51
|
Holschneider DP, Givrad TK, Yang J, Stewart SB, Francis SR, Wang Z, Maarek J. Cerebral perfusion mapping during retrieval of spatial memory in rats. Behav Brain Res 2019; 375:112116. [PMID: 31377254 DOI: 10.1016/j.bbr.2019.112116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Studies of brain functional activation during spatial navigation using electrophysiology and immediate-early gene responses have typically targeted a limited number of brain regions. Our study provides the first whole brain analysis of cerebral activation during retrieval of spatial memory in the freely-moving rat. Rats (LEARNERS) were trained in the Barnes maze, an allocentric spatial navigation task, while CONTROLS received passive exposure. After 19 days, functional brain mapping was performed during recall by bolus intravenous injection of [14C]-iodoantipyrine using a novel subcutaneous minipump triggered by remote activation. Regional cerebral blood flow (rCBF)-related tissue radioactivity was analyzed by statistical parametric mapping from autoradiographic images of the three-dimensionally reconstructed brains. Functional connectivity was examined between regions of the spatial navigation circuit through interregional correlation analysis. Significant rCBF increases were noted in LEARNERS compared to CONTROLS broadly across the spatial navigation circuit, including the hippocampus (anterior dorsal CA1, posterior ventral CA1-3), subiculum, thalamus, striatum, medial septum, cerebral cortex, with decreases noted in the mammillary nucleus, amygdala and insula. LEARNERS showed a significantly greater positive correlation of rCBF of the ventral hippocampus with retrosplenial, lateral orbital, parietal and primary visual cortex, and a significantly more negative correlation with the mammillary nucleus, amygdala, posterior entorhinal cortex, and anterior thalamic nucleus. The complex sensory component of the spatial navigation task was underscored by broad activation across visual, somatosensory, olfactory, auditory and vestibular circuits which was enhanced in LEARNERS. Brain mapping facilitated by an implantable minipump represents a powerful tool for evaluation of mammalian behaviors dependent on locomotion.
Collapse
Affiliation(s)
- D P Holschneider
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States; Dept. of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States; Viterbi School of Engineering, Dept. of Biomedical Engineering, Los Angeles, CA, 90033, United States.
| | - T K Givrad
- Viterbi School of Engineering, Dept. of Biomedical Engineering, Los Angeles, CA, 90033, United States
| | - J Yang
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - S B Stewart
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - S R Francis
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - Z Wang
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jmi Maarek
- Viterbi School of Engineering, Dept. of Biomedical Engineering, Los Angeles, CA, 90033, United States
| |
Collapse
|
52
|
Allocentric representations of space in the hippocampus. Neurosci Res 2019; 153:1-7. [PMID: 31276699 DOI: 10.1016/j.neures.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
The hippocampal-entorhinal system is essential for navigation and memory. The first description of spatially tuned place cell activity in area CA1 of the hippocampus suggested that spatial representations are not centered on self, but are rather allocentric. This idea is supported by extensive neurophysiological data, including temporally coordinated sequential activity during theta phase precession and sharp wave ripples. CA1 pyramidal neurons represent other information as well, such as objects, time, and events. Additionally, our recent research revealed that CA1 place cells jointly represent the spatial location of self and a conspecific, further supporting the idea of allocentric spatial representations by CA1 place cells. The neural mechanisms underlying CA1 spatial representations have long remained a mystery, but recent research examining circuit dynamics and synaptic plasticity suggests that the temporal relationships of inputs from entorhinal cortex layer III and CA3 could be critical for generating spatially tuned CA1 activity. Here, I review studies of the hippocampal representations of space and other features, and discuss the related networks and synaptic mechanisms supporting the representations of these features.
Collapse
|
53
|
Dudchenko PA, Wood ER, Smith A. A new perspective on the head direction cell system and spatial behavior. Neurosci Biobehav Rev 2019; 105:24-33. [PMID: 31276715 DOI: 10.1016/j.neubiorev.2019.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
Abstract
The head direction cell system is an interconnected set of brain structures containing neurons whose firing is directionally tuned. The robust representation of allocentric direction by head direction cells suggests that they provide a neural compass for the animal. However, evidence linking head direction cells and spatial behavior has been mixed. Whereas damage to the hippocampus yields profound deficits in a range of spatial tasks, lesions to the head direction cell system often yield milder impairments in spatial behavior. In addition, correlational approaches have shown a correspondence between head direction cells and spatial behavior in some tasks, but not others. These mixed effects may be explained in part by a new view of the head direction cell system arising from recent demonstrations of at least two types of head direction cells: 'traditional' cells, and a second class of 'sensory' cells driven by polarising features of an environment. The recognition of different kinds of head direction cells now allows a nuanced assessment of this system's role in guiding navigation.
Collapse
Affiliation(s)
- Paul A Dudchenko
- University of Stirling, Psychology, School of Natural Sciences, Stirling, FK9 4LA, United Kingdom.
| | - Emma R Wood
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom
| | - Anna Smith
- University of Stirling, Psychology, School of Natural Sciences, Stirling, FK9 4LA, United Kingdom; University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom
| |
Collapse
|
54
|
Dannenberg H, Alexander AS, Robinson JC, Hasselmo ME. The Role of Hierarchical Dynamical Functions in Coding for Episodic Memory and Cognition. J Cogn Neurosci 2019; 31:1271-1289. [PMID: 31251890 DOI: 10.1162/jocn_a_01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Behavioral research in human verbal memory function led to the initial definition of episodic memory and semantic memory. A complete model of the neural mechanisms of episodic memory must include the capacity to encode and mentally reconstruct everything that humans can recall from their experience. This article proposes new model features necessary to address the complexity of episodic memory encoding and recall in the context of broader cognition and the functional properties of neurons that could contribute to this broader scope of memory. Many episodic memory models represent individual snapshots of the world with a sequence of vectors, but a full model must represent complex functions encoding and retrieving the relations between multiple stimulus features across space and time on multiple hierarchical scales. Episodic memory involves not only the space and time of an agent experiencing events within an episode but also features shown in neurophysiological data such as coding of speed, direction, boundaries, and objects. Episodic memory includes not only a spatio-temporal trajectory of a single agent but also segments of spatio-temporal trajectories for other agents and objects encountered in the environment consistent with data on encoding the position and angle of sensory features of objects and boundaries. We will discuss potential interactions of episodic memory circuits in the hippocampus and entorhinal cortex with distributed neocortical circuits that must represent all features of human cognition.
Collapse
|
55
|
Li H, Hu B, Zhang HP, Boyle CA, Lei S. Roles of K + and cation channels in ORL-1 receptor-mediated depression of neuronal excitability and epileptic activities in the medial entorhinal cortex. Neuropharmacology 2019; 151:144-158. [PMID: 30998945 PMCID: PMC6500758 DOI: 10.1016/j.neuropharm.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/24/2019] [Accepted: 04/13/2019] [Indexed: 02/05/2023]
Abstract
Nociceptin (NOP) is an endogenous opioid-like peptide that selectively activates the opioid receptor-like (ORL-1) receptors. The entorhinal cortex (EC) is closely related to temporal lobe epilepsy and expresses high densities of ORL-1 receptors. However, the functions of NOP in the EC, especially in modulating the epileptiform activity in the EC, have not been determined. We demonstrated that activation of ORL-1 receptors remarkably inhibited the epileptiform activity in entorhinal slices induced by application of picrotoxin or by deprivation of extracellular Mg2+. NOP-mediated depression of epileptiform activity was independent of synaptic transmission in the EC, but mediated by inhibition of neuronal excitability in the EC. NOP hyperpolarized entorhinal neurons via activation of K+ channels and inhibition of cation channels. Whereas application of Ba2+ at 300 μM which is effective for the inward rectifier K+ (Kir) channels slightly inhibited NOP-induced hyperpolarization, the current-voltage (I-V) curve of the net currents induced by NOP was linear without showing inward rectification. However, a role of NOP-induced inhibition of cation channels was revealed after inhibition of Kir channels by Ba2+. Furthermore, NOP-mediated augmentation of membrane currents was differently affected by application of the blockers selective for distinct subfamilies of Kir channels. Whereas SCH23390 or ML133 blocked NOP-induced augmentation of membrane currents at negative potentials, application of tertiapin-Q exerted no actions on NOP-induced alteration of membrane currents. Our results demonstrated a novel cellular and molecular mechanism whereby activation of ORL-1 receptors depresses epilepsy.
Collapse
Affiliation(s)
- Huiming Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Hao-Peng Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
56
|
Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning. Cell Rep 2019; 22:1313-1324. [PMID: 29386117 PMCID: PMC5809635 DOI: 10.1016/j.celrep.2018.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/05/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022] Open
Abstract
Spatial learning requires estimates of location that may be obtained by path integration or from positional cues. Grid and other spatial firing patterns of neurons in the superficial medial entorhinal cortex (MEC) suggest roles in behavioral estimation of location. However, distinguishing the contributions of path integration and cue-based signals to spatial behaviors is challenging, and the roles of identified MEC neurons are unclear. We use virtual reality to dissociate linear path integration from other strategies for behavioral estimation of location. We find that mice learn to path integrate using motor-related self-motion signals, with accuracy that decreases steeply as a function of distance. We show that inactivation of stellate cells in superficial MEC impairs spatial learning in virtual reality and in a real world object location recognition task. Our results quantify contributions of path integration to behavior and corroborate key predictions of models in which stellate cells contribute to location estimation. Mice learn to estimate location by path integration and cue-based strategies Motor-related self-motion signals are used for path integration Accuracy of path integration decreases with distance Stellate cells in medial entorhinal cortex are required for spatial learning
Collapse
|
57
|
Spatial Navigation in Rats and Humans: A Neuropsychological Perspective. BRAIN IMPAIR 2019. [DOI: 10.1017/brimp.2019.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractBackground and objective:In a landmark publication, O’Keefe & Dostrovsky (1971) presented a model for spatial navigation in the rat, the cognitive map theory. In this theory they proposed that the processing and storage of spatial information for spatial navigation takes place in the hippocampus. The theory was extended to include the contribution of the grid cells in the medial entorhinal cortex (Hafting et al. 2005). The cognitive map theory has been widely applied to spatial navigation in humans as well as rats. In this paper, an alternative theory is proposed in which spatial processing takes place in the right parieto-temporo-occipital area in humans, and that damage to this area causes a fragmentation in the sense of space, affecting the recall of both visual and tactile spatial information.Method:A group of eight subjects with damage to the right parieto-temporo-occipital area and a fragmented sense of space was assessed on tests of spatial navigation and memory and the results were compared with a group of patients with damage to the right hippocampus. Other comparison groups included left and right hemisphere subjects with normal spatial functioning.Results:The results suggest that, in the human, damage to the right parieto-temporo-occipital area causes a fragmentation in the sense of space, as well as an impaired memory for spatial material in both the visual and tactile modalities. These results support a model of spatial navigation in which the integrity of the right parieto-temporo-occipital area, and not the right hippocampus, is a necessary condition for the processing of spatial information in humans. An alternative explanation for the functioning of the right hippocampus is also presented.
Collapse
|
58
|
Vasquez JH, Leong KC, Gagliardi CM, Harland B, Apicella AJ, Muzzio IA. Pathway specific activation of ventral hippocampal cells projecting to the prelimbic cortex diminishes fear renewal. Neurobiol Learn Mem 2019; 161:63-71. [PMID: 30898692 PMCID: PMC6736601 DOI: 10.1016/j.nlm.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/16/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
The ability to learn that a stimulus no longer signals danger is known as extinction. A major characteristic of extinction is that it is context-dependent, which means that fear reduction only occurs in the same context as extinction training. In other contexts, there is re-emergence of fear, known as contextual renewal. The ability to properly extinguish fear memories and generalize safety associations to multiple contexts provides therapeutic potential, but little is known about the specific neural pathways that mediate fear renewal and extinction generalization. The ventral hippocampus (VH) is thought to provide a contextual gating mechanism that determines whether fear or safety is expressed in particular contexts through its projections to areas of the fear circuit, including the infralimbic (IL) and prelimbic (PL) cortices. Moreover, VH principal cells fire in large, overlapping regions of the environment, a characteristic that is ideal to support generalization; yet it is unclear how different projection cells mediate this process. Using a pathway-specific (intersectional) chemogenetic approach, we demonstrate that selective activation of VH cells projecting to PL attenuates fear renewal without affecting fear expression. These results have implications for anxiety disorders since they uncover a neural pathway associated with extinction generalization.
Collapse
Affiliation(s)
- J H Vasquez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78258, United States
| | - K C Leong
- Department of Psychology, Trinity University, One Trinity Place, San Antonio, TX 78212, United States
| | - C M Gagliardi
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78258, United States
| | - B Harland
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78258, United States
| | - A J Apicella
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78258, United States
| | - I A Muzzio
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78258, United States.
| |
Collapse
|
59
|
Tari AR, Norevik CS, Scrimgeour NR, Kobro-Flatmoen A, Storm-Mathisen J, Bergersen LH, Wrann CD, Selbæk G, Kivipelto M, Moreira JBN, Wisløff U. Are the neuroprotective effects of exercise training systemically mediated? Prog Cardiovasc Dis 2019; 62:94-101. [PMID: 30802460 DOI: 10.1016/j.pcad.2019.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
To date there is no cure available for dementia, and the field calls for novel therapeutic targets. A rapidly growing body of literature suggests that regular endurance training and high cardiorespiratory fitness attenuate cognitive impairment and reduce dementia risk. Such benefits have recently been linked to systemic neurotrophic factors induced by exercise. These circulating biomolecules may cross the blood-brain barrier and potentially protect against neurodegenerative disorders such as Alzheimer's disease. Identifying exercise-induced systemic neurotrophic factors with beneficial effects on the brain may lead to novel molecular targets for maintaining cognitive function and preventing neurodegeneration. Here we review the recent literature on potential systemic mediators of neuroprotection induced by exercise. We focus on the body of translational research in the field, integrating knowledge from the molecular level, animal models, clinical and epidemiological studies. Taken together, the current literature provides initial evidence that exercise-induced, blood-borne biomolecules, such as BDNF and FNDC5/irisin, may be powerful agents mediating the benefits of exercise on cognitive function and may form the basis for new therapeutic strategies to better prevent and treat dementia.
Collapse
Affiliation(s)
- Atefe R Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway; Department of Neurology, St. Olavs Hospital, Trondheim, Norway.
| | - Cecilie S Norevik
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway; Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| | - Nathan R Scrimgeour
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Norway
| | | | | | - Christiane D Wrann
- Massachusetts General Hospital and Harvard Medical School, Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States of America
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Centre for Age-related Functional Decline and Disease, Innlandet Hospital Trust, Ottestad, Norway
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden; Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Age and Epidemiology Research Unit, School of Public Health, Imperial College London, UK
| | - José Bianco N Moreira
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway
| |
Collapse
|
60
|
Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility. Nat Neurosci 2018; 21:1574-1582. [PMID: 30349104 PMCID: PMC6352992 DOI: 10.1038/s41593-018-0252-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/11/2018] [Indexed: 02/03/2023]
Abstract
The medial entorhinal cortex (MEC) is known to contain spatial encoding neurons that likely contribute to encoding spatial aspects of episodic memories. However, little is known about the role MEC plays in encoding temporal aspects of episodic memories, particularly during immobility. Here, using a virtual “Door-Stop” task for mice, we show MEC contains a representation of elapsed time during immobility, with individual time encoding neurons activated at a specific moment during the immobile interval. This representation consisted of a sequential activation of time encoding neurons and displayed variations in progression speed that correlated with variations in mouse timing behavior. Time and spatial encoding neurons were preferentially active during immobile and locomotion periods, respectively, were anatomically clustered with respect to each other and preferentially encoded the same variable across tasks or environments. These results suggest the existence of largely non-overlapping sub-circuits in MEC encoding time during immobility or space during locomotion.
Collapse
|
61
|
Neuronal excitability and spontaneous synaptic transmission in the entorhinal cortex of BDNF heterozygous mice. Neurosci Lett 2018; 690:69-75. [PMID: 30316983 DOI: 10.1016/j.neulet.2018.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 02/04/2023]
Abstract
Brain Derived Neurotropic Factor (BDNF) is a neutrophic factor that is required for the normal neuronal development and function. BDNF is involved in regulation of synapses as well as neuronal excitability. Entorhinal Cortex (EC) is a key brain area involved in many physiological and pathological processes. In this study we investigated the effects of chronically reduced BDNF levels on layer 3 pyramidal neurons of EC. We aimed to assess the effects of reduced levels of BDNF on firing properties, spontaneous synaptic currents and excitation/inhibition balance from acute brain slices. Patch clamp recordings were obtained from pyramidal neurons of Entorhinal Cortex Layer 3. Findings of BDNF heterozygous (BDNF (+/-)) mice compared to their wild-type littermates at the age of 23-28 days. Action potential threshold was shifted (p = 0,002) to depolarized potentials and spike frequency was smaller in response to somatic current injection steps in BDNF (+/-) mice. Spontaneous synaptic currents were also affected. sEPSC amplitude (p = 0,009), sIPSC frequency (p = 0,001) and sIPSC amplitudes (p = 0,023) were reduced in BDNF (+/-). Decay times of sIPSCs were longer in BDNF (+/-) (p = 0,014). Calculated balance of excitatory/inhibitory balance was shifted in the favor of excitation in BDNF (+/-) mice (p = 0,01). These findings suggest that reductions in concentrations of BDNF results in altered status of excitability and excitation/inhibition imbalance. However, these differences observed in BDNF (+/-) seem to have opposing effects on neuronal activity.
Collapse
|
62
|
Hales JB, Vincze JL, Reitz NT, Ocampo AC, Leutgeb S, Clark RE. Recent and remote retrograde memory deficit in rats with medial entorhinal cortex lesions. Neurobiol Learn Mem 2018; 155:157-163. [PMID: 30075194 DOI: 10.1016/j.nlm.2018.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
The hippocampus is critically involved in the acquisition and retrieval of spatial memories. Even though some memories become independent of the hippocampus over time, expression of spatial memories have consistently been found to permanently depend on the hippocampus. Recent studies have focused on the adjacent medial entorhinal cortex (MEC), as it provides major projections to the hippocampus. These studies have shown that lesions of the MEC disrupt spatial processing in the hippocampus and impair spatial memory acquisition on the watermaze task. MEC lesions acquired after learning the watermaze task also disrupt recently acquired spatial memories. However, the effect of MEC lesions on remotely acquired memories is unknown. The current study examined the effect of MEC lesions on recent and remote memory retrieval using three hippocampus-dependent tasks: the watermaze, trace fear conditioning, and novel object recognition. MEC lesions caused impaired retrieval of recently and remotely acquired memory for the watermaze. Rats with MEC lesions also showed impaired fear memory when exposed to the previously conditioned context or the associated tone, and this reduction was seen both when the lesion occurred soon after trace fear condition and when it occurred a month after conditioning. In contrast, MEC lesions did not disrupt novel object recognition. These findings indicate that even with an intact hippocampus, rats with MEC lesions cannot retrieve recent or remote spatial memories. In addition, the involvement of the MEC in memory extends beyond is role in navigation and place memory.
Collapse
Affiliation(s)
- Jena B Hales
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA.
| | - Jonathan L Vincze
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Nicole T Reitz
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Amber C Ocampo
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert E Clark
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
63
|
Qin H, Fu L, Hu B, Liao X, Lu J, He W, Liang S, Zhang K, Li R, Yao J, Yan J, Chen H, Jia H, Zott B, Konnerth A, Chen X. A Visual-Cue-Dependent Memory Circuit for Place Navigation. Neuron 2018; 99:47-55.e4. [PMID: 29909996 PMCID: PMC6048686 DOI: 10.1016/j.neuron.2018.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/03/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation. Fiber photometry allows for recording MEC-DG projection in freely moving mice A persistent-task-associated (PTA) activity is induced in the MECII-DG pathway PTA activity requires visual inputs throughout navigation to the learned place Photoinhibition of the MECII-DG activity causes a disruption of navigation
Collapse
Affiliation(s)
- Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Hu
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jian Lu
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Wenjing He
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiwei Yao
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Junan Yan
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Hao Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Benedikt Zott
- Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Arthur Konnerth
- Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany.
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
64
|
Prefrontal–hippocampal interactions for spatial navigation. Neurosci Res 2018; 129:2-7. [DOI: 10.1016/j.neures.2017.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/16/2023]
|
65
|
Rhynchophylline suppresses soluble Aβ 1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 2018; 135:100-112. [PMID: 29510187 DOI: 10.1016/j.neuropharm.2018.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 01/06/2023]
Abstract
Rhynchophylline (RIN) is a significant active component isolated from the Chinese herbal medicine Uncaria rhynchophylla. The overproduction of soluble amyloid β protein (Aβ) oligomers in the hippocampus is closely involved in impairments in cognitive function at the early stage of Alzheimer's disease (AD). Growing evidences show that RIN possesses neuroprotective effects against Aβ-induced neurotoxicity. However, whether RIN can prevent soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity is still unclear. Using the combined methods of behavioral tests, immunofluorescence and electrophysiological recordings, we characterized the key neuroprotective properties of RIN and its possible cellular and molecular mechanisms against soluble Aβ1-42-related impairments in rats. Our findings are as follows: (1) RIN efficiently rescued the soluble Aβ1-42-induced spatial learning and memory deficits in the Morris water maze test and prevented soluble Aβ1-42-induced suppression in long term potentiation (LTP) in the entorhinal cortex (EC)-dentate gyrus (DG) circuit. (2) Excessive activation of extrasynaptic GluN2B-NMDAR and subsequent Ca2+ overload contributed to the soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity. (3) RIN prevented Aβ1-42-induced excessive activation of extrasynaptic NMDARs by reducing extrasynaptic NMDARs -mediated excitatory postsynaptic currents and down regulating GluN2B-NMDAR expression in the DG region, which inhibited Aβ1-42-induced Ca2+ overload mediated by extrasynanptic NMDARs. The results suggest that RIN could be an effective therapeutic candidate for cognitive impairment in AD.
Collapse
|
66
|
Hinman JR, Dannenberg H, Alexander AS, Hasselmo ME. Neural mechanisms of navigation involving interactions of cortical and subcortical structures. J Neurophysiol 2018; 119:2007-2029. [PMID: 29442559 DOI: 10.1152/jn.00498.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must perform spatial navigation for a range of different behaviors, including selection of trajectories toward goal locations and foraging for food sources. To serve this function, a number of different brain regions play a role in coding different dimensions of sensory input important for spatial behavior, including the entorhinal cortex, the retrosplenial cortex, the hippocampus, and the medial septum. This article will review data concerning the coding of the spatial aspects of animal behavior, including location of the animal within an environment, the speed of movement, the trajectory of movement, the direction of the head in the environment, and the position of barriers and objects both relative to the animal's head direction (egocentric) and relative to the layout of the environment (allocentric). The mechanisms for coding these important spatial representations are not yet fully understood but could involve mechanisms including integration of self-motion information or coding of location based on the angle of sensory features in the environment. We will review available data and theories about the mechanisms for coding of spatial representations. The computation of different aspects of spatial representation from available sensory input requires complex cortical processing mechanisms for transformation from egocentric to allocentric coordinates that will only be understood through a combination of neurophysiological studies and computational modeling.
Collapse
Affiliation(s)
- James R Hinman
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Holger Dannenberg
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Andrew S Alexander
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| |
Collapse
|
67
|
Gamma oscillations in the entorhinal-hippocampal circuit underlying memory and dementia. Neurosci Res 2018; 129:40-46. [PMID: 29438778 DOI: 10.1016/j.neures.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022]
Abstract
Gamma oscillations that occur within the entorhinal cortex-hippocampal circuitry play important roles in the formation and retrieval of memory in healthy brains. Recent studies report that gamma oscillations are impaired in the entorhinal-hippocampal circuit of Alzheimer's disease (AD) patients and AD animal models. Here we review the latest advancements in studies of entorhinal-hippocampal gamma oscillations in healthy memory and dementia. This review is especially salient for readers in Alzheimer's research field not familiar with in vivo electrophysiology. Recent studies have begun to show a causal link between gamma oscillations and AD pathology, suggesting that gamma oscillations may even offer a plausible future therapeutic target.
Collapse
|
68
|
Mannewitz A, Bock J, Kreitz S, Hess A, Goldschmidt J, Scheich H, Braun K. Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats. Brain Struct Funct 2018; 223:2025-2038. [PMID: 29340757 DOI: 10.1007/s00429-017-1605-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
Collapse
Affiliation(s)
- A Mannewitz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, Magdeburg, 39120, Germany
| | - J Bock
- "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - S Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Fahrstr. 17, 91054, Erlangen, Germany
| | - A Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Fahrstr. 17, 91054, Erlangen, Germany
| | - J Goldschmidt
- Department Acoustics, Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department Systems Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - H Scheich
- Department Acoustics, Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, Magdeburg, 39120, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
69
|
Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease. Brain Res 2017; 1702:3-11. [PMID: 29102776 DOI: 10.1016/j.brainres.2017.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022]
Abstract
Building upon the knowledge that a number of important brain circuits undergo significant degeneration in Alzheimer's disease, numerous recent studies suggest that the norepinephrine-ergic system in the brainstem undergoes significant alterations early in the course of both Alzheimer's disease and Down syndrome. Massive projections from locus coeruleus neurons to almost the entire brain, extensive innervation of brain capillaries, and widespread distribution of noradrenergic receptors enable the norepinephrine-ergic system to play a crucial role in neural processes, including cognitive function. These anatomical and functional characteristics support the role of the norepinephrine-ergic system as an important target for developing new therapies for cognitive dysfunction. Careful neuropathological examinations using postmortem samples from individuals with Alzheimer's disease have implicated the role of the norepinephrine-ergic system in the etiopathogenesis of Alzheimer's disease. Furthermore, numerous studies have supported the existence of a strong interaction between norepinephrine-ergic and neuroimmune systems. We explore the interaction between the two systems that could play a role in the disease-modifying effects of norepinephrine in Alzheimer's disease and Down syndrome.
Collapse
|
70
|
Save E, Sargolini F. Disentangling the Role of the MEC and LEC in the Processing of Spatial and Non-Spatial Information: Contribution of Lesion Studies. Front Syst Neurosci 2017; 11:81. [PMID: 29163076 PMCID: PMC5663729 DOI: 10.3389/fnsys.2017.00081] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/12/2017] [Indexed: 12/01/2022] Open
Abstract
It is now widely accepted that the entorhinal cortex (EC) plays a pivotal role in the processing of spatial information and episodic memory. The EC is segregated into two sub-regions, the medial EC (MEC) and the lateral EC (LEC) but a comprehensive understanding of their roles across multiple behavioral contexts remains unclear. Considering that it is still useful to investigate the impact of lesions of EC on behavior, we review the contribution of lesion approach to our knowledge of EC functions. We show that the MEC and LEC play different roles in the processing of spatial and non-spatial information. The MEC is necessary to the use of distal but not proximal landmarks during navigation and is crucial for path integration, in particular integration of linear movements. Consistent with predominant hypothesis, the LEC is important for combining the spatial and non-spatial aspects of the environment. However, object exploration studies suggest that the functional segregation between the MEC and the LEC is not as clearly delineated and is dependent on environmental and behavioral factors. Manipulation of environmental complexity and therefore of cognitive demand shows that the MEC and the LEC are not strictly necessary to the processing of spatial and non-spatial information. In addition we suggest that the involvement of these sub-regions can depend on the kind of behavior, i.e., navigation or exploration, exhibited by the animals. Thus, the MEC and the LEC work in a flexible manner to integrate the “what” and “where” information in episodic memory upstream the hippocampus.
Collapse
Affiliation(s)
- Etienne Save
- Laboratory of Cognitive Neuroscience, Aix Marseille University, CNRS, LNC UMR 7291, Marseille, France
| | - Francesca Sargolini
- Laboratory of Cognitive Neuroscience, Aix Marseille University, CNRS, LNC UMR 7291, Marseille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
71
|
Hardcastle K, Ganguli S, Giocomo LM. Cell types for our sense of location: where we are and where we are going. Nat Neurosci 2017; 20:1474-1482. [PMID: 29073649 PMCID: PMC6175666 DOI: 10.1038/nn.4654] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
Technological advances in profiling cells along genetic, anatomical and physiological axes have fomented interest in identifying all neuronal cell types. This goal nears completion in specialized circuits such as the retina, while remaining more elusive in higher order cortical regions. We propose that this differential success of cell type identification may not simply reflect technological gaps in co-registering genetic, anatomical and physiological features in the cortex. Rather, we hypothesize it reflects evolutionarily driven differences in the computational principles governing specialized circuits versus more general-purpose learning machines. In this framework, we consider the question of cell types in medial entorhinal cortex (MEC), a region likely to be involved in memory and navigation. While MEC contains subsets of identifiable functionally defined cell types, recent work employing unbiased statistical methods and more diverse tasks reveals unsuspected heterogeneity and adaptivity in MEC firing patterns. This suggests MEC may operate more as a generalist circuit, obeying computational design principles resembling those governing other higher cortical regions.
Collapse
Affiliation(s)
| | - Surya Ganguli
- Department of Neurobiology, Stanford University
- Department of Applied Physics, Stanford University
| | | |
Collapse
|
72
|
Kanter BR, Lykken CM, Avesar D, Weible A, Dickinson J, Dunn B, Borgesius NZ, Roudi Y, Kentros CG. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II. Neuron 2017; 93:1480-1492.e6. [PMID: 28334610 DOI: 10.1016/j.neuron.2017.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023]
Abstract
The spatial receptive fields of neurons in medial entorhinal cortex layer II (MECII) and in the hippocampus suggest general and environment-specific maps of space, respectively. However, the relationship between these receptive fields remains unclear. We reversibly manipulated the activity of MECII neurons via chemogenetic receptors and compared the changes in downstream hippocampal place cells to those of neurons in MEC. Depolarization of MECII impaired spatial memory and elicited drastic changes in CA1 place cells in a familiar environment, similar to those seen during remapping between distinct environments, while hyperpolarization did not. In contrast, both manipulations altered the firing rate of MEC neurons without changing their firing locations. Interestingly, only depolarization caused significant changes in the relative firing rates of individual grid fields, reconfiguring the spatial input from MEC. This suggests a novel mechanism of hippocampal remapping whereby rate changes in MEC neurons lead to locational changes of hippocampal place fields.
Collapse
Affiliation(s)
- Benjamin R Kanter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway; Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Christine M Lykken
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway; Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Daniel Avesar
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Aldis Weible
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Jasmine Dickinson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Benjamin Dunn
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway
| | - Nils Z Borgesius
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway
| | - Yasser Roudi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway
| | - Clifford G Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway; Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
73
|
Organization of the Claustrum-to-Entorhinal Cortical Connection in Mice. J Neurosci 2017; 37:269-280. [PMID: 28077707 DOI: 10.1523/jneurosci.1360-16.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/17/2023] Open
Abstract
The claustrum, a subcortical structure situated between the insular cortex and striatum, is reciprocally connected with almost all neocortical regions. Based on this connectivity, the claustrum has been postulated to integrate multisensory information and, in turn, coordinate widespread cortical activity. Although studies have identified how sensory information is mapped onto the claustrum, the function of individual topographically arranged claustro-cortical pathways has been little explored. Here, we investigated the organization and function of identified claustro-cortical pathways in mice using multiple anatomical and optogenetic techniques. Retrograde and anterograde tracing demonstrated that the density of anterior claustrum-to-cortical projection differs substantially depending on the target cortical areas. One of the major targets was the medial entorhinal cortex (MEC) and the MEC-projecting claustral neurons were largely segregated from the neurons projecting to primary cortices M1, S1, or V1. Exposure to a novel environment induced c-Fos expression in a substantial number of MEC-projecting claustral neurons and some M1/S1/V1-projecting claustral neurons. Optogenetic silencing of the MEC-projecting claustral neurons during contextual fear conditioning impaired later memory retrieval without affecting basal locomotor activity or anxiety-related behavior. These results suggest that the dense, anterior claustro-MEC pathway that is largely separated from other claustro-cortical pathways is activated by novel context and modulates the MEC function in contextual memory. SIGNIFICANCE STATEMENT The claustrum is a poorly understood subcortical structure reciprocally connected with widespread neocortical regions. We investigated the organization and function of identified claustro-cortical projections in mice using pathway-specific approaches. Anatomical tracing showed that the density of anterior claustrum-to-cortical projection is dependent on the target cortical areas and that the medial entorhinal cortex (MEC) is one of the major projection targets. Novel context exposure activated multiple claustro-cortical pathways and a large fraction of the activated neurons projected to the MEC. Optogenetic silencing of the claustro-MEC pathway during contextual fear learning suppressed subsequent memory retrieval. These results suggest that the dense claustro-MEC pathway is activated by novel context and modulates MEC function in contextual memory.
Collapse
|
74
|
Landmann J, Richter F, Oros-Peusquens AM, Shah NJ, Classen J, Neely GG, Richter A, Penninger JM, Bechmann I. Neuroanatomy of pain-deficiency and cross-modal activation in calcium channel subunit (CACN) α2δ3 knockout mice. Brain Struct Funct 2017; 223:111-130. [PMID: 28733833 DOI: 10.1007/s00429-017-1473-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
Abstract
The phenotype of calcium channel subunit (CACN) α2δ3 knockout (KO) mice includes sensory cross-activation and deficient pain perception. Sensory cross-activation defines the activation of a sensory cortical region by input from another modality due to reorganization in the brain such as after sensory loss. To obtain mechanistic insight into both phenomena, we employed a comprehensive battery of neuroanatomical techniques. While CACNα2δ3 was ubiquitously expressed in wild-type mice, it was absent in α2δ3 KO animals. Immunostaining of α1A, α1B, and α1E revealed upregulation of N-type and R-type, but not P/Q-type Cav2 channels in cortical neurons of CACNα2δ3 KO mice. Compared to wild-type mice, axonal processes in somatosensory cortex were enhanced, and dendritic processes reduced, in CACNα2δ3 KO mice. Immunohistochemical and MRI analyses, investigating morphology, thalamocortical and intra-/intercortical trajectories, revealed a disparity between projection and commissural fibers with reduction of the number of spatial specificity of thalamocortical projections. L1cam staining revealed wide-ranging projections of thalamocortical fibers reaching both somatosensory/motor and visual cortical areas. Activation (c-fos+) of excitatory and inhibitory neurons suggested that deficient pain perception in α2δ3 KO mice is unlikely to result from cortical disinhibition. Collectively, our data demonstrate that knock out of CACN α2δ3 results in some structural abnormalities whose functional implications converge to dedifferentiation of sensory activation.
Collapse
Affiliation(s)
- Julia Landmann
- Institute of Anatomy, University of Leipzig, Oststrasse 25, 04317, Leipzig, Germany.
| | - Franziska Richter
- Department of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Ana-Maria Oros-Peusquens
- Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, 2006, Camperdown, NSW, Australia
| | - Angelika Richter
- Department of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Oststrasse 25, 04317, Leipzig, Germany
| |
Collapse
|
75
|
Nakazono T, Lam TN, Patel AY, Kitazawa M, Saito T, Saido TC, Igarashi KM. Impaired In Vivo Gamma Oscillations in the Medial Entorhinal Cortex of Knock-in Alzheimer Model. Front Syst Neurosci 2017; 11:48. [PMID: 28713250 PMCID: PMC5491963 DOI: 10.3389/fnsys.2017.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
The entorhinal cortex (EC) has bidirectional connections with the hippocampus and plays a critical role in memory formation and retrieval. EC is one of the most vulnerable regions in the brain in early stages of Alzheimer’s disease (AD), a neurodegenerative disease with progressive memory impairments. Accumulating evidence from healthy behaving animals indicates gamma oscillations (30–100 Hz) as critical for mediating interactions in the circuit between EC and hippocampus. However, it is still unclear whether gamma oscillations have causal relationship with memory impairment in AD. Here we provide the first evidence that in vivo gamma oscillations in the EC are impaired in an AD mouse model. Cross-frequency coupling of gamma (30–100 Hz) oscillations to theta oscillations was reduced in the medial EC of anesthetized amyloid precursor protein knock-in (APP-KI) mice. Phase locking of spiking activity of layer II/III pyramidal cells to the gamma oscillations was significantly impaired. These data indicate that the neural circuit activities organized by gamma oscillations were disrupted in the medial EC of AD mouse model, and point to gamma oscillations as one of possible mechanisms for cognitive dysfunction in AD patients.
Collapse
Affiliation(s)
- Tomoaki Nakazono
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States
| | - Travis N Lam
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States
| | - Ayushi Y Patel
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States
| | - Masashi Kitazawa
- Department of Medicine, University of CaliforniaIrvine, Irvine, CA, United States
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako, Japan
| | - Kei M Igarashi
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, Irvine, CA, United States.,Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvine, Irvine, CA, United States.,Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
76
|
Kuruvilla MV, Ainge JA. Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks. Front Syst Neurosci 2017; 11:30. [PMID: 28567006 PMCID: PMC5434111 DOI: 10.3389/fnsys.2017.00030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/28/2017] [Indexed: 11/14/2022] Open
Abstract
A prominent theory in the neurobiology of memory processing is that episodic memory is supported by contextually gated spatial representations in the hippocampus formed by combining spatial information from medial entorhinal cortex (MEC) with non-spatial information from lateral entorhinal cortex (LEC). However, there is a growing body of evidence from lesion and single-unit recording studies in rodents suggesting that LEC might have a role in encoding space, particularly the current and previous locations of objects within the local environment. Landmarks, both local and global, have been shown to control the spatial representations hypothesized to underlie cognitive maps. Consequently, it has recently been suggested that information processing within this network might be organized with reference to spatial scale with LEC and MEC providing information about local and global spatial frameworks respectively. In the present study, we trained animals to search for food using either a local or global spatial framework. Animals were re-tested on both tasks after receiving excitotoxic lesions of either the MEC or LEC. LEC lesioned animals were impaired in their ability to learn a local spatial framework task. LEC lesioned animals were also impaired on an object recognition (OR) task involving multiple local features but unimpaired at recognizing a single familiar object. Together, this suggests that LEC is involved in associating features of the local environment. However, neither LEC nor MEC lesions impaired performance on the global spatial framework task.
Collapse
Affiliation(s)
| | - James A. Ainge
- School of Psychology and Neuroscience, University of St AndrewsSt Andrews, UK
| |
Collapse
|
77
|
Cilz NI, Lei S. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H 1 and H 2 receptors, Na + -permeable cation channels, and inward rectifier K + channels. Hippocampus 2017; 27:613-631. [PMID: 28188663 PMCID: PMC5793915 DOI: 10.1002/hipo.22718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2017] [Indexed: 12/11/2022]
Abstract
In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H1 , H2 , and H3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H1 and H2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H1 and H2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na+ -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K+ channel, although HA also inhibited the delayed rectifier K+ channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
78
|
Rodo C, Sargolini F, Save E. Processing of spatial and non-spatial information in rats with lesions of the medial and lateral entorhinal cortex: Environmental complexity matters. Behav Brain Res 2017; 320:200-209. [DOI: 10.1016/j.bbr.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
|
79
|
Jacob PY, Gordillo-Salas M, Facchini J, Poucet B, Save E, Sargolini F. Medial entorhinal cortex and medial septum contribute to self-motion-based linear distance estimation. Brain Struct Funct 2017; 222:2727-2742. [DOI: 10.1007/s00429-017-1368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022]
|
80
|
Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, Li X, Xu C, Huang X, Wang Y, Shi YS, Liu JJ. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. eLife 2017; 6. [PMID: 28134614 PMCID: PMC5323044 DOI: 10.7554/elife.20991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/28/2017] [Indexed: 11/14/2022] Open
Abstract
SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI:http://dx.doi.org/10.7554/eLife.20991.001 Neurons are the building blocks of the nervous system. These cells generally consist of a round portion called the cell body and a long cable-like axon. The cell body bears numerous branches called dendrites, which are in turn covered in spines. Neurons communicate with one another at junctions – or synapses – that typically form between the end of the axon of one cell and a dendritic spine on another. Specialized proteins stabilize the dendritic spines and enable the cells to exchange messages across the synapse. However, it is the cell body – rather than the dendrites – that produces most of these proteins. Structures called molecular motors transport proteins to their destinations within the cell along fixed tracks, similar to how a freight train carries cargo over the rail network. One of the key molecular motors within neurons is called dynein‒dynactin. This in turn interacts with other proteins called adaptors, enabling it to transport specific types of cargo. Niu, Dai, Liu et al. have now examined the role of SNX6, an adaptor protein for the dynein‒dynactin motor. Mice that have been genetically modified to lack SNX6 in their brains have fewer spines on their dendrites compared with normal mice. This was particularly true for dendrites that contain AMPAR, a protein that receives signals sent across synapses. Niu, Dai, Liu et al. showed that SNX6 interacts with another protein called Homer1b/c and is responsible for distributing this protein in dendrites far from the cell body. The Homer1b/c protein helps to stabilize dendritic spines and to regulate the number of AMPAR proteins within them. Mice that lack SNX6 therefore have less Homer1b/c in the dendrites furthest from the cell body, and fewer spines on these dendrites too. These mice also have fewer AMPAR proteins at their synapses than control mice. Mice that lack SNX6 show impaired learning and memory compared to control mice. This is consistent with the fact that changes in the strength of synapses that possess AMPAR proteins are thought to underlie learning and memory. Additional experiments are required to explore these relationships further, and to determine whether SNX6 helps to localize any other proteins that also contribute to changes in the strength of synapses. DOI:http://dx.doi.org/10.7554/eLife.20991.002
Collapse
Affiliation(s)
- Yang Niu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenxue Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, China
| | - Cheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Chenchang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun S Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
81
|
Olsen GM, Ohara S, Iijima T, Witter MP. Parahippocampal and retrosplenial connections of rat posterior parietal cortex. Hippocampus 2017; 27:335-358. [PMID: 28032674 DOI: 10.1002/hipo.22701] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 11/09/2022]
Abstract
The posterior parietal cortex has been implicated in spatial functions, including navigation. The hippocampal and parahippocampal region and the retrosplenial cortex are crucially involved in navigational processes and connections between the parahippocampal/retrosplenial domain and the posterior parietal cortex have been described. However, an integrated account of the organization of these connections is lacking. Here, we investigated parahippocampal connections of each posterior parietal subdivision and the neighboring secondary visual cortex using conventional retrograde and anterograde tracers as well as transsynaptic retrograde tracing with a modified rabies virus. The results show that posterior parietal as well as secondary visual cortex entertain overall sparse connections with the parahippocampal region but not with the hippocampal formation. The medial and lateral dorsal subdivisions of posterior parietal cortex receive sparse input from deep layers of all parahippocampal areas. Conversely, all posterior parietal subdivisions project moderately to dorsal presubiculum, whereas rostral perirhinal cortex, postrhinal cortex, caudal entorhinal cortex and parasubiculum all receive sparse posterior parietal input. This indicated that the presubiculum might be a major liaison between parietal and parahippocampal domains. In view of the close association of the presubiculum with the retrosplenial cortex, we included the latter in our analysis. Our data indicate that posterior parietal cortex is moderately connected with the retrosplenial cortex, particularly with rostral area 30. The relative sparseness of the connectivity with the parahippocampal and retrosplenial domains suggests that posterior parietal cortex is only a modest actor in forming spatial representations underlying navigation and spatial memory in parahippocampal and retrosplenial cortex. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Grethe M Olsen
- The Faculty of Medicine, Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU - Norwegian University of Science and Technology, Postbox 8905, 7491, Trondheim, Norway
| | - Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Katahira 2-1-1, Aoba-Ku, Sendai, 980-8577, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Katahira 2-1-1, Aoba-Ku, Sendai, 980-8577, Japan
| | - Menno P Witter
- The Faculty of Medicine, Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU - Norwegian University of Science and Technology, Postbox 8905, 7491, Trondheim, Norway
| |
Collapse
|
82
|
Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 2016; 539:187-196. [PMID: 27830780 DOI: 10.1038/nature20412] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.
Collapse
Affiliation(s)
- Rebecca G Canter
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jay Penney
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
83
|
Dannenberg H, Hinman JR, Hasselmo ME. Potential roles of cholinergic modulation in the neural coding of location and movement speed. ACTA ACUST UNITED AC 2016; 110:52-64. [PMID: 27677935 DOI: 10.1016/j.jphysparis.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - James R Hinman
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
84
|
Hernandez AR, Maurer AP, Reasor JE, Turner SM, Barthle SE, Johnson SA, Burke SN. Age-related impairments in object-place associations are not due to hippocampal dysfunction. Behav Neurosci 2016; 129:599-610. [PMID: 26413723 DOI: 10.1037/bne0000093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Age-associated cognitive decline can reduce an individual's quality of life. As no single neurobiological deficit can account for the wide spectrum of behavioral impairments observed in old age, it is critical to develop an understanding of how interactions between different brain regions change over the life span. The performance of young and aged animals on behaviors that require the hippocampus and cortical regions to interact, however, has not been well characterized. Specifically, the ability to link a spatial location with specific features of a stimulus, such as object identity, relies on the hippocampus, perirhinal and prefrontal cortices. Although aging is associated with dysfunction in each of these brain regions, behavioral measures of functional change within the hippocampus, perirhinal and prefrontal cortices in individual animals are often not correlated. Thus, how dysfunction of a single brain region within this circuit, such as the hippocampus, impacts behaviors that require communication with the perirhinal and prefrontal cortices remains unknown. To address this question, young and aged rats were tested on the interregion dependent object-place paired association task, as well as a hippocampal-dependent test of spatial reference memory. This particular cohort of aged rats did not show deficits on the hippocampal-dependent task, but were significantly impaired at acquiring object-place associations relative to young. These data suggest that behaviors requiring functional connectivity across different regions of the memory network may be particularly sensitive to aging, and can be used to develop models that will clarify the impact of systems-level dysfunction in the elderly.
Collapse
Affiliation(s)
| | - Andrew P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida
| | - Jordan E Reasor
- McKnight Brain Institute, Department of Neuroscience, University of Florida
| | - Sean M Turner
- McKnight Brain Institute, Department of Neuroscience, University of Florida
| | - Sarah E Barthle
- McKnight Brain Institute, Department of Neuroscience, University of Florida
| | - Sarah A Johnson
- McKnight Brain Institute, Department of Neuroscience, University of Florida
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida
| |
Collapse
|
85
|
Agster KL, Tomás Pereira I, Saddoris MP, Burwell RD. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. II. efferents. Hippocampus 2016; 26:1213-30. [PMID: 27101786 DOI: 10.1002/hipo.22600] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/17/2023]
Abstract
This is the second of two studies detailing the subcortical connections of the perirhinal (PER), the postrhinal (POR) and entorhinal (EC) cortices of the rat. In the present study, we analyzed the subcortical efferents of the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA). Anterograde tracers were injected into these five regions, and the resulting density of fiber labeling was quantified in an extensive set of subcortical structures. Density and topography of fiber labeling were quantitatively assessed in 36 subcortical areas, including olfactory structures, claustrum, amygdala nuclei, septal nuclei, basal ganglia, thalamic nuclei, and hypothalamic structures. In addition to reporting the density of labeled fibers, we incorporated a new method for quantifying the size of anterograde projections that takes into account the volume of the target subcortical structure as well as the density of fiber labeling. The PER, POR, and EC displayed unique patterns of projections to subcortical areas. Interestingly, all regions examined provided strong input to the basal ganglia, although the projections arising in the PER and LEA were stronger and more widespread. PER areas 35 and 36 exhibited similar pattern of projections with some differences. PER area 36 projects more heavily to the lateral amygdala and much more heavily to thalamic nuclei including the lateral posterior nucleus, the posterior complex, and the nucleus reuniens. Area 35 projects more heavily to olfactory structures. The LEA provides the strongest and most widespread projections to subcortical structures including all those targeted by the PER as well as the medial and posterior septal nuclei. POR shows fewer subcortical projections overall, but contributes substantial input to the lateral posterior nucleus of the thalamus. The MEA projections are even weaker. Our results suggest that the PER and LEA have greater influence over olfactory, amygdala, and septal nuclei, whereas PER area 36 and the POR have greater influence over thalamic nuclei. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kara L Agster
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Inês Tomás Pereira
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Michael P Saddoris
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Rebecca D Burwell
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
86
|
Propofol postsynaptically suppresses stellate neuron excitability in the entorhinal cortex by influencing the HCN and TREK-2 channels. Neurosci Lett 2016; 619:54-9. [DOI: 10.1016/j.neulet.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022]
|
87
|
Flore G, Di Ruberto G, Parisot J, Sannino S, Russo F, Illingworth EA, Studer M, De Leonibus E. Gradient COUP-TFI Expression Is Required for Functional Organization of the Hippocampal Septo-Temporal Longitudinal Axis. Cereb Cortex 2016; 27:1629-1643. [DOI: 10.1093/cercor/bhv336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
88
|
Fuchs EC, Neitz A, Pinna R, Melzer S, Caputi A, Monyer H. Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex. Neuron 2015; 89:194-208. [PMID: 26711115 PMCID: PMC4712190 DOI: 10.1016/j.neuron.2015.11.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022]
Abstract
Layer II (LII) of the medial entorhinal cortex (MEC) comprises grid cells that support spatial navigation. The firing pattern of grid cells might be explained by attractor dynamics in a network, which requires either direct excitatory connectivity between phase-specific grid cells or indirect coupling via interneurons. However, knowledge regarding local networks that support in vivo activity is incomplete. Here we identified essential components of LII networks in the MEC. We distinguished four types of excitatory neurons that exhibit cell-type-specific local excitatory and inhibitory connectivity. Furthermore, we found that LII neurons contribute to the excitation of contralateral neurons in the corresponding layer. Finally, we demonstrated that the medial septum controls excitation in the MEC via two subpopulations of long-range GABAergic neurons that target distinct interneurons in LII, thereby disinhibiting local circuits. We thus identified local connections that could support attractor dynamics and external inputs that likely govern excitation in LII. LII MEC excitatory neurons can be classified into four cell types The four cell types exhibit specific local excitatory and inhibitory connectivity LII neurons contribute to the excitation of contralateral LII neurons Distinct septal GABAergic neurons exhibit cell-type-specific inhibition in LII MEC
Collapse
Affiliation(s)
- Elke C Fuchs
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Angela Neitz
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roberta Pinna
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sarah Melzer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Antonio Caputi
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
89
|
Interspike Intervals Reveal Functionally Distinct Cell Populations in the Medial Entorhinal Cortex. J Neurosci 2015; 35:10963-76. [PMID: 26245960 DOI: 10.1523/jneurosci.0276-15.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The superficial layers of the medial entorhinal cortex (MEC) contain spatially selective neurons that are crucial for spatial navigation and memory. These highly specialized neurons include grid cells, border cells, head-direction cells, and irregular spatially selective cells. In addition, MEC neurons display a large variability in their spike patterns at a millisecond time scale. In this study, we analyzed spike trains of neurons in the MEC superficial layers of mice and found that these neurons can be classified into two groups based on their propensity to fire spike doublets at 125-250 Hz. The two groups, labeled "bursty" and "non-bursty" neurons, differed in their spike waveforms and interspike interval adaptation but displayed a similar mean firing rate. Grid cell spatial periodicity was more commonly observed in bursty than in non-bursty neurons. In contrast, most neurons with head-direction selectivity or those that fired at the border of the environment were non-bursty neurons. During theta oscillations, both bursty and non-bursty neurons fired preferentially near the end of the descending phase of the cycle, but the spikes of bursty neurons occurred at an earlier phase than those of non-bursty neurons. Finally, analysis of spike-time crosscorrelations between simultaneously recorded neurons suggested that the two cell classes are differentially coupled to fast-spiking interneurons: bursty neurons were twice as likely to have excitatory interactions with putative interneurons as non-bursty neurons. These results demonstrate that bursty and non-bursty neurons are differentially integrated in the MEC network and preferentially encode distinct spatial signals. SIGNIFICANCE STATEMENT We report that neurons in the superficial layers of the medial entorhinal cortex can be classified based on their tendency to fire bursts of action potentials at 125-250 Hz. The relevance of this classification is demonstrated by the types of spatial information preferentially encoded by bursty and non-bursty neurons. Grid-like spatial periodicity is more commonly observed in bursty neurons, whereas most cells with head-direction selectivity or those that are firing at the border of the environment are non-bursty neurons. This work indicates that the spatial firing patterns of neurons in the medial entorhinal cortex can be predicted by electrophysiological features reflecting the synaptic inputs and/or integrating properties of the neurons.
Collapse
|
90
|
Bush D, Barry C, Manson D, Burgess N. Using Grid Cells for Navigation. Neuron 2015; 87:507-20. [PMID: 26247860 PMCID: PMC4534384 DOI: 10.1016/j.neuron.2015.07.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/01/2015] [Accepted: 07/13/2015] [Indexed: 12/02/2022]
Abstract
Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. Grid cells (GCs) are believed to provide a path integration input to place cells However, GCs also provide a powerful context-independent metric for large-scale space Hence, we show how GCs can be used for vector navigation between arbitrary locations We simulate various neural implementations and make testable experimental predictions
Collapse
Affiliation(s)
- Daniel Bush
- UCL Institute of Cognitive Neuroscience, 17 Queen Square, London, WC1N 3AR, UK; UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Caswell Barry
- UCL Department of Cell and Developmental Biology, Gower Street, London, WC1E 6BT, UK
| | - Daniel Manson
- UCL Department of Cell and Developmental Biology, Gower Street, London, WC1E 6BT, UK; UCL Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, Gower Street, London, WC1E 6BT, UK
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, 17 Queen Square, London, WC1N 3AR, UK; UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
91
|
Xie M, Li C, He C, Yang L, Tan G, Yan J, Wang J, Hu Z. Short-term sleep deprivation disrupts the molecular composition of ionotropic glutamate receptors in entorhinal cortex and impairs the rat spatial reference memory. Behav Brain Res 2015; 300:70-6. [PMID: 26455878 DOI: 10.1016/j.bbr.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
Abstract
Numerous studies reported that sleep deprivation (SD) causes impairment in spatial cognitive performance. However, the molecular mechanisms affected by SD underlying this behavioral phenomenon remain elusive. Here, we focused on the entorhinal cortex (EC), the gateway of the hippocampus, and investigated how SD affected the subunit expression of AMPARs and NMDARs, the main ionotropic glutamategic receptors serving a pivotal role in spatial cognition. In EC, we found 4h SD remarkably reduced surface expression of GluA1, while there was an increase in the surface expression of GluA2 and GluA3. As for NMDARs, SD with short duration significantly reduced the surface expression levels of GluN1 and GluN2B without effect on the GluN2A. In parallel with the alterations in AMPARs and NMDARs, we found the 4h SD impaired rat spatial reference memory as assessed by Morris water maze task. Overall, these data indicate that brief SD differently affects the AMPAR and NMDAR subunit expressions in EC and might consequently disrupt the composition and functional properties of these receptors.
Collapse
Affiliation(s)
- Meilan Xie
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Chao Li
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Chao He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Li Yang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Gang Tan
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Jie Yan
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China
| | - Jiali Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China.
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038 PR China.
| |
Collapse
|
92
|
McQuail JA, Frazier CJ, Bizon JL. Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 2015; 21:450-60. [PMID: 26070271 DOI: 10.1016/j.molmed.2015.05.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Alterations in inhibitory interneurons contribute to cognitive deficits associated with several psychiatric and neurological diseases. Phasic and tonic inhibition imparted by γ-aminobutyric acid (GABA) receptors regulates neural activity and helps to establish the appropriate network dynamics in cortical circuits that support normal cognition. This review highlights basic science demonstrating that inhibitory signaling is altered in aging, and discusses the impact of age-related shifts in inhibition on different forms of memory function, including hippocampus-dependent spatial reference memory and prefrontal cortex (PFC)-dependent working memory. The clinical appropriateness and tractability of select therapeutic candidates for cognitive aging that target receptors mediating inhibition are also discussed.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Charles J Frazier
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
93
|
Tanninen SE, Yu X, Giritharan T, Tran L, Bakir R, Volle J, Morrissey MD, Takehara-Nishiuchi K. Cholinergic, but not NMDA, receptors in the lateral entorhinal cortex mediate acquisition in trace eyeblink conditioning. Hippocampus 2015; 25:1456-64. [PMID: 25865030 DOI: 10.1002/hipo.22466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 01/16/2023]
Abstract
Anatomical and electrophysiological studies collectively suggest that the entorhinal cortex consists of several subregions, each of which is involved in the processing of different types of information. Consistent with this idea, we previously reported that the dorsolateral portion of the entorhinal cortex (DLE), but not the caudomedial portion, is necessary for the expression of a memory association between temporally discontiguous stimuli in trace eyeblink conditioning (Morrissey et al. (2012) J Neurosci 32:5356-5361). The present study examined whether memory acquisition depends on the DLE and what types of local neurotransmitter mechanisms are involved in memory acquisition and expression. Male Long-Evans rats experienced trace eyeblink conditioning, in which an auditory conditioned stimulus (CS) was paired with a mildly aversive electric shock to the eyelid (US) with a stimulus-free interval of 500 ms. Immediately before the conditioning, the rats received a microinfusion of neuroreactive substances into the DLE. We found that reversible inactivation of the DLE with GABAA receptor agonist, muscimol impaired memory acquisition. Furthermore, blockade of local muscarinic acetylcholine receptors (mACh) with scopolamine retarded memory acquisition while blockade of local NMDA receptors with APV had no effect. Memory expression was not impaired by either type of receptor blocker. These results suggest that the DLE is necessary for memory acquisition, and that acquisition depends on the integrity of local mACh receptor-dependent firing modulation, but not NMDA receptor-dependent synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | - Lina Tran
- Department of Psychology, Toronto, Canada
| | - Rami Bakir
- Department of Psychology, Toronto, Canada
| | | | - Mark D Morrissey
- Department of Psychology, Toronto, Canada.,Neuroscience Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, Toronto, Canada.,Neuroscience Program, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, Toronto, Canada
| |
Collapse
|
94
|
Zhang H, Cilz NI, Yang C, Hu B, Dong H, Lei S. Depression of neuronal excitability and epileptic activities by group II metabotropic glutamate receptors in the medial entorhinal cortex. Hippocampus 2015; 25:1299-313. [DOI: 10.1002/hipo.22437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
- Department of Anesthesiology; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi Province China
| | - Nicholas I. Cilz
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Chuanxiu Yang
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Binqi Hu
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Hailong Dong
- Department of Anesthesiology; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi Province China
| | - Saobo Lei
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| |
Collapse
|
95
|
Spiers HJ, Gilbert SJ. Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front Hum Neurosci 2015; 9:125. [PMID: 25852515 PMCID: PMC4366647 DOI: 10.3389/fnhum.2015.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/22/2015] [Indexed: 11/21/2022] Open
Abstract
Adapting behavior to accommodate changes in the environment is an important function of the nervous system. A universal problem for motile animals is the discovery that a learned route is blocked and a detour is required. Given the substantial neuroscience research on spatial navigation and decision-making it is surprising that so little is known about how the brain solves the detour problem. Here we review the limited number of relevant functional neuroimaging, single unit recording and lesion studies. We find that while the prefrontal cortex (PFC) consistently responds to detours, the hippocampus does not. Recent evidence suggests the hippocampus tracks information about the future path distance to the goal. Based on this evidence we postulate a conceptual model in which: Lateral PFC provides a prediction error signal about the change in the path, frontopolar and superior PFC support the re-formulation of the route plan as a novel subgoal and the hippocampus simulates the new path. More data will be required to validate this model and understand (1) how the system processes the different options; and (2) deals with situations where a new path becomes available (i.e., shortcuts).
Collapse
Affiliation(s)
- Hugo J Spiers
- Department of Experimental Psychology, UCL Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London London, UK
| | - Sam J Gilbert
- UCL Institute of Cognitive Neuroscience, Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
96
|
Pourbadie HG, Naderi N, Mehranfard N, Janahmadi M, Khodagholi F, Motamedi F. Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology. PLoS One 2015; 10:e0117555. [PMID: 25689857 PMCID: PMC4331091 DOI: 10.1371/journal.pone.0117555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022] Open
Abstract
The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer's disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were investigated. The amyloid beta (Aβ) 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin) accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days), almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Mehranfard
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neurophysiology Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Ramsden HL, Sürmeli G, McDonagh SG, Nolan MF. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression. PLoS Comput Biol 2015; 11:e1004032. [PMID: 25615592 PMCID: PMC4304787 DOI: 10.1371/journal.pcbi.1004032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
Neural circuits in the medial entorhinal cortex (MEC) encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.
Collapse
Affiliation(s)
- Helen L. Ramsden
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Neuroinformatics Doctoral Training Centre, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Gülşen Sürmeli
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven G. McDonagh
- Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew F. Nolan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, inStem, Bangalore, India
- * E-mail:
| |
Collapse
|
98
|
Boccara CN, Kjonigsen LJ, Hammer IM, Bjaalie JG, Leergaard TB, Witter MP. A three-plane architectonic atlas of the rat hippocampal region. Hippocampus 2015; 25:838-57. [PMID: 25533645 DOI: 10.1002/hipo.22407] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 11/06/2022]
Abstract
The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource.
Collapse
Affiliation(s)
- Charlotte N Boccara
- Centre for Neural Computation, Kavli Institute for System Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Institute of Science and Technology IST, Klosterneuburg, Austria
| | - Lisa J Kjonigsen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild M Hammer
- Centre for Neural Computation, Kavli Institute for System Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Menno P Witter
- Centre for Neural Computation, Kavli Institute for System Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
99
|
He C, Luo F, Chen X, Chen F, Li C, Ren S, Qiao Q, Zhang J, de Lecea L, Gao D, Hu Z. Superficial Layer-Specific Histaminergic Modulation of Medial Entorhinal Cortex Required for Spatial Learning. Cereb Cortex 2015; 26:1590-1608. [PMID: 25595181 DOI: 10.1093/cercor/bhu322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The medial entorhinal cortex (MEC) plays a crucial role in spatial learning and memory. Whereas the MEC receives a dense histaminergic innervation from the tuberomamillary nucleus of the hypothalamus, the functions of histamine in this brain region remain unclear. Here, we show that histamine acts via H1Rs to directly depolarize the principal neurons in the superficial, but not deep, layers of the MEC when recording at somata. Moreover, histamine decreases the spontaneous GABA, but not glutamate, release onto principal neurons in the superficial layers by acting at presynaptic H3Rs without effect on synaptic release in the deep layers. Histamine-induced depolarization is mediated via inhibition of Kir channels and requires the activation of protein kinase C, whereas the inhibition of spontaneous GABA release by histamine depends on voltage-gated Ca(2+) channels and extracellular Ca(2+). Furthermore, microinjection of the H1R or H3R, but not H2R, antagonist respectively into the superficial, but not deep, layers of MEC impairs rat spatial learning as assessed by water maze tasks but does not affect the motor function and exploratory activity in an open field. Together, our study indicates that histamine plays an essential role in spatial learning by selectively regulating neuronal excitability and synaptic transmission in the superficial layers of the MEC.
Collapse
Affiliation(s)
- Chao He
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fenlan Luo
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Xingshu Chen
- Department of Histology and Embryology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fang Chen
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Chao Li
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Shuancheng Ren
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Qicheng Qiao
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Jun Zhang
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Gao
- Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Zhian Hu
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| |
Collapse
|
100
|
Johnson BN, Palmer CP, Bourgeois EB, Elkind JA, Putnam BJ, Cohen AS. Augmented Inhibition from Cannabinoid-Sensitive Interneurons Diminishes CA1 Output after Traumatic Brain Injury. Front Cell Neurosci 2014; 8:435. [PMID: 25565968 PMCID: PMC4271495 DOI: 10.3389/fncel.2014.00435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/02/2014] [Indexed: 11/15/2022] Open
Abstract
The neurological impairments associated with traumatic brain injury include learning and memory deficits and increased risk of seizures. The hippocampus is critically involved in both of these phenomena and highly susceptible to damage by traumatic brain injury. To examine network activity in the hippocampal CA1 region after lateral fluid percussion injury, we used a combination of voltage-sensitive dye, field potential, and patch clamp recording in mouse hippocampal brain slices. When the stratum radiatum (SR) was stimulated in slices from injured mice, we found decreased depolarization in SR and increased hyperpolarization in stratum oriens (SO), together with a decrease in the percentage of pyramidal neurons firing stimulus-evoked action potentials. Increased hyperpolarization in SO persisted when glutamatergic transmission was blocked. However, we found no changes in SO responses when the alveus was stimulated to directly activate SO. These results suggest that the increased SO hyperpolarization evoked by SR stimulation was mediated by interneurons that have cell bodies and/or axons in SR, and form synapses in stratum pyramidale and SO. A low concentration (100 nM) of the synthetic cannabinoid WIN55,212-2, restored CA1 output in slices from injured animals. These findings support the hypothesis that increased GABAergic signaling by cannabinoid-sensitive interneurons contributes to the reduced CA1 output following traumatic brain injury.
Collapse
Affiliation(s)
- Brian N Johnson
- Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia , Philadelphia, PA , USA
| | - Chris P Palmer
- Department of Neuroscience, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| | - Elliot B Bourgeois
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Jaclynn A Elkind
- Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia , Philadelphia, PA , USA
| | - Brendan J Putnam
- Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia , Philadelphia, PA , USA
| | - Akiva S Cohen
- Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia , Philadelphia, PA , USA ; Department of Pediatrics, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| |
Collapse
|