang
- Department of High Altitude Biology and Pathology, High Altitude Military Medical College, Army Medical University, Chongqing 400042, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing 400042, China,
| | - Bin Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing 400042, China,
| | - Ling Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing 400042, China,
| | - Xianfeng Wang
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing 400042, China,
| | - Dan Peng
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing 400042, China,
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing 400042, China,
| |
Collapse
|
69
|
Alhazzani A, Rajagopalan P, Albarqi Z, Devaraj A, Mohamed MH, Al-Hakami A, Chandramoorthy HC. Mesenchymal Stem Cells (MSCs) Coculture Protects [Ca 2+] i Orchestrated Oxidant Mediated Damage in Differentiated Neurons In Vitro. Cells 2018; 7:cells7120250. [PMID: 30563298 PMCID: PMC6315478 DOI: 10.3390/cells7120250] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
Cell-therapy modalities using mesenchymal stem (MSCs) in experimental strokes are being investigated due to the role of MSCs in neuroprotection and regeneration. It is necessary to know the sequence of events that occur during stress and how MSCs complement the rescue of neuronal cell death mediated by [Ca2+]i and reactive oxygen species (ROS). In the current study, SH-SY5Y-differentiated neuronal cells were subjected to in vitro cerebral ischemia-like stress and were experimentally rescued from cell death using an MSCs/neuronal cell coculture model. Neuronal cell death was characterized by the induction of proinflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β and -12, up to 35-fold with corresponding downregulation of anti-inflammatory cytokine transforming growth factor (TGF)-β, IL-6 and -10 by approximately 1 to 7 fold. Increased intracellular calcium [Ca2+]i and ROS clearly reaffirmed oxidative stress-mediated apoptosis, while upregulation of nuclear factor NF-κB and cyclo-oxygenase (COX)-2 expressions, along with ~41% accumulation of early and late phase apoptotic cells, confirmed ischemic stress-mediated cell death. Stressed neuronal cells were rescued from death when cocultured with MSCs via increased expression of anti-inflammatory cytokines (TGF-β, 17%; IL-6, 4%; and IL-10, 13%), significantly downregulated NF-κB and proinflammatory COX-2 expression. Further accumulation of early and late apoptotic cells was diminished to 23%, while corresponding cell death decreased from 40% to 17%. Low superoxide dismutase 1 (SOD1) expression at the mRNA level was rescued by MSCs coculture, while no significant changes were observed with catalase (CAT) and glutathione peroxidase (GPx). Interestingly, increased serotonin release into the culture supernatant was proportionate to the elevated [Ca2+]i and corresponding ROS, which were later rescued by the MSCs coculture to near normalcy. Taken together, all of these results primarily support MSCs-mediated modulation of stressed neuronal cell survival in vitro.
Collapse
Affiliation(s)
- Adel Alhazzani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Zaher Albarqi
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Anantharam Devaraj
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| | - Mohamed Hessian Mohamed
- Department of Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta City 31512, Egypt.
| | - Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| |
Collapse
|
70
|
Autophagy and Its Role in Protein Secretion: Implications for Cancer Therapy. Mediators Inflamm 2018; 2018:4231591. [PMID: 30622432 PMCID: PMC6304875 DOI: 10.1155/2018/4231591] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a protein and organelle degradation pathway important for the maintenance of cytoplasmic homeostasis and for providing nutrients for survival in response to stress conditions. Recently, autophagy has been shown to be important for the secretion of diverse proteins involved in inflammation, intercellular signaling, and cancer progression. The role of autophagy in cancer depends on the stage of tumorigenesis, serving a tumor-suppressor role before transformation and a tumor-survival function once a tumor is established. We review recent evidence demonstrating the complexity of autophagy regulation during cancer, considering the interaction of autophagy with protein secretion pathways. Autophagy manipulation during cancer treatment is likely to affect protein secretion andinter-cellular signaling either to the neighboring cancer cells or to the antitumoral immune response. This will be an important consideration during cancer therapy since several clinical trials are trying to manipulate autophagy in combination with chemotherapy for the treatment of diverse types of cancers.
Collapse
|
71
|
Xu R, Ji Z, Xu C, Zhu J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e12912. [PMID: 30431566 PMCID: PMC6257684 DOI: 10.1097/md.0000000000012912] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Autophagy is a mechanism which relies on lysosomes for clearance and recycling of abnormal proteins or organelles. Many studies have demonstrated that the deregulation of autophagy is associated with the development of various diseases including cancer. The use of autophagy inhibitors is an emerging trend in cancer treatment. However, the value of autophagy inhibitors remains under debate. Thus, a meta-analysis was performed, aiming to evaluate the clinical value of autophagy-inhibitor-based therapy. METHODS We searched for clinical studies that evaluated autophagy-inhibitor-based therapy in cancer. We extracted data from these studies to evaluate the relative risk (RR) of overall response rate (ORR), 6-month progression-free survival (PFS) rate, and 1-year overall survival (OS) rate. RESULTS Seven clinical trials were identified (n = 293). Treatments included 2 combinations of hydroxychloroquine and gemcitabine, 1 combination of hydroxychloroquine and doxorubicin, 1 combination of chloroquine and radiation, 2 combinations of chloroquine, temozolomide, and radiation, and 1 hydroxychloroquine monotherapy. Autophagy-inhibitor-based therapy showed higher ORR (RR: 1.33, 95% confidence interval [CI]: 0.95-1.86, P = .009), PFS (RR: 1.72, 95% CI: 1.05-2.82, P = .000), OS (RR: 1.39, 95% CI: 1.11-1.75, P = .000) values than the therapy without inhibiting autophagy. CONCLUSION This meta-analysis showed that autophagy-inhibitor-based therapy has better treatment response compared to chemotherapy or radiation therapy without inhibiting autophagy, which may provide a new strategy for the treatment of cancers.
Collapse
Affiliation(s)
- Ran Xu
- Medical School of Nantong University
| | | | - Chen Xu
- Medical School of Nantong University
| | - Jing Zhu
- The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
72
|
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2018; 39:517-560. [PMID: 30302772 PMCID: PMC6585651 DOI: 10.1002/med.21531] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor‐localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T‐cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy‐based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.
Collapse
Affiliation(s)
- Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan Hilgendorf
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
73
|
Marcucci F, Rumio C. How Tumor Cells Choose Between Epithelial-Mesenchymal Transition and Autophagy to Resist Stress-Therapeutic Implications. Front Pharmacol 2018; 9:714. [PMID: 30013478 PMCID: PMC6036460 DOI: 10.3389/fphar.2018.00714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor cells undergo epithelial-mesenchymal transition (EMT) or macroautophagy (hereafter autophagy) in response to stressors from the microenvironment. EMT ensues when stressors act on tumor cells in the presence of nutrient sufficiency, and mechanistic target of rapamycin (mTOR) appears to be the crucial signaling node for EMT induction. Autophagy, on the other hand, is induced in the presence of nutrient deprivation and/or stressors from the microenvironment with 5' adenosine monophosphate-activated protein kinase (AMPK) playing an important, but not exclusive role, in autophagy induction. Importantly, mTOR and EMT on one hand, and AMPK and autophagy on the other hand, negatively regulate each other. Such regulation occurs at different levels and suggests that, in many instances, these two stress responses are mutually exclusive. Nevertheless, EMT and autophagy are able to interconvert and we suggest that this may depend on spatiotemporal changes in the tumor microenvironment and/or on duration/intensity of the stressor signal(s). Eventually, we propose a three-pronged therapeutic approach aimed at targeting these three major tumor cell populations. First, cytotoxic drugs that act on differentiated and proliferating tumor cells and which, per se, may promote induction of EMT or autophagy in surviving tumor cells. Second, inhibitors of mTOR in order to prevent EMT induction. Third inducers of autophagic cell death (autosis) in order to deplete tumor cells that are constitutively in an autophagic state or are induced to enter an autophagic state in response to antitumor therapy.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
74
|
Marie-Egyptienne DT, Chaudary N, Kalliomäki T, Hedley DW, Hill RP. Cancer initiating-cells are enriched in the CA9 positive fraction of primary cervix cancer xenografts. Oncotarget 2018; 8:1392-1404. [PMID: 27901496 PMCID: PMC5352063 DOI: 10.18632/oncotarget.13625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have suggested that Cancer Initiating Cells (CIC) can be identified/enriched in cell populations obtained from solid tumors based on the expression of cell surface marker proteins. We used early passage primary cervix cancer xenografts to sort cells based on the expression of the intrinsic hypoxia marker Carbonic Anhydrase 9 (CA9) and tested their cancer initiation potential by limiting dilution assay. We demonstrated that CICs are significantly enriched in the CA9+ fraction in 5/6 models studied. Analyses of the expression of the stem cell markers Oct4, Notch1, Sca-1 & Bmi1 showed a trend toward an increase in the CA9+ populations, albeit not significant. We present evidence that enhanced autophagy does not play a role in the enhanced growth of the CA9+ cells. Our study suggests a direct in vivo functional link between hypoxic cells and CICs in primary cervix cancer xenografts.
Collapse
Affiliation(s)
- Delphine Tamara Marie-Egyptienne
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Naz Chaudary
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada
| | - Tuula Kalliomäki
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - David William Hedley
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Richard Peter Hill
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
75
|
Bousquet G, El Bouchtaoui M, Sophie T, Leboeuf C, de Bazelaire C, Ratajczak P, Giacchetti S, de Roquancourt A, Bertheau P, Verneuil L, Feugeas JP, Espié M, Janin A. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget 2018; 8:35205-35221. [PMID: 28445132 PMCID: PMC5471047 DOI: 10.18632/oncotarget.16925] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 01/16/2023] Open
Abstract
There is growing evidence for the role of cancer stem-cells in drug resistance, but with few in situ studies on human tumor samples to decipher the mechanisms by which they resist anticancer agents.Triple negative breast cancer (TNBC) is the most severe sub-type of breast cancer, occurring in younger women and associated with poor prognosis even when treated at a localized stage.We investigated here the relationship between complete pathological response after chemotherapy and breast cancer stem-cell characteristics in pre-treatment biopsies of 78 women with triple negative breast carcinoma (TNBC).We found that chemoresistance was associated with large numbers of breast cancer stem-cells, and that these cancer stem-cells were neither proliferative nor apoptotic, but in an autophagic state related to hypoxia. Using relevant pharmacological models of patient-derived TNBC xenografts, we further investigated the role of autophagy in chemoresistance of breast cancer stem-cells. We demonstrated that hypoxia increased drug resistance of autophagic TNBC stem-cells, and showed that molecular or chemical inhibition of autophagic pathway was able to reverse chemoresistance.Our results support breast cancer stem-cell evaluation in pre-treatment biopsies of TNBC patients, and the need for further research on autophagy inhibition to reverse resistance to chemotherapy.
Collapse
Affiliation(s)
- Guilhem Bousquet
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,Université Paris 13, Villetaneuse, France.,AP, HP, Avicenne, Service Oncologie, Paris, France
| | | | | | - Christophe Leboeuf
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France
| | - Cédric de Bazelaire
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Radiologie, Paris, France
| | - Philippe Ratajczak
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France
| | | | - Anne de Roquancourt
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Pathologie, Paris, France
| | - Philippe Bertheau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Pathologie, Paris, France
| | - Laurence Verneuil
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France
| | | | - Marc Espié
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,AP HP Hôpital Saint-Louis, Centre Maladies Sein, Paris, France
| | - Anne Janin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Pathologie, Paris, France
| |
Collapse
|
76
|
Fan Q, Yang L, Zhang X, Peng X, Wei S, Su D, Zhai Z, Hua X, Li H. The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Lett 2018; 414:107-115. [DOI: 10.1016/j.canlet.2017.10.040] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
|
77
|
Wang H, Yu X, Su C, Shi Y, Zhao L. Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:293-301. [DOI: 10.1080/21691401.2017.1423494] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hao Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Xiwei Yu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
78
|
Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D, Fisher PB. New Insights Into Beclin-1: Evolution and Pan-Malignancy Inhibitor Activity. Adv Cancer Res 2017; 137:77-114. [PMID: 29405978 DOI: 10.1016/bs.acr.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a functionally conserved self-degradation process that facilitates the survival of eukaryotic life via the management of cellular bioenergetics and maintenance of the fidelity of genomic DNA. The first known autophagy inducer was Beclin-1. Beclin-1 is expressed in multicellular eukaryotes ranging throughout plants to animals, comprising a nonmonophyllic group, as shown in this report via aggressive BLAST searches. In humans, Beclin-1 is a haploinsuffient tumor suppressor as biallelic deletions have not been observed in patient tumors clinically. Therefore, Beclin-1 fails the Knudson hypothesis, implicating expression of at least one Beclin-1 allele is essential for cancer cell survival. However, Beclin-1 is frequently monoallelically deleted in advanced human cancers and the expression of two Beclin-1 allelles is associated with greater anticancer effects. Overall, experimental evidence suggests that Beclin-1 inhibits tumor formation, angiogenesis, and metastasis alone and in cooperation with the tumor suppressive molecules UVRAG, Bif-1, Ambra1, and MDA-7/IL-24 via diverse mechanisms of action. Conversely, Beclin-1 is upregulated in cancer stem cells (CSCs), portending a role in cancer recurrence, and highlighting this molecule as an intriguing molecular target for the treatment of CSCs. Many aspects of Beclin-1's biological effects remain to be studied. The consequences of these BLAST searches on the molecular evolution of Beclin-1, and the eukaryotic branches of the tree of life, are discussed here in greater detail with future inquiry focused upon protist taxa. Also in this review, the effects of Beclin-1 on tumor suppression and cancer malignancy are discussed. Beclin-1 holds significant promise for the development of novel targeted cancer therapeutics and is anticipated to lead to a many advances in our understanding of eukaryotic evolution, multicellularity, and even the treatment of CSCs in the coming decades.
Collapse
Affiliation(s)
- Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
79
|
Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. J Physiol Sci 2017; 67:639-654. [PMID: 28685325 PMCID: PMC5684252 DOI: 10.1007/s12576-017-0555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
Cardiac myocytes are terminally differentiated cells and possess extremely limited regenerative capacity; therefore, preservation of mature cardiac myocytes throughout the individual's entire life span contributes substantially to healthy living. Autophagy, a lysosome-dependent cellular catabolic process, is essential for normal cardiac function and mitochondria maintenance. Therefore, it may be reasonable to hypothesize that if endurance exercise promotes cardiac autophagy and mitochondrial autophagy or mitophagy, exercise-induced cardiac autophagy (EICA) or exercise-induced cardiac mitophagy (EICM) may confer propitious cellular environment and thus protect the heart against detrimental stresses, such as an ischemia-reperfusion (I/R) injury. However, although the body of evidence supporting EICA and EICM is growing, the molecular mechanisms of EICA and EICM and their possible roles in cardioprotection against an I/R injury are poorly understood. Here, we introduce the general mechanisms of autophagy in an attempt to integrate potential molecular pathways of EICA and EICM and also highlight a potential insight into EICA and EICM in cardioprotection against an I/R insult.
Collapse
Affiliation(s)
- Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA.
| | - Insu Kwon
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Yongchul Jang
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Wankeun Song
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Ludmila M Cosio-Lima
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Mark H Roltsch
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| |
Collapse
|
80
|
Wu TY, Cho TY, Lu CK, Liou JP, Chen MC. Identification of 7-(4'-Cyanophenyl)indoline-1-benzenesulfonamide as a mitotic inhibitor to induce apoptotic cell death and inhibit autophagy in human colorectal cancer cells. Sci Rep 2017; 7:12406. [PMID: 28963527 PMCID: PMC5622076 DOI: 10.1038/s41598-017-12795-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022] Open
Abstract
Targeting cellular mitosis in tumor cells is an attractive cancer treatment strategy. Here, we report that B220, a synthetic benzenesulfonamide compound, could represent a new mitotic inhibitor for the treatment of colorectal cancer. We examined the action mechanism of B220 in the colorectal carcinoma HCT116 cell line, and found that treatment of cells with B220 caused cells to accumulate in G2/M phase, with a concomitant induction of the mitotic phase markers, MPM2 and cyclin B1. After 48 h of B220 treatment, cells underwent apoptotic cell death via caspase-3 activation and poly(ADP ribose) polymerase (PARP) cleavage. In addition, B220 inhibits autophagy by blocking conversion of microtubule-associated protein 1 light chain 3 (LC3-I) to LC3-II and inhibiting autophagic flux. Notably, blockade of autophagy by pharmacological inhibition or using an Atg5-targeting shRNA reduced B220-induced cytotoxicity. Conversely, the autophagy inducer NVP-BEZ235 shows a synergistic interaction with B220 in HCT116 cells, indicating autophagy was required for the observed cell death. In summary, these results indicate B220 combined with the induction of autophagy using the dual PI3K/mTOR inhibitor, NVP-BEZ235, might be an attractive strategy for cancer therapy, and provides a framework for further development of B220 as a new therapeutic agent for colon cancer treatment.
Collapse
Affiliation(s)
- Tung-Yun Wu
- Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Cho
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chuan Chen
- Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
81
|
Byun S, Lee E, Lee KW. Therapeutic Implications of Autophagy Inducers in Immunological Disorders, Infection, and Cancer. Int J Mol Sci 2017; 18:ijms18091959. [PMID: 28895911 PMCID: PMC5618608 DOI: 10.3390/ijms18091959] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an essential catabolic program that forms part of the stress response and enables cells to break down their own intracellular components within lysosomes for recycling. Accumulating evidence suggests that autophagy plays vital roles in determining pathological outcomes of immune responses and tumorigenesis. Autophagy regulates innate and adaptive immunity affecting the pathologies of infectious, inflammatory, and autoimmune diseases. In cancer, autophagy appears to play distinct roles depending on the context of the malignancy by either promoting or suppressing key determinants of cancer cell survival. This review covers recent developments in the understanding of autophagy and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.
Collapse
Affiliation(s)
- Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Eunjung Lee
- Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam 13539, Korea.
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16495, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
82
|
Abstract
Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.
Collapse
Affiliation(s)
- Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado 80045, USA
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Christina G Towers
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
83
|
Liang Y, Chen X, Liang Z. MicroRNA-320 regulates autophagy in retinoblastoma by targeting hypoxia inducible factor-1α. Exp Ther Med 2017; 14:2367-2372. [PMID: 28962169 DOI: 10.3892/etm.2017.4779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Retinoblastoma (RB) is the most common malignancy in children. Due to refractory mechanisms of chemoresistance and the toxicity of chemotherapies, novel therapies for RB treatment are urgently required. MicroRNA-320 (miR-320) is believed to be associated with the tumorigenesis of RB, although the mechanism remains unclear. Considering the hypoxic intratumoral region, the roles of miR-320 and hypoxia inducible factor-1α (HIF-1α) in the regulation of autophagy were investigated in 30 human RB samples and WERI-RB1 cells. The results demonstrated that HIF-1α was the downstream target of miR-320, and decreased miRNA-320 or HIF-1α lead to the inhibition of autophagy in WERI-RB1 cells. Compared with WERI-RB1 cells that were not transfected, silenced HIF-1α caused a 1.41-fold increase (P<0.01) in p62, a 2.71-fold decrease of Beclin1, and inhibited miRNA-320. Silenced HIF-1α also resulted in 7.29- and 7.43-fold increases in phosphorylated-mechanistic target of rapamycin (mTOR) and mTOR, respectively. In conclusion, the present results suggest that miRNA-320 may regulate the development of autophagy by targeting HIF-1α and autophagy-related proteins in RB under hypoxic conditions.
Collapse
Affiliation(s)
- Yong Liang
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| | - Xi Chen
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| | - Zhu Liang
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| |
Collapse
|
84
|
Autophagy as a potential target for sarcoma treatment. Biochim Biophys Acta Rev Cancer 2017; 1868:40-50. [PMID: 28242349 DOI: 10.1016/j.bbcan.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023]
Abstract
Autophagy is a constitutively active, evolutionary conserved, catabolic process for maintaining homeostasis in cellular stress responses and cell survival. Although its mechanism has not been fully illustrated, recent work on autophagy in various types of sarcomas has demonstrated that autophagy exerts an important role in sarcoma cell growth and proliferation, in pro-survival response to therapies and stresses, and in therapeutic resistance of sarcoma. Thus, the autophagic process is being seen as a possibly novel therapeutic target of sarcoma. Additionally, some co-regulators of autophagy have also been investigated as promising biomarkers for the diagnosis and prognosis of sarcoma. In this review, we summarize contemporary advances in the role of autophagy in sarcoma and discuss the potential of autophagy as a new target for sarcoma treatment.
Collapse
|
85
|
Caloric restriction - A promising anti-cancer approach: From molecular mechanisms to clinical trials. Biochim Biophys Acta Rev Cancer 2016; 1867:29-41. [PMID: 27871964 DOI: 10.1016/j.bbcan.2016.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide and the morbidity is growing in developed countries. According to WHO, >14 million people per year are diagnosed with cancer and about 8 million die. Anti-cancer strategy includes chemo-, immune- and radiotherapy or their combination. Unfortunately, these widely used strategies often have insufficient efficacy and significant toxic effects on healthy cells. Consequently, the improvement of treatment approaches is an important goal. One of promising schemes to enhance the effect of therapy is the restriction of calorie intake or some nutrients. The combination of caloric restriction or its chemical mimetics along with anti-cancer drugs may suppress growth of tumor cells and enhance death of cancer cells. That will allow the dose of therapeutic drugs to be decreased and their toxic effects to be reduced. Here the possibility of using this combinatory therapy as well as the molecular mechanisms underlying this approach will be discussed.
Collapse
|