51
|
miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol 2013; 29:239-57. [PMID: 23903816 DOI: 10.1007/s10565-013-9250-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The main aim of this study was to evaluate whether microRNA (miRNA) profiling could be a useful tool for in vitro developmental neurotoxicity (DNT) testing. Therefore, to identify the possible DNT biomarkers among miRNAs, we have studied the changes in miRNA expressions in a mixed neuronal/glial culture derived from carcinoma pluripotent stem cells (NT2 cell line) after exposure to methyl mercury chloride (MeHgCl) during the process of neuronal differentiation (2-36 days in vitro (DIV1)). The neuronal differentiation triggered by exposure to retinoic acid (RA) was characterized in the control culture by mRNA expression analysis of neuronal specific markers such as MAP2, NF-200, Tubulin βIII, MAPT-tau, synaptophysin as well as excitatory (NMDA, AMPA) and inhibitory (GABA) receptors. The results obtained from the miRNA expression analysis have identified the presence of a miRNA signature which is specific for neural differentiation in the control culture and another for the response to MeHgCl-induced toxicity. In differentiated neuronal control cultures, we observed the downregulation of the stemness phenotype-linked miR-302 cluster and the overexpression of several miRNAs specific for neuronal differentiation (e.g. let-7, miR-125b and miR-132). In the cultures exposed to MeHgCl (400 nM), we observed an overexpression of a signature composed of five miRNAs (miR-302b, miR-367, miR-372, miR-196b and miR-141) that are known to be involved in the regulation of developmental processes and cellular stress response mechanisms. Using gene ontology term and pathway enrichment analysis of the validated targets of the miRNAs deregulated by the toxic treatment, the possible effect of MeHgCl exposure on signalling pathways involved in axon guidance and learning and memory processes was revealed. The obtained data suggest that miRNA profiling could provide simplified functional evaluation of the toxicity pathways involved in developmental neurotoxicity in comparison with the transcriptomics studies.
Collapse
|
52
|
Skeletal muscle calpain acts through nitric oxide and neural miRNAs to regulate acetylcholine release in motor nerve terminals. J Neurosci 2013; 33:7308-7324. [PMID: 23616539 DOI: 10.1523/jneurosci.0224-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cholinergic overactivity in diseases of neuromuscular transmission elicits a retrograde signal resembling homeostatic synaptic plasticity that downregulates transmitter release. Understanding this compensatory pathway could provide insights into novel therapeutic avenues and molecular mechanisms underlying learning and memory. Here we identify nitric oxide as a possible source of this signal in pathological human and mouse muscle samples and link this signaling pathway to changes in synaptic function in the neuromuscular junction. We further show that neuronal nitric oxide synthase is regulated by cholinergic excess through activation of skeletal muscle calpain and its effect on Cdk5 and CaMKII, leading to direct modulation of presynaptic function. Finally, we show that this signaling pathway acts through specific miRNA control of presynaptic vesicle protein expression. The control of presynaptic miRNA levels by postsynaptic activity represents a novel mechanism for the modulation of synaptic activity in normal or pathological conditions.
Collapse
|
53
|
Siew WH, Tan KL, Babaei MA, Cheah PS, Ling KH. MicroRNAs and intellectual disability (ID) in Down syndrome, X-linked ID, and Fragile X syndrome. Front Cell Neurosci 2013; 7:41. [PMID: 23596395 PMCID: PMC3625835 DOI: 10.3389/fncel.2013.00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/27/2013] [Indexed: 01/01/2023] Open
Abstract
Intellectual disability (ID) is one of the many features manifested in various genetic syndromes leading to deficits in cognitive function among affected individuals. ID is a feature affected by polygenes and multiple environmental factors. It leads to a broad spectrum of affected clinical and behavioral characteristics among patients. Until now, the causative mechanism of ID is unknown and the progression of the condition is poorly understood. Advancement in technology and research had identified various genetic abnormalities and defects as the potential cause of ID. However, the link between these abnormalities with ID is remained inconclusive and the roles of many newly discovered genetic components such as non-coding RNAs have not been thoroughly investigated. In this review, we aim to consolidate and assimilate the latest development and findings on a class of small non-coding RNAs known as microRNAs (miRNAs) involvement in ID development and progression with special focus on Down syndrome (DS) and X-linked ID (XLID) [including Fragile X syndrome (FXS)].
Collapse
Affiliation(s)
- Wei-Hong Siew
- NeuroBiology and Genetics Group, Genetic Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM Serdang, Malaysia ; Clinical Genetics Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM Serdang, Malaysia
| | | | | | | | | |
Collapse
|
54
|
MicroRNAs in Cerebral Ischemia. Stroke Res Treat 2013; 2013:276540. [PMID: 23533957 PMCID: PMC3606790 DOI: 10.1155/2013/276540] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/09/2013] [Accepted: 01/24/2013] [Indexed: 01/08/2023] Open
Abstract
The risk of ischemic stroke increases substantially with age, making it the third leading cause of death and the leading cause of long-term disability in the world. Numerous studies demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. Current studies found that microRNAs (miRNAs or miRs) are also closely related to the pathological process of stroke. miRNAs are a group of short, noncoding RNA molecules playing important role in posttranscriptional regulation of gene expression and they have emerged as regulators of ischemic preconditioning and ischemic postconditioning. Here we give an overview of the expression and function of miRNAs in the brain, miRNAs as biomarkers during cerebral ischemia, and clinical applications and limitations of miRNAs. Future prospects of miRNAs are also discussed.
Collapse
|
55
|
Ganguli S, Das SG, Chakraborty HJ, Gupta S, Datta A. Identification of regulatory sequence signatures in microRNA precursors implicated in neurological disorders. ADVANCES IN BIOSCIENCE AND BIOTECHNOLOGY 2013; 04:26-33. [DOI: 10.4236/abb.2013.45a003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
56
|
Waters PS, McDermott AM, Wall D, Heneghan HM, Miller N, Newell J, Kerin MJ, Dwyer RM. Relationship between circulating and tissue microRNAs in a murine model of breast cancer. PLoS One 2012; 7:e50459. [PMID: 23226290 PMCID: PMC3511577 DOI: 10.1371/journal.pone.0050459] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
MiRNAs are key regulators of tumorigenesis that are aberrantly expressed in the circulation and tissue of patients with cancer. The aim of this study was to determine whether miRNA dysregulation in the circulation reflected similar changes in tumour tissue. Athymic nude mice (n = 20) received either a mammary fat pad (n = 8, MFP), or subcutaneous (n = 7, SC) injection of MDA-MB-231 cells. Controls received no tumour cells (n = 5). Tumour volume was monitored weekly and blood sampling performed at weeks 1, 3 and 6 following tumour induction (total n = 60). Animals were sacrificed at week 6 and tumour tissue (n = 15), lungs (n = 20) and enlarged lymph nodes (n = 3) harvested. MicroRNAs were extracted from all samples (n = 98) and relative expression quantified using RQ-PCR. MiR-221 expression was significantly increased in tumour compared to healthy tissue (p<0.001). MiR-10b expression was significantly higher in MFP compared to SC tumours (p<0.05), with the highest levels detected in diseased lymph nodes (p<0.05). MiR-10b was undetectable in the circulation, with no significant change in circulating miR-221 expression detected during disease progression. MiR-195 and miR-497 were significantly decreased in tumour tissue (p<0.05), and also in the circulation of animals 3 weeks following tumour induction (p<0.05). At both tissue and circulating level, a positive correlation was observed between miR-497 and miR-195 (r = 0.61, p<0.001; r = 0.41, p<0.01 respectively). This study highlights the distinct roles of miRNAs in circulation and tissue. It also implicates miRNAs in disease dissemination and progression, which may be important in systemic therapy and biomarker development.
Collapse
Affiliation(s)
- Peadar S. Waters
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ailbhe M. McDermott
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Deirdre Wall
- HRB Clinical Research Facility, National University of Galway, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Galway, Galway, Ireland
| | - Helen M. Heneghan
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - John Newell
- HRB Clinical Research Facility, National University of Galway, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Galway, Galway, Ireland
| | - Michael J. Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Roisin M. Dwyer
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
57
|
Kucherenko MM, Barth J, Fiala A, Shcherbata HR. Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J 2012; 31:4511-23. [PMID: 23160410 PMCID: PMC3545287 DOI: 10.1038/emboj.2012.298] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/17/2012] [Indexed: 01/12/2023] Open
Abstract
Mammalian neuronal stem cells produce multiple neuron types in the course of an individual's development. Similarly, neuronal progenitors in the Drosophila brain generate different types of closely related neurons that are born at specific time points during development. We found that in the post-embryonic Drosophila brain, steroid hormones act as temporal cues that specify the cell fate of mushroom body (MB) neuroblast progeny. Chronological regulation of neurogenesis is subsequently mediated by the microRNA (miRNA) let-7, absence of which causes learning impairment due to morphological MB defects. The miRNA let-7 is required to regulate the timing of α'/β' to α/β neuronal identity transition by targeting the transcription factor Abrupt. At a cellular level, the ecdysone-let-7-Ab signalling pathway controls the expression levels of the cell adhesion molecule Fasciclin II in developing neurons that ultimately influences their differentiation. Our data propose a novel role for miRNAs as transducers between chronologically regulated developmental signalling and physical cell adhesion.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | | | |
Collapse
|
58
|
Dicer is required for proliferation, viability, migration and differentiation in corticoneurogenesis. Neuroscience 2012; 223:285-95. [PMID: 22898830 DOI: 10.1016/j.neuroscience.2012.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/17/2012] [Accepted: 08/04/2012] [Indexed: 11/21/2022]
Abstract
In mice, microRNAs (miRNAs) are required for embryonic viability, and previous reports implicate miRNA participation in brain cortical neurogenesis. Here, we provide a more comprehensive analysis of miRNA involvement in cortical brain development. To accomplish this we used mice in which Dicer, the RNase III enzyme necessary for canonical miRNA biogenesis, is depleted from Nestin-expressing progenitors and progeny cells. We systematically assessed how Dicer depletion impacts proliferation, cell death, migration and differentiation in the developing brain. Using markers for proliferation and in vivo labeling with thymidine analogs, we found reduced numbers of proliferating cells, and altered cell cycle kinetics from embryonic day 15.5 (E15.5). Progenitor cells were distributed aberrantly throughout the cortex rather than restricted to the ventricular and subventricular zones. Activated Caspase3 was elevated, reflecting increased cortical cell death as early as E15.5. Cajal-Retzius-positive cells were more numerous at E15.5 and were dysmorphic relative to control cortices. Consistent with this, Reelin levels were enhanced. Doublecortin and Rnd2 were also increased and showed altered distribution, supporting a strong regulatory role for miRNAs in both early and late neuronal migration. In addition, GFAP staining at E15.5 was more intense and disorganized throughout the cortex with Dicer depletion. These results significantly extend earlier works, and emphasize the impact of miRNAs on neural progenitor cell proliferation, apoptosis, migration, and differentiation in the developing mammalian brain.
Collapse
|
59
|
Abstract
Age-related macular degeneration (AMD), a progressive condition that is untreatable in up to 90% of patients, is a leading cause of blindness in the elderly worldwide. The two forms of AMD, wet and dry, are classified based on the presence or absence of blood vessels that have disruptively invaded the retina, respectively. A detailed understanding of the molecular mechanisms underlying wet AMD has led to several robust FDA-approved therapies. In contrast, there are no approved treatments for dry AMD. In this review, we provide insight into the critical effector pathways mediating each form of the disease. A recurring theme that spans most aspects of AMD pathogenesis is defective immune modulation in the classically immune-privileged ocular haven. Interestingly, the latest advances in AMD research also highlight common molecular disease pathways with other neurodegenerative disorders. Finally, the therapeutic potential of intervening at known mechanistic steps of AMD pathogenesis is discussed.
Collapse
Affiliation(s)
- Jayakrishna Ambati
- Department of Ophthalmology & Visual Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|
60
|
Serafini G, Pompili M, Innamorati M, Giordano G, Montebovi F, Sher L, Dwivedi Y, Girardi P. The role of microRNAs in synaptic plasticity, major affective disorders and suicidal behavior. Neurosci Res 2012; 73:179-190. [PMID: 22521503 DOI: 10.1016/j.neures.2012.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
Abstract
Major affective disorders are common widespread conditions associated with multiple psychosocial impairments and suicidal risk in the general population. At least 3-4% of all depressive individuals die by suicide. At a molecular level, affective disorders and suicidal behavior are recently associated with disturbances in structural and synaptic plasticity. A recent hypothesis suggested that small non-coding RNAs (ncRNAs), in particular microRNAs (miRNAs), play a critical role in the translational regulation at the synapse. We performed a selective overview of the current literature on miRNAs putative subcellular localization and sites of action in mature neurons analyzing their role in neurogenesis, synaptic plasticity, pathological stress changes, major affective disorders and suicidal behavior. miRNAs have played a fundamental role in the evolution of brain functions. The perturbation of some intracellular mechanisms as well as impaired assembly, localization, and translational regulation of specific RNA binding proteins may affect learning and memory, presumably contributing to the pathogenesis of major affective disorders and perhaps suicidal behavior. Also, miRNA dys-regulation has also been linked to several neuropsychiatric diseases. However, further evidence are needed in order to directly clarify the role of miRNAs in major affective disorders and suicidal behavior.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Suicide Prevention Center, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Maussion G, Yang J, Yerko V, Barker P, Mechawar N, Ernst C, Turecki G. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS One 2012; 7:e39301. [PMID: 22802923 PMCID: PMC3382618 DOI: 10.1371/journal.pone.0039301] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/18/2012] [Indexed: 01/03/2023] Open
Abstract
Background TrkB-T1 is a BDNF receptor lacking a tyrosine kinase domain that is highly expressed in astrocytes and regulates BDNF-evoked calcium transients. Previous studies indicate that downregulation of TrkB-T1 in frontal cortex may be involved in neurobiological processes underlying suicide. Methods In a microarray screening study (N = 8), we interrogated all known microRNA in the frontal cortex of suicide completers with low expression of TrkB-T1 and normal controls. These findings were validated and followed up in a larger sample of cases and controls (N = 55). Functional analyses included microRNA silencing, microRNA overexpression and luciferase assays to investigate specificity and to validate interactions between differentially expressed microRNA and TrkB-T1. Results MicroRNAs Hsa-miR-185* and Hsa-miR-491-3p were upregulated in suicide completers with low expression of TrkB.T1 (Pnominal: 9.10−5 and 1.8.10−4 respectively; FDR-corrected p = 0.031). Bioinformatic analyses revealed five putative binding sites for the DiGeorge syndrome linked microRNA Hsa-miR-185*in the 3′UTR of TrkB-T1, but none for Hsa-miR-491-3P. The increase of Hsa-miR-185* in frontal cortex of suicide completers was validated then confirmed in a larger, randomly selected group of suicide completers, where an inverse correlation between Hsa-miR-185* and TrkB-T1 expression was observed (R = −0.439; p = 0.001). Silencing and overexpression studies performed in human cell lines confirmed the inverse relationship between hsa-mir-185* and trkB-T1 expression. Luciferase assays demonstrated that Hsa-miR-185* binds to sequences in the 3′UTR of TrkB-T1. Conclusion These results suggest that an increase of Hsa-miR-185* expression levels regulates, at least in part, the TrkB-T1 decrease observed in the frontal cortex of suicide completers and further implicate the 22q11 region in psychopathology.
Collapse
Affiliation(s)
- Gilles Maussion
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Philip Barker
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Carl Ernst
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
62
|
Park SG, Kwon KH, Choi SS. Analysis of putative miRNA function using a novel approach, GAPPS-miRTarGE. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
63
|
Abstract
The importance of various classes of regulatory non-protein-coding RNA molecules (ncRNAs) in the normal functioning of the CNS is becoming increasingly evident. ncRNAs are involved in neuronal cell specification and patterning during development, but also in higher cognitive processes, such as structural plasticity and memory formation in the adult brain. We discuss advances in understanding of the function of ncRNAs in the CNS, with a focus on the potential involvement of specific species, such as microRNAs, endogenous small interfering RNAs, long intergenic non-coding RNAs, and natural antisense transcripts, in various neurodegenerative disorders. This emerging field is anticipated to profoundly affect clinical research, diagnosis, and therapy in neurology.
Collapse
|
64
|
Weng R, Cohen SM. Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development 2012; 139:1427-34. [PMID: 22378639 DOI: 10.1242/dev.075143] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) have been implicated as regulators of central nervous system (CNS) development and function. miR-124 is an evolutionarily ancient, CNS-specific miRNA. On the basis of the evolutionary conservation of its expression in the CNS, miR-124 is expected to have an ancient conserved function. Intriguingly, investigation of miR-124 function using antisense-mediated miRNA depletion has produced divergent and in some cases contradictory findings in a variety of model systems. Here we investigated miR-124 function using a targeted knockout mutant and present evidence for a role during central brain neurogenesis in Drosophila melanogaster. miR-124 activity in the larval neuroblast lineage is required to support normal levels of neuronal progenitor proliferation. We identify anachronism (ana), which encodes a secreted inhibitor of neuroblast proliferation, as a functionally important target of miR-124 acting in the neuroblast lineage. ana has previously been thought to be glial specific in its expression and to act from the cortex glia to control the exit of neuroblasts from quiescence into the proliferative phase that generates the neurons of the adult CNS during larval development. We provide evidence that ana is expressed in miR-124-expressing neuroblast lineages and that ana activity must be limited by the action of miR-124 during neuronal progenitor proliferation. We discuss the possibility that the apparent divergence of function of miR-124 in different model systems might reflect functional divergence through target site evolution.
Collapse
Affiliation(s)
- Ruifen Weng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore
| | | |
Collapse
|
65
|
Lippi G, Steinert JR, Marczylo EL, D'Oro S, Fiore R, Forsythe ID, Schratt G, Zoli M, Nicotera P, Young KW. Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. ACTA ACUST UNITED AC 2011; 194:889-904. [PMID: 21930776 PMCID: PMC3207289 DOI: 10.1083/jcb.201103006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated that microribonucleic acids (miRs) are key regulators of protein expression in the brain and modulate dendritic spine morphology and synaptic activity. To identify novel miRs involved in neuronal plasticity, we exposed adult mice to chronic treatments with nicotine, cocaine, or amphetamine, which are psychoactive drugs that induce well-documented neuroadaptations. We observed brain region- and drug-specific changes in miR expression levels and identified miR-29a/b as regulators of synaptic morphology. In vitro imaging experiments indicated that miR-29a/b reduce mushroom-shaped dendritic spines on hippocampal neurons with a concomitant increase in filopodial-like outgrowths, suggesting an effect on synapse formation via actin cytoskeleton remodeling. We identified Arpc3, a component of the ARP2/3 actin nucleation complex, as a bona fide target for down-regulation by miR-29a/b. This work provides evidence that targeting of Arpc3 by miR-29a/b fine tunes structural plasticity by regulating actin network branching in mature and developing spines.
Collapse
Affiliation(s)
- Giordano Lippi
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, LE1 9HN, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wu J, Lu C, Diao N, Zhang S, Wang S, Wang F, Gao Y, Chen J, Shao L, Lu J, Zhang X, Weng X, Wang H, Zhang W, Huang Y. Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: a preliminary study. Hum Immunol 2011; 73:31-7. [PMID: 22037148 DOI: 10.1016/j.humimm.2011.10.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/01/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
To explore biologic behaviors and disease relevance of microRNAs (miRNAs) in the development of active tuberculosis (ATB), we investigated the expression profile of Mycobacterium tuberculosis (MTB) purified protein derivative (PPD)-induced miRNAs to determine the specific miRNAs involved in the pathogenesis of ATB. The expression profile of miRNA under PPD challenge was first measured using microarray analysis in peripheral blood mononuclear cells isolated from ATB patients and healthy controls (HC). The remarkably reactive miRNAs were then validated in a larger cohort by quantitative real-time polymerase chain reaction (qRT-PCR). The receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic value of the determined PPD-responsive miRNAs. The potential targets for those miRNAs were also predicted by computational programs. Fourteen of 866 human miRNAs exhibited at least 1.8-fold difference in the ratio of expression level before and after stimulation with PPD between the ATB and HC groups. The qRT-PCR study validated the findings from microarray-based screening, in which miR-155 exhibited a fold change of 1.4 in the HC group and 3.7 in the ATB group upon PPD stimulation (p < 0.0001); miR-155* exhibited a fold change of 1.9 in the HC and 4.6 in the ATB group (p < 0.005). In ROC plots, the area under the curve was 0.8972 for miR-155 and 0.7945 for miR-155*. The background expression of these 2 microRNAs exhibited no differences between the ATB and HC groups. miR-155 and miR-155* exhibited characteristic expression by TB-specific antigen, suggesting that they can be potential diagnostic markers under the challenge of specific MTB antigens.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Differentiation of single cell derived human mesenchymal stem cells into cells with a neuronal phenotype: RNA and microRNA expression profile. Mol Biol Rep 2011; 39:3995-4007. [PMID: 21773948 DOI: 10.1007/s11033-011-1180-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 07/06/2011] [Indexed: 12/11/2022]
Abstract
The adult bone marrow contains a subset of non-haematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). Mesenchymal stem cells (MSCs) have attracted immense research interest in the field of regenerative medicine due to their ability to be cultured for successive passages and multi-lineage differentiation. The molecular mechanisms governing the self-renewal and differentiation of MSCs remain largely unknown. In a previous paper we demonstrated the ability to induce human clonal MSCs to differentiate into cells with a neuronal phenotype (DMSCs). In the present study we evaluated gene expression profiles by Sequential Analysis of Gene Expression (SAGE) and microRNA expression profiles before and after the neuronal differentiation process. Various tissue-specific genes were weakly expressed in MSCs, including those of non-mesodermal origin, suggesting multiple potential tissue-specific differentiation, as well as stemness markers. Expression of OCT4, KLF4 and c-Myc cell reprogramming factors, which are modulated during the differentiation process, was also observed. Many peculiar nervous tissue genes were expressed at a high level in DMSCs, along with genes related to apoptosis. MicroRNA profiling and correlation with mRNA expression profiles allowed us to identify putative important genes and microRNAs involved in the differentiation of MSCs into neuronal-like cells. The profound difference in gene and microRNA expression patterns between MSCs and DMSCs indicates a real functional change during differentiation from MSCs to DMSCs.
Collapse
|
68
|
Kolokythas A, Miloro M, Zhou X. Review of MicroRNA Deregulation in Oral Cancer. Part I. J Oral Maxillofac Res 2011; 2:e1. [PMID: 24421988 PMCID: PMC3886058 DOI: 10.5037/jomr.2011.2201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/19/2011] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Oral cancer is the sixth most common malignancy worldwide. Cancer development and progression requires inactivation of tumour suppressor genes and activation of proto-oncogenes. Expression of these genes is in part dependant on RNA and microRNA based mechanisms. MicroRNAs are essential regulators of diverse cellular processes including proliferation, differentiation, apoptosis, survival, motility, invasion and morphogenesis. Several microRNAs have been found to be aberrantly expressed in various cancers including oral cancer. The purpose of this article was to review the literature related to microRNA deregulation in the head and neck/oral cavity cancers. MATERIAL AND METHODS A comprehensive review of the available literature from 2000 to 2011 relevant to microRNA deregulation in oral cancer was undertaken using PubMed, Medline, Scholar Google and Scopus. Keywords for the search were: microRNA and oral cancer, microRNA and squamous cell carcinoma, microRNA deregulation. Only full length articles in the English language were included. Strengths and limitations of each study are presented in this review. RESULTS Several studies were identified that investigated microRNA alternations in the head and neck/oral cavity cancers. Significant progress has been made in identification of microRNA deregulation in these cancers. It has been evident that several microRNAs were found to be deregulated specifically in oral cavity cancers. Among these, several microRNAs have been functionally validated and their potential target genes have been identified. CONCLUSIONS These findings on microRNA deregulation in cancer further enhance our understanding of the disease progression, response to treatment and may assist with future development of targeted therapy.
Collapse
Affiliation(s)
- Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, University of
Illinois at ChicagoUSA.
- Center of Molecular Biology and Oral Diseases, College of
Dentistry, University of Illinois at ChicagoUSA.
- Cancer Center, University of Illinois at ChicagoUSA.
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, University of
Illinois at ChicagoUSA.
| | - Xiaofeng Zhou
- Center of Molecular Biology and Oral Diseases, College of
Dentistry, University of Illinois at ChicagoUSA.
- Department of Periodontics, College of Dentistry, University of
Illinois at ChicagoUSA.
| |
Collapse
|
69
|
Witkos TM, Koscianska E, Krzyzosiak WJ. Practical Aspects of microRNA Target Prediction. Curr Mol Med 2011; 11:93-109. [PMID: 21342132 PMCID: PMC3182075 DOI: 10.2174/156652411794859250] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/27/2010] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the posttranscriptional level. These small regulatory molecules play a key role in the majority of biological processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many miRNA targets have been computationally predicted but only a limited number of these were experimentally validated. Although a variety of miRNA target prediction algorithms are available, results of their application are often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat expansion diseases (TREDs), such as Huntington’s disease (HD), a number of spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1).
Collapse
Affiliation(s)
- T M Witkos
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str. 61-704 Poznan, Poland
| | | | | |
Collapse
|
70
|
Enciu AM, Popescu BO, Gheorghisan-Galateanu A. MicroRNAs in brain development and degeneration. Mol Biol Rep 2011; 39:2243-52. [DOI: 10.1007/s11033-011-0973-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
|
71
|
Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke: III. Neural stem cell biology and regenerative medicine. ACTA ACUST UNITED AC 2011; 68:294-302. [PMID: 21403016 DOI: 10.1001/archneurol.2011.6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Pkwy S, Room 220, Bronx, NY 10461, USA
| | | |
Collapse
|
72
|
Dwivedi Y. Evidence demonstrating role of microRNAs in the etiopathology of major depression. J Chem Neuroanat 2011; 42:142-56. [PMID: 21515361 DOI: 10.1016/j.jchemneu.2011.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/17/2023]
Abstract
Major depression is a debilitating disease. Despite a tremendous amount of research, the molecular mechanisms associated with the etiopathology of major depression are not clearly understood. Several lines of evidence indicate that depression is associated with altered neuronal and structural plasticity and neurogenesis. MicroRNAs are a newly discovered prominent class of gene expression regulators that have critical roles in neural development, are needed for survival and optimal health of postmitotic neurons, and regulate synaptic functions, particularly by regulating protein synthesis in dendritic spines. In addition, microRNAs (miRNAs) regulate both embryonic and adult neurogenesis. Given that miRNAs are involved in neural plasticity and neurogenesis, the concept that miRNAs may play an important role in psychiatric illnesses, including major depression, is rapidly advancing. Emerging evidence demonstrates that the expression of miRNAs is altered during stress, in the brain of behaviorally depressed animals, and in human postmortem brain of depressed subjects. In this review article, the possibility that dysregulation of miRNAs and/or altered miRNA response may contribute to the etiology and pathophysiology of depressive disorder is discussed.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
73
|
MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011; 717:1-8. [PMID: 21458467 DOI: 10.1016/j.mrfmmm.2011.03.009] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 03/16/2011] [Accepted: 03/23/2011] [Indexed: 12/13/2022]
Abstract
Since 1993, when the first small non-coding RNA was identified, our knowledge about microRNAs has grown exponentially. In this review, we focus on the main progress in this field and discuss the most important findings under a historical perspective. In addition, we examine microRNAs as markers of disease diagnosis and prognosis, and as new therapeutic targets.
Collapse
|
74
|
Abstract
MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that negatively regulate gene expression at the posttranscriptional level by binding to the 3'-untranslated region of target mRNAs leading to their translational inhibition or sometimes degradation. MiRNAs are predicted to control the activity of at least 20-30% of human protein-coding genes. Recent studies have demonstrated that miRNAs are highly expressed in the central nervous system (CNS) including the brain and spinal cord. Although we are currently in the initial stages of understanding how this novel class of gene regulators is involved in neurological biological functions, a growing body of exciting evidence suggests that miRNAs are important regulators of diverse biological processes such as cell differentiation, growth, proliferation, and apoptosis. Moreover, miRNAs are key modulators of both CNS development and plasticity. Some miRNAs have been implicated in several neurological disorders such as traumatic CNS injuries and neurodegenerative diseases. Recently, several studies suggested the possibility of miRNA involvement in neurodegeneration. Identifying the roles of miRNAs and their target genes and signaling pathways in neurological disorders will be critical for future research. miRNAs may represent a new layer of regulators for neurobiology and a novel class of therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana. 46202, USA
| | | |
Collapse
|
75
|
Zhou S, Yu B, Qian T, Yao D, Wang Y, Ding F, Gu X. Early changes of microRNAs expression in the dorsal root ganglia following rat sciatic nerve transection. Neurosci Lett 2011; 494:89-93. [PMID: 21371527 DOI: 10.1016/j.neulet.2011.02.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/19/2011] [Accepted: 02/23/2011] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a novel class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. Here we report early alterations of miRNAs expression following rat sciatic nerve injury using microarray analysis. We harvested dorsal root ganglia (DRG) tissues and identified 19 miRNAs that showed significant changes at four early time points after sciatic nerve transection. Subsequently, miR-188 and miR-500 microarray results were verified by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The bioinformatics analysis indicated that the potential targets for these miRNAs were involved in the intracellular signaling cascade, the regulation of signal transduction, the regulation of cellular process and the response to cAMP that were known to play important roles in mobilizing the inherent capacity for neurite outgrowth and promoting regeneration during the early phase of sciatic nerve injury. Our results show that abnormal expression of miRNAs may contribute to illustrate the molecular mechanisms of nerve regeneration and miRNAs are potential targets for therapeutic interventions that may enhance intrinsic regenerative ability.
Collapse
Affiliation(s)
- Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China
| | | | | | | | | | | | | |
Collapse
|
76
|
Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M. Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS One 2011; 6:e14724. [PMID: 21373187 PMCID: PMC3044134 DOI: 10.1371/journal.pone.0014724] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/24/2011] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Mateo Ziu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lauren Fletcher
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shushan Rana
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - David F. Jimenez
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Murat Digicaylioglu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
77
|
Bastian I, Tam Tam S, Zhou XF, Kazenwadel J, Van der Hoek M, Michael MZ, Gibbins I, Haberberger RV. Differential expression of microRNA-1 in dorsal root ganglion neurons. Histochem Cell Biol 2010; 135:37-45. [PMID: 21170745 DOI: 10.1007/s00418-010-0772-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2010] [Indexed: 12/15/2022]
Abstract
Damage to sensory neurons induces neural repair, regrowth and hyperexcitability. The regulation of such responses to injury must be organized in some way by the neurons. Regulation can occur at the post-transcriptional level via microRNAs (miRNAs). miRNAs are small non-coding RNAs that influence the stability or translation of mRNAs and thereby regulate gene expression. Although nociceptive neurons show transcriptional and post-transcriptional regulatory mechanisms at many levels, miRNAs have not yet been systematically investigated in these neurons. Based on our preliminary array data we investigated the presence of miR-1 in dorsal root ganglion (DRG) neurons of mice and humans. We detected miR-1 in total RNA from human and mouse DRG and localised miR-1 in human and murine sensory neurons in situ. In Situ Hybridization detected miR-1 expression by nearly all DRG neurons. In vitro studies of enriched sensory neuron subpopulations from mouse DRG showed higher miR-1 expression levels in I-B4 negative neurons compared with I-B4 positive cells. Culturing of primary sensory neurons reduced the relative miR-1 expression levels independent of the presence or absence of laminin on the culture substrate. Transfection with a miR-1 mimic induced a massive increase in neuronal miR-1 associated with attenuated neurite outgrowth. This first description of miR-1 in sensory neurons including nociceptors suggests that miR-1 has a role in modulating neurite outgrowth.
Collapse
Affiliation(s)
- Isabell Bastian
- Department of Anatomy and Histology, Flinders University, Adelaide, 5001, Australia
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Small, noncoding, microRNAs (miRNAs) have emerged as key mediators of posttranscriptional gene silencing in both pathogenic and pathological aspects of ischemic stroke biology. In stroke etiology, miRNA have distinct expression patterns that modulate pathogenic processes including atherosclerosis (miR-21, miR-126), hyperlipidemia (miR-33, miR-125a-5p), hypertension (miR-155), and plaque rupture (miR-222, miR-210). Following focal cerebral ischemia, significant changes in the miRNA transcriptome, independent of an effect on expression of miRNA machinery, implicate miRNA in the pathological cascade of events that include blood brain barrier disruption (miR-15a) and caspase mediated cell death signaling (miR-497). Early activation of miR-200 family members improves neural cell survival via prolyl hydroxylase mRNA silencing and subsequent HIF-1α stabilization. Pro- (miR-125b) and anti-inflammatory (miR-26a, -34a, -145, and let-7b) miRNA may also be manipulated to positively influence stroke outcomes. Recent examples of successfully implemented miRNA-therapeutics direct the future of gene therapy and offer new therapeutic strategies by regulating large sets of genes in related pathways of the ischemic stroke cascade.
Collapse
Affiliation(s)
- Cameron Rink
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
79
|
MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 2010; 30:1564-76. [PMID: 20606686 PMCID: PMC2932764 DOI: 10.1038/jcbfm.2010.101] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small RNAs that function as regulators of posttranscriptional gene expression. MicroRNAs are encoded by genes, and processed to form ribonucleoprotein complexes that bind to messenger RNA (mRNA) targets to repress translation or degrade mRNA transcripts. The microRNAs are particularly abundant in the brain where they serve as effectors of neuronal development and maintenance of the neuronal phenotype. They are also expressed in dendrites where they regulate spine structure and function as effectors in synaptic plasticity. MicroRNAs have been evaluated for their roles in brain ischemia, traumatic brain injury, and spinal cord injury, and in functional recovery after ischemia. They also serve as mediators in the brain's response to ischemic preconditioning that leads to endogenous neuroprotection. In addition, microRNAs are implicated in neurodegenerative disorders, including Alzheimer's, Huntington, Parkinson, and Prion disease. The discovery of microRNAs has expanded the potential for human diseases to arise from genetic mutations in microRNA genes or sequences within their target mRNAs. This review discusses microRNA discovery, biogenesis, mechanisms of gene regulation, their expression and function in the brain, and their roles in brain ischemia and injury, neuroprotection, and neurodegeneration.
Collapse
|
80
|
Baune BT, Konrad C, Suslow T, Domschke K, Birosova E, Sehlmeyer C, Beste C. The Reelin (RELN) gene is associated with executive function in healthy individuals. Neurobiol Learn Mem 2010; 94:446-51. [PMID: 20727978 DOI: 10.1016/j.nlm.2010.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 07/26/2010] [Accepted: 08/16/2010] [Indexed: 12/31/2022]
Abstract
Executive functions such as set-shifting and maintenance are cognitive processes that rely on complex neurodevelopmental processes. Although neurodevelopmental processes are mainly studied in animal models and in neuropsychiatric disorders, the underlying genetic basis for these processes under physiological conditions is poorly understood. We aimed to investigate the association between genetic variants of the Reelin (RELN) gene and cognitive set-shifting in healthy young individuals. The relationship between 12 selected single nucleotide polymorphisms (SNPs) of the RELN gene and cognitive set-shifting as measured by perseverative errors using the modified card sorting test (MCST) was analysed in a sample of N=98 young healthy individuals (mean age in years: 22.7 ± 0.19). Results show that in individual MANCOVA analyses two of five significant SNPs (rs2711870: F(2,39)=7.14; p=0.0019; rs2249372: F(2,39)=6.97; p=0.002) withstood Bonferroni correction for multiple testing (corrected p-value: p=0.004). While haplotype analyses of the RELN gene showed significant associations between three haplotypes and perseverative error processing in various models of inheritance (adjusted for age, gender, BDI, MWTB IQ), the GCT haplotype showed the most robust finding with a recessive model of inheritance (p=2.32 × 10(-5)) involving the functional SNP rs362691 (Leu-Val amino acid change). Although our study strongly suggests the involvement of the RELN gene in cognitive set-shifting and maintenance, our study requires further exploration as well as replication of the findings in larger samples of healthy individuals and in clinical samples with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bernhard T Baune
- Department of Psychiatry and Psychiatric Neuroscience, School of Medicine and Dentistry, James Cook University, QLD, Australia.
| | | | | | | | | | | | | |
Collapse
|
81
|
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38:7248-59. [PMID: 20615901 PMCID: PMC2978372 DOI: 10.1093/nar/gkq601] [Citation(s) in RCA: 810] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of microRNAs (miRNAs) as a new class of regulators of gene expression has triggered an explosion of research activities, but has left many unanswered questions about how this regulation functions and how it is integrated with other regulatory mechanisms. A number of miRNAs have been found to be present in plasma and other body fluids of humans and mice in surprisingly high concentrations. This observation was unexpected in two respects: first, the fact that these molecules are present at all outside the cell at significant concentrations and second, that these molecules appear to be stable outside of the cell. In light of this it has been suggested that the biological function of miRNAs may also extend outside of the cell and mediate cell–cell communication. We report here that after serum deprivation several human cell lines tested promptly export a substantial amount of miRNAs into the culture medium and the export process is largely energy dependent. The exported miRNAs are found both within and outside of the 16.5 and 120 K centrifugation pellets which contain most of the known cell-derived vesicles, the microvesicles and exosomes. We have identified some candidate proteins involved in this system, and one of these proteins may also play a role in protecting extracellular miRNAs from degradation. Our results point to a hitherto unrecognized and uncharacterized miRNA trafficking system in mammalian cells that is consistent with the cell–cell communication hypothesis.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Systems Biology, 1441 N. 34th Street, Seattle, WA 98103, USA
| | | | | | | | | |
Collapse
|
82
|
Buratti E, De Conti L, Stuani C, Romano M, Baralle M, Baralle F. Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J 2010; 277:2268-81. [PMID: 20423455 DOI: 10.1111/j.1742-4658.2010.07643.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TDP-43 has recently been described as the major component of the inclusions found in the brain of patients with a variety of neurodegenerative diseases, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 is a ubiquitous protein whose specific functions are probably crucial to establishing its pathogenic role. Apart from its involvement in transcription, splicing and mRNA stability, TDP-43 has also been described as a Drosha-associated protein. However, our knowledge of the role of TDP-43 in the microRNA (miRNA) synthesis pathway is limited to the association mentioned above. Here we report for the first time which changes occur in the total miRNA population following TDP-43 knockdown in culture cells. In particular, we have observed that let-7b and miR-663 expression levels are down- and upregulated, respectively. Interestingly, both miRNAs are capable of binding directly to TDP-43 in different positions: within the miRNA sequence itself (let-7b) or in the hairpin precursor (miR-663). Using microarray data and real-time PCR we have also identified several candidate transcripts whose expression levels are selectively affected by these TDP-43-miRNA interactions.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | | | | | | | | |
Collapse
|
83
|
Majer A, Booth SA. Computational methodologies for studying non-coding RNAs relevant to central nervous system function and dysfunction. Brain Res 2010; 1338:131-45. [PMID: 20381467 DOI: 10.1016/j.brainres.2010.03.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 12/21/2022]
Abstract
Non-coding RNAs (ncRNAs) are a large and diverse group of transcripts that span the eukaryotic genome, of which less than 2% encodes proteins. Several distinct families of ncRNAs have been described and implicated in many aspects of central nervous system (CNS) function including translation, RNA metabolism, gene regulation, and development. The need to distinguish ncRNAs from sequence data, as well as potentially uncovering novel ncRNA families, has ignited the development of customized computational approaches and bioinformatic resources to handle these tasks. In this review, we provide an overview of the numerous procedures developed to predict ncRNAs based on their primary sequence and predicted secondary structure. These methodologies are broadly grouped into genome scanning algorithms, mixed approaches, and machine learning algorithms. Regulatory ncRNAs, particularly microRNAs (miRNAs), are a major focus of current research efforts and this review will therefore center on the prediction of miRNAs and the putative gene targets they act upon. With the advent of ultra high-throughput sequencing technologies 'deep sequencing' has emerged as the cutting-edge method for ncRNA identification and we will also touch on some computational resources that play a key role in analysis of this type of data.
Collapse
Affiliation(s)
- Anna Majer
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Manitoba, Canada
| | | |
Collapse
|
84
|
Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus. ASN Neuro 2010; 2:e00028. [PMID: 20309390 PMCID: PMC2832745 DOI: 10.1042/an20090055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/14/2010] [Accepted: 01/18/2010] [Indexed: 12/01/2022] Open
Abstract
Adult male mice (strain C57Bl/6J) were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour) or pseudo-training (exposed to two odours with reward not contingent upon response). These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of ∼40 min of training). The hippocampus was dissected bilaterally from each mouse (N = 7 in each group) and profiling of 585 miRNAs (microRNAs) was carried out using multiplex RT–PCR (reverse transcription–PCR) plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P = 0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor), CAMK2b (calcium/calmodulin-dependent protein kinase IIβ), CREB1 (cAMP-response-element-binding protein 1) and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila)-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.
Collapse
Key Words
- BDNF, brain-derived neurotrophic factor
- Ct, threshold cycle value
- DHPG, (S)-3,5-dihydroxyphenylglycine
- LTP, long-term potentiation
- MEF2, myocyte enhancer factor-2
- NMDA, N-methyl-d-aspartate
- RISC, RNA-induced silencing complex
- RT-PCR, reverse transcription-PCR
- TLDA, TaqMan® Low Density Arrays
- TOP, terminal oligopyrimidine
- dicer
- learning
- miRNA, microRNA
- microRNA
- olfactory discrimination
- pre-miR, miRNA small hairpin precursor
- pri-miR, primary miRNA gene transcript
- snoRNA, small nucleolar RNA
- synaptic plasticity
Collapse
|
85
|
|
86
|
Godlewski J, Newton HB, Chiocca EA, Lawler SE. MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ 2009; 17:221-8. [PMID: 19521422 DOI: 10.1038/cdd.2009.71] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent data draw close parallels between cancer, including glial brain tumors, and the biology of stem and progenitor cells. At the same time, it has become clear that one of the major roles that microRNAs play is in the regulation of stem cell biology, differentiation, and cell 'identity'. For example, microRNAs have been increasingly implicated in the regulation of neural differentiation. Interestingly, initial studies in the incurable brain tumor glioblastoma multiforme strongly suggest that microRNAs involved in neural development play a role in this disease. This encourages the idea that certain miRs allow continued tumor growth through the suppression of differentiation and the maintenance of the stem cell-like properties of tumor cells. These concepts will be explored in this article.
Collapse
Affiliation(s)
- J Godlewski
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|