51
|
Basu P, Hornung RS, Averitt DL, Maier C. Euphorbia bicolor ( Euphorbiaceae) Latex Extract Reduces Inflammatory Cytokines and Oxidative Stress in a Rat Model of Orofacial Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8594375. [PMID: 31612077 PMCID: PMC6757321 DOI: 10.1155/2019/8594375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/10/2019] [Indexed: 12/26/2022]
Abstract
Recent studies have reported that the transient receptor potential V1 ion channel (TRPV1), a pain generator on sensory neurons, is activated and potentiated by NADPH oxidase-generated reactive oxygen species (ROS). ROS are increased by advanced oxidation protein products (AOPPs), which activate NADPH oxidase by upregulating Nox4 expression. Our previous studies reported that Euphorbia bicolor (Euphorbiaceae) latex extract induced peripheral analgesia, partly via TRPV1, in hindpaw-inflamed male and female rats. The present study reports that E. bicolor latex extract also can evoke analgesia via reduction of oxidative stress biomarkers and proinflammatory cytokines/chemokines in a rat model of orofacial pain. Male and female rats were injected with complete Freund's adjuvant (CFA) into the left vibrissal pad to induce orofacial inflammation, and mechanical allodynia was measured by the von Frey method. Twenty-four hours later, rats received one injection of E. bicolor latex extract or vehicle into the inflamed vibrissal pad. Mechanical sensitivity was reassessed at 1, 6, 24, and/or 72 hours. Trigeminal ganglia and trunk blood were collected at each time point. In the trigeminal ganglia, ROS were quantified using 2',7'-dichlorodihydrofluorescein diacetate dye, Nox4 protein was quantified by Western blots, and cytokines/chemokines were quantified using a cytokine array. AOPPs were quantified in trunk blood using a spectrophotometric assay. E. bicolor latex extract significantly reduced orofacial mechanical allodynia in male and female rats at 24 and 72 hours, respectively. ROS, Nox4, and proinflammatory cytokines/chemokines were significantly reduced in the trigeminal ganglia, and plasma AOPP was significantly reduced in the trunk blood of extract-treated compared to vehicle-treated rats. In vitro assays indicate that E. bicolor latex extract possessed antioxidant activities by scavenging free radicals. Together our data indicate that the phytochemicals in E. bicolor latex may serve as novel therapeutics for treating oxidative stress-induced pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | | | - Dayna L. Averitt
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | - Camelia Maier
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| |
Collapse
|
52
|
Murine cytomegalovirus infection in mice results in an acute inflammatory reaction in peripheral nerves. J Neuroimmunol 2019; 335:577017. [PMID: 31430710 DOI: 10.1016/j.jneuroim.2019.577017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Human cytomegalovirus (CMV) infection is asymptomatic in immunocompetent individuals. However, it can lead to disease in immunodeficient population. Little is known of the mechanisms underlying the pathogenicity of the virus. We investigated the impact of CMV infection on mouse nervous system. Peripheral nerves but not spinal cord was permissive to MCMV during acute infection. Activated CD8+ T cells, monocytes/macrophages and cytokine expression were increased in the blood and sciatic nerves of infected mice, which exhibited transient sensory dysfunction. This study indicates that systemic MCMV infection leads to a dissemination of MCMV into peripheral nerves, which is associated with a local inflammation but not nerve tissue damage in the acute phase.
Collapse
|
53
|
O'Sullivan SJ, Malahias E, Park J, Srivastava A, Reyes BAS, Gorky J, Vadigepalli R, Van Bockstaele EJ, Schwaber JS. Single-Cell Glia and Neuron Gene Expression in the Central Amygdala in Opioid Withdrawal Suggests Inflammation With Correlated Gut Dysbiosis. Front Neurosci 2019; 13:665. [PMID: 31333398 PMCID: PMC6619439 DOI: 10.3389/fnins.2019.00665] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Drug-seeking in opioid dependence is due in part to the severe negative emotion associated with the withdrawal syndrome. It is well-established that negative emotional states emerge from activity in the amygdala. More recently, gut microflora have been shown to contribute substantially to such emotions. We measured gene expression in single glia and neurons gathered from the amygdala using laser capture microdissection and simultaneously measured gut microflora in morphine-dependent and withdrawn rats to investigate drivers of negative emotion in opioid withdrawal. We found that neuroinflammatory genes, notably Tnf, were upregulated in the withdrawal condition and that astrocytes, in particular, were highly active. We also observe a decreased Firmicutes to Bacteroides ratio in opioid withdrawal indicating gut dysbiosis. We speculate that these inflammatory and gut microflora changes contribute to the negative emotion experienced in opioid withdrawal that motivates dependence.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Evangelia Malahias
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James Park
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Beverly A S Reyes
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jon Gorky
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
54
|
Giacco V, Panattoni G, Medelin M, Bonechi E, Aldinucci A, Ballerini C, Ballerini L. Cytokine inflammatory threat, but not LPS one, shortens GABAergic synaptic currents in the mouse spinal cord organotypic cultures. J Neuroinflammation 2019; 16:127. [PMID: 31238967 PMCID: PMC6593520 DOI: 10.1186/s12974-019-1519-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1β, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits. Methods We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation. Results Local inflammation in slice cultures induced by CK or LPS stimulations boosts network activity; however, only CKs specifically reduced GABAergic current duration. We pharmacologically investigated the contribution of GABAAR α-subunits and suggested that a switch of GABAAR α1-subunit might have induced faster GABAAR decay time, weakening the inhibitory transmission. Conclusions Lower GABAergic current duration could contribute to providing an aberrant excitatory transmission critical for pre-motor circuit tasks and represent a specific feature of a CK cocktail able to mimic an inflammatory reaction that spreads in the CNS. Our results describe a selective mechanism that could be triggered during specific inflammatory stress. Electronic supplementary material The online version of this article (10.1186/s12974-019-1519-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vincenzo Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.,Present address: Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Giulia Panattoni
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - Manuela Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | | | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
55
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
56
|
Hu LY, Mi WL, Wu GC, Wang YQ, Mao-Ying QL. Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms. Curr Neuropharmacol 2019; 17:184-196. [PMID: 28925884 PMCID: PMC6343206 DOI: 10.2174/1570159x15666170915143217] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/20/2017] [Accepted: 01/01/1970] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine. OBJECTIVES The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN. METHODS This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies. RESULTS An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects. CONCLUSIONS Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
58
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
59
|
McLeary F, Davis A, Rudrawar S, Perkins A, Anoopkumar-Dukie S. Mechanisms underlying select chemotherapeutic-agent-induced neuroinflammation and subsequent neurodegeneration. Eur J Pharmacol 2018; 842:49-56. [PMID: 30287154 DOI: 10.1016/j.ejphar.2018.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
This review demonstrates the importance of uncovering the mechanisms that underlie chemotherapy-induced neuroinflammation. It builds upon the well-established connection between chemotherapeutic-agents and neurotoxicity along with widespread peripheral toxicities. This article summarises the major studies which have linked chemotherapy-induced neurodegeneration with direct evidence of neuroinflammation. Cancer and chemotherapy-related adverse effects impact a large proportion of the population. A better understanding of the link between chemotherapy, neurotoxicity and specifically the mechanisms of neuroinflammation, will allow the development of strategies to improve the management of side effects, and overall to reduce the burden on cancer patients receiving chemotherapy. This review has developed a summary schematic of the relationship between different chemotherapeutic agents and inflammatory markers within the central nervous system and links this correlation with some major ailments associated with chemotherapy use.
Collapse
Affiliation(s)
- Fleur McLeary
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
| | - Arie Davis
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
| | - Anthony Perkins
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
60
|
Sayeli V, Nadipelly J, Kadhirvelu P, Cheriyan BV, Shanmugasundaram J, Subramanian V. Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice. J Basic Clin Physiol Pharmacol 2018; 29:525-535. [PMID: 29652665 DOI: 10.1515/jbcpp-2016-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Abstract
Background:
Peripheral neuropathy is the dose limiting side effect of many anticancer drugs. Flavonoids exhibit good antinociceptive effect in animal models. Their efficacy against different types of nociception has been documented. The present study investigated the effect of flavonol (3-hydroxy flavone), 3′,4′-dimethoxy flavonol, 6,3′-dimethoxy flavonol, 7,2′-dimethoxy flavonol and 7,3′-dimethoxy flavonol against paclitaxel-induced peripheral neuropathy in mice.
Methods:
A single dose of paclitaxel (10 mg/kg, i.p.) was administered to induce peripheral neuropathy in mice and the manifestations of peripheral neuropathy such as tactile allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later by employing Von Frey hair aesthesiometer test, acetone bubble test and hot water tail immersion test, respectively. The test compounds were prepared as a suspension in 0.5% carboxymethyl cellulose and were administered s.c. in various doses (25, 50, 100 and 200 mg/kg). The above behavioral responses were assessed prior to and 30 min after drug treatment. In addition, the effect of test compounds on proinflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and free radicals was investigated by using suitable in vitro assays.
Results:
A dose-dependent attenuation of tactile allodynia, cold allodynia and thermal hyperalgesia was evidenced in mice treated with flavonol derivatives. The test compounds inhibited TNF-α, IL-1β and free radicals in a concentration-dependent manner.
Conclusions:
These results revealed that flavonol and its dimethoxy derivatives ameliorated the manifestations of paclitaxel-induced peripheral neuropathy in mice. The inhibition of proinflammatory cytokines and free radicals could contribute to this beneficial effect.
Collapse
Affiliation(s)
- Vijaykumar Sayeli
- Department of Pharmacology, Mamata Medical College, Khammam, Telangana, India, Phone: 7845362994
| | - Jagan Nadipelly
- Department of Pharmacology, Faculty of Medicine-Pharmacology, Texila American University, Georgetown, Guyana
| | - Parimala Kadhirvelu
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Enathur, Kanchipuram, Tamil Nadu, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, VISTAS, Vels School of Pharmaceutical Sciences, Chennai, Tamil Nadu, India
| | - Jaikumar Shanmugasundaram
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Enathur, Kanchipuram, Tamil Nadu, India
| | - Viswanathan Subramanian
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Enathur, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
61
|
Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation. Pain 2018; 158:2396-2409. [PMID: 28885456 DOI: 10.1097/j.pain.0000000000001044] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Patients with oral cancer report severe pain during function. Inflammation plays a role in the oral cancer microenvironment; however, the role of immune cells and associated secretion of inflammatory mediators in oral cancer pain has not been well defined. In this study, we used 2 oral cancer mouse models: a cell line supernatant injection model and the 4-nitroquinoline-1-oxide (4NQO) chemical carcinogenesis model. We used the 2 models to study changes in immune cell infiltrate and orofacial nociception associated with oral squamous cell carcinoma (oSCC). Oral cancer cell line supernatant inoculation and 4NQO-induced oSCC resulted in functional allodynia and neuronal sensitization of trigeminal tongue afferent neurons. Although the infiltration of immune cells is a prominent component of both oral cancer models, our use of immune-deficient mice demonstrated that oral cancer-induced nociception was not dependent on the inflammatory component. Furthermore, the inflammatory cytokine, tumor necrosis factor alpha (TNFα), was identified in high concentration in oral cancer cell line supernatant and in the tongue tissue of 4NQO-treated mice with oSCC. Inhibition of TNFα signaling abolished oral cancer cell line supernatant-evoked functional allodynia and disrupted T-cell infiltration. With these data, we identified TNFα as a prominent mediator in oral cancer-induced nociception and inflammation, highlighting the need for further investigation in neural-immune communication in cancer pain.
Collapse
|
62
|
Wang J, Zhang XS, Tao R, Zhang J, Liu L, Jiang YH, Ma SH, Song LX, Xia LJ. Upregulation of CX3CL1 mediated by NF-κB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration. Mol Pain 2018; 13:1744806917726256. [PMID: 28849713 PMCID: PMC5580849 DOI: 10.1177/1744806917726256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Painful peripheral neuropathy is a severe side effect in oxaliplatin therapy that compromises cancer patients' quality of life. However, its underlying pathogenic mechanisms remain largely unknown. Here, we found that intraperitoneal consecutive administration of oxaliplatin significantly increased excitability of small diameter dorsal root ganglion neurons and induced thermal hyperalgesia in rats. Furthermore, the CX3CL1 expression was significantly increased after oxaliplatin treatment, and intrathecal injection of a neutralizing antibody against CX3CL1 markedly attenuated the enhanced excitability of dorsal root ganglion neurons and thermal hyperalgesia. Importantly, the upregulated CX3CL1 is mediated by the NF-κB signaling pathway, as inhibition of NF-κB p65 activation with pyrrolidine dithiocarbamate or p65 siRNA inhibited the upregulation of CX3CL1, the enhanced excitability of dorsal root ganglion neurons, and thermal hyperalgesia induced by oxaliplatin. Further studies with chromatin immunoprecipitation found that oxaliplatin treatment increased the recruitment of NF-κB p65 to the CX3Cl1 promoter region. Our results suggest that upregulation of CX3CL1 in dorsal root ganglion mediated by NF-κB activation contributes to the peripheral sensitization and chronic pain induced by oxaliplatin administration.
Collapse
Affiliation(s)
- Jing Wang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin-Sheng Zhang
- 2 Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Rong Tao
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- 3 Department of Rehabilitation Medicine, Guangdong Woman and Children Hospital, Guangzhou, China
| | - Lin Liu
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Ying-Hai Jiang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Song-He Ma
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Lin-Xia Song
- 4 College of Life Science, Shandong University of Technology, Zibo, China
| | - Ling-Jie Xia
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
63
|
Castelli V, Palumbo P, d'Angelo M, Moorthy NK, Antonosante A, Catanesi M, Lombardi F, Iannotta D, Cinque B, Benedetti E, Ippoliti R, Cifone MG, Cimini A. Probiotic DSF counteracts chemotherapy induced neuropathic pain. Oncotarget 2018; 9:27998-28008. [PMID: 29963257 PMCID: PMC6021327 DOI: 10.18632/oncotarget.25524] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Problem statement: Chemotherapy-induced peripheral neuropathy (CIPN) is a widespread and potentially disabling side effect of various anticancer drugs. In spite of the intensive research focused on obtaining therapies capable to treat or prevent CIPN, the medical demand remains very high. Microtubule-stabilizing agents, among which taxanes, are effective chemotherapeutic agents for the therapy of several oncologic diseases. The inflammatory process activated by chemotherapeutic agents has been interpreted as a potential trigger of the nociceptive process in CIPN. The chemotherapy-driven release of proinflammatory and chemokines has been recognized as one of the principal mechanisms controlling the establishment of CIPN. Several reports have indicated that probiotics are capable to regulate the balance of anti-inflammatory and pro-inflammatory cytokines. Accordingly, it has been suggested that some probiotic formulations, may have an effective role in the management of inflammatory pain symptoms. Experimental approaches used: we tested the hypothesis that paclitaxel-induced neuropathic pain can be counteracted by the probiotic DSF by using an in vitro model of sensitive neuron, the F11 cells. On this model, the biomolecular pathways involved in chemotherapy induced peripheral neuropathy depending on inflammatory cytokines were investigated by Real-time PCR, Western blotting and confocal microscopy. General conclusions: the results obtained, i.e. the increase of acetylated tubulin, the increase of the active forms of proteins involved in the establishment of neuropathic pain, point towards the use of this probiotic formulation as a possible adjuvant agent for counteracting CINP symptoms.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nandha Kumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, USA
| |
Collapse
|
64
|
Yu YP, Gong N, Kweon TD, Vo B, Luo ZD. Gabapentin prevents synaptogenesis between sensory and spinal cord neurons induced by thrombospondin-4 acting on pre-synaptic Ca v α 2 δ 1 subunits and involving T-type Ca 2+ channels. Br J Pharmacol 2018; 175:2348-2361. [PMID: 29338087 PMCID: PMC5980510 DOI: 10.1111/bph.14149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Nerve injury induces concurrent up-regulation of the voltage-gated calcium channel subunit Cav α2 δ1 and the extracellular matrix protein thrombospondin-4 (TSP4) in dorsal root ganglia and dorsal spinal cord, leading to the development of a neuropathic pain state. Interactions of these proteins promote aberrant excitatory synaptogenesis that contributes to neuropathic pain state development through unknown mechanisms. We investigated the contributions of Cav α2 δ1 subunits and TSP4 to synaptogenesis, and the pathways involved in vitro, and whether treatment with gabapentin could block this process and pain development in vivo. EXPERIMENTAL APPROACH A co-culture system of sensory and spinal cord neurons was used to study the contribution from each protein to synaptogenesis and the pathway(s) involved. Anti-synaptogenic actions of gabapentin were studied in TSP4-injected mice. KEY RESULTS Only presynaptic, but not postsynaptic, Cav α2 δ1 subunits interacted with TSP4 to initiate excitatory synaptogenesis through a pathway modulated by T-type calcium channels. Cav α2 δ1 /TSP4 interactions were not required for maintenance of already formed synapses. In vivo, early, but not delayed, treatment with low-dose gabapentin blocked this pathway and the development of the pain state. CONCLUSIONS AND IMPLICATIONS Cav α2 δ1 /TSP4 interactions were critical for the initiation, but not for the maintenance, of abnormal synapse formation between sensory and spinal cord neurons. This process was blocked by early, but was not reversed by delayed, treatment with gabapentin. Early intervention with gabapentin may prevent the development of injury-induced chronic pain, resulting from Cav α2 δ1 /TSP4-initiated abnormal synapse formation. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Yanhui Peter Yu
- Department of PharmacologyUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Nian Gong
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Tae Dong Kweon
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Benjamin Vo
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Z David Luo
- Department of PharmacologyUniversity of California, Irvine School of MedicineIrvineCAUSA
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| |
Collapse
|
65
|
Nadipelly J, Sayeli V, Kadhirvelu P, Shanmugasundaram J, Cheriyan BV, Subramanian V. Effect of certain trimethoxy flavones on paclitaxel - induced peripheral neuropathy in mice. Integr Med Res 2018; 7:159-167. [PMID: 29984177 PMCID: PMC6026363 DOI: 10.1016/j.imr.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The anti - nociceptive effect of 7, 2', 3' - trimethoxy flavone, 7, 2', 4' - trimethoxy flavone, 7, 3', 4' - trimethoxy flavone and 7, 5, 4' - trimethoxy flavone against inflammatory, neurogenic and thermal pain in mice was reported earlier. The present study was designed to investigate the effect of the above trimethoxy flavones in amelioration of peripheral neuropathy induced by paclitaxel. METHODS Peripheral neuropathy was induced in mice by administration of a single i.p. dose (10 mg/kg) of paclitaxel. The manifestations of peripheral neuropathy such as tactile allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later by employing hair aesthesiometer test, acetone bubble test and hot water tail immersion test respectively. Further, the role of inflammatory cytokines like TNF - α, IL - 1β and free radicals in the action of trimethoxy flavones was investigated using in vitro assays. RESULTS The test compounds dose dependently attenuated paclitaxel - induced tactile allodynia, cold allodynia and thermal hyperalgesia in mice. The test compounds inhibited TNF - α, IL - 1β and free radicals in a concentration dependent manner. CONCLUSION The investigated trimethoxy flavones attenuated paclitaxel - induced peripheral neuropathy in mice. The inhibition of cytokines and free radicals in addition to many neuronal mechanisms reported earlier may contribute to this beneficial effect.
Collapse
Affiliation(s)
- Jagan Nadipelly
- Faculty of Medicine, Department of Pharmacology, Texila American University, Georgetown, Guyana
| | - Vijaykumar Sayeli
- Department of Pharmacology, Mamatha Medical College & Hospital, Khammam, India
| | - Parimala Kadhirvelu
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, India
| | - Jaikumar Shanmugasundaram
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, VISTAS, Vels School of Pharmaceutical Sciences, Chennai, India
| | - Viswanathan Subramanian
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, India
| |
Collapse
|
66
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
67
|
Salgado PRR, da Fonsêca DV, de Melo CGF, Leite FC, Alves AF, Ferreira PB, Piuvezam MR, de Sousa DP, de Almeida RN. Comparison of behavioral, neuroprotective, and proinflammatory cytokine modulating effects exercised by (+)-cis-EC and (-)-cis-EC stereoisomers in a PTZ-induced kindling test in mice. Fundam Clin Pharmacol 2018; 32:507-515. [PMID: 29577374 DOI: 10.1111/fcp.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Epoxy-carvone (EC) has chiral centers that allow generation of stereoisomers, including (+)-cis-EC and (-)-cis-EC, whose effects in the kindling tests have never been studied. Accordingly, this study aims to comparatively investigate the effect of stereoisomers (+)-cis-epoxy-carvone and (-)-cis-epoxy-carvone on behavioral changes measured in scores, in the levels of cytokines (IL-1β, IL-6, and TNFα) and neuronal protection in the face of continuous treatment with pentylenetetrazol. Swiss mice were divided into five groups (n = 10), receiving vehicle, (+) - cis-EC, (-) - cis-EC (both at the dose of 30 mg/kg), and diazepam (4 mg/kg). Thirty minutes after the respective treatment was administered to the animals one subconvulsive dose of PTZ (35 mg/kg). Seven subconvulsives treatments were made on alternate days, in which each treatment several parameters were recorded. In the eighth treatment, the animals receiving the highest dose of PTZ (75 mg/kg) and were sacrificed for quantification of cytokines and histopathologic analysis. All drugs were administered by intraperitoneal route. In the kindling test, (+)-cis-EC and (-)-cis-EC reduced the average scores. The stereoisomer (+)-cis-EC decreased levels of proinflammatory cytokines IL-1β, IL-6, and TNFα, whereas comparatively (-)-cis-EC did not reduce IL-1β levels. Histopathological analysis of the mice hippocampi undergoing this methodology showed neural protection for treated with (+)-cis-EC. The results suggest that the anticonvulsant effect of (+)-cis-EC possibly takes place due to reduction of proinflammatory cytokines involved in the epileptogenic process, besides neuronal protection, yet further investigation of the mechanisms involved is required.
Collapse
Affiliation(s)
- Paula Regina Rodrigues Salgado
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Diogo Vilar da Fonsêca
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Cynthia Germoglio Farias de Melo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Fagner Carvalho Leite
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Adriano Francisco Alves
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Paula Benvindo Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Márcia Regina Piuvezam
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Damião Pergentino de Sousa
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| |
Collapse
|
68
|
Pozzi D, Menna E, Canzi A, Desiato G, Mantovani C, Matteoli M. The Communication Between the Immune and Nervous Systems: The Role of IL-1β in Synaptopathies. Front Mol Neurosci 2018; 11:111. [PMID: 29674955 PMCID: PMC5895746 DOI: 10.3389/fnmol.2018.00111] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
In the last 15 years, groundbreaking genetic progress has underlined a convergence onto coherent synaptic pathways for most psychiatric and neurodevelopmental disorders, which are now collectively called “synaptopathies.” However, the modest size of inheritance detected so far indicates a multifactorial etiology for these disorders, underlining the key contribution of environmental effects to them. Inflammation is known to influence the risk and/or severity of a variety of synaptopathies. In particular, pro-inflammatory cytokines, produced and released in the brain by activated astrocytes and microglia, may play a pivotal role in these pathologies. Although the link between immune system activation and defects in cognitive processes is nowadays clearly established, the knowledge of the molecular mechanisms by which inflammatory mediators specifically hit synaptic components implicated in synaptopathies is still in its infancy. This review summarizes recent evidence showing that the pro-inflammatory cytokine interleukin-1β (IL-1β) specifically targets synaptopathy molecular substrate, leading to memory defects and pathological processes. In particular, we describe three specific pathways through which IL-1β affects (1) synaptic maintenance/dendritic complexity, (2) spine morphology, and (3) the excitatory/inhibitory balance. We coin the term immune synaptopathies to identify this class of diseases.
Collapse
Affiliation(s)
- Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center, Rozzano, Italy.,Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alice Canzi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Genni Desiato
- Humanitas Clinical and Research Center, Rozzano, Italy.,School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | - Michela Matteoli
- Humanitas Clinical and Research Center, Rozzano, Italy.,Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
69
|
Jiang E, Chapp AD, Fan Y, Larson RA, Hahka T, Huber MJ, Yan J, Chen QH, Shan Z. Expression of Proinflammatory Cytokines Is Upregulated in the Hypothalamic Paraventricular Nucleus of Dahl Salt-Sensitive Hypertensive Rats. Front Physiol 2018. [PMID: 29520237 PMCID: PMC5826963 DOI: 10.3389/fphys.2018.00104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence indicates that inflammation is implicated in hypertension. However, the role of brain proinflammatory cytokines (PICs) in salt sensitive hypertension remains to be determined. Thus, the objective of this study was to test the hypothesis that high salt (HS) diet increases PICs expression in the paraventricular nucleus (PVN) and leads to PVN neuronal activation. Eight-week-old male Dahl salt sensitive (Dahl S) rats, and age and sex matched normal Sprague Dawley (SD) rats were divided into two groups and fed with either a HS (4% NaCl) or normal salt (NS, 0.4% NaCl) diet for 5 consecutive weeks. HS diet induced hypertension and significantly increased cerebrospinal fluid (CSF) sodium concentration ([Na+]) in Dahl S rats, but not in normal SD rats. In addition, HS diet intake triggered increases in mRNA levels and immunoreactivities of PVN PICs including TNF-α, IL-6, and IL-1β, as well as Fra1, a chronic marker of neuronal activation, in Dahl S rats, but not in SD rats. Next, we investigated whether this increase in the expression of PVN PICs and Fra1 was induced by increased CSF [Na+]. Adult male SD rats were intracerebroventricular (ICV) infused with 8 μl of either hypertonic salt (4 μmol NaCl), mannitol (8 μmol, as osmolarity control), or isotonic salt (0.9% NaCl as vehicle control). Three hours following the ICV infusion, rats were euthanized and their PVN PICs expression was measured. The results showed that central administration of hypertonic saline in SD rats significantly increased the expression of PICs including TNF-α, IL-6, and IL-1β, as well as neuronal activation marker Fra1, compared to isotonic NaCl controls and osmolarity controls. Finally, we tested whether the increase in PICs expression occurred in neurons. Incubation of hypothalamic neurons with 10 mM NaCl in a culture medium for 6 h elicited significant increases in TNF-α, IL-6, and Fra1 mRNA levels. These observations, coupled with the important role of PICs in modulating neuronal activity and stimulating vasopressin release, suggest that HS intake induces an inflammatory state in the PVN, which, may in turn, augments sympathetic nerve activity and vasopressin secretion, contributing to the development of salt sensitive hypertension.
Collapse
Affiliation(s)
- Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Institute for Nursing and Health Research, Henan University, Kaifeng, China
| | - Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Taija Hahka
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
70
|
Banafshe HR, Khoshnoud MJ, Abed A, Saghazadeh M, Mesdaghinia A. Vitamin D supplementation attenuates the behavioral scores of neuropathic pain in rats. Nutr Neurosci 2018; 22:700-705. [PMID: 29431049 DOI: 10.1080/1028415x.2018.1435485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective(s): Neuropathic pain due to lesion or dysfunction of the peripheral or central nervous system is often refractory to the conventional analgesics. Currently, there is no proven treatment to prevent or cure neuropathic pain. A recent surge of new data suggests the potential effects of vitamin D in the medical community. This study was designed to determine whether acute or chronic vitamin D administration was effective in alleviating symptoms of neuropathic pain in a rat model of neuropathic pain. Materials and Methods: Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in the rats that resulted in thermal hyperalgesia, mechanical, and cold allodynia. Results: Acute vitamin D injections (250, 500, and 1000 unit/kg i.p.) on the 7th, 14th, and 21st postoperative days could not attenuate mechanical and cold allodynia as well as heat hyperalgesia compared to CCI group. But when vitamin D (1000 unit/kg i.p.) administration was started on the first day after surgery and given daily until the 21st day, cold allodynia and heat hyperalgesia considerably were attenuated. However, no differences in paw withdrawal thresholds were observed. Conclusion: These results indicate that chronic vitamin D administrations can attenuate the behavioral scores of neuropathic pain in rats.
Collapse
Affiliation(s)
- Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences , Kashan , Iran.,Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| | - Mohammad Javad Khoshnoud
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Alireza Abed
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| | - Maryam Saghazadeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Azam Mesdaghinia
- Physiology Research Center, Kashan University of Medical Sciences , Kashan , Iran.,Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
71
|
Hu LY, Zhou Y, Cui WQ, Hu XM, Du LX, Mi WL, Chu YX, Wu GC, Wang YQ, Mao-Ying QL. Triggering receptor expressed on myeloid cells 2 (TREM2) dependent microglial activation promotes cisplatin-induced peripheral neuropathy in mice. Brain Behav Immun 2018; 68:132-145. [PMID: 29051087 DOI: 10.1016/j.bbi.2017.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/14/2017] [Indexed: 12/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse side effect of many antineoplastic agents. Patients treated with chemotherapy often report pain and paresthesias in a "glove-and-stocking" distribution. Diverse mechanisms contribute to the development and maintenance of CIPN. However, the role of spinal microglia in CIPN is not completely understood. In this study, cisplatin-treated mice displayed persistent mechanical allodynia, sensory deficits and decreased density of intraepidermal nerve fibers (IENFs). In the spinal cord, activation of microglia, but not astrocyte, was persistently observed until week five after the first cisplatin injection. Additionally, mRNA levels of inflammation related molecules including IL-1β, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and CD16, were increased after cisplatin treatment. Intraperitoneal (i.p.) or intrathecal (i.t.) injection with minocycline both alleviated cisplatin-induced mechanical allodynia and sensory deficits, and prevented IENFs loss. Furthermore, cisplatin enhanced triggering receptor expressed on myeloid cells 2 (TREM2) /DNAX-activating protein of 12 kDa (DAP12) signaling in the spinal cord microglia. The blockage of TREM2 by i.t. injecting anti-TREM2 neutralizing antibody significantly attenuated cisplatin-induced mechanical allodynia, sensory deficits and IENFs loss. Meanwhile, anti-TREM2 neutralizing antibody prominently suppressed the spinal IL-6, TNF-α, iNOS and CD16 mRNA level, but it dramatically up-regulated the anti-inflammatory cytokines IL-4 and IL-10. The data demonstrated that cisplatin triggered persistent activation of spinal cord microglia through strengthening TREM2/DAP12 signaling, which further resulted in CIPN. Functional blockage of TREM2 or inhibition of microglia both benefited for cisplatin-induced peripheral neuropathy. Microglial TREM2/DAP12 may serve as a potential target for CIPN intervention.
Collapse
Affiliation(s)
- Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen-Qiang Cui
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Xue-Ming Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Li-Xia Du
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
72
|
Abstract
BACKGROUND Physical activity and body mass predict cognition in the elderly. However, mixed evidence suggests that obesity is associated with poorer cognition, while also protecting against cognitive decline in older age. PURPOSE We investigated whether body mass independently predicted cognition in older age and whether these associations changed over time. METHODS A latent curve structural equation modeling approach was used to analyze data from a sample of aging adults (N = 8442) split into two independent subsamples, collected over 6 years. RESULTS Lower baseline Body Mass Index (BMI) and higher physical activity independently predicted greater baseline cognition (p < 0.001). Decreases in BMI and physical activity independently predicted greater decline in the slope of cognition (p < 0.001). CONCLUSIONS Our results support the obesity paradox in cognitive aging, with lower baseline body mass predicting better cognition, but less decline over time protecting against cognitive decline. We discuss how weight loss in the elderly may serve as a useful indicator of co-occurring cognitive decline, and we discuss implications for health care professionals.
Collapse
|
73
|
Pulsed Electromagnetic Fields for Postsurgical Pain Management in Women Undergoing Cesarean Section: A Randomized, Double-Blind, Placebo-controlled Trial. Clin J Pain 2017; 33:142-147. [PMID: 28060214 DOI: 10.1097/ajp.0000000000000376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate the efficacy of pulsed electromagnetic field (PEMF) in relation to reducing postoperative pain, analgesic use, and wound healing in patients undergoing Cesarean section (C-section). METHODS This randomized, double-blind, placebo-controlled trial evaluated 72 women who underwent elective C-section. Thirty-six patients were assigned to the active-PEMF and 36 to the sham-PEMF groups. The participants were asked to report their pain intensity on a Visual Analog Scale (VAS) at 2, 4, 6, 12, and 24 hours and 2, 4, and 7 days after surgery. The amount of analgesics used was recorded. The surgical site was evaluated to assess the wound-healing process on the seventh postoperative day. RESULTS Postoperative pain VAS scores were significantly lower in the active-PEMF group in all the measured periods within the early and the late postoperative periods. Fewer women in the active-PEMF group experienced severe postoperative pain within 24 hours postoperatively (36% vs. 72%, P=0.002). Analgesic use during the first 24 hours after C-section was 1.9-times lower in the active-PEMF group (1.6±0.7 vs. 3.1±1.2, P<0.001). The total analgesic use during the seventh postoperative days was 2.1-times lower in the active-PEMF group than in the sham group (1.7±0.7 vs. 3.7±1.1, P<0.001). Seven days postoperatively, patients in the active-PEMF group had better wound healing with no exudate, erythema, or edema (P=0.02). CONCLUSIONS PEMF treatment after C-section decreases postsurgical pain, analgesic use, and surgical wound exudate and edema significantly, and is associated with a high level of patient satisfaction.
Collapse
|
74
|
CXCR1/2 pathways in paclitaxel-induced neuropathic pain. Oncotarget 2017; 8:23188-23201. [PMID: 28423567 PMCID: PMC5410296 DOI: 10.18632/oncotarget.15533] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a type of neuropathic pain that represents a frequent and serious consequence of chemotherapy agents. Over the last years, significant progress has been achieved in elucidating the underlying pathogenesis of CIPN. The interference of taxanes with microtubule has been proposed as a mechanism that leads to altered axonal transport and to permanent neurological damages. The inflammatory process activated by chemotherapeutic agents has been considered as a potential trigger of nociceptive process in CIPN. In this study we investigated the effect of reparixin, an inhibitor of CXCR1/CXCR2, in suppressing the development of paclitaxel-induced nociception in rats. Moreover, reparixin activity in reversing the neurotoxic effects induced by paclitaxel or GRO/KC in F11 cells was also analyzed. Reparixin administered by continuous infusion ameliorated paclitaxel-induced mechanical and cold allodynia in rats. In F11 cells, reparixin was able to inhibit the increase of acetyladed α-tubulin induced both by paclitaxel and GRO/KC. The subsequent experiments were performed in order to dissect the signal transduction pathways under GRO/KC control, eventually modulated by paclitaxel and/or reparixin. To this aim we found that reparixin significantly counteracted p-FAK, p-JAK2/p-STAT3, and PI3K-p-cortactin activation induced either by paclitaxel or GRO/KC. Overall the present results have identified IL-8/CXCR1/2 pathway as a mechanism involved in paclitaxel-induced peripheral neuropathy. In particular, the obtained data suggest that the inhibition of CXCR1/2 combined with standard taxane therapy, in addition to potentiating the taxane anti-tumor activity can reduce chemotherapy-induced neurotoxicity, thus giving some insight for the development of novel treatments.
Collapse
|
75
|
Montague K, Malcangio M. The Therapeutic Potential of Monocyte/Macrophage Manipulation in the Treatment of Chemotherapy-Induced Painful Neuropathy. Front Mol Neurosci 2017; 10:397. [PMID: 29230166 PMCID: PMC5711788 DOI: 10.3389/fnmol.2017.00397] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/13/2017] [Indexed: 01/19/2023] Open
Abstract
In cancer treatments a dose-limiting side-effect of chemotherapeutic agents is the development of neuropathic pain, which is poorly managed by clinically available drugs at present. Chemotherapy-induced painful neuropathy (CIPN) is a major cause of premature cessation of treatment and so a greater understanding of the underlying mechanisms and the development of novel, more effective therapies, is greatly needed. In some cases, only a weak correlation between chemotherapy-induced pain and neuronal damage is observed both clinically and preclinically. As such, a critical role for non-neuronal cells, such as immune cells, and their communication with neurons in CIPN has recently been appreciated. In this mini-review, we will discuss preclinical evidence for the role of monocytes/macrophages in the periphery in CIPN, with a focus on that which is associated with the chemotherapeutic agents vincristine and paclitaxel. In addition we will discuss the potential mechanisms that regulate monocyte/macrophage–neuron crosstalk in this context. Informed by preclinical data, we will also consider the value of monocytes/macrophages as therapeutic targets for the treatment of CIPN clinically. Approaches that manipulate the signaling pathways discussed in this review show both promise and potential pitfalls. Nonetheless, they are emerging as innovative therapeutic targets with CX3CL1/R1-regulation of monocyte/macrophage–neuron communication currently emerging as a promising front-runner.
Collapse
Affiliation(s)
- Karli Montague
- Wolfson Centre for Age-Related Diseases, Guy's Hospital Campus, King's College London, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Guy's Hospital Campus, King's College London, London, United Kingdom
| |
Collapse
|
76
|
Genty J, Tetsi Nomigni M, Anton F, Hanesch U. Maternal separation stress leads to resilience against neuropathic pain in adulthood. Neurobiol Stress 2017; 8:21-32. [PMID: 29276736 PMCID: PMC5738238 DOI: 10.1016/j.ynstr.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/03/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022] Open
Abstract
Early life stress (ELS) leads to a permanent reprogramming of biochemical stress response cascades that may also be relevant for the processing of chronic pain states such as neuropathy. Despite clinical evidence, little is known about ELS-related vulnerability for neuropathic pain and the possibly underlying etiology. In the framework of experimental studies aimed at investigating the respective relationships we used the established ELS model of maternal separation (MS). Rat dams and neonates were separated for 3 h/day from post-natal day 2–12. At adulthood, noxious mechanical and thermal thresholds were assessed before and during induction of neuropathic pain by chronic constriction injury (CCI). The potential involvement of spinal glutamatergic transmission, glial cells, pro-inflammatory cytokines and growth factors was studied by using qPCR. MS per se did not modify pain thresholds. But, when exposed to neuropathic pain, MS rats exhibited a marked reduction of thermal sensitivity and a delayed development of mechanical allodynia/hyperalgesia when compared to control animals. Also, MS did not alter glucocorticoid receptor mRNA levels, but prevented the CCI-induced down-regulation of NR1 and NR2 sub-units of the NMDA receptor and of the glutamate transporter EAAT3 as observed at 21 days post-surgery. Additionally, CCI-provoked up-regulation of glial cell markers was either prevented (GFAP for astrocytes) or dampened (Iba1 for microglia) by MS. Pro-inflammatory cytokine mRNA expression was either not affected (IL-6) or reduced (IL-1β) by MS shortly after CCI. The growth factors GDNF and NGF were only slightly downregulated 4 days after CCI in the MS-treated animals. The changes in glutamatergic signaling, astroglial and cytokine activation as well as neurotrophin expression could, to some extent, explain these changes in pain behavior. Taken together, the results obtained in the described experimental conditions support the mismatch theory of chronic stress where an early life stress, rather than predisposing individuals to certain pathologies, renders them resilient.
Collapse
Affiliation(s)
- Julien Genty
- Laboratory of Neurophysiology, Institute for Health and Behavior, University of Luxembourg, 162a, avenue de la Faïencerie, L-1511, Luxembourg, Luxembourg
| | - Milène Tetsi Nomigni
- Laboratory of Neurophysiology, Institute for Health and Behavior, University of Luxembourg, 162a, avenue de la Faïencerie, L-1511, Luxembourg, Luxembourg
| | - Fernand Anton
- Laboratory of Neurophysiology, Institute for Health and Behavior, University of Luxembourg, 162a, avenue de la Faïencerie, L-1511, Luxembourg, Luxembourg
| | - Ulrike Hanesch
- Laboratory of Neurophysiology, Institute for Health and Behavior, University of Luxembourg, 162a, avenue de la Faïencerie, L-1511, Luxembourg, Luxembourg
| |
Collapse
|
77
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
78
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
79
|
Komiya H, Shimizu K, Noma N, Tsuboi Y, Honda K, Kanno K, Ohara K, Shinoda M, Ogiso B, Iwata K. Role of Neuron-Glial Interaction Mediated by IL-1β in Ectopic Tooth Pain. J Dent Res 2017; 97:467-475. [PMID: 29131694 DOI: 10.1177/0022034517741253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although many reports have demonstrated that ectopic pain develops in the orofacial region following tooth pulp inflammation, which often causes misdiagnosis and inappropriate treatment for patients with pulpitis, the precise mechanism remains unknown. In the present study, we hypothesized that the functional interaction between satellite glial cells and neurons mediated by interleukin 1β (IL-1β) in the trigeminal ganglion (TG) is involved in ectopic orofacial pain associated with tooth pulp inflammation. The digastric muscle electromyogram (D-EMG) activity elicited by capsaicin administration into the maxillary second molar tooth pulp was analyzed to evaluate the noxious reflex and was significantly increased in rats with inflammation of the maxillary first molar (M1) versus rats injected with saline. A significant increase in the expression of connexin43 (Cx43), a gap junction containing protein, was observed in activated satellite glial cells surrounding second molar-innervating neurons in the TG after M1 pulpitis. Daily administration of Gap26, a Cx43 mimetic peptide and inhibitor, in the TG significantly suppressed the enhancement of capsaicin-induced D-EMG activity and the percentage of Fluoro-Gold (FG)-labeled cells encircled by glial fibrillary acid protein-immunoreactive (IR) + Cx43-IR cells after M1 pulp inflammation ( P < 0.01). The percentage of FG-labeled cells encircled by glial fibrillary acid protein-IR + IL-1β-IR cells, IL-1 type I receptor-IR cells labeled with FG, and TRPV1-IR cells labeled with FG significantly increased after M1 pulp inflammation ( P < 0.01). Daily administration of IL-1ra, an IL-1 receptor antagonist, into the TG significantly reduced the enhancement of capsaicin-induced D-EMG activity and the percentage of TRPV1-IR neurons labeled with FG after M1 pulp inflammation ( P < 0.01). The present findings suggest that satellite glial cell is activated in the TG via activated gap junctions composed of Cx43 following tooth pulp inflammation, which leads to the hyperactivation of remote neurons via IL-1β mechanisms and results in ectopic tooth pulp pain in the adjacent tooth.
Collapse
Affiliation(s)
- H Komiya
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Shimizu
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,2 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - N Noma
- 3 Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,4 Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Y Tsuboi
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Honda
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Kanno
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - K Ohara
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - M Shinoda
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - B Ogiso
- 1 Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,2 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Iwata
- 5 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,6 Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
80
|
Gopalsamy B, Farouk AAO, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Antiallodynic and antihyperalgesic activities of zerumbone via the suppression of IL-1β, IL-6, and TNF-α in a mouse model of neuropathic pain. J Pain Res 2017; 10:2605-2619. [PMID: 29184437 PMCID: PMC5685132 DOI: 10.2147/jpr.s143024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Neuropathic pain is a debilitating condition that severely affects the quality of life for those with this pain condition, and treatment for pain relief is greatly sought-after. Zerumbone (Zer), a sesquiterpene compound isolated from the rhizomes of a Southeast Asian ginger plant, Zingiber zerumbet (L.) Roscoe ex Smith. (Zingiberaceae), showed antinociceptive and antiinflammatory properties when previously tested on models of nociception and inflammation. Objective This study investigated the effects of prophylactic administration of zerumbone on allodynia and hyperalgesia in a mouse model of chronic constriction injury (CCI)-induced neuropathic pain. Methods Intraperitoneal administration of Zer (5–50 mg/kg) from day 1 post-surgery was carried out to identify the onset and progression of the pain condition. Responses toward mechanical and cold allodynia, and mechanical and thermal hyperalgesia were assessed on days 3, 5, 7, 9, 11, and 14 post-surgery. Blood plasma and spinal cord levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and IL-10 were screened using enzyme-linked immunosorbent assay on day 15. Results Zer (10 and 50 mg/kg) attenuated pain symptoms on all days of behavioral testing without any signs of sedation in the rotarod test. ED50 values for mechanical allodynia, cold allodynia, thermal hyperalgesia, and mechanical hyperalgesia were 9.25, 9.507, 8.289, and 9.801 mg/kg, respectively. Blood plasma and spinal levels of IL-1β, IL-6, and tumor necrosis factor-α but not IL-10 were significantly (p<0.05) suppressed by zer treatment. Discussion and conclusion Zer exhibits its antiallodynic and antihyperalgesic properties via reduced sensitization at nociceptor neurons possibly through the suppression of inflammatory mediators. Zer may prove to be a novel and beneficial alternative for the management of neuropathic pain.
Collapse
Affiliation(s)
- Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tengku Azam Shah Tengku Mohamad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
81
|
Thabet AAEM, Elsodany AM, Battecha KH, Alshehri MA, Refaat B. High-intensity laser therapy versus pulsed electromagnetic field in the treatment of primary dysmenorrhea. J Phys Ther Sci 2017; 29:1742-1748. [PMID: 29184281 PMCID: PMC5684002 DOI: 10.1589/jpts.29.1742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/28/2017] [Indexed: 01/22/2023] Open
Abstract
[Purpose] To determine the efficacy of high intensity laser therapy (HILT) versus pulsed electromagnetic field (PEMF) in the treatment of primary dysmenorrhea. [Subjects and Methods] This was a randomized clinical trial that included 52 girls diagnosed with primary dysmenorrhea and who were assigned randomly into two groups of equal numbers. The treatment was three sessions every cycle for three consecutive cycles where group (A) included those participants treated with HILT 15 min/session and group (B) those who were treated with PEMF 30 min/session. All patients were evaluated before starting the treatment as well as after the end of treatment by present pain intensity scale and the prostaglandin level in blood and pain relief scale at the end of treatment for both groups. [Results] The results showed a significant decrease in the severity of pain, statistically significant decrease in prostaglandin level in blood, and a statistically significant pain alleviation in both groups. With comparison between both groups there was a statistically significant decrease in the severity of pain, significant decrease in the blood levels of PGF2α, in group (A) than group (B). [Conclusion] Both HILT and PEMF are effective in the treatment of primary dysmenorrhea with HILT being superior to PEMF.
Collapse
Affiliation(s)
- Ali Abd El-Monsif Thabet
- Department of Physical Therapy for Obstetrics and Gynaecology, Faculty of Physical Therapy, Cairo University, Egypt
| | - Ahmed Mohamed Elsodany
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University: 7 Ahmed Elziat Street from Eltahrir Street, Dokki, Giza, Egypt
| | - Kadrya H Battecha
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University: 7 Ahmed Elziat Street from Eltahrir Street, Dokki, Giza, Egypt
| | | | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Saudi Arabia
| |
Collapse
|
82
|
Huang PC, Tsai KL, Chen YW, Lin HT, Hung CH. Exercise Combined With Ultrasound Attenuates Neuropathic Pain in Rats Associated With Downregulation of IL-6 and TNF-α, but With Upregulation of IL-10. Anesth Analg 2017; 124:2038-2044. [PMID: 28319508 DOI: 10.1213/ane.0000000000001600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
83
|
Kwon SG, Roh DH, Yoon SY, Choi SR, Choi HS, Moon JY, Kang SY, Beitz AJ, Lee JH. Involvement of peripheral P2Y1 receptors and potential interaction with IL-1 receptors in IL-1β-induced thermal hypersensitivity in rats. Brain Res Bull 2017; 130:165-172. [DOI: 10.1016/j.brainresbull.2017.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
|
84
|
Levin SG, Godukhin OV. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:264-274. [PMID: 28320267 DOI: 10.1134/s000629791703004x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After accumulation of data showing that resident brain cells (neurons, astrocytes, and microglia) produce mediators of the immune system, such as cytokines and their receptors under normal physiological conditions, a critical need emerged for investigating the role of these mediators in cognitive processes. The major problem for understanding the functional role of cytokines in the mechanisms of synaptic plasticity, de novo neurogenesis, and learning and memory is the small number of investigated cytokines. Existing concepts are based on data from just three proinflammatory cytokines: interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha. The amount of information in the literature on the functional role of antiinflammatory cytokines in the mechanisms of synaptic plasticity and cognitive functions of mature mammalian brain is dismally low. However, they are of principle importance for understanding the mechanisms of local information processing in the brain, since they modulate the activity of individual cells and local neural networks, being able to reconstruct the processes of synaptic plasticity and intercellular communication, in general, depending on the local ratio of the levels of different cytokines in certain areas of the brain. Understanding the functional role of cytokines in cellular mechanisms of information processing and storage in the brain would allow developing preventive and therapeutic means for the treatment of neuropathologies related to impairment of these mechanisms.
Collapse
Affiliation(s)
- S G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
85
|
Role of the NLRP3 inflammasome in a model of acute burn-induced pain. Burns 2017; 43:304-309. [DOI: 10.1016/j.burns.2016.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/11/2016] [Accepted: 09/01/2016] [Indexed: 12/28/2022]
|
86
|
Tsai KL, Huang PC, Wang LK, Hung CH, Chen YW. Incline treadmill exercise suppresses pain hypersensitivity associated with the modulation of pro-inflammatory cytokines and anti-inflammatory cytokine in rats with peripheral nerve injury. Neurosci Lett 2017; 643:27-31. [PMID: 28215879 DOI: 10.1016/j.neulet.2017.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
We aimed to investigate the impact of 3 weeks of incline treadmill exercise (TE) on withdrawal responses elicited by thermal and mechanical stimuli, and on anti-inflammatory cytokine (interleukin-10, IL-10) and pro-inflammatory cytokines (IL-6 and tumor necrosis factor-alpha [TNF-α]) expression in the sciatic nerve of rats underwent chronic constriction injury (CCI). Group 1 received a sham-operation where the sciatic nerve was exposed but not ligated, while Group 2 underwent a sham-operation followed by exercising on an 8%-incline treadmill (TE8). Group 3 underwent only the CCI procedure, and Groups 4 and 5 underwent the CCI procedure followed by exercising on an 0%-incline treadmill (TE0) and TE8, respectively. Mechanical and thermal sensitivity and protein expression of IL-10, IL-6 and TNF-α were evaluated on postoperative days 12 and 26. Among the five groups, Group 5 displayed the least weight gain. Compared with Group 3, Group 5 had smaller decreases in mechanical withdrawal thresholds and heat withdrawal latencies. The CCI rats who received TE at 8% incline showed the downregulation of TNF-α and IL-6 in their sciatic nerves on postoperative days 12 and 26, as was found in the Group 3 rats. TE at 8% incline also prevented the downregulation of IL-10 in their sciatic nerves on postoperative day 12. The results demonstrated that increased incline improves the anti-nociceptive effects of treadmill running. Inclined exercise reduces the levels of pro-inflammatory cytokines and increases the level of an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ching Huang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Kai Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Health Care, China Medical University, Taichung, Taiwan.
| |
Collapse
|
87
|
Ambrogini P, Betti M, Galati C, Di Palma M, Lattanzi D, Savelli D, Galli F, Cuppini R, Minelli A. α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions. Int J Mol Sci 2016; 17:E2107. [PMID: 27983697 PMCID: PMC5187907 DOI: 10.3390/ijms17122107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity is an "umbrella term" referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Claudia Galati
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michael Di Palma
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Andrea Minelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| |
Collapse
|
88
|
Therapeutic Ultrasound and Treadmill Training Suppress Peripheral Nerve Injury-Induced Pain in Rats. Phys Ther 2016; 96:1545-1553. [PMID: 27126126 DOI: 10.2522/ptj.20140379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/24/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Although evidence suggests that therapeutic ultrasound (TU) in combination with treadmill training (TT) suppresses nerve injury-associated pain, the molecular mechanisms for this action are not clear. OBJECTIVE The purpose of this research was to study the possible beneficial effects of TU and TT, alone and in combination, on 2 clinical indicators of neuropathic pain and correlate these findings with changes in inflammatory mediators within the spinal cord. Our experimental model used the well-known chronic constriction injury (CCI) of the rat sciatic nerve. DESIGN This was an experimental study. METHODS Each group contained 10 rats. Group 1 underwent only the CCI procedure. Group 2 underwent a sham operation where the sciatic nerve was exposed but not ligated. Group 3 had the sham operation followed by both TT and TU. Groups 4, 5, and 6 underwent the CCI procedure followed by TT alone, TU alone, and both the TT and TU interventions, respectively. Heat and mechanical sensitivity, interleukin-6 (IL-6), interleukin-10 (IL-10), and ionized calcium binding adaptor molecule 1 (Iba1) were evaluated. RESULTS Compared with group 1 animals, TT or TU, or both, produced smaller decreases in mechanical withdrawal threshold and heat withdrawal latencies. The combination of TT and TU was more effective than either treatment alone. In addition, rats that received these treatments did not express the upregulation of IL-6 and Iba1 in their spinal cords on postoperative days 14 and 28, as was found in the group 1 animals. LIMITATIONS These experimental findings may not be generalizable to humans. CONCLUSIONS The combination of TU and TT reduces neuropathic pain more than either modality alone. This beneficial effect appears related to downregulation of proinflammatory IL-6 and Iba1, while upregulating the anti-inflammatory IL-10.
Collapse
|
89
|
Abstract
Fibromyalgia is a disorder that is part of a spectrum of syndromes that lack precise classification. It is often considered as part of the global overview of functional somatic syndromes that are otherwise medically unexplained or part of a somatization disorder. Patients with fibromyalgia share symptoms with other functional somatic problems, including issues of myalgias, arthralgias, fatigue and sleep disturbances. Indeed, there is often diagnostic and classification overlap for the case definitions of a variety of somatization disorders. Fibromyalgia, however, is a critically important syndrome for physicians and scientists to be aware of. Patients should be taken very seriously and provided optimal care. Although inflammatory, infectious, and autoimmune disorders have all been ascribed to be etiological events in the development of fibromyalgia, there is very little data to support such a thesis. Many of these disorders are associated with depression and anxiety and may even be part of what has been sometimes called affected spectrum disorders. There is no evidence that physical trauma, i.e., automobile accidents, is associated with the development or exacerbation of fibromyalgia. Treatment should be placed on education, patient support, physical therapy, nutrition, and exercise, including the use of drugs that are approved for the treatment of fibromyalgia. Treatment should not include opiates and patients should not become poly pharmacies in which the treatment itself can lead to significant morbidities. Patients with fibromyalgia are living and not dying of this disorder and positive outlooks and family support are key elements in the management of patients.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| |
Collapse
|
90
|
Lebonville CL, Jones ME, Hutson LW, Cooper LB, Fuchs RA, Lysle DT. Acquisition of heroin conditioned immunosuppression requires IL-1 signaling in the dorsal hippocampus. Brain Behav Immun 2016; 56:325-34. [PMID: 27072068 PMCID: PMC4917416 DOI: 10.1016/j.bbi.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022] Open
Abstract
Opioid users experience increased incidence of infection, which may be partially attributable to both direct opiate-immune interactions and conditioned immune responses. Previous studies have investigated the neural circuitry governing opioid conditioned immune responses, but work remains to elucidate the mechanisms mediating this effect. Our laboratory has previously shown that hippocampal IL-1 signaling, specifically, is required for the expression of heroin conditioned immunosuppression following learning. The current studies were designed to further characterize the role of hippocampal IL-1 in this phenomenon by manipulating IL-1 during learning. Experiment 1 tested whether hippocampal IL-1 is also required for the acquisition of heroin conditioned immunosuppression, while Experiment 2 tested whether hippocampal IL-1 is required for the expression of unconditioned heroin immunosuppression. We found that blocking IL-1 signaling in the dorsal hippocampus with IL-1RA during each conditioning session, but not on interspersed non-conditioning days, significantly attenuated the acquisition of heroin conditioned immunosuppression. Strikingly, we found that the same IL-1RA treatment did not alter unconditioned immunosuppression to a single dose of heroin. Thus, IL-1 signaling is not a critical component of the response to heroin but rather may play a role in the formation of the association between heroin and the context. Collectively, these studies suggest that IL-1 signaling, in addition to being involved in the expression of a heroin conditioned immune response, is also involved in the acquisition of this effect. Importantly, this effect is likely not due to blocking the response to the unconditioned stimulus since IL-1RA did not affect heroin's immunosuppressive effects.
Collapse
Affiliation(s)
- Christina L Lebonville
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Meghan E Jones
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Lee W Hutson
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Letty B Cooper
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Rita A Fuchs
- Washington State University College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, PO Box 647620, Pullman, WA 99164-7620, USA
| | - Donald T Lysle
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA.
| |
Collapse
|
91
|
Peila E, D’Agata F, Caroppo P, Orsi L, Mortara P, Cauda S, Manfredi M, Caglio M, Fenoglio P, Baudino B, Castellano G, Bisi G, Pinessi L, Gallone S. Chemotherapy-Induced Neurotoxicity: Evidence of a Protective Role of CC Homozygosis in the Interleukin-1β Gene-511 C>T Polymorphism. Neurotox Res 2016; 30:521-9. [DOI: 10.1007/s12640-016-9637-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/16/2016] [Accepted: 05/28/2016] [Indexed: 12/26/2022]
|
92
|
Role of BKCa Potassium Channels in the Mechanisms of Modulatory Effects of IL-10 on Hypoxia-Induced Changes in Activity of Hippocampal Neurons. Bull Exp Biol Med 2016; 160:643-5. [DOI: 10.1007/s10517-016-3238-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 10/22/2022]
|
93
|
Pohóczky K, Kun J, Szalontai B, Szőke É, Sághy É, Payrits M, Kajtár B, Kovács K, Környei JL, Garai J, Garami A, Perkecz A, Czeglédi L, Helyes Z. Estrogen-dependent up-regulation of TRPA1 and TRPV1 receptor proteins in the rat endometrium. J Mol Endocrinol 2016; 56:135-49. [PMID: 26643912 DOI: 10.1530/jme-15-0184] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 01/15/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly in sensory nerves are activated by inflammatory stimuli and mediate inflammation and pain. Although they have been shown in the human endometrium, their regulation and function are unknown. Therefore, we investigated their estrogen- and progesterone-dependent alterations in the rat endometrium in comparison with the estrogen-regulated inflammatory cytokine macrophage migration inhibitory factor (MIF). Four-week-old (sexually immature) and four-month-old (sexually mature) female rats were treated with the non-selective estrogen receptor (ER) agonist diethylstilboestrol (DES), progesterone and their combination, or ovariectomized. RT-PCR and immunohistochemistry were performed to determine mRNA and protein expression levels respectively. Channel function was investigated with ratiometric [Ca(2+)]i measurement in cultured primary rat endometrial cells. Both TRP receptors and MIF were detected in the endometrium at mRNA and protein levels, and their localizations were similar. Immunostaining was observed in the immature epithelium, while stromal, glandular and epithelial positivity were observed in adults. Functionally active TRP receptor proteins were shown in endometrial cells by activation-induced calcium influx. In adults, Trpa1 and Trpv1 mRNA levels were significantly up-regulated after DES treatment. TRPA1 increased after every treatment, but TRPV1 remained unchanged following the combined treatment and ovariectomy. In immature rats, DES treatment resulted in increased mRNA expression of both channels and elevated TRPV1 immunopositivity. MIF expression changed in parallel with TRPA1/TRPV1 in most cases. DES up-regulated Trpa1, Trpv1 and Mif mRNA levels in endometrial cell cultures, but 17β-oestradiol having ERα-selective potency increased only the expression of Trpv1. We provide the first evidence for TRPA1/TRPV1 expression and their estrogen-induced up-regulation in the rat endometrium in correlation with the MIF.
Collapse
Affiliation(s)
- Krisztina Pohóczky
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - József Kun
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and Ger
| | - Bálint Szalontai
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Éva Szőke
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and Ger
| | - Éva Sághy
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Maja Payrits
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Béla Kajtár
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Krisztina Kovács
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - József László Környei
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - János Garai
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - András Garami
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Anikó Perkecz
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Levente Czeglédi
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and Ger
| |
Collapse
|
94
|
Black B, Granja-Vazquez R, Johnston BR, Jones E, Romero-Ortega M. Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model. PLoS One 2016; 11:e0144268. [PMID: 26760033 PMCID: PMC4712049 DOI: 10.1371/journal.pone.0144268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
Anecdotal and clinical reports have suggested that radio-frequency electromagnetic fields (RF EMFs) may serve as a trigger for neuropathic pain. However, these reports have been widely disregarded, as the epidemiological effects of electromagnetic fields have not been systematically proven, and are highly controversial. Here, we demonstrate that anthropogenic RF EMFs elicit post-neurotomy pain in a tibial neuroma transposition model. Behavioral assays indicate a persistent and significant pain response to RF EMFs when compared to SHAM surgery groups. Laser thermometry revealed a transient skin temperature increase during stimulation. Furthermore, immunofluorescence revealed an increased expression of temperature sensitive cation channels (TRPV4) in the neuroma bulb, suggesting that RF EMF-induced pain may be due to cytokine-mediated channel dysregulation and hypersensitization, leading to thermal allodynia. Additional behavioral assays were performed using an infrared heating lamp in place of the RF stimulus. While thermally-induced pain responses were observed, the response frequency and progression did not recapitulate the RF EMF effects. In vitro calcium imaging experiments demonstrated that our RF EMF stimulus is sufficient to directly contribute to the depolarization of dissociated sensory neurons. Furthermore, the perfusion of inflammatory cytokine TNF-α resulted in a significantly higher percentage of active sensory neurons during RF EMF stimulation. These results substantiate patient reports of RF EMF-pain, in the case of peripheral nerve injury, while confirming the public and scientific consensus that anthropogenic RF EMFs engender no adverse sensory effects in the general population.
Collapse
Affiliation(s)
- Bryan Black
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, United States of America
| | - Rafael Granja-Vazquez
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, United States of America
| | - Benjamin R. Johnston
- Alpert Medical School, Brown University, 222 Richmond St., Providence, RI, 02903, United States of America
| | - Erick Jones
- Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at Arlington, 500 West 1st St., Arlington, TX, 76019, United States of America
| | - Mario Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, United States of America
- * E-mail:
| |
Collapse
|
95
|
Block L. Glial dysfunction and persistent neuropathic postsurgical pain. Scand J Pain 2016; 10:74-81. [PMID: 28361776 DOI: 10.1016/j.sjpain.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Acute pain in response to injury is an important mechanism that serves to protect living beings from harm. However, persistent pain remaining long after the injury has healed serves no useful purpose and is a disabling condition. Persistent postsurgical pain, which is pain that lasts more than 3 months after surgery, affects 10-50% of patients undergoing elective surgery. Many of these patients are affected by neuropathic pain which is characterised as a pain caused by lesion or disease in the somatosensory nervous system. When established, this type of pain is difficult to treat and new approaches for prevention and treatment are needed. A possible contributing mechanism for the transition from acute physiological pain to persistent pain involves low-grade inflammation in the central nervous system (CNS), glial dysfunction and subsequently an imbalance in the neuron-glial interaction that causes enhanced and prolonged pain transmission. AIM This topical review aims to highlight the contribution that inflammatory activated glial cell dysfunction may have for the development of persistent pain. METHOD Relevant literature was searched for in PubMed. RESULTS Immediately after an injury to a nerve ending in the periphery such as in surgery, the inflammatory cascade is activated and immunocompetent cells migrate to the site of injury. Macrophages infiltrate the injured nerve and cause an inflammatory reaction in the nerve cell. This reaction leads to microglia activation in the central nervous system and the release of pro-inflammatory cytokines that activate and alter astrocyte function. Once the astrocytes and microglia have become activated, they participate in the development, spread, and potentiation of low-grade neuroinflammation. The inflammatory activated glial cells exhibit cellular changes, and their communication to each other and to neurons is altered. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocyte dysfunction can be experimentally restored using the combined actions of a μ-opioid receptor agonist, a μ-opioid receptor antagonist, and an anti-epileptic agent. To find these agents we searched the literature for substances with possible anti-inflammatory properties that are usually used for other purposes in medicine. Inflammatory induced glial cell dysfunction is restorable in vitro by a combination of endomorphine-1, ultralow doses of naloxone and levetiracetam. Restoring inflammatory-activated glial cells, thereby restoring astrocyte-neuron interaction has the potential to affect pain transmission in neurons. CONCLUSION Surgery causes inflammation at the site of injury. Peripheral nerve injury can cause low-grade inflammation in the CNS known as neuroinflammation. Low-grade neuroinflammation can cause an imbalance in the glial-neuron interaction and communication. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocytic dysfunction can be restored in vitro by a combination of endomorphin-1, ultralow doses of naloxone and levetiracetam. This restoration is essential for the interaction between astrocytes and neurons and hence also for modulation of synaptic pain transmission. IMPLICATIONS Larger studies in clinical settings are needed before these findings can be applied in a clinical context. Potentially, by targeting inflammatory activated glial cells and not only neurons, a new arena for development of pharmacological agents for persistent pain is opened.
Collapse
Affiliation(s)
- Linda Block
- Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
96
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
97
|
Cytokines as Mediators of Pain-Related Process in Breast Cancer. Mediators Inflamm 2015; 2015:129034. [PMID: 26635447 PMCID: PMC4655288 DOI: 10.1155/2015/129034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 12/23/2022] Open
Abstract
Pain is a clinical sign of inflammation found in a wide variety of chronic pathologies, including cancer. The occurrence of pain in patients carrying breast tumors is reported and is associated with aspects concerning disease spreading, treatment, and surgical intervention. The persistence of pain in patients submitted to breast surgery is estimated in a range from 21% to 55% and may affect patients before and after surgery. Beyond the physical compression exerted by the metastatic mass expansion and tissue injury found in breast cancer, inflammatory components that are significantly produced by the host-tumor interaction can significantly contribute to the generation of pain. In this context, cytokines have been studied aiming to establish a cause-effect relationship in cancer pain-related syndromes, especially the proinflammatory ones. Few reports have investigated the relationship between pain and cytokines in women carrying advanced breast cancer. In this scenario, the present review analyzes the main cytokines produced in breast cancer and discusses the evidences from literature regarding its role in specific clinical features related with this pathology.
Collapse
|
98
|
Hammell DC, Zhang LP, Ma F, Abshire SM, McIlwrath SL, Stinchcomb AL, Westlund KN. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur J Pain 2015; 20:936-48. [PMID: 26517407 DOI: 10.1002/ejp.818] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Current arthritis treatments often have side-effects attributable to active compounds as well as route of administration. Cannabidiol (CBD) attenuates inflammation and pain without side-effects, but CBD is hydrophobic and has poor oral bioavailability. Topical drug application avoids gastrointestinal administration, first pass metabolism, providing more constant plasma levels. METHODS This study examined efficacy of transdermal CBD for reduction in inflammation and pain, assessing any adverse effects in a rat complete Freund's adjuvant-induced monoarthritic knee joint model. CBD gels (0.6, 3.1, 6.2 or 62.3 mg/day) were applied for 4 consecutive days after arthritis induction. Joint circumference and immune cell invasion in histological sections were measured to indicate level of inflammation. Paw withdrawal latency (PWL) in response to noxious heat stimulation determined nociceptive sensitization, and exploratory behaviour ascertained animal's activity level. RESULTS Measurement of plasma CBD concentration provided by transdermal absorption revealed linearity with 0.6-6.2 mg/day doses. Transdermal CBD gel significantly reduced joint swelling, limb posture scores as a rating of spontaneous pain, immune cell infiltration and thickening of the synovial membrane in a dose-dependent manner. PWL recovered to near baseline level. Immunohistochemical analysis of spinal cord (CGRP, OX42) and dorsal root ganglia (TNFα) revealed dose-dependent reductions of pro-inflammatory biomarkers. Results showed 6.2 and 62 mg/day were effective doses. Exploratory behaviour was not altered by CBD indicating limited effect on higher brain function. CONCLUSIONS These data indicate that topical CBD application has therapeutic potential for relief of arthritis pain-related behaviours and inflammation without evident side-effects.
Collapse
Affiliation(s)
- D C Hammell
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536-0082, USA
| | - L P Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - F Ma
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - S M Abshire
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - S L McIlwrath
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - A L Stinchcomb
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536-0082, USA
| | - K N Westlund
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| |
Collapse
|
99
|
Cheng XL, Liu HQ, Wang Q, Huo JG, Wang XN, Cao P. Chemotherapy-induced peripheral neurotoxicity and complementary and alternative medicines: progress and perspective. Front Pharmacol 2015; 6:234. [PMID: 26557088 PMCID: PMC4615942 DOI: 10.3389/fphar.2015.00234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe and dose-limiting side effect of antineoplastic drugs. It can cause sensory, motor and autonomic system dysfunction, and ultimately force patients to discontinue chemotherapy. Until now, little is understood about CIPN and no consistent caring standard is available. Since CIPN is a multifactorial disease, the clinical efficacy of single pharmacological drugs is disappointing, prompting patients to seek alternative treatment options. Complementary and alternative medicines (CAMs), especially herbal medicines, are well known for their multifaceted implications and widely used in human health care. Up to date, several phytochemicals, plant extractions, and herbal formulas have been evaluated for their potential therapeutic benefit of preventing the onset and progression of CIPN in experimental models. Clinical acupuncture has also been shown to improve CIPN symptoms. In this review, we will give an outline of our current knowledge regrading the advanced research of CIPN, the role of CAMs in alleviating CIPN and possible lacunae in research that needs to be addressed.
Collapse
Affiliation(s)
- Xiao L Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China ; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing, China
| | - Hong Q Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Qi Wang
- Jiangsu Shenlong Pharmaceutical Co., Ltd. Yancheng, China
| | - Jie G Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Xiao N Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, China ; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing, China
| |
Collapse
|
100
|
Srivastava A, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Clin Chim Acta 2015; 452:1-9. [PMID: 26506013 DOI: 10.1016/j.cca.2015.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
There is a need to develop innovative therapeutic strategies to counteract epilepsy, a common disabling neurological disorder. Despite the recent advent of additional antiepileptic drugs and respective surgery, the treatment of epilepsy remains a major challenge. The available therapies are largely based on symptoms, and these approaches do not affect the underlying disease processes and are also associated frequently with severe side effects. This is mainly because of the lack of well-defined targets in epilepsy. The discovery that inflammatory mediators significantly contribute to the onset and recurrence of seizures in experimental seizure models, as well as the presence of inflammatory molecules in human epileptogenic tissue, highlights the possibility of targeting specific inflammation related pathways to control seizures that are otherwise resistant to the available AEDs. Emerging studies suggest that miRNAs have a significant role in regulating inflammatory pathways shown to be involved in epilepsy. These miRNAs can possibly be used as novel therapeutic targets in the treatment of epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. This review highlights the immunological features underlying the pathogenesis of epileptic seizures and the possible miRNA mediated approaches for drug resistant epilepsies that modulate the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Arpna Srivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|