51
|
Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 2018; 136:181-193. [DOI: 10.1016/j.phrs.2018.09.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/19/2018] [Indexed: 12/22/2022]
|
52
|
Sun J, Chen F, Braun C, Zhou YQ, Rittner H, Tian YK, Cai XY, Ye DW. Role of curcumin in the management of pathological pain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:129-140. [PMID: 30195871 DOI: 10.1016/j.phymed.2018.04.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/12/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pathological pain conditions can be triggered after peripheral nerve injury and/or inflammation. It is a major clinical problem that is poorly treated with available therapeutics. Curcumin is a phenolic compound derived from Curcuma longa, being widely used for its antioxidant, anti-inflammatory and immunomodulatory effects. PURPOSE This review systematically summarized updated information on the traditional uses of curcumin in order to explore antinociceptive effects in pathological pain and evaluate future therapeutic opportunities clinically. Moreover, some structure-activity relationships would greatly enrich the opportunity of finding new and promising lead compounds and promote the reasonable development of curcumin. METHODS PubMed were searched and the literature from the year 1976 to January 2018 was retrieved using keywords pain and curcumin. RESULTS This review systematically summarized updated information on the traditional uses, chemical constituents and bioactivities of curcumin, and highlights the recent development of the mechanisms of curcumin in the pathological pain by sciatic nerve injury, spinal cord injury, diabetic neuropathy, alcoholic neuropathy, chemotherapy induced peripheral neuroinflammtion, complete Freund's adjuvant (CFA) injection or carrageenan injection. Importantly, the clinical studies provide a compelling justification for its use as a dietary adjunct for pain relief. And we also present multiple approaches to improve bioavailability of curcumin for the treatment of pathological pain. CONCLUSION This review focuses on pre-clinical and clinical studies in the treatment of pathological pain. Although the mechanisms of pain mitigating effects are not very clear, there is compelling evidence proved that curcumin plays an essential role. However, further high-quality clinical studies should be undertaken to establish the clinical effectiveness of curcumin in patients suffering from pathological pain. Potential methods of increase the water solubility and bioavailability of curcumin still need to be studied. These approaches will help in establishing it as remedy for pathological pain.
Collapse
Affiliation(s)
- Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, China; Department of Oncology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Cody Braun
- UMKC School of Medicine, Kansas City, United States
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heike Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Yu Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
53
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
54
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
55
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
56
|
Yang M, Wang J, Yang C, Han H, Rong W, Zhang G. Oral administration of curcumin attenuates visceral hyperalgesia through inhibiting phosphorylation of TRPV1 in rat model of ulcerative colitis. Mol Pain 2018; 13:1744806917726416. [PMID: 28812431 PMCID: PMC5562337 DOI: 10.1177/1744806917726416] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Curcumin has been reported to have anti-inflammatory and anti-nociceptive effects. The present study was designed to explore the potential therapeutic effects of curcumin on visceral hyperalgesia and inflammation in a rat model of ulcerative colitis. We observed the effects of orally administered curcumin on the disease activity index, histological change in colon, colorectal distension-induced abdominal withdrawal reflex, the expression of transient receptor potential vanilloid 1 (TRPV1) and phosphorylated TRPV1 in dextran sulfate sodium-induced colitis rats. In addition, a HEK293 cell line stably expressing human TRPV1 (hTRPV1) was used to examine the effects of curcumin on the change in membrane expression of TRPV1 induced by phorbol myristate acetate (a protein kinase C activator). Results Repeated oral administration of curcumin inhibited the increase in abdominal withdrawal reflex score induced by dextran sulfate sodium without affecting dextran sulfate sodium-induced histological change of colon and the disease activity index. A significant increase in colonic expression of TRPV1 and pTRPV1 was observed in dextran sulfate sodium-treated rats and this was reversed by oral administration of curcumin. TRPV1 expression in L6-S1 dorsal root ganglion was increased in the small- to medium-sized isolectin B4-positive non-peptidergic and calcitonin gene-related peptide-positive peptidergic neurons in dextran sulfate sodium-treated rats and oral administration of curcumin mitigated such changes. In the HEK293 cell line stably expressing hTRPV1, curcumin (1, 3 µm) inhibited phorbol myristate acetate-induced upregulation of membrane TRPV1. Conclusion Oral administration of curcumin alleviates visceral hyperalgesia in dextran sulfate sodium-induced colitis rats. The anti-hyperalgesic effect is partially through downregulating the colonic expression and phosphorylation of TRPV1 on the afferent fibers projected from peptidergic and non-peptidergic nociceptive neurons of dorsal root ganglion.
Collapse
Affiliation(s)
- Mei Yang
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Wang
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxue Yang
- 3 Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiu Han
- 3 Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Zhang
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
57
|
Jia T, Rao J, Zou L, Zhao S, Yi Z, Wu B, Li L, Yuan H, Shi L, Zhang C, Gao Y, Liu S, Xu H, Liu H, Liang S, Li G. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia. Front Neurosci 2018; 11:755. [PMID: 29422835 PMCID: PMC5788895 DOI: 10.3389/fnins.2017.00755] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022] Open
Abstract
Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP). Satellite glial cells (SGCs) enwrap the neuronal soma in the dorsal root ganglia (DRG). The purinergic 2 (P2) Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM). Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β) and connexin43 (Cx43) resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt) in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM.
Collapse
Affiliation(s)
- Tianyu Jia
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Jingan Rao
- Second Clinical Department, Medical School, Nanchang University, Nanchang, China
| | - Lifang Zou
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Zhihua Yi
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Bing Wu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China.,Department of Cell Biology, Medical School, Nanchang University, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hui Liu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
58
|
Olukman M, Önal A, Celenk FG, Uyanıkgil Y, Cavuşoğlu T, Düzenli N, Ülker S. Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats. Neural Regen Res 2018; 13:1657-1664. [PMID: 30127129 PMCID: PMC6126136 DOI: 10.4103/1673-5374.232530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increased reactive oxygen species by the activation of NADPH oxidase (NOX) contributes to the development of diabetic complications. Apocynin, a NOX inhibitor, increases sciatic nerve conductance and blood flow in diabetic rats. We investigated potential protective effect of apocynin in rat diabetic neuropathy and its precise mechanism of action at molecular level. Rat models of streptozotocin-induced diabetes were treated with apocynin (30 and 100 mg/kg per day, intragastrically) for 4 weeks. Mechanical hyperalgesia and allodynia were determined weekly using analgesimeter and dynamic plantar aesthesiometer. Western blot analysis and histochemistry/immunohistochemistry were performed in the lumbar spinal cord and sciatic nerve respectively. Streptozotocin injection reduced pain threshold in analgesimeter, but not in aesthesiometer. Apocynin treatment increased pain threshold dose-dependently. Western blot analysis showed an increase in catalase and NOX-p47phox protein expression in the spinal cord. However, protein expressions of neuronal and inducible nitric oxide synthase (nNOS, iNOS), superoxide dismutase, glutathion peroxidase, nitrotyrosine, tumor necrosis factor-α, interleukin-6, interleukin-1β, aldose reductase, cyclooxygenase-2 or MAC-1 (marker for increased microgliosis) in the spinal cord remained unchanged. Western blot analysis results also demonstrated that apocynin decreased NOX-p47phox expression at both doses and catalase expression at 100 mg/kg per day. Histochemistry of diabetic sciatic nerve revealed marked degeneration. nNOS and iNOS immunoreactivities were increased, while S-100 immunoreactivity (Schwann cell marker) was decreased in sciatic nerve. Apocynin treatment reversed these changes dose-dependently. In conclusion, decreased pain threshold of diabetic rats was accompanied by increased NOX and catalase expression in the spinal cord and increased degeneration in the sciatic nerve characterized by increased NOS expression and Schwann cell loss. Apocynin treatment attenuates neuropathic pain by decelerating the increased oxidative stress-mediated pathogenesis in diabetic rats.
Collapse
Affiliation(s)
- Murat Olukman
- Department of Pharmacology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Aytül Önal
- Department of Pharmacology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Fatma Gül Celenk
- Department of Medical Genetics, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Cord Blood, Cell and Tissue Research and Application Center, Ege University, Bornova, Izmir, Turkey
| | - Türker Cavuşoğlu
- Department of Histology and Embryology, Faculty of Medicine, Cord Blood, Cell and Tissue Research and Application Center, Ege University, Bornova, Izmir, Turkey
| | - Neslihan Düzenli
- Department of Pharmacology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sibel Ülker
- Department of Pharmacology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
59
|
Peripheral Neuropathy. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
60
|
Barangi S, Hayes AW, Karimi G. The more effective treatment of atrial fibrillation applying the natural compounds; as NADPH oxidase and ion channel inhibitors. Crit Rev Food Sci Nutr 2017; 58:1230-1241. [PMID: 28925721 DOI: 10.1080/10408398.2017.1379000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia that occurs because of several different risk factors, e.g., valvular heart disease, coronary artery disease, age ≥75 years, hypertension and diabetes mellitus. One key risk factor that results in AF, is oxidative stress. Evidence suggests that there is a correlation between oxidative processes and the genesis of AF. Oxidative stress occurs when the generation of reactive oxygen species (ROS) increase due to excessive activity of enzymes including NADPH oxidase (NOX) and xanthine oxidase; or its degradation decrease by dysfunctional antioxidant enzyme systems, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Afterwards, elevated ROS may shift ion channel activity to increase AF susceptibility. The outbreak of AF continues to grow. Unfortunately, current treatment strategies may have limited efficacy or adverse effects. On the other hand, the inhibition of ROS formation and alteration of ion channel activity could be important therapeutic targets for prevention or treatments of AF. Additionally, many studies have been shown that several natural compounds have the ability to inhibit NADPH oxidases directly. This review focuses on natural compounds which specially inhibit NOX isoforms and have direct effects on ion channels, suggesting these compounds can be helpful in AF treatment.
Collapse
Affiliation(s)
- Samira Barangi
- a Department of Pharmacodynamics and Toxicology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - A Wallace Hayes
- b Harvard University, Cambridge, MA, USA; Michigan State University , East Lansing , MI , USA
| | - Gholamreza Karimi
- a Department of Pharmacodynamics and Toxicology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,c Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
61
|
Li HY, Yang M, Li Z, Meng Z. Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. Int J Mol Med 2017; 39:1307-1316. [PMID: 28339005 DOI: 10.3892/ijmm.2017.2924] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 03/08/2017] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (AngII)-induced production of inflammatory factors and proliferation in vascular smooth muscle cells (VSMCs) play an important role in the progression of atherosclerotic plaques. Growing evidence has demonstrated that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) effectively attenuates AngII-induced inflammation and intercellular reactive oxygen species (iROS) production. Curcumin (Cur) inhibits inflammatory responses by enhancing PPAR-γ activity and reducing oxidative stress in various tissues. The aim of the present study was to ascertain whether Cur inhibits AngII-induced inflammation and proliferation, and its underlying molecular mechanism, in VSMCs. Enzyme-linked immunosorbent assay (ELISA) and real-time PCR were used to measure the protein and mRNA expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Nitric oxide (NO) production was measured by Griess reaction. Western blot analysis and a DNA-binding assay were used to measure PPAR-γ activity. iROS production was measured using the DCFH-DA method. In rat VSMCs, Cur attenuated AngII‑induced expression of IL-6 and TNF-α mRNA and protein in a concentration-dependent manner, inhibited NO production by suppressing inducible NO synthase (iNOS) activity, and suppressed proliferation of VSMCs. This was accompanied by increased PPAR-γ expression and activation in Cur-pretreated VSMCs. GW9662, a PPAR-γ antagonist, reversed the anti-inflammatory effect of Cur. Moreover, Cur attenuated AngII-induced oxidative stress by downregulating the expression of p47phox, which is a key subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, Cur inhibited the expression of IL-6 and TNF-α, decreased the production of NO, and suppressed the proliferation of VSMCs, by elevating PPAR-γ activity and suppressing oxidative stress, leading to attenuated AngII-induced inflammatory responses in VSMCs.
Collapse
Affiliation(s)
- Hai-Yu Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mei Yang
- Department of General Medicine, Renji Hospital of Shanghai Jiaotong University, Shanghai 200000, P.R. China
| | - Ze Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhe Meng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
62
|
Zhou Y, Notterpek L. Promoting peripheral myelin repair. Exp Neurol 2016; 283:573-80. [PMID: 27079997 DOI: 10.1016/j.expneurol.2016.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023]
Abstract
Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves.
Collapse
Affiliation(s)
- Ye Zhou
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Lucia Notterpek
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
63
|
He WY, Zhang B, Xiong QM, Yang CX, Zhao WC, He J, Zhou J, Wang HB. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats. Neurosci Lett 2016; 619:21-8. [DOI: 10.1016/j.neulet.2016.02.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 01/19/2023]
|
64
|
Coadministration of Resveratrol and Rice Oil Mitigates Nociception and Oxidative State in a Mouse Fibromyalgia-Like Model. PAIN RESEARCH AND TREATMENT 2016; 2016:3191638. [PMID: 27069683 PMCID: PMC4812475 DOI: 10.1155/2016/3191638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 12/30/2022]
Abstract
The mechanism underlying pain symptoms in fibromyalgia (FM) is not fully understood. Oxidative stress has emerged as pathophysiological event occurring during the development of the disease. The present study aimed at investigating the efficacy of resveratrol associated with rice bran oil on fibromyalgia-like mice model. Subcutaneous injection of reserpine (0.25 mg/Kg) during 3 days produced fibromyalgia-like symptoms. Resveratrol and/or rice oil or pregabalin were administered through oral route in therapeutic (single dose) and preventive (four doses) schemes. In both schemes, treatment with resveratrol associated with rice bran oil and pregabalin significantly reduced mechanical allodynia and thermal hyperalgesia in animals. The preventive scheme displayed antidepressant effect which was demonstrated by the forced swimming test as well as reduced reactive species in the cerebrospinal fluid of reserpinized animals. Taken together, our data provide evidences that the intake of resveratrol associated with rice bran oil plays antinociceptive and antidepressant actions probably through reducing reactive species and suggests the involvement of oxidative stress in this model of FM as possible underlying mechanism of pathogenesis of the disease.
Collapse
|
65
|
Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA. Naringenin reduces inflammatory pain in mice. Neuropharmacology 2016; 105:508-519. [PMID: 26907804 DOI: 10.1016/j.neuropharm.2016.02.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/23/2016] [Accepted: 02/15/2016] [Indexed: 11/29/2022]
Abstract
Naringenin is a flavonoid widely consumed by humans that present anti-inflammatory activity and low toxicity. Recently, the analgesic effect of naringenin has been demonstrated in neuropathic pain models. Herein, we tested the analgesic effects of naringenin in several models of inflammatory pain. Mice received treatment with naringenin (16.7-150 mg/kg, per oral), or with the controls anti-inflammatory drugs indomethacin (5 mg/kg, intraperitoneal) or dipyrone (80 mg/kg, intraperitoneal) prior the inflammatory stimuli injection. For acute pain, we used acetic acid- and PBQ-induced visceral pain (abdominal writhings), and formalin-, capsaicin-, and CFA-induced paw flinching and licking. By using an electronic version of von Frey filaments, we also investigated the effects of naringenin in pain intensity to a mechanical stimulus (mechanical hyperalgesia) after carrageenan, capsaicin, CFA, or PGE2 intraplantar injection. Naringenin (50 mg/kg) reduced acute pain behaviors induced by all tested stimuli, including both phases of formalin test, suggesting a direct nociceptor modulatory effect of this compound besides its anti-inflammatory activity. Accordingly, naringenin also inhibited the increased sensitivity to mechanical stimulus induced by carrageenan, capsaicin, and PGE2. Daily treatment with naringenin during 7 days also reduced CFA-induced mechanical hyperalgesia without gastric or hepatic toxicity. The mechanisms of naringenin involve the inhibition of carrageenan-induced oxidative stress, hyperalgesic cytokines (IL-33, TNF-α, and IL-1β) production and NF-κB activation in the paw skin. Naringenin also activated the analgesic NO-cyclic GMP-PKG-ATP sensitive K(+) channel signaling pathway to inhibit carrageenan-induced mechanical hyperalgesia and neutrophil recruitment. These results suggest that naringenin inhibits both inflammatory pain and neurogenic inflammation.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Marília F Manchope
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, 86039440 Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil.
| |
Collapse
|
66
|
Rahman MH, Jha MK, Kim JH, Nam Y, Lee MG, Go Y, Harris RA, Park DH, Kook H, Lee IK, Suk K. Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy. J Biol Chem 2016; 291:6011-6025. [PMID: 26769971 DOI: 10.1074/jbc.m115.699215] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 01/15/2023] Open
Abstract
The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Md Habibur Rahman
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Mithilesh Kumar Jha
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Jong-Heon Kim
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Youngpyo Nam
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Maan Gee Lee
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Younghoon Go
- the Department of Internal Medicine, Division of Endocrinology and Metabolism, and
| | - Robert A Harris
- the Roudebush Veterans Affairs Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, and
| | - Dong Ho Park
- the Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Hyun Kook
- the Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - In-Kyu Lee
- the Department of Internal Medicine, Division of Endocrinology and Metabolism, and
| | - Kyoungho Suk
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program,.
| |
Collapse
|
67
|
Hyperglycemia-Induced Oxidative-Nitrosative Stress Induces Inflammation and Neurodegeneration via Augmented Tuberous Sclerosis Complex-2 (TSC-2) Activation in Neuronal Cells. Mol Neurobiol 2016; 54:238-254. [PMID: 26738854 DOI: 10.1007/s12035-015-9667-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Diabetes is a systemic disease mainly characterized by chronic hyperglycemia and with extensive and long-lasting spiteful complications in central nervous systems (CNS). Astrocytes play an important role in the defense mechanism of CNS, with great ability of withstanding accumulation of toxic substances. Apart from functional disorders, hyperglycemia leads to slow progressive structural abnormalities in the CNS through oxidative stress pathways. However, the molecular mechanism by which neurons die under oxidative stress induced by high glucose (HG) remains largely unclear. Here, we report that HG-induced inflammation and neurodegeneration in brain tissues, brain astrocytes (C6), and pheochromocytoma (PC-12) cells are cultured in HG conditions. Our results show that the increases in phosphorylation of Akt and ERK1/2MAPK are associated with increased accumulations of reactive oxygen species (ROS) in neuronal cells, which simultaneously enhanced phosphorylations of tuberous sclerosis complex-2 (TSC-2) and mammalian target of rapamycin (mTOR) in the diabetic brain and in HG-exposed neuronal cells. Pharmacologic inhibition of Akt or ERK1/2 or siRNA-mediated gene silencing of TSC-2 suppressed the strong downregulation of TSC-2-mTOR activation. Findings of this study also demonstrate that HG resulted in phosphorylation of NF-κB, coinciding with the increased production of inflammatory mediators and activation of neurodegenerative markers. Pretreatment of cells with antioxidants, phosphoinositide3-kinase (PI3-K)/Akt, and ERK1/2 inhibitors significantly reduced HG-induced TSC-2 phosphorylation and restored NF-κB protein expression leading to decreased production of inflammatory mediators and neurodegenerative markers. These results illustrate that ROS functions as a key signaling component in the regulatory pathway induced by elevated glucose in neuronal cell activation leading to inflammation and neurodegeneration.
Collapse
|
68
|
Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging Dis 2016; 7:90-110. [PMID: 26816666 DOI: 10.14336/ad.2015.0702] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and its complications are caused by chronic glucotoxicity driven by persistent hyperglycemia. In this article, we review the mechanisms of diabetic glucotoxicity by focusing mainly on hyperglycemic stress and carbon stress. Mechanisms of hyperglycemic stress include reductive stress or pseudohypoxic stress caused by redox imbalance between NADH and NAD(+) driven by activation of both the polyol pathway and poly ADP ribose polymerase; the hexosamine pathway; the advanced glycation end products pathway; the protein kinase C activation pathway; and the enediol formation pathway. Mechanisms of carbon stress include excess production of acetyl-CoA that can over-acetylate a proteome and excess production of fumarate that can over-succinate a proteome; both of which can increase glucotoxicity in diabetes. For hyperglycemia stress, we also discuss the possible role of mitochondrial complex I in diabetes as this complex, in charge of NAD(+) regeneration, can make more reactive oxygen species (ROS) in the presence of excess NADH. For carbon stress, we also discuss the role of sirtuins in diabetes as they are deacetylases that can reverse protein acetylation thereby attenuating diabetic glucotoxicity and improving glucose metabolism. It is our belief that targeting some of the stress pathways discussed in this article may provide new therapeutic strategies for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Xiaoting Luo
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 2 Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi province, China, 341000
| | - Jinzi Wu
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siqun Jing
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 3 College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China, 830046
| | - Liang-Jun Yan
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
69
|
Ma J, Yu H, Liu J, Chen Y, Wang Q, Xiang L. Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats. Neurosci Lett 2015; 610:139-43. [PMID: 26552010 DOI: 10.1016/j.neulet.2015.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022]
Abstract
Curcumin is capable of promoting peripheral nerve regeneration in normal condition. However, it is unclear whether its beneficial effect on nerve regeneration still exists under diabetic mellitus. The present study was designed to investigate such a possibility. Diabetes in rats was developed by a single dose of streptozotocin at 50 mg/kg. Immediately after nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with curcumin (50 mg/kg, 100 mg/kg and 300 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. Axonal regeneration and functional recovery was significantly enhanced by curcumin, which were significantly better than those in vehicle saline group. In addition, high doses of curcumin (100 mg/kg and 300 mg/kg) achieved better axonal regeneration and functional recovery than low dose (50 mg/kg). In conclusion, curcumin is capable of promoting nerve regeneration after sciatic nerve crush injury in diabetes mellitus, highlighting its therapeutic values as a neuroprotective agent for peripheral nerve injury repair in diabetes mellitus.
Collapse
Affiliation(s)
- Junxiong Ma
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Rescue Center of Severe Wound Chinese Trauma of PLA, Shenyang 110016, Liaoning, China
| | - Hailong Yu
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Rescue Center of Severe Wound Chinese Trauma of PLA, Shenyang 110016, Liaoning, China
| | - Jun Liu
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Rescue Center of Severe Wound Chinese Trauma of PLA, Shenyang 110016, Liaoning, China
| | - Yu Chen
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Rescue Center of Severe Wound Chinese Trauma of PLA, Shenyang 110016, Liaoning, China
| | - Qi Wang
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Rescue Center of Severe Wound Chinese Trauma of PLA, Shenyang 110016, Liaoning, China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Rescue Center of Severe Wound Chinese Trauma of PLA, Shenyang 110016, Liaoning, China.
| |
Collapse
|
70
|
Yang X, Yao W, Li Q, Liu H, Shi H, Gao Y, Xu L. Mechanism of Tang Luo Ning effect on attenuating of oxidative stress in sciatic nerve of STZ-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:1-10. [PMID: 26254599 DOI: 10.1016/j.jep.2015.07.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tang Luo Ning recipe (TLN), a traditional Chinese herbal medicine based on Huangqi Guizhi Wuwu decoction, has been used clinically to treat diabetic peripheral neuropathy in China. However, the effect of TLN on diabetic peripheral neuropathy is unclear. The objective of this study was to determine the main components in TLN and to investigate the effects of TLN on oxidative stress in diabetic peripheral neuropathy rats. MATERIALS AND METHODS The effect of TLN on oxidative stress was investigated in streptozocin (STZ)-induced diabetic rats. Fasting blood glucose, body weight, thermal perception threshold test and motor and sensory nerve conduction velocity of sciatic nerve were measured. Sciatic nerve morphology was observed by Haematoxylin and eosin staining and under transmission electron microscope. T-AOC was measured by colorimetric assay. ROS were measured using enzyme-linked immunosorbent assay. Nrf2 and γGCS protein levels were measured by Western blot analysis. The expression of Bcl2, Bax and Cyto C were examined by immunohistochemistry. RESULTS TLN markedly improved the neurological function including thermal perception threshold and nerve conduction velocity of DPN rats. Haematoxylin and eosin (HE) and transmission electron microscopy (TEM) staining results showed that TLN attenuated axon atrophy and demyelination in DPN rats. Moreover, TAOC were increased, whereas ROS content was decreased after treatment with TLN in rats with DPN. Furthermore, TLN increased protein levels of Nrf2, γGCS and Bcl2, and decreased Bax and Cyto C expression. CONCLUSIONS TLN improved neurological function to prevent diabetic peripheral neuropathy by attenuating oxidative stress through Nrf2 and Bcl2 activation.
Collapse
Affiliation(s)
- Xinwei Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing Key Lab of TCM Collateral Diasease Theory Research, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China
| | - Weijie Yao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing Key Lab of TCM Collateral Diasease Theory Research, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China
| | - Qingqin Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing Key Lab of TCM Collateral Diasease Theory Research, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China
| | - Haolong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing Key Lab of TCM Collateral Diasease Theory Research, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China
| | - Haotian Shi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing Key Lab of TCM Collateral Diasease Theory Research, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing Key Lab of TCM Collateral Diasease Theory Research, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing Key Lab of TCM Collateral Diasease Theory Research, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China.
| |
Collapse
|
71
|
Zhu W, Wu Y, Meng YF, Wang JY, Xu M, Tao JJ, Lu J. Effect of curcumin on aging retinal pigment epithelial cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5337-44. [PMID: 26445530 PMCID: PMC4590412 DOI: 10.2147/dddt.s84979] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD) is now one of the leading causes of blindness in the elderly population. The antioxidative effects of curcumin on aging retinal pigment epithelial (RPE) cells are still unclear. We conducted an in vitro study to investigate the effects of curcumin on aging RPE cells. A pulsed H2O2 exposure aging model was adopted. Aging RPE cells were treated with curcumin 20 µM, 40 µM, and 80 µM. Apoptosis of RPE cells was analyzed by flow cytometry. The intracellular reactive oxygen species concentration was detected using a specific probe and apoptosis-associated proteins were detected by Western blot. Expression of oxidative biomarkers, including superoxide dismutase, maleic dialdehyde, and glutathione, was detected commercially available assay kits. Compared with normal cells, lower cell viability, higher apoptosis rates, and more severe oxidation status were identified in the aging RPE cell model. Curcumin improved cell viability and decreased apoptosis and oxidative stress. Further, curcumin had a significant influence on expression of apoptosis-associated proteins and oxidative stress biomarkers. In conclusion, treatment with curcumin was able to regulate proliferation, oxidative stress, and apoptosis in aging RPE cells. Accordingly, application of curcumin may be a novel strategy to protect against age-related change in AMD.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Ophthalmology, Changshu No 2 People's Hospital, Changshu, People's Republic of China
| | - Yan Wu
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, People's Republic of China
| | - Yi-Fang Meng
- Department of Ophthalmology, Changshu No 2 People's Hospital, Changshu, People's Republic of China
| | - Jin-Yu Wang
- Department of Ophthalmology, Changshu No 2 People's Hospital, Changshu, People's Republic of China
| | - Ming Xu
- Department of Ophthalmology, Changshu No 2 People's Hospital, Changshu, People's Republic of China
| | - Jian-Jun Tao
- Department of Ophthalmology, Changshu No 2 People's Hospital, Changshu, People's Republic of China
| | - Jiong Lu
- Department of Ophthalmology, Changshu No 2 People's Hospital, Changshu, People's Republic of China
| |
Collapse
|
72
|
Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain. Neurosci Lett 2015; 605:59-64. [PMID: 26282904 DOI: 10.1016/j.neulet.2015.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/21/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022]
Abstract
Type 2 diabetic mellitus (T2DM) has reached pandemic status and shows no signs of abatement. Diabetic neuropathic pain (DNP) is generally considered to be one of the most common complications of T2DM, which is also recognized as one of the most difficult types of pain to treat. As one kind of peripheral neuropathic pain, DNP manifests typical chronic neuralgia symptoms, including hyperalgesia, allodynia, autotomy, and so on. The injured dorsal root ganglion (DRG) is considered as the first stage of the sensory pathway impairment, whose neurons display increased frequency of action potential generation and increased spontaneous activities. These are mainly due to the changed properties of voltage-gated sodium channels (VGSCs) and the increased sodium currents, especially TTX-R sodium currents. Curcumin, one of the most important phytochemicals from turmeric, has been demonstrated to effectively prevent and/or ameliorate diabetic mellitus and its complications including DNP. The present study demonstrates that the TTX-R sodium currents of small-sized DRG neurons isolated from DNP rats are significantly increased. Such abnormality can be efficaciously ameliorated by curcumin.
Collapse
|
73
|
Abd Allah ESH, Gomaa AMS. Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: role of angiotensin converting enzyme 1. Appl Physiol Nutr Metab 2015; 40:1061-7. [PMID: 26398443 DOI: 10.1139/apnm-2015-0145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress and inflammation are involved in the development and progression of diabetes and its complications. The renin-angiotensin system also plays an important role in the pathogenesis of diabetes and its complications. We hypothesized that curcumin and captopril would restore the kidney and nerve functions of diabetic rats through their angiotensin converting enzyme 1 (ACE1) inhibiting activity as well as their antioxidant and anti-inflammatory effects. Diabetes was induced by a single intraperitoneal injection of streptozotocin (100 mg·kg(-1) body weight). One week after induction of diabetes, rats were treated with 100 mg·kg(-1)·day(-1) curcumin or 50 mg·kg(-1)·day(-1) captopril orally for 6 weeks. Compared with diabetic control rats, curcumin- or captopril-treated diabetic rats had significantly improved blood glucose, lipid profile, kidney/body weight ratio, serum creatinine, blood urea nitrogen (BUN), and pain thresholds assessed by Von Frey filaments, hot plate test, and tail-flick test. Diabetic control rats showed increased levels of total peroxide, renal and neural tumor necrosis factor-α and interleukin-10, and renal ACE1 compared with nondiabetic rats. Although treatment with either curcumin or captopril restored the altered variables, captopril was more effective in reducing these variables. ACE1 was positively correlated with BUN and creatinine and negatively correlated with paw withdrawal threshold, hot plate reaction time, and tail-flick latency, suggesting a possible causal relationship. We conclude that curcumin and captopril protect against diabetic nephropathy and neuropathy by inhibiting ACE1 as well as oxidation and inflammation. These findings suggest that curcumin and captopril may have a role in the treatment of diabetic nephropathy and neuropathy.
Collapse
Affiliation(s)
- Eman S H Abd Allah
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.,Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M S Gomaa
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.,Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
74
|
Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, Gong W, Du S, Wu Q. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm 2015; 490:22-31. [PMID: 25957703 DOI: 10.1016/j.ijpharm.2015.05.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023]
Abstract
Curcumin (CUR) is a poorly water-soluble drug and its absorption is very low. In this study, CUR and piperine (PIP) were co-encapsulated into the nanoformulation called self-microemulsifying drug delivery system (SMEDDS) to improve the stability and water-solubility of CUR and enhance its anti-colitis activity. The formulation of CUR-PIP-SMEDDS was prepared to encapsulate two hydrophobic components CUR and PIP, and then was characterized by assessing appearance, morphology, particle size, zeta potential and drug encapsulation efficiency. The appearance of CUR-PIP-SMEDDS remained clarified and transparent, and the microemulsion droplets appeared spherical without aggregation. The mean size of microemulsion droplet formed from CUR-PIP-SMEDDS was 15.87 ± 0.76 nm, and the drug encapsulation efficiency of SMEDDS for CUR and PIP were (94.34 ± 2.18)% and (90.78 ± 2.56)%, respectively. The vitro stability investigation of CUR-PIP-SMEDDS in colon tissue suggested that using SMEDDS as a delivery vehicle and co-encapsulated with PIP, CUR was more stable than drug solution in colons site. Meanwhile, the anti-inflammatory activity of CUR-PIP-SMEDDS was evaluated on DSS-induced colitis model. The results showed that CUR-PIP-SMEDDS exhibited definite anti-colitis activity by directing CUR-PIP-SMEDDS to inflammatory colon tissue through retention enema administration. Our study illustrated that the developed CUR-PIP-SMEDDS formulation was a potential carrier for developing colon-specific drug delivery system of CUR for ulcerative colitis treatment.
Collapse
Affiliation(s)
- Qiuping Li
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Wenwen Zhai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Qiaoli Jiang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Ruixue Huang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Lehuan Liu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China.
| | - Weihong Gong
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Shouying Du
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Qing Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Eastern Campus, Beijing University of Chinese Medicine, Beijing 100102, PR China
| |
Collapse
|
75
|
Irving GR, Iwuji CO, Morgan B, Berry DP, Steward WP, Thomas A, Brown K, Howells LM. Combining curcumin (C3-complex, Sabinsa) with standard care FOLFOX chemotherapy in patients with inoperable colorectal cancer (CUFOX): study protocol for a randomised control trial. Trials 2015; 16:110. [PMID: 25872567 PMCID: PMC4392790 DOI: 10.1186/s13063-015-0641-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/09/2015] [Indexed: 01/19/2023] Open
Abstract
Background The need for low toxicity adjuncts to standard care chemotherapy in inoperable colorectal cancer, with potential to improve outcomes and decrease the side-effect burden, is well recognised. Addition of the low toxicity diet-derived agent, curcumin (the active ingredient of turmeric), to standard oxaliplatin-based therapy has shown promise in numerous pre-clinical studies. Methods/Design This study is the first to combine daily oral curcumin with standard care FOLFOX-based (5-fluorouracil, folinic acid and oxaliplatin) chemotherapy in colorectal cancer patients with inoperable liver metastases: the CUFOX trial. CUFOX comprises a Phase 1 dose-escalation study (3 + 3 + 3 design) to determine an acceptable target dose of curcumin with which to safely proceed to a Phase IIa open-labelled randomised controlled trial. Thirty three participants with histological or cytological confirmation of inoperable colorectal cancer will then be randomised to oxaliplatin-based chemotherapy with the addition of daily oral curcumin at the target dose determined in Phase I, or to standard care oxaliplatin-based chemotherapy alone (recruiting at a ratio of 2:1). Discussion Primary outcome measures will be the determination of a target dose which is both safe and tolerable for long-term administration to individuals in receipt of first-line oxaliplatin-based chemotherapy for inoperable colorectal cancer. Secondary outcome measures will include observation of any changes in neuropathic side-effects of chemotherapy, improvement to progression-free or overall survival and identification of putative efficacy biomarkers in plasma. The results will be disseminated via presentation at national and international conferences, via publication in appropriate peer-reviewed journals and via the Cancer Research UK/Department of Health Experimental Cancer Medicine Centre Network. This trial has full ethical and institutional approval, and commenced recruitment in February 2012. Trial registration ClinicalTrials.gov (NCT01490996, registered 7th December 2011), European Drug Regulating Authorities (EudraCT 2011-002289-19, registered 13th May 2011), UKCRN ID#10672.
Collapse
Affiliation(s)
- Glen Rb Irving
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| | - Chinenye Oo Iwuji
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| | - Bruno Morgan
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| | - David P Berry
- Department of Hepatobiliary Surgery, University Hospitals of Wales, Cardiff, CF14 4XW, UK.
| | - William P Steward
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| | - Anne Thomas
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| | - Karen Brown
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| | - Lynne M Howells
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| |
Collapse
|
76
|
Rashid K, Sil PC. Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:70-82. [PMID: 25446996 DOI: 10.1016/j.bbadis.2014.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 12/30/2022]
Abstract
In the present study, we sought to explore whether curcumin plays any beneficial role against STZ induced testicular abnormalities in diabetic rats, and if so, what possible mechanism it utilizes to provide protection. Exposure to STZ (50mg/kg body weight, i.p., once) reduced testis-to-body weight ratio, enhanced blood glucose level and intracellular ROS, altered testicular markers, diminished serum testosterone and impaired cellular redox balance. Administration of curcumin at a dose of 100mg/kg body weight for 8 weeks effectively normalized all the alterations. Curcumin also showed inhibitory effect on the elevation of pro-inflammatory cytokines and translocation of NFκB into the nucleus and promoted the activation of the transcription factor Nrf-2 to provide protection against oxidants. To protect cells from STZ-induced stress-mediated damage, curcumin acted on the key mediators of the apoptotic cell death such as JNK and p38. In addition, this active molecule upregulated Bcl-2 expression, blocked the expression of pro-apoptotic proteins (Bax, Bad and Bid), decreased intracellular Ca(2+) level, inhibited active caspase cascade and attenuated PARP cleavage. These results suggest that curcumin provides protection against cellular stress-mediated mitochondrial and endoplasmic reticulum-dependent apoptotic death of the testicular cells under diabetic condition and suggests the possibility of using this molecule as a potential therapeutic in the treatment of stress-mediated diabetic testicular dysfunction.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
77
|
Wu A, Noble EE, Tyagi E, Ying Z, Zhuang Y, Gomez-Pinilla F. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. Biochim Biophys Acta Mol Basis Dis 2014; 1852:951-61. [PMID: 25550171 DOI: 10.1016/j.bbadis.2014.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 12/29/2022]
Abstract
Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18:3 n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders.
Collapse
Affiliation(s)
- Aiguo Wu
- Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA
| | - Emily E Noble
- Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA
| | - Ethika Tyagi
- Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA
| | - Yumei Zhuang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
78
|
Abstract
Diabetic cardiomyopathy (DCM), as one of the major cardiac complications in diabetic patients, is known to related with oxidative stress that is due to a severe imbalance between reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) generation and their clearance by antioxidant defense systems. Transcription factor nuclear factor NF-E2-related factor 2 (Nrf2) plays an important role in maintaining the oxidative homeostasis by regulating multiple downstream antioxidants. Diabetes may up-regulate several antioxidants in the heart as a compensative mechanism at early stage, but at late stage, diabetes not only generates extra ROS and/or RNS but also impairs antioxidant capacity in the heart, including Nrf2. In an early study, we have established that Nrf2 protect the cardiac cells and heart from high level of glucose in vitro and hyperglycemia in vivo, and in the following study demonstrated the significant down-regulation of cardiac Nrf2 expression in diabetic animals and patients. Using Nrf2-KO mice or Nrf2 inducers, blooming evidence has indicated the important protection by Nrf2 from cardiac pathogenesis in the diabetes. Therefore, this brief review summarizes the status of studies on Nrf2's role in preventing DCM and even other complications, the need for new and safe Nrf2 inducer screening and the precaution for the undesirable side of Nrf2 under certain conditions.
Collapse
Affiliation(s)
- Jing Chen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY, USA
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY, USA
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
79
|
Jeenger MK, Shrivastava S, Yerra VG, Naidu VGM, Ramakrishna S, Kumar A. Curcumin: a pleiotropic phytonutrient in diabetic complications. Nutrition 2014; 31:276-82. [PMID: 25441584 DOI: 10.1016/j.nut.2014.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 02/06/2023]
Abstract
Curcumin is the major polyphenolic constituent of an indigenous herb, Curcuma longa, found to have a wide range of applications right from its kitchen use as a spicy ingredient to therapeutic and medicinal applications in various diseases. Curcumin has been identified to have a plethora of biologic and pharmacologic properties owing to its antioxidant and anti-inflammatory activities. This pleiotropic regulation of redox balance of cell and inflammation might be the basis of curcumin's beneficial activities in various pathologic conditions including diabetic complications. This review summarizes various in vitro, in vivo studies done on curcumin and its therapeutic utility in diabetic micro-vascular complications. This review also emphasizes the importance of curcumin in addition to the existing therapeutic modalities in diabetic complications.
Collapse
Affiliation(s)
- Manish Kumar Jeenger
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - Shweta Shrivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - Sistla Ramakrishna
- Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology, Hyderabad, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India.
| |
Collapse
|
80
|
Antinociceptive effects of curcumin in a rat model of postoperative pain. Sci Rep 2014; 4:4932. [PMID: 24816565 PMCID: PMC4017214 DOI: 10.1038/srep04932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022] Open
Abstract
Curcumin is a principal ingredient of traditional Chinese medicine, Curcuma Longa, which possesses a variety of pharmacological activities including pain relief. Preclinical studies have demonstrated that curcumin has antinociceptive effects for inflammatory and neuropathic pain. This study examined the effects of curcumin in a rat model of postoperative pain. A surgical incision on the right hind paw induced a sustained mechanical hyperalgesia that lasted for 5 days. Acute curcumin treatment (10-40 mg/kg, p.o) significantly and dose dependently reversed mechanical hyperalgesia. In addition, repeated curcumin treatment significantly facilitated the recovery from surgery. In contrast, repeated treatment with curcumin before surgery did not impact the postoperative pain threshold and recovery rate. All the doses of curcumin did not significantly alter the spontaneous locomotor activity. Combined, these results suggested that curcumin could alleviate postoperative pain and promote recovery from the surgery, although there was no significant preventive value. This study extends previous findings and supports the application of curcumin alone or as an adjunct therapy for the management of peri-operative pain.
Collapse
|
81
|
Aydin MS, Caliskan A, Kocarslan A, Kocarslan S, Yildiz A, Günay S, Savik E, Hazar A, Yalcin F. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat. Int J Surg 2014; 12:601-5. [PMID: 24815029 DOI: 10.1016/j.ijsu.2014.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Previous studies have demonstrated that curcumin (CUR) has protective effects against ischemia reperfusion injury to various organs. We aimed to determine whether CUR has favorable effects on tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. MATERIALS AND METHODS Thirty rats were divided into three groups as sham, control and treatment (CUR) group. Control and CUR groups underwent abdominal aorta ischemia for 60 min followed by a 120 min period of reperfusion. In the CUR group, CUR was given 5 min before reperfusion at a dose of 200 mg/kg via an intraperitoneal route. Total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured, and lung, renal and heart tissue histopathology were evaluated with light microscopy. RESULTS TOS and OSI activity in blood samples were statistically decreased in sham and CUR groups compared to the control group (p < 0.001 for TOS and OSI). Renal, lung, heart injury scores of sham and CUR groups were statistically decreased compared to control group (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in CUR group than in the control group. CONCLUSION CUR administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta I/R rat model.
Collapse
Affiliation(s)
- Mehmet Salih Aydin
- Harran University Faculty of Medicine, Department of Cardiovascular Surgery, Sanliurfa, Turkey.
| | - Ahmet Caliskan
- Dicle University Faculty of Medicine, Department of Cardiovascular Surgery, Diyarbakır, Turkey
| | - Aydemir Kocarslan
- Harran University Faculty of Medicine, Department of Cardiovascular Surgery, Sanliurfa, Turkey
| | - Sezen Kocarslan
- Harran University Medical Faculty, Department of Pathology, Sanliurfa, Turkey
| | - Ali Yildiz
- Harran University Medical Faculty, Department of Cardiology, Sanliurfa, Turkey
| | - Samil Günay
- Harran University Medical Faculty, Department of Thoracic Surgery, Sanliurfa, Turkey
| | - Emin Savik
- Harran University Medical Faculty, Department of Biochemistry, Sanliurfa, Turkey
| | - Abdussemet Hazar
- Harran University Faculty of Medicine, Department of Cardiovascular Surgery, Sanliurfa, Turkey
| | - Funda Yalcin
- Harran University Medical Faculty, Department of Biochemistry, Sanliurfa, Turkey; Harran University Medical Faculty, Department of Chest Disease, Sanliurfa, Turkey
| |
Collapse
|