51
|
Izumi Y, Zorumski CF. GABA and Endocannabinoids Mediate Depotentiation of Schaffer Collateral Synapses Induced by Stimulation of Temperoammonic Inputs. PLoS One 2016; 11:e0149034. [PMID: 26862899 PMCID: PMC4749331 DOI: 10.1371/journal.pone.0149034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/26/2016] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) of Schaffer collateral (SC) synapses in the hippocampus is thought to play a key role in episodic memory formation. Because the hippocampus is a shorter-term, limited capacity storage system, repeated bouts of learning and synaptic plasticity require that SC synapses reset to baseline at some point following LTP. We previously showed that repeated low frequency activation of temperoammonic (TA) inputs to the CA1 region depotentiates SC LTP without persistently altering basal transmission. This heterosynaptic depotentiation involves adenosine A1 receptors but not N-methyl-D-aspartate receptors, metabotropic glutamate receptors or L-type calcium channels. In the present study, we used rat hippocampal slices to explore other messengers contributing to TA-induced SC depotentiation, and provide evidence for the involvement of cannabinoid-1 and γ-aminobutyric acid (GABA) type-A receptors as more proximal signaling events leading to synaptic resetting, with A1 receptor activation serving as a downstream event. Surprisingly, we found that TA-induced SC depotentiation is independent of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. We also examined the involvement of mitogen-activated protein kinases (MAPKs), and found a role for extracellular-signal related kinase 1/2 and p38 MAPK, but not c-Jun-N-terminal kinase. These results indicate that low frequency stimulation of TA inputs to CA1 activates a complex signaling network that instructs SC synaptic resetting. The involvement of GABA and endocannabinoids suggest mechanisms that could contribute to cognitive dysfunction associated with substance abuse and neuropsychiatric disorders.
Collapse
MESH Headings
- Animals
- Brain/pathology
- Brain/physiology
- CA1 Region, Hippocampal/physiology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Cognition Disorders/physiopathology
- Endocannabinoids/chemistry
- Endocannabinoids/metabolism
- Endocannabinoids/physiology
- Hippocampus/metabolism
- Hippocampus/pathology
- Long-Term Potentiation
- Long-Term Synaptic Depression
- MAP Kinase Signaling System
- Rats
- Receptors, AMPA/metabolism
- Receptors, AMPA/physiology
- Receptors, Glutamate/metabolism
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/metabolism
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/physiology
- Signal Transduction
- Substance-Related Disorders/physiopathology
- Synapses/drug effects
- Synapses/metabolism
- Synapses/physiology
- gamma-Aminobutyric Acid/chemistry
- gamma-Aminobutyric Acid/physiology
- p38 Mitogen-Activated Protein Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Washington University Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Washington University Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
52
|
Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats. Neuropharmacology 2016; 105:378-387. [PMID: 26867505 DOI: 10.1016/j.neuropharm.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/24/2016] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
Abstract
Long-term potentiation (LTP) shows memory-like consolidation and thus becomes increasingly resistant to disruption by low-frequency stimulation (LFS). However, it is known that nicotine application during LFS uniquely depotentiates consolidated LTP. Here, we investigated how nicotine contributes to the disruption of stabilized LTP in the hippocampal CA1 region. We found that nicotine-induced depotentiation is not due to masking LTP by inducing long-term depression and requires the activation of GluN2A-containing NMDARs. We further examined whether nicotine-induced depotentiation involves the reversal of LTP mechanisms. LTP causes phosphorylation of Ser-831 on GluA1 subunits of AMPARs that increases the single-channel conductance of AMPARs. This phosphorylation remained unchanged after depotentiation. LTP involves the insertion of new AMPARs into the synapse and the internalization of AMPARs is associated with dephosphorylation of Ser-845 on GluA1 and caspase-3 activity. Nicotine-induced depotentiation occurred without dephosphorylation of the Ser-845 and in the presence of a caspase-3 inhibitor. LTP is also accompanied by increased filamentous actin (F-actin), which controls spine size. Nicotine-induced depotentiation was prevented by jasplakinolide, which stabilizes F-actin, suggesting that nicotine depotentiates consolidated LTP by destabilizing F-actin. α7 nicotinic acetylcholine receptor (nAChR) antagonists mimicked the effect of nicotine and selective removal of hippocampal cholinergic input caused depotentiation in the absence of nicotine, suggesting that nicotine depotentiates consolidated LTP by inducing α7 nAChR desensitization. Our results demonstrate a new role for nicotinic cholinergic systems in protecting potentiated synapses from depotentiation by preventing GluN2A-NMDAR-mediated signaling for actin destabilization.
Collapse
|
53
|
PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity. J Neurosci 2016; 35:14327-40. [PMID: 26490870 DOI: 10.1523/jneurosci.2349-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Dysregulation of synapse formation and plasticity is closely related to the pathophysiology of psychiatric and neurodevelopmental disorders. The prefrontal cortex (PFC) is particularly important for executive functions such as working memory, cognition, and emotional control, which are impaired in the disorders. PSD-Zip70 (Lzts1/FEZ1) is a postsynaptic density (PSD) protein predominantly expressed in the frontal cortex, olfactory bulb, striatum, and hippocampus. Here we found that PSD-Zip70 knock-out (PSD-Zip70KO) mice exhibit working memory and cognitive defects, and enhanced anxiety-like behaviors. These abnormal behaviors are caused by impaired glutamatergic synapse transmission accompanied by tiny-headed immature dendritic spines in the PFC, due to aberrant Rap2 activation, which has roles in synapse formation and plasticity. PSD-Zip70 modulates the Rap2 activity by interacting with SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) in the postsynapse. Furthermore, suppression of the aberrant Rap2 activation in the PFC rescued the behavioral defects in PSD-Zip70KO mice. Our data demonstrate a critical role for PSD-Zip70 in Rap2-dependent spine synapse development in the PFC and underscore the importance of this regulation in PFC-dependent behaviors. SIGNIFICANCE STATEMENT PSD-Zip70 deficiency causes behavioral defects in working memory and cognition, and enhanced anxiety due to prefrontal hypofunction. This study revealed that PSD-Zip70 plays essential roles in glutamatergic synapse maturation via modulation of the Rap2 activity in the PFC. PSD-Zip70 interacts with both SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) and modulates the Rap2 activity in postsynaptic sites. Our results provide a novel Rap2-specific regulatory mechanism in synaptic maturation involving PSD-Zip70.
Collapse
|
54
|
Status Epilepticus Enhances Depotentiation after Fully Established LTP in an NMDAR-Dependent but GluN2B-Independent Manner. Neural Plast 2016; 2016:6592038. [PMID: 26881126 PMCID: PMC4735914 DOI: 10.1155/2016/6592038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) can be reversed by low-frequency stimulation (LFS) referred to as depotentiation (DP). We previously found GluN2B upregulated in CA1 neurons from post-status epilepticus (post-SE) tissue associated with an enhanced LTP. Here, we tested whether LFS-induced DP is also altered in pathological GluN2B upregulation. Although LTP was enhanced in post-SE tissue, LTP was significantly reversed in this tissue, but not in controls. We next tested the effect of the GluN2B subunit-specific blocker Ro 25-6981 (1 μM) on LFS-DP. As expected, LFS had no effect on synaptic strength in the presence of the GluN2B blocker in control tissue. In marked contrast, LFS-DP was also attained in post-SE tissue indicating that GluN2B was obviously not involved in depotentiation. To test for NMDA receptor-dependence, we applied the NMDA receptor antagonist D-AP5 (50 μM) prior to LFS and observed that DP was abolished in both control and post-SE tissue confirming NMDA receptor involvement. These results indicate that control Schaffer collateral-CA1 synapses cannot be depotentiated after fully established LTP, but LFS was able to reverse LTP significantly in post-SE tissue. However, while LFS-DP clearly required NMDA receptor activation, GluN2B-containing NMDA receptors were not involved in this form of depotentiation.
Collapse
|
55
|
Lee NJ, Song JM, Cho HJ, Sung YM, Lee T, Chung A, Hong SH, Cifelli JL, Rubinshtein M, Habib LK, Capule CC, Turner RS, Pak DTS, Yang J, Hoe HS. Hexa (ethylene glycol) derivative of benzothiazole aniline promotes dendritic spine formation through the RasGRF1-Ras dependent pathway. Biochim Biophys Acta Mol Basis Dis 2015; 1862:284-95. [PMID: 26675527 DOI: 10.1016/j.bbadis.2015.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022]
Abstract
Our recent study demonstrated that an amyloid-β binding molecule, BTA-EG4, increases dendritic spine number via Ras-mediated signaling. To potentially optimize the potency of the BTA compounds, we synthesized and evaluated an amyloid-β binding analog of BTA-EG4 with increased solubility in aqueous solution, BTA-EG6. We initially examined the effects of BTA-EG6 on dendritic spine formation and found that BTA-EG6-treated primary hippocampal neurons had significantly increased dendritic spine number compared to control treatment. In addition, BTA-EG6 significantly increased the surface level of AMPA receptors. Upon investigation into the molecular mechanism by which BTA-EG6 promotes dendritic spine formation, we found that BTA-EG6 may exert its effects on spinogenesis via RasGRF1-ERK signaling, with potential involvement of other spinogenesis-related proteins such as Cdc42 and CDK5. Taken together, our data suggest that BTA-EG6 boosts spine and synapse number, which may have a beneficial effect of enhancing neuronal and synaptic function in the normal healthy brain.
Collapse
Affiliation(s)
- Nathanael J Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jung Min Song
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea
| | - You Me Sung
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Taehee Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Andrew Chung
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sung-Ha Hong
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jessica L Cifelli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Rubinshtein
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lila K Habib
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina C Capule
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Daniel T S Pak
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea.
| |
Collapse
|
56
|
Lee K, Kobayashi Y, Seo H, Kwak JH, Masuda A, Lim CS, Lee HR, Kang SJ, Park P, Sim SE, Kogo N, Kawasaki H, Kaang BK, Itohara S. Involvement of cAMP-guanine nucleotide exchange factor II in hippocampal long-term depression and behavioral flexibility. Mol Brain 2015; 8:38. [PMID: 26104314 PMCID: PMC4477293 DOI: 10.1186/s13041-015-0130-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Background Guanine nucleotide exchange factors (GEFs) activate small GTPases that are involved in several cellular functions. cAMP-guanine nucleotide exchange factor II (cAMP-GEF II) acts as a target for cAMP independently of protein kinase A (PKA) and functions as a GEF for Rap1 and Rap2. Although cAMP-GEF II is expressed abundantly in several brain areas including the cortex, striatum, and hippocampus, its specific function and possible role in hippocampal synaptic plasticity and cognitive processes remain elusive. Here, we investigated how cAMP-GEF II affects synaptic function and animal behavior using cAMP-GEF II knockout mice. Results We found that deletion of cAMP-GEF II induced moderate decrease in long-term potentiation, although this decrease was not statistically significant. On the other hand, it produced a significant and clear impairment in NMDA receptor-dependent long-term depression at the Schaffer collateral-CA1 synapses of hippocampus, while microscopic morphology, basal synaptic transmission, and depotentiation were normal. Behavioral testing using the Morris water maze and automated IntelliCage system showed that cAMP-GEF II deficient mice had moderately reduced behavioral flexibility in spatial learning and memory. Conclusions We concluded that cAMP-GEF II plays a key role in hippocampal functions including behavioral flexibility in reversal learning and in mechanisms underlying induction of long-term depression.
Collapse
Affiliation(s)
- Kyungmin Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Hyunhyo Seo
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Ji-Hye Kwak
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Akira Masuda
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea.
| | - Hye-Ryeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea.
| | - SukJae Joshua Kang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Pojeong Park
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Su-Eon Sim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Naomi Kogo
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Hiroaki Kawasaki
- Department of Psychiatry, Faculty of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea. .,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
57
|
Birnbaum JH, Bali J, Rajendran L, Nitsch RM, Tackenberg C. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss. Cell Death Dis 2015; 6:e1791. [PMID: 26086964 PMCID: PMC4669839 DOI: 10.1038/cddis.2015.160] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022]
Abstract
Synaptic loss is one of the major features of Alzheimer's disease (AD) and correlates with the degree of dementia. N-methyl-d-aspartate receptors (NMDARs) have been shown to mediate downstream effects of the β-amyloid peptide (Aβ) in AD models. NMDARs can trigger intracellular cascades via Ca2+ entry, however, also Ca2+-independent (metabotropic) functions of NMDARs have been described. We aimed to determine whether ionotropic or metabotropic NMDAR signaling is required for the induction of synaptic loss by Aβ. We show that endogenous Aβ as well as exogenously added synthetic Aβ oligomers induced dendritic spine loss and reductions in pre- and postsynaptic protein levels in hippocampal slice cultures. Synaptic alterations were mitigated by blocking glutamate binding to NMDARs using NMDAR antagonist APV, but not by preventing ion flux with Ca2+ chelator BAPTA or open-channel blockers MK-801 or memantine. Aβ increased the activity of p38 MAPK, a kinase involved in long-term depression and inhibition of p38 MAPK abolished the loss of dendritic spines. Aβ-induced increase of p38 MAPK activity was prevented by APV but not by BAPTA, MK-801 or memantine treatment highlighting the role of glutamate binding to NMDARs but not Ca2+ flux for synaptic degeneration by Aβ. We further show that treatment with the G protein inhibitor pertussis toxin (PTX) did not prevent dendritic spine loss in the presence of Aβ oligomers. Our data suggest that Aβ induces the activation of p38 MAPK and subsequent synaptic loss through Ca2+ flux- and G protein-independent mechanisms.
Collapse
Affiliation(s)
- J H Birnbaum
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Graduate Program of the Zurich Neuroscience Center, University of Zurich, Schlieren, Switzerland
| | - J Bali
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Systems and Cell Biology of Neurodegeneration, University of Zurich, Schlieren, Switzerland
| | - L Rajendran
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Systems and Cell Biology of Neurodegeneration, University of Zurich, Schlieren, Switzerland
| | - R M Nitsch
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - C Tackenberg
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
58
|
Araki Y, Zeng M, Zhang M, Huganir RL. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 2015; 85:173-189. [PMID: 25569349 DOI: 10.1016/j.neuron.2014.12.023] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
SynGAP is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. Previous studies have shown that CaMKII and the RAS-ERK pathway are critical for several forms of synaptic plasticity including LTP. NMDA receptor-dependent calcium influx has been shown to regulate the RAS-ERK pathway and downstream events that result in AMPA receptor synaptic accumulation, spine enlargement, and synaptic strengthening during LTP. However, the cellular mechanisms whereby calcium influx and CaMKII control Ras activity remain elusive. Using live-imaging techniques, we have found that SynGAP is rapidly dispersed from spines upon LTP induction in hippocampal neurons, and this dispersion depends on phosphorylation of SynGAP by CaMKII. Moreover, the degree of acute dispersion predicts the maintenance of spine enlargement. Thus, the synaptic dispersion of SynGAP by CaMKII phosphorylation during LTP represents a key signaling component that transduces CaMKII activity to small G protein-mediated spine enlargement, AMPA receptor synaptic incorporation, and synaptic potentiation.
Collapse
Affiliation(s)
- Yoichi Araki
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Menglong Zeng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Mingjie Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Richard L Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
59
|
Brusco J, Haas K. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity. J Physiol 2015; 593:3471-81. [PMID: 25581818 DOI: 10.1113/jphysiol.2014.282459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| | - Kurt Haas
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| |
Collapse
|
60
|
Choi JH, Park P, Baek GC, Sim SE, Kang SJ, Lee Y, Ahn SH, Lim CS, Lee YS, Collingridge GL, Kaang BK. Effects of PI3Kγ overexpression in the hippocampus on synaptic plasticity and spatial learning. Mol Brain 2014; 7:78. [PMID: 25373491 PMCID: PMC4226891 DOI: 10.1186/s13041-014-0078-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/23/2014] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that a family of phosphoinositide 3-kinases (PI3Ks) plays pivotal roles in the brain; in particular, we previously reported that knockout of the γ isoform of PI3K (PI3Kγ) in mice impaired synaptic plasticity and reduced behavioral flexibility. To further examine the role of PI3Kγ in synaptic plasticity and hippocampus-dependent behavioral tasks we overexpressed p110γ, the catalytic subunit of PI3Kγ, in the hippocampal CA1 region. We found that the overexpression of p110γ impairs NMDA receptor-dependent long-term depression (LTD) and hippocampus-dependent spatial learning in the Morris water maze (MWM) task. In contrast, long-term potentiation (LTP) and contextual fear memory were not affected by p110γ overexpression. These results, together with the previous knockout study, suggest that a critical level of PI3Kγ in the hippocampus is required for successful induction of LTD and normal learning.
Collapse
|
61
|
Lee KJ, Hoe HS, Pak DT. Plk2 Raps up Ras to subdue synapses. Small GTPases 2014; 2:162-166. [PMID: 21776418 DOI: 10.4161/sgtp.2.3.16454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
We recently identified the activity-inducible protein kinase Plk2 as a novel overseer of the balance between Ras and Rap small GTPases. Plk2 achieves a profound level of regulatory control by interacting with and phosphorylating at least four Ras and Rap guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Combined, these actions result in synergistic suppression of Ras and hyperstimulation of Rap signaling. Perturbation of Plk2 function abolished homeostatic adaptation of synapses to enhanced activity and impaired behavioral adaptation in various learning tasks, indicating that this regulation was critical for maintaining appropriate Ras/Rap levels. These studies provide insights into the highly cooperative nature of Ras and Rap regulation in neurons. However, different GEF and GAP substrates of Plk2 also controlled specific aspects of dendritic spine morphology, illustrating the ability of individual GAPs/GEFs to assemble microdomains of Ras and Rap signaling that respond to different stimuli and couple to distinct output pathways.
Collapse
Affiliation(s)
- Kea Joo Lee
- Department of Pharmacology; Georgetown University; Medical Center; Washington, DC USA
| | | | | |
Collapse
|
62
|
Ramos-Brossier M, Montani C, Lebrun N, Gritti L, Martin C, Seminatore-Nole C, Toussaint A, Moreno S, Poirier K, Dorseuil O, Chelly J, Hackett A, Gecz J, Bieth E, Faudet A, Heron D, Frank Kooy R, Loeys B, Humeau Y, Sala C, Billuart P. Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis. Hum Mol Genet 2014; 24:1106-18. [PMID: 25305082 DOI: 10.1093/hmg/ddu523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability (ID) and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work was to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with ID. Using immunofluorescence and electrophysiological recordings, we examined the effects of IL1RAPL1 mutant over-expression on synapse formation and function in cultured rodent hippocampal neurons. Δex6 but not C31R mutation leads to IL1RAPL1 protein instability and mislocalization within dendrites. Analysis of different markers of excitatory synapses and sEPSC recording revealed that both mutants fail to induce pre- and post-synaptic differentiation, contrary to WT IL1RAPL1 protein. Cell aggregation and immunoprecipitation assays in HEK293 cells showed a reduction of the interaction between IL1RAPL1 mutants and PTPδ that could explain the observed synaptogenic defect in neurons. However, these mutants do not affect all cellular signaling because their over-expression still activates JNK pathway. We conclude that both mutations described in this study lead to a partial loss of function of the IL1RAPL1 protein through different mechanisms. Our work highlights the important function of the trans-synaptic PTPδ/IL1RAPL1 interaction in synaptogenesis and as such in ID in the patients.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris 75014, France
| | - Caterina Montani
- CNR Neuroscience Institute and Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan 20129, Italy
| | - Nicolas Lebrun
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris 75014, France
| | - Laura Gritti
- CNR Neuroscience Institute and Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan 20129, Italy
| | | | | | - Aurelie Toussaint
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, APHP, Paris 75014, France
| | - Sarah Moreno
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris 75014, France
| | - Karine Poirier
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris 75014, France
| | - Olivier Dorseuil
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris 75014, France
| | - Jamel Chelly
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris 75014, France
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Jozef Gecz
- School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Eric Bieth
- Service de Génétique Médicale, Hôpital Purpan, Toulouse 31059, France
| | - Anne Faudet
- Genetics and Cytogenetics Department, GRC-UPMC, Pitié-Salpetrière CHU, Paris 75013, France and
| | - Delphine Heron
- Genetics and Cytogenetics Department, GRC-UPMC, Pitié-Salpetrière CHU, Paris 75013, France and
| | - R Frank Kooy
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, University and University Hospital Antwerp, Antwerp 2610, Belgium
| | - Bart Loeys
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, University and University Hospital Antwerp, Antwerp 2610, Belgium
| | - Yann Humeau
- IINS, CNRS UMR5297, Université de Bordeaux, Bordeaux 33000, France
| | - Carlo Sala
- CNR Neuroscience Institute and Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan 20129, Italy
| | - Pierre Billuart
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris 75014, France,
| |
Collapse
|
63
|
Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci 2014; 34:9621-43. [PMID: 25031403 DOI: 10.1523/jneurosci.3991-13.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that leads to hippocampal neurodegeneration after hypoxia/cerebral ischemia.
Collapse
|
64
|
Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci 2014; 8:182. [PMID: 25071443 PMCID: PMC4080263 DOI: 10.3389/fncel.2014.00182] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/13/2014] [Indexed: 12/15/2022] Open
Abstract
Differential expression of microRNAs (miRs) in the brain of patients with neurodegenerative diseases suggests that they may have key regulatory roles in the development of these disorders. Two such miRs, miR-7, and miR-153 have recently been shown to target α-synuclein, a protein critically involved in the pathological process of Parkinson's disease. By using a well-established in culture Parkinson's disease model that of neurotoxin 1-Methyl-4-Phenyl-Pyridinium (MPP+), we examined whether miR-7 and miR-153 display neuroprotective properties. Herein, we demonstrate that treatment of cortical neurons with MPP+ induced a dose-dependent cell death with apoptotic characteristics. This was reflected in altered intracellular signaling characterized by increased levels of activated kinases p38MAPK and ERK1/2 and reduced levels of activated AKT, p70S6K, and SAPK/JNK. Overexpression of miR-7 or miR-153 by adenoviral transduction protected cortical neurons from MPP+-induced toxicity, restored neuronal viability and anti-apoptotic BCL-2 protein levels while attenuated activation of caspase-3. Moreover, both miR-7 and miR-153 interfered with MPP+-induced alterations in intracellular signaling pathways in a partially overlapping manner; specifically, they preserved activation of mTOR and SAPK/JNK signaling pathways in the MPP+-treated neurons, while miR-153 also attenuated MPP+-induced activation of p38MAPK. No major effects were observed in the rest of signaling cascades or proteins investigated. Furthermore, the neuroprotective effect of miR-7 and miR-153 was alleviated when MPP+ was co-administered with rapamycin. Taken together, our results suggest that miR-7 and miR-153 protect neurons from cell death by interfering with the MPP+-induced downregulation of mTOR signaling.
Collapse
Affiliation(s)
- Apostolia Fragkouli
- Lab of Molecular and Cellular Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Epaminondas Doxakis
- Lab of Molecular and Cellular Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| |
Collapse
|
65
|
|
66
|
Hell JW. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 2014; 81:249-65. [PMID: 24462093 DOI: 10.1016/j.neuron.2013.12.024] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 11/16/2022]
Abstract
While CaMKII has long been known to be essential for synaptic plasticity and learning, recent work points to new dimensions of CaMKII function in the nervous system, revealing that CaMKII also plays an important role in synaptic organization. Ca(2+)-triggered autophosphorylation of CaMKII not only provides molecular memory by prolonging CaMKII activity during long-term plasticity (LTP) and learning but also represents a mechanism for autoactivation of CaMKII's multifaceted protein-docking functions. New details are also emerging about the distinct roles of CaMKIIα and CaMKIIβ in synaptic homeostasis, further illustrating the multilayered and complex nature of CaMKII's involvement in synaptic regulation. Here, I review novel molecular and functional insight into how CaMKII supports synaptic function.
Collapse
Affiliation(s)
- Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA 95615, USA.
| |
Collapse
|
67
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
68
|
Pozniak CD, Sengupta Ghosh A, Gogineni A, Hanson JE, Lee SH, Larson JL, Solanoy H, Bustos D, Li H, Ngu H, Jubb AM, Ayalon G, Wu J, Scearce-Levie K, Zhou Q, Weimer RM, Kirkpatrick DS, Lewcock JW. Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration. ACTA ACUST UNITED AC 2013; 210:2553-67. [PMID: 24166713 PMCID: PMC3832926 DOI: 10.1084/jem.20122832] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of dual leucine zipper kinase results in attenuated JNK/c-Jun stress response pathway activation and reduced neuronal degeneration after kainic acid–induced excitotoxic seizures. Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid–induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.
Collapse
Affiliation(s)
- Christine D Pozniak
- Department of Neuroscience, 2 Department of Biomedical Imaging, 3 Department of Bioinformatics and Computational Biology, 4 Department of Protein Chemistry, 5 Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Mihalas AB, Araki Y, Huganir RL, Meffert MK. Opposing action of nuclear factor κB and Polo-like kinases determines a homeostatic end point for excitatory synaptic adaptation. J Neurosci 2013; 33:16490-501. [PMID: 24133254 PMCID: PMC3797372 DOI: 10.1523/jneurosci.2131-13.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/20/2013] [Accepted: 09/06/2013] [Indexed: 12/30/2022] Open
Abstract
Homeostatic responses critically adjust synaptic strengths to maintain stability in neuronal networks. Compensatory adaptations to prolonged excitation include induction of Polo-like kinases (Plks) and degradation of spine-associated Rap GTPase-activating protein (SPAR) to reduce synaptic excitation, but mechanisms that limit overshooting and allow refinement of homeostatic adjustments remain poorly understood. We report that Plks produce canonical pathway-mediated activation of the nuclear factor κB (NF-κB) transcription factor in a process that requires the kinase activity of Plks. Chronic elevated activity, which induces Plk expression, also produces Plk-dependent activation of NF-κB. Deficiency of NF-κB, in the context of exogenous Plk2 expression or chronic elevated neuronal excitation, produces exaggerated homeostatic reductions in the size and density of dendritic spines, synaptic AMPA glutamate receptor levels, and excitatory synaptic currents. During the homeostatic response to chronic elevated activity, NF-κB activation by Plks subsequently opposes Plk-mediated SPAR degradation by transcriptionally upregulating SPAR in mouse hippocampal neurons in vitro and in vivo. Exogenous SPAR expression can rescue the overshooting of homeostatic reductions at excitatory synapses in NF-κB-deficient neurons responding to elevated activity. Our data establish an integral feedback loop involving NF-κB, Plks, and SPAR that regulates the end point of homeostatic synaptic adaptation to elevated activity and are the first to implicate a transcription factor in the regulation of homeostatic synaptic responses.
Collapse
Affiliation(s)
| | - Yoichi Araki
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Richard L. Huganir
- Department of Biological Chemistry and
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Mollie K. Meffert
- Department of Biological Chemistry and
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
70
|
Harvey J. Leptin regulation of neuronal morphology and hippocampal synaptic function. Front Synaptic Neurosci 2013; 5:3. [PMID: 23964236 PMCID: PMC3734345 DOI: 10.3389/fnsyn.2013.00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/12/2013] [Indexed: 12/14/2022] Open
Abstract
The central actions of the hormone leptin in regulating energy homeostasis via the hypothalamus are well documented. However, evidence is growing that this hormone can also modify the structure and function of synapses throughout the CNS. The hippocampus is a region of the forebrain that plays a crucial role in associative learning and memory and is an area also highly vulnerable to neurodegenerative processes. Recent studies indicate that leptin is a potential cognitive enhancer as it modulates the cellular processes underlying hippocampal-dependent learning and memory including dendritic morphology, glutamate receptor trafficking and activity-dependent synaptic plasticity. Here, we review the recent evidence implicating the hormone leptin as a key regulator of hippocampal synaptic function and discuss the role of leptin receptor-driven lipid signaling pathways involved in this process.
Collapse
Affiliation(s)
- Jenni Harvey
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee Dundee, UK
| |
Collapse
|
71
|
Iacono G, Altafini C, Torre V. Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus. PLoS One 2013; 8:e68078. [PMID: 23935853 PMCID: PMC3720722 DOI: 10.1371/journal.pone.0068078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 µM gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10∶90] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
Collapse
Affiliation(s)
- Giovanni Iacono
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Claudio Altafini
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
- IIT Italian Institute of Technology, Genova, Italy
- * E-mail:
| |
Collapse
|
72
|
Activation of a cyclic amp-guanine exchange factor in hepatocytes decreases nitric oxide synthase expression. Shock 2013; 39:70-6. [PMID: 23143065 DOI: 10.1097/shk.0b013e3182760530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adenosine 3',5'-cyclic adenosine monophosphate (cAMP) activates intracellular signaling by regulating protein kinase A, calcium influx, and cAMP-binging guanine nucleotide exchange factors (Epac [exchange protein directly activated by cAMP] or cAMP-GEF). Cyclic adenosine monophosphate inhibits cytokine-induced expression of inducible nitric oxide synthase (iNOS) in hepatocytes by a protein kinase A-independent mechanism. We hypothesized that Epac mediates this effect. A cyclic AMP analog that specifically activates Epac, 8-(4-methoxyphenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (OPTmecAMP), and overexpression of liver-specific Epac2 both inhibited interleukin 1β/interferon γ-induced iNOS expression and nitrite production. OPTmecAMP inactivated Raf1/MEK/ERK signaling, but ERK had no effect on iNOS expression. OPTmecAMP induced a persistent Akt phosphorylation in hepatocytes that lasted up to 8 h. Overexpression of a dominant-negative Akt blocked the inhibitory effect of OPTmecAMP on iNOS production. A specific PI3K inhibitor, LY294002, attenuated the inhibition of nitrite production and iNOS expression produced by overexpressing a liver-specific Epac2 (LEpac2). OPTmecAMP also induced c-Jun N-terminal kinase (JNK) phosphorylation in hepatocytes. Overexpression of dominant-negative JNK enhanced cytokine-induced iNOS expression and nitrite production and reversed the inhibitory effects of LEpac2 on nitrite production and iNOS expression. We conclude that Epac regulates hepatocyte iNOS expression through an Akt- and JNK-mediated signaling mechanism.
Collapse
|
73
|
Deinhardt K, Chao MV. Shaping neurons: Long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology 2013; 76 Pt C:603-9. [PMID: 23664813 DOI: 10.1016/j.neuropharm.2013.04.054] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/21/2023]
Abstract
Both mature BDNF and its precursor, proBDNF, play a crucial role in shaping neurons and contributing to the structural basis for neuronal connectivity. They do so in a largely opposing manner, and through differential engagement with their receptors. In this review, we will summarise the evidence that BDNF modulates neural circuit formation in vivo both within the central and peripheral nervous systems, through the control of neuronal morphology. The underlying intracellular mechanisms that translate BDNF signalling into changes of neuronal cell shape will be described. In addition, the signalling pathways that act either locally at the site of BDNF action, or over long distances to influence gene transcription will be discussed. These mechanisms begin to explain the diversity of actions that BDNF carries out on neuronal morphology. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Katrin Deinhardt
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK; Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
74
|
Altered phosphorylation of GluA1 in the striatum is associated with locomotor sensitization induced by exposure to increasing doses of morphine. Eur J Pharmacol 2013; 702:294-301. [DOI: 10.1016/j.ejphar.2013.01.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 11/23/2022]
|
75
|
Distinct synaptic localization patterns of brefeldin A-resistant guanine nucleotide exchange factors BRAG2 and BRAG3 in the mouse retina. J Comp Neurol 2013; 521:860-76. [DOI: 10.1002/cne.23206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/11/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
|
76
|
Arf6-GEF BRAG1 regulates JNK-mediated synaptic removal of GluA1-containing AMPA receptors: a new mechanism for nonsyndromic X-linked mental disorder. J Neurosci 2012; 32:11716-26. [PMID: 22915114 DOI: 10.1523/jneurosci.1942-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent modifications of excitatory synapses contribute to synaptic maturation and plasticity, and are critical for learning and memory. Consequently, impairments in synapse formation or synaptic transmission are thought to be responsible for several types of mental disabilities. BRAG1 is a guanine nucleotide exchange factor for the small GTP-binding protein Arf6 that localizes to the postsynaptic density of excitatory synapses. Mutations in BRAG1 have been identified in families with X-linked intellectual disability (XLID). These mutations mapped to either the catalytic domain or an IQ-like motif; however, the pathophysiological basis of these mutations remains unknown. Here, we show that the BRAG1 IQ motif binds apo-calmodulin (CaM), and that calcium-induced CaM release triggers a reversible conformational change in human BRAG1. We demonstrate that BRAG1 activity, stimulated by activation of NMDA-sensitive glutamate receptors, depresses AMPA receptor (AMPA-R)-mediated transmission via JNK-mediated synaptic removal of GluA1-containing AMPA-Rs in rat hippocampal neurons. Importantly, a BRAG1 mutant that fails to activate Arf6 also fails to depress AMPA-R signaling, indicating that Arf6 activity is necessary for this process. Conversely, a mutation in the BRAG1 IQ-like motif that impairs CaM binding results in hyperactivation of Arf6 signaling and constitutive depression of AMPA transmission. Our findings reveal a role for BRAG1 in response to neuronal activity with possible clinical relevance to nonsyndromic XLID.
Collapse
|
77
|
Seo J, Hong J, Lee SJ, Choi SY. c-Jun N-terminal phosphorylation is essential for hippocampal synaptic plasticity. Neurosci Lett 2012; 531:14-9. [PMID: 23041047 DOI: 10.1016/j.neulet.2012.09.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022]
Abstract
c-Jun N-terminal kinase (JNK), a member of the MAPK family, is an important regulatory factor of synaptic plasticity as well as neuronal differentiation and cell death. Recently, JNK has been reported to modulate synaptic plasticity by the direct phosphorylation of synaptic proteins. The specific role of c-Jun phosphorylation in JNK mediated synaptic plasticity, however, remains unclear. In this study, we investigated the effects of c-Jun phosphorylation on synaptic structure and function by using c-Jun mutant mice, c-JunAA, in which the active phosphorylation sites at serines 63 and 73 were replaced by alanines. The gross hippocampal anatomy and number of spines on hippocampal pyramidal neurons were normal in c-JunAA mice. Basal synaptic transmission, input-output ratios, and paired-pulse facilitation (PPF) were also no different in c-JunAA compared with wild-type mice. Notably, however, the induction of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses in c-JunAA mice was impaired, whereas induction of long-term depression (LTD) was normal. These data suggest that phosphorylation of the c-Jun N-terminus is required for LTP formation in the hippocampus, and may help to better characterize JNK-mediated modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Jinsoo Seo
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, South Korea
| | | | | | | |
Collapse
|
78
|
Sanderson TM. Molecular mechanisms involved in depotentiation and their relevance to schizophrenia. Chonnam Med J 2012; 48:1-6. [PMID: 22570808 PMCID: PMC3341431 DOI: 10.4068/cmj.2012.48.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/10/2012] [Indexed: 12/27/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission are forms of synaptic plasticity that have been studied extensively and are thought to contribute to learning and memory. The reversal of LTP, known as depotentiation (DP) has received far less attention however, and its role in behavior is also far from clear. Recently, deficits in depotentiation have been observed in models of schizophrenia, suggesting that a greater understanding of this form of synaptic plasticity may help reveal the physiological alterations that underlie symptoms experienced by patients. This review therefore seeks to summarize the current state of knowledge on DP, and then put the deficits in DP in models of disease into this context.
Collapse
Affiliation(s)
- Thomas M Sanderson
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
79
|
Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:114-37. [PMID: 21521171 DOI: 10.2174/187152411796011349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxiainducible factor 1(HIF1) transcription factors, in stroke.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone St., Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
80
|
JNK1 inhibits GluR1 expression and GluR1-mediated calcium influx through phosphorylation and stabilization of Hes-1. J Neurosci 2012; 32:1826-46. [PMID: 22302822 DOI: 10.1523/jneurosci.3380-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The GluR1 subunit of the AMPA receptor plays an important role in excitatory synaptic transmission and synaptic plasticity in the brain, but the regulation mechanism for GluR1 expression is largely unknown. Hairy and enhancer of split 1 (Hes-1) is a mammalian transcription repressor that regulates neuronal differentiation and development, but the role of Hes-1 in differentiated neurons is also less known. Here, we examined the molecular mechanism in regulation of GluR1 expression in rat cultured cortical neurons. We found that Hes-1 suppressed GluR1 promoter activity and decreased GluR1 expression through direct binding to the N-box and through preventing Mash1/E47 from binding to the E-box of GluR1 promoter. We also found that Hes-1 could be regulated by c-Jun N-terminal kinase (JNK1). JNK1 directly phosphorylates Hes-1 at Ser-263. Furthermore, JNK1 phosphorylation of Hes-1 stabilized the Hes-1 protein and enhanced the suppressing effect of Hes-1 on GluR1 expression. These effects were demonstrated both in the soma and at the synapse. Moreover, this JNK1-mediated signaling pathway was found to inhibit AMPA-evoked calcium influx in cortical neurons and this regulation mechanism is Notch independent. Here, we provided the first evidence that Hes-1 plays an important role in synaptic function in differentiated neurons. We also identified a novel JNK1-Hes-1 signaling pathway that regulates GluR1 expression involved in synaptic function in rat cortical neurons.
Collapse
|
81
|
Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology 2012; 37:896-905. [PMID: 22048463 PMCID: PMC3280643 DOI: 10.1038/npp.2011.267] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that schizophrenia may result from alterations of integration of signaling mediated by multiple neurotransmitter systems. Abnormalities of associated intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. Proteins and phospho-proteins comprising mitogen activated protein kinase (MAPK) and 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways may be abnormally expressed in the anterior cingulate (ACC) and dorsolateral prefrontal cortex (DLPFC) in schizophrenia. Using western blot analysis we examined proteins of the MAPK- and cAMP-associated pathways in these two brain regions. Postmortem samples were used from a well-characterized collection of elderly patients with schizophrenia (ACC=36, DLPFC=35) and a comparison (ACC=33, DLPFC=31) group. Near-infrared intensity of IR-dye labeled secondary antisera bound to targeted proteins of the MAPK- and cAMP-associated signaling pathways was measured using LiCor Odyssey imaging system. We found decreased expression of Rap2, JNK1, JNK2, PSD-95, and decreased phosphorylation of JNK1/2 at T183/Y185 and PSD-95 at S295 in the ACC in schizophrenia. In the DLPFC, we found increased expression of Rack1, Fyn, Cdk5, and increased phosphorylation of PSD-95 at S295 and NR2B at Y1336. MAPK- and cAMP-associated molecules constitute ubiquitous intracellular signaling pathways that integrate extracellular stimuli, modify receptor expression and function, and regulate cell survival and neuroplasticity. These data suggest abnormal activity of the MAPK- and cAMP-associated pathways in frontal cortical areas in schizophrenia. These alterations may underlie the hypothesized hypoglutamatergic function in this illness. Together with previous findings, these data suggest that abnormalities of intracellular signaling pathways may contribute to the pathophysiology of schizophrenia.
Collapse
|
82
|
Zorumski CF, Izumi Y. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev 2012; 36:989-1000. [PMID: 22230702 DOI: 10.1016/j.neubiorev.2011.12.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/14/2011] [Accepted: 12/22/2011] [Indexed: 02/08/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are key components of neural signaling, playing roles in synaptic transmission and in the synaptic plasticity thought to underlie learning and memory. NMDAR activation can also have neurotoxic consequences contributing to several forms of neurodegeneration. Additionally, NMDARs can modulate neuronal function and regulate the ability of synapses to undergo synaptic plasticity. Evidence gathered over the past 20 years strongly supports the idea that untimely activation of NMDARs impairs the induction of long-term potentiation (LTP) by a form of metaplasticity. This metaplasticity can be triggered by multiple stimuli including physiological receptor activation, and metabolic and behavioral stressors. These latter findings raise the possibility that NMDARs contribute to cognitive dysfunction associated with neuropsychiatric disorders. This paper examines NMDAR metaplasticity and its potential role in cognition. Recent studies using NMDAR antagonists for therapeutic purposes also raise the possibility that metaplasticity may contribute to clinical effects of certain drugs.
Collapse
Affiliation(s)
- Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
83
|
Synaptic dysfunction and intellectual disability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:433-49. [PMID: 22351067 DOI: 10.1007/978-3-7091-0932-8_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intellectual disability (ID) is a common and highly heterogeneous paediatric disorder with a very severe social impact. Intellectual disability can be caused by environmental and/or genetic factors. Although in the last two decades a number of genes have been discovered whose mutations cause mental retardation, we are still far from identifying the impact of these mutations on brain functions. Many of the genes mutated in ID code for several proteins with a variety of functions: chromatin remodelling, pre-/post-synaptic activity, and intracellular trafficking. The prevailing hypothesis suggests that the ID phenotype could emerge from abnormal cellular processing leading to pre- and/or post-synaptic dysfunction. In this chapter, we focus on the role of small GTPases and adhesion molecules, and we discuss the mechanisms through which they lead to synaptic network dysfunction.
Collapse
|
84
|
Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol 2011; 22:453-60. [PMID: 22051694 DOI: 10.1016/j.conb.2011.10.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 11/20/2022]
Abstract
Excitatory synaptic transmission is largely mediated by AMPA receptors (AMPARs) present at the postsynaptic density. Recent studies in single molecule tracking of AMPAR has revealed that extrasynaptic AMPARs are highly mobile and thus might serve as a readily available pool for their synaptic recruitment during synaptic plasticity events such as long-term potentiation (LTP). Because this hypothesis relies on the cell's ability to increase the number of diffusional traps or 'slots' at synapses during LTP, we will review a number of protein-protein interactions that might impact AMPARs lateral diffusion and thus potentially serve as slots. Recent studies have identified the interaction between the AMPAR-Stargazin complex and PSD-95 as the minimal components of the diffusional trapping slot. We will overview the molecular basis of this critical interaction, its activity-dependent regulation and its potential contribution to LTP.
Collapse
|
85
|
Kim JI, Lee HR, Sim SE, Baek J, Yu NK, Choi JH, Ko HG, Lee YS, Park SW, Kwak C, Ahn SJ, Choi SY, Kim H, Kim KH, Backx PH, Bradley CA, Kim E, Jang DJ, Lee K, Kim SJ, Zhuo M, Collingridge GL, Kaang BK. PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci 2011; 14:1447-54. [PMID: 22019731 DOI: 10.1038/nn.2937] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/22/2011] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been implicated in synaptic plasticity and other neural functions in the brain. However, the role of individual PI3K isoforms in the brain is unclear. We investigated the role of PI3Kγ in hippocampal-dependent synaptic plasticity and cognitive functions. We found that PI3Kγ has a crucial and specific role in NMDA receptor (NMDAR)-mediated synaptic plasticity at mouse Schaffer collateral-commissural synapses. Both genetic deletion and pharmacological inhibition of PI3Kγ disrupted NMDAR long-term depression (LTD) while leaving other forms of synaptic plasticity intact. Accompanying this physiological deficit, the impairment of NMDAR LTD by PI3Kγ blockade was specifically correlated with deficits in behavioral flexibility. These findings suggest that a specific PI3K isoform, PI3Kγ, is critical for NMDAR LTD and some forms of cognitive function. Thus, individual isoforms of PI3Ks may have distinct roles in different types of synaptic plasticity and may therefore influence various kinds of behavior.
Collapse
Affiliation(s)
- Jae-Ick Kim
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hong I, Kim J, Lee J, Park S, Song B, Kim J, An B, Park K, Lee HW, Lee S, Kim H, Park SH, Eom KD, Lee S, Choi S. Reversible plasticity of fear memory-encoding amygdala synaptic circuits even after fear memory consolidation. PLoS One 2011; 6:e24260. [PMID: 21949700 PMCID: PMC3176280 DOI: 10.1371/journal.pone.0024260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
It is generally believed that after memory consolidation, memory-encoding synaptic circuits are persistently modified and become less plastic. This, however, may hinder the remaining capacity of information storage in a given neural circuit. Here we consider the hypothesis that memory-encoding synaptic circuits still retain reversible plasticity even after memory consolidation. To test this, we employed a protocol of auditory fear conditioning which recruited the vast majority of the thalamic input synaptic circuit to the lateral amygdala (T-LA synaptic circuit; a storage site for fear memory) with fear conditioning-induced synaptic plasticity. Subsequently the fear memory-encoding synaptic circuits were challenged with fear extinction and re-conditioning to determine whether these circuits exhibit reversible plasticity. We found that fear memory-encoding T-LA synaptic circuit exhibited dynamic efficacy changes in tight correlation with fear memory strength even after fear memory consolidation. Initial conditioning or re-conditioning brought T-LA synaptic circuit near the ceiling of their modification range (occluding LTP and enhancing depotentiation in brain slices prepared from conditioned or re-conditioned rats), while extinction reversed this change (reinstating LTP and occluding depotentiation in brain slices prepared from extinguished rats). Consistently, fear conditioning-induced synaptic potentiation at T-LA synapses was functionally reversed by extinction and reinstated by subsequent re-conditioning. These results suggest reversible plasticity of fear memory-encoding circuits even after fear memory consolidation. This reversible plasticity of memory-encoding synapses may be involved in updating the contents of original memory even after memory consolidation.
Collapse
Affiliation(s)
- Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Vellano CP, Lee SE, Dudek SM, Hepler JR. RGS14 at the interface of hippocampal signaling and synaptic plasticity. Trends Pharmacol Sci 2011; 32:666-74. [PMID: 21906825 DOI: 10.1016/j.tips.2011.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/28/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Learning and memory are encoded within the brain as biochemical and physical changes at synapses that alter synaptic transmission, a process known as synaptic plasticity. Although much is known about factors that positively regulate synaptic plasticity, very little is known about factors that negatively regulate this process. Recently, the signaling protein RGS14 (Regulator of G protein Signaling 14) was identified as a natural suppressor of hippocampal-based learning and memory as well as synaptic plasticity within CA2 hippocampal neurons. RGS14 is a multifunctional scaffolding protein that integrates unconventional G protein and mitogen-activated protein (MAP) kinase signaling pathways that are themselves key regulators of synaptic plasticity, learning, and memory. Here, we highlight the known roles for RGS14 in brain physiology and unconventional G protein signaling pathways, and propose molecular models to describe how RGS14 may integrate these diverse signaling pathways to modulate synaptic plasticity in CA2 hippocampal neurons.
Collapse
Affiliation(s)
- Christopher P Vellano
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
88
|
Zhong L, Gerges NZ. Neurogranin and synaptic plasticity balance. Commun Integr Biol 2011; 3:340-2. [PMID: 20798820 DOI: 10.4161/cib.3.4.11763] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 03/08/2010] [Indexed: 11/19/2022] Open
Abstract
Learning-related modifications of synaptic transmission at CA1 hippocampal excitatory synapses are activity- and NMDA receptor (NMDAR)-dependent. While a postsynaptic increase in Ca(2+) is absolutely required for synaptic plasticity induction, the molecular mechanisms underlying the transduction of synaptic signals to postsynaptic changes are not clearly understood. In our recent study, we found that the postsynaptic calmodulin (CaM)-binding protein neurogranin (Ng) enhances synaptic strength in an activity- and NMDAR-dependent manner. Furthermore we have shown that Ng is not only required for the induction of long-term potentiation (LTP), but its mediated synaptic potentiation also mimics and occludes LTP. Our results demonstrate that Ng plays an important role in the regulation of hippocampal synaptic plasticity and synaptic function. Here, we summarize our findings and further discuss their possible implications in aging-related synaptic plasticity deficits.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Cell Biology, Neurobiology and Anatomy; Medical College of Wisconsin; Milwaukee, WI USA
| | | |
Collapse
|
89
|
Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc Natl Acad Sci U S A 2011; 108:8456-60. [PMID: 21531906 DOI: 10.1073/pnas.1016275108] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes.
Collapse
|
90
|
Xu P, Das M, Reilly J, Davis RJ. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev 2011; 25:310-22. [PMID: 21325132 DOI: 10.1101/gad.1984311] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cJun N-terminal kinase (JNK) signal transduction pathway is implicated in the regulation of neuronal function. JNK is encoded by three genes that play partially redundant roles. Here we report the creation of mice with targeted ablation of all three Jnk genes in neurons. Compound JNK-deficient neurons are dependent on autophagy for survival. This autophagic response is caused by FoxO-induced expression of Bnip3 that displaces the autophagic effector Beclin-1 from inactive Bcl-XL complexes. These data identify JNK as a potent negative regulator of FoxO-dependent autophagy in neurons.
Collapse
Affiliation(s)
- Ping Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
91
|
Yang H, Courtney MJ, Martinsson P, Manahan-Vaughan D. Hippocampal long-term depression is enhanced, depotentiation is inhibited and long-term potentiation is unaffected by the application of a selective c-Jun N-terminal kinase inhibitor to freely behaving rats. Eur J Neurosci 2011; 33:1647-55. [PMID: 21453290 DOI: 10.1111/j.1460-9568.2011.07661.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic plasticity is regarded as the major candidate mechanism for synaptic information storage and memory formation in the hippocampus. Mitogen-activated protein kinases have recently emerged as an important regulatory factor in many forms of synaptic plasticity and memory. As one of the subfamilies of mitogen-activated protein kinases, extracellular-regulated kinase is involved in the in vitro induction of long-term potentiation (LTP), whereas p38 mediates metabotropic glutamate receptor-dependent long-term depression (LTD) in vitro. Although c-Jun N-terminal kinase (JNK) has also been implicated in synaptic plasticity, the in vivo relevance of JNK activity to different forms of synaptic plasticity remains to be further explored. We investigated the effect of inhibition of JNK on different forms of synaptic plasticity in the dentate gyrus of freely behaving adult rats. Intracereboventricular application of c-Jun N-terminal protein kinase-inhibiting peptide (D-JNKI) (96 ng), a highly selective JNK inhibitor peptide, did not affect basal synaptic transmission but reduced neuronal excitability with a higher dose (192 ng). Application of D-JNKI, at a concentration that did not affect basal synaptic transmission, resulted in reduced specific phosphorylation of the JNK substrates postsynaptic density 95kD protein (PSD 95) and c-Jun, a significant enhancement of LTD and a facilitation of short-term depression into LTD. Both LTP and short-term potentiation were unaffected. An inhibition of depotentiation (recovery of LTP) occurred. These data suggest that suppression of JNK-dependent signalling may serve to enhance synaptic depression, and indirectly promote LTP through impairment of depotentiation.
Collapse
Affiliation(s)
- Honghong Yang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum MA 4/149, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
92
|
Lee KJ, Lee Y, Rozeboom A, Lee JY, Udagawa N, Hoe HS, Pak DT. Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory. Neuron 2011; 69:957-73. [PMID: 21382555 PMCID: PMC3073828 DOI: 10.1016/j.neuron.2011.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2010] [Indexed: 12/01/2022]
Abstract
Ras and Rap small GTPases are important for synaptic plasticity and memory. However, their roles in homeostatic plasticity are unknown. Here, we report that polo-like kinase 2 (Plk2), a homeostatic suppressor of overexcitation, governs the activity of Ras and Rap via coordination of their regulatory proteins. Plk2 directs elimination of Ras activator RasGRF1 and Rap inhibitor SPAR via phosphorylation-dependent ubiquitin-proteasome degradation. Conversely, Plk2 phosphorylation stimulates Ras inhibitor SynGAP and Rap activator PDZGEF1. These Ras/Rap regulators perform complementary functions to downregulate dendritic spines and AMPA receptors following elevated activity, and their collective regulation by Plk2 profoundly stimulates Rap and suppresses Ras. Furthermore, perturbation of Plk2 disrupts Ras and Rap signaling, prevents homeostatic shrinkage and loss of dendritic spines, and impairs proper memory formation. Our study demonstrates a critical role of Plk2 in the synchronized tuning of Ras and Rap and underscores the functional importance of this regulation in homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Kea Joo Lee
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| | - Yeunkum Lee
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| | - Aaron Rozeboom
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| | - Ji-Yun Lee
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| | - Noriko Udagawa
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| | - Hyang-Sook Hoe
- Department of Neurology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| | - Daniel T.S. Pak
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057-1464, USA
| |
Collapse
|
93
|
Differential roles of ERK, JNK and p38 MAPK in pain-related spatial and temporal enhancement of synaptic responses in the hippocampal formation of rats: Multi-electrode array recordings. Brain Res 2011; 1382:57-69. [DOI: 10.1016/j.brainres.2011.01.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/21/2010] [Accepted: 01/24/2011] [Indexed: 12/30/2022]
|
94
|
Penzes P, Woolfrey KM, Srivastava DP. Epac2-mediated dendritic spine remodeling: implications for disease. Mol Cell Neurosci 2011; 46:368-80. [PMID: 21115118 PMCID: PMC3031158 DOI: 10.1016/j.mcn.2010.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022] Open
Abstract
In the mammalian forebrain, most glutamatergic excitatory synapses occur on small dendritic protrusions called dendritic spines. Dendritic spines are highly plastic and can rapidly change morphology in response to numerous stimuli. This dynamic remodeling of dendritic spines is thought to be critical for information processing, memory and cognition. Conversely, multiple studies have revealed that neuropathologies such as autism spectrum disorders (ASDs) are linked with alterations in dendritic spine morphologies and miswiring of neural circuitry. One compelling hypothesis is that abnormal dendritic spine remodeling is a key contributing factor for this miswiring. Ongoing research has identified a number of mechanisms that are critical for the control of dendritic spine remodeling. Among these mechanisms, regulation of small GTPase signaling by guanine-nucleotide exchange factors (GEFs) is emerging as a critical mechanism for integrating physiological signals in the control of dendritic spine remodeling. Furthermore, multiple proteins associated with regulation of dendritic spine remodeling have also been implicated with multiple neuropathologies, including ASDs. Epac2, a GEF for the small GTPase Rap, has recently been described as a novel cAMP (yet PKA-independent) target localized to dendritic spines. Signaling via this protein in response to pharmacological stimulation or cAMP accumulation, via the dopamine D1/5 receptor, results in Rap activation, promotes structural destabilization, in the form of dendritic spine shrinkage, and functional depression due to removal of GluR2/3-containing AMPA receptors. In addition, Epac2 forms macromolecular complexes with ASD-associated proteins, which are sufficient to regulate Epac2 localization and function. Furthermore, rare non-synonymous variants of the EPAC2 gene associated with the ASD phenotype alter protein function, synaptic protein distribution, and spine morphology. We review here the role of Epac2 in the remodeling of dendritic spines under normal conditions, the mechanisms that underlie these effects, and the implications these disease-associated variants have on our understanding of the pathophysiology of ASD.
Collapse
Affiliation(s)
- Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
95
|
Abstract
The Ras family GTPases (Ras, Rap1, and Rap2) and their downstream mitogen-activated protein kinases (ERK, JNK, and p38MAPK) and PI3K signaling cascades control various physiological processes. In neuronal cells, recent studies have shown that these parallel cascades signal distinct forms of AMPA-sensitive glutamate receptor trafficking during experience-dependent synaptic plasticity and adaptive behavior. Interestingly, both hypo- and hyperactivation of Ras/ Rap signaling impair the capacity of synaptic plasticity, underscoring the importance of a "happy-medium" dynamic regulation of the signaling. Moreover, accumulating reports have linked various genetic defects that either up- or down-regulate Ras/Rap signaling with several mental disorders associated with learning disability (e.g., Alzheimer's disease, Angelman syndrome, autism, cardio-facio-cutaneous syndrome, Coffin-Lowry syndrome, Costello syndrome, Cowden and Bannayan-Riley-Ruvalcaba syndromes, fragile X syndrome, neurofibromatosis type 1, Noonan syndrome, schizophrenia, tuberous sclerosis, and X-linked mental retardation), highlighting the necessity of happy-medium dynamic regulation of Ras/Rap signaling in learning behavior. Thus, the recent advances in understanding of neuronal Ras/Rap signaling provide a useful guide for developing novel treatments for mental diseases.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|
96
|
Abstract
Learning-related potentiation of synaptic strength at Cornu ammonis subfield 1 (CA1) hippocampal excitatory synapses is dependent on neuronal activity and the activation of glutamate receptors. However, molecular mechanisms that regulate and fine-tune the expression of long-term potentiation (LTP) are not well understood. Recently it has been indicated that neurogranin (Ng), a neuron-specific, postsynaptic protein that is phosphorylated by protein kinase C, potentiates synaptic transmission in an LTP-like manner. Here, we report that a Ng mutant that is unable to be phosphorylated cannot potentiate synaptic transmission in rat CA1 hippocampal neurons and results in a submaximal expression of LTP. Our results provide the first evidence that the phosphorylation of Ng can regulate LTP expression.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 U.S.A
| | - Kanwardeep S. Kaleka
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 U.S.A
| | - Nashaat Z. Gerges
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 U.S.A
| |
Collapse
|
97
|
Sherrin T, Blank T, Todorovic C. c-Jun N-terminal kinases in memory and synaptic plasticity. Rev Neurosci 2011; 22:403-10. [DOI: 10.1515/rns.2011.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractThe c-Jun N-terminal kinases (JNK) belong to the subfamily of mitogen-activated protein kinases (MAPK). JNK is an important signaling enzyme that is involved in many facets of cellular regulation including gene expression, cell proliferation and programmed cell death. Activation of JNK isoforms (JNK1, 2, and 3) is regarded as a molecular switch in stress signal transduction. The activation of JNK pathways is also critical for pathological death associated with neurodegenerative diseases. Considering that a variety of stressors activate JNK, it is surprising that the role of hippocampal JNK in memory and synaptic plasticity has not yet been systematically investigated. Here we summarize the emerging evidence for the functions of hippocampal JNK in memory and synaptic plasticity, including our recent demonstration that JNK isoforms play critical roles in regulation of contextual fear conditioning under stressful and baseline conditions. We postulate that sustained activation of the hippocampal JNK2 and JNK3 pathways is involved in the initial stress response that ultimately leads to deficits in memory and long-term potentiation, whereas transient JNK1 activation regulates baseline contextual fear conditioning. Results obtained within the framework of our recent findings will be used for future work, which will differentiate mechanisms underlying beneficial short-term JNK action from prolonged JNK activation that may lead to memory deficits and neurodegeneration.
Collapse
|
98
|
Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci 2010; 30:15102-12. [PMID: 21068316 DOI: 10.1523/jneurosci.3128-10.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PSD-95 (postsynaptic density-95) is thought to play important roles in the regulation of dendritic spines and excitatory synapses, but the underlying mechanisms have not been fully elucidated. TANC1 is a PSD-95-interacting synaptic protein that contains multiple domains for protein-protein interactions but whose function is not well understood. In the present study, we provide evidence that TANC1 and its close relative TANC2 regulate dendritic spines and excitatory synapses. Overexpression of TANC1 and TANC2 in cultured neurons increases the density of dendritic spines and excitatory synapses in a manner that requires the PDZ (PSD-95/Dlg/ZO-1)-binding C termini of TANC proteins. TANC1-deficient mice exhibit reduced spine density in the CA3 region of the hippocampus, but not in the CA1 or dentate gyrus regions, and show impaired spatial memory. TANC2 deficiency, however, causes embryonic lethality. These results suggest that TANC1 is important for dendritic spine maintenance and spatial memory, and implicate TANC2 in embryonic development.
Collapse
|
99
|
GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats. Neuroscience 2010; 171:1102-8. [DOI: 10.1016/j.neuroscience.2010.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/03/2010] [Accepted: 09/22/2010] [Indexed: 11/19/2022]
|
100
|
Ye X, Carew TJ. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 2010; 68:340-61. [PMID: 21040840 PMCID: PMC3008420 DOI: 10.1016/j.neuron.2010.09.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 01/04/2023]
Abstract
Small G proteins are an extensive family of proteins that bind and hydrolyze GTP. They are ubiquitous inside cells, regulating a wide range of cellular processes. Recently, many studies have examined the role of small G proteins, particularly the Ras family of G proteins, in memory formation. Once thought to be primarily involved in the transduction of a variety of extracellular signals during development, it is now clear that Ras family proteins also play critical roles in molecular processing underlying neuronal and behavioral plasticity. We here review a number of recent studies that explore how the signaling of Ras family proteins contributes to memory formation. Understanding these signaling processes is of fundamental importance both from a basic scientific perspective, with the goal of providing mechanistic insights into a critical aspect of cognitive behavior, and from a clinical perspective, with the goal of providing effective therapies for a range of disorders involving cognitive impairments.
Collapse
Affiliation(s)
- Xiaojing Ye
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|