51
|
Regulation of synaptic stability by AMPA receptor reverse signaling. Proc Natl Acad Sci U S A 2010; 108:367-72. [PMID: 21173224 DOI: 10.1073/pnas.1015163108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of neuronal circuits relies on the stabilization of functionally appropriate connections and the elimination of inappropriate ones. Here we report that postsynaptic AMPA receptors play a critical role in regulating the stability of glutamatergic synapses. Removal of surface AMPA receptors leads to a decrease in the number and stability of excitatory presynaptic inputs, whereas overexpression increases synapse number and stability. Furthermore, overexpression of AMPA receptors along with Neuroligin-1 in 293T cells is sufficient to stabilize presynaptic inputs from cortical neurons onto heterologous cells. The stabilization of presynaptic inputs by AMPA receptors is not dependent on receptor-mediated current and instead relies on structural interactions mediated by the N-terminal domain of the glutamate receptor 2 (GluR2) subunit. These observations indicate that transsynaptic signaling mediated by the extracellular domain of GluR2 regulates the stability of presynaptic terminals.
Collapse
|
52
|
Synaptic targeting of AMPA receptors is regulated by a CaMKII site in the first intracellular loop of GluA1. Proc Natl Acad Sci U S A 2010; 107:22266-71. [PMID: 21135237 DOI: 10.1073/pnas.1016289107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The accumulation of AMPA receptors (AMPARs) at synapses is essential for excitatory synaptic transmission. However, the mechanisms underlying synaptic targeting of AMPARs remain elusive. We have now used a molecular replacement approach on an AMPAR-null background to investigate the targeting mechanisms necessary for regulating AMPAR trafficking in the hippocampus. Although there is an extensive literature on the role of the GluA1 C-tail in AMPAR trafficking, there is no effect of overexpressing the C-tail on basal transmission. Instead, we found that the first intracellular loop domain (Loop1) of GluA1, a previously overlooked region within AMPARs, is critical for receptor targeting to synapses, but not for delivery of receptors to the plasma membrane. We also identified a CaMKII phosphorylation site (S567) in the GluA1 Loop1, which is phosphorylated in vitro and in vivo. Furthermore, we show that S567 is a key residue that regulates Loop1-mediated AMPAR trafficking. Thus, our study reveals a unique mechanism for targeting AMPARs to synapses to mediate synaptic transmission.
Collapse
|
53
|
Nakagawa T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol Neurobiol 2010; 42:161-84. [PMID: 21080238 PMCID: PMC2992128 DOI: 10.1007/s12035-010-8149-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Terunaga Nakagawa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
54
|
Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating. Proc Natl Acad Sci U S A 2010; 107:16315-9. [PMID: 20805473 DOI: 10.1073/pnas.1011706107] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamate receptors of the AMPA subtype (AMPARs) mediate fast synaptic transmission in the brain. These ionotropic receptors rely on auxiliary subunits known as transmembrane AMPAR regulatory proteins (TARPs) for both trafficking and gating. Recently, a second family of AMPAR binding proteins, referred to as cornichons, were identified and also proposed to function as auxiliary subunits. Cornichons are transmembrane proteins that modulate AMPAR function in expression systems much like TARPs. In the present study we compare the role of cornichons in controlling AMPA receptor function in neurons and HEK cells to that of TARPs. Cornichons mimic some, but not all, of the actions of TARPs in HEK cells; their role in neurons, however, is more limited. Although expressed cornichons can affect the trafficking of AMPARs, they were not detected on the surface of neurons and failed to alter the kinetics of endogenous AMPARs. This neuronal role is more consistent with that of an endoplasmic reticulum (ER) chaperone rather than a bona fide auxiliary subunit.
Collapse
|
55
|
Sumioka A, Yan D, Tomita S. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 2010; 66:755-67. [PMID: 20547132 PMCID: PMC2887694 DOI: 10.1016/j.neuron.2010.04.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2010] [Indexed: 01/25/2023]
Abstract
Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guanylate kinases. Among the three classes of ionotropic glutamate receptors (AMPA, NMDA, and kainate type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively charged lipid bilayers in a phosphorylation-dependent manner and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction.
Collapse
Affiliation(s)
- Akio Sumioka
- Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Dan Yan
- Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Susumu Tomita
- Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
56
|
Emond MR, Montgomery JM, Huggins ML, Hanson JE, Mao L, Huganir RL, Madison DV. AMPA receptor subunits define properties of state-dependent synaptic plasticity. J Physiol 2010; 588:1929-46. [PMID: 20351044 DOI: 10.1113/jphysiol.2010.187229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many synapses undergo immediate and persistent activity-dependent changes in strength via processes that fall under the umbrella of synaptic plasticity. It is known that this type of synaptic plasticity exhibits an underlying state dependence; that is, as synapses change in strength they move into distinct 'states' that are defined by the mechanism and ability to undergo future plasticity. In this study, we have investigated the molecular mechanisms that underlie state-dependent synaptic plasticity. Using intracellular application of peptides that mimic the C-terminal tail sequences of GluR1 and GluR2 AMPA receptor subtypes, combined with paired recordings of minimal synaptic connections, we have shown that AMPA receptor subtypes present in the membrane at a given time confer some properties of plasticity states. These data show that during synaptic plasticity, AMPA receptor subtypes are differentially stabilized by postsynaptic density proteins in or out of the postsynaptic membrane, and this differential synaptic expression of different AMPA receptor subtypes defines distinct synaptic states.
Collapse
Affiliation(s)
- Michelle R Emond
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Nitric oxide acts as a volume transmitter to modulate electrical properties of spontaneously firing neurons via apamin-sensitive potassium channels. J Neurosci 2010; 30:1699-711. [PMID: 20130179 DOI: 10.1523/jneurosci.4511-09.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a radical and a gas, properties that allow NO to diffuse through membranes and potentially enable it to function as a "volume messenger." This study had two goals: first, to investigate the mechanisms by which NO functions as a modulator of neuronal excitability, and second, to compare NO effects produced by NO release from chemical NO donors with those elicited by physiological NO release from single neurons. We demonstrate that NO depolarizes the membrane potential of B5 neurons of the mollusk Helisoma trivolvis, initially increasing their firing rate and later causing neuronal silencing. Both effects of NO were mediated by inhibition of Ca-activated iberiotoxin- and apamin-sensitive K channels, but only inhibition of apamin-sensitive K channels fully mimicked all effects of NO on firing activity, suggesting that the majority of electrical effects of NO are mediated via inhibition of apamin-sensitive K channels. We further show that single neurons release sufficient amounts of NO to affect the electrical activity of B5 neurons located nearby. These effects are similar to NO release from the chemical NO donor NOC-7 [3-(2-hydroxy-1-methyl-2-nitrosohydazino)-N-methyl-1-propyanamine], validating the use of NO donors in studies of neuronal excitability. Together with previous findings demonstrating a role for NO in neurite outgrowth and growth cone motility, the results suggest that NO has the potential to shape the development of the nervous system by modulating both electrical activity and neurite outgrowth in neurons located in the vicinity of NO-producing cells, supporting the notion of NO functioning as a volume messenger.
Collapse
|
58
|
Santos SD, Manadas B, Duarte CB, Carvalho AL. Proteomic Analysis of an Interactome for Long-Form AMPA Receptor Subunits. J Proteome Res 2010; 9:1670-82. [DOI: 10.1021/pr900766r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra D. Santos
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
59
|
Shanks NF, Maruo T, Farina AN, Ellisman MH, Nakagawa T. Contribution of the global subunit structure and stargazin on the maturation of AMPA receptors. J Neurosci 2010; 30:2728-40. [PMID: 20164357 PMCID: PMC2842908 DOI: 10.1523/jneurosci.5146-09.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/21/2009] [Accepted: 01/06/2010] [Indexed: 01/29/2023] Open
Abstract
Subunit assembly governs regulation of AMPA receptor (AMPA-R) synaptic delivery and determines biophysical parameters of the ion channel. However, little is known about the molecular pathways of this process. Here, we present single-particle EM three-dimensional structures of dimeric biosynthetic intermediates of the GluA2 subunit of AMPA-Rs. Consistent with the structures of intact tetramers, the N-terminal domains of the biosynthetic intermediates form dimers. Transmembrane domains also dimerize despite the two ligand-binding domains (LBDs) being separated. A significant difference was detected between the dimeric structures of the wild type and the L504Y mutant, a point mutation that blocks receptor trafficking and desensitization. In contrast to the wild type, whose LBD is separated, the LBD of the L504Y mutant was detected as a single density. Our results provide direct structural evidence that separation of the LBD within the intact dimeric subunits is critical for efficient tetramerization in the endoplasmic reticulum and further trafficking of AMPA-Rs. The contribution of stargazin on the subunit assembly of AMPA-R was examined. Our data suggest that stargazin affects AMPA-R trafficking at a later stage of receptor maturation.
Collapse
MESH Headings
- Calcium Channels/chemistry
- Calcium Channels/metabolism
- Cell Line, Transformed
- Cells, Cultured
- Embryo, Mammalian
- Green Fluorescent Proteins/genetics
- Hippocampus/cytology
- Humans
- Leucine/genetics
- Microscopy, Confocal/methods
- Microscopy, Electron, Scanning/methods
- Models, Molecular
- Molecular Conformation
- Mutation/genetics
- Neurons/drug effects
- Neurons/physiology
- Protein Interaction Domains and Motifs/genetics
- Protein Interaction Domains and Motifs/physiology
- Protein Structure, Tertiary
- Receptors, AMPA/chemistry
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, AMPA/ultrastructure
- Subcellular Fractions/metabolism
- Time Factors
- Transfection/methods
- Tyrosine/genetics
Collapse
Affiliation(s)
- Natalie F. Shanks
- Department of Chemistry and Biochemistry
- Neurosciences Graduate Program
| | | | | | - Mark H. Ellisman
- Neurosciences Graduate Program
- Department of Neurosciences, and
- National Center for Microscopyand Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Terunaga Nakagawa
- Department of Chemistry and Biochemistry
- Neurosciences Graduate Program
| |
Collapse
|
60
|
Assembly and stoichiometry of the AMPA receptor and transmembrane AMPA receptor regulatory protein complex. J Neurosci 2010; 30:1064-72. [PMID: 20089915 DOI: 10.1523/jneurosci.3909-09.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter in the vertebrate brain. AMPA-type glutamate receptors mediate fast excitatory transmission. AMPA receptors assemble with transmembrane AMPA receptor regulatory protein (TARP) auxiliary subunits and function as native ion channels. However, the assembly and stoichiometry of AMPA receptor and TARP complexes remain unclear. Here, we developed a novel strategy to determine the assembly and stoichiometry of this protein complex and found that functional AMPA receptors indeed assembled as a tetramer in a dimer-of-dimers structure. Furthermore, we found that the AMPA receptor auxiliary subunit, TARP, had a variable stoichiometry (1-4 TARP units) on AMPA receptors and that 1 TARP unit was sufficient to modulate AMPA receptor activity. In neurons, TARP had fixed and minimum stoichiometry on AMPA receptors. This fundamental composition of the AMPA receptor/TARP complex is important for the elucidation of the molecular machinery that underlies synaptic transmission.
Collapse
|
61
|
Lee SH, Govindaiah G, Cox CL. Selective excitatory actions of DNQX and CNQX in rat thalamic neurons. J Neurophysiol 2010; 103:1728-34. [PMID: 20107128 DOI: 10.1152/jn.00540.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thalamic reticular nucleus (TRN) consists of GABA-containing neurons that form reciprocal synaptic connections with thalamic relay nuclei. Excitatory synaptic innervation of TRN neurons arises from glutamatergic afferents from thalamocortical relay neurons and deep layer corticothalamic neurons, and they produce excitation via both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Quinoxaline derivatives [e.g., 6,7-dinitroquinoxaline-2,3-dione (DNQX), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] have routinely been used as non-NMDA receptor antagonists over the last two decades. In this study, we examined whether quinoxaline derivatives alter the intrinsic properties of thalamic neurons in light of recent findings indicating that these compounds can alter neuronal excitability in hippocampal and cerebellar neurons via transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs). Whole cell recordings were obtained from TRN and ventrobasal (VB) thalamic relay neurons in vitro. DNQX and CNQX produced a consistent depolarization in all TRN neurons tested. The depolarization persisted in tetrodotoxin and low Ca²+/high Mg²+ conditions, suggesting a postsynaptic site of action. In contrast, DNQX and CNQX produced little or no change in VB thalamocortical relay neurons. The nonspecific ionotropic glutamate receptor antagonist, kynurenic acid, and the selective AMPAR antagonist, 4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-5-yl)-benzenamine hydrochloride, blocked the DNQX-mediated depolarizations. Our results indicate that the DNQX- and CNQX-mediated depolarizations are mediated by AMPAR but not kainate receptors in TRN neurons. The AMPAR-positive allosteric modulator, trichloromethiazide, potentiated the DNQX-mediated depolarization in TRN neurons but did not unmask any excitatory actions of DNQX/CNQX in relay neurons. This selective action may not only reveal a differential TARP distribution among thalamic neurons but also may provide insight into distinct characteristics of AMPA receptors of thalamic neurons that could be exploited by future pharmacological development. Furthermore, these data suggest that quinoxaline derivatives could modulate synaptic transmission and alter neuronal excitability.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
62
|
Fleming JJ, England PM. Developing a complete pharmacology for AMPA receptors: a perspective on subtype-selective ligands. Bioorg Med Chem 2010; 18:1381-7. [PMID: 20096591 DOI: 10.1016/j.bmc.2009.12.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/19/2009] [Accepted: 12/31/2009] [Indexed: 01/15/2023]
Abstract
AMPA receptors are a family of ligand-gated ion channels that play central roles in rapid neural signaling and in regulation of synaptic strength. Additionally, these receptors are implicated in a number of major psychiatric and neurological diseases. A comprehensive understanding of the roles that AMPA receptors play in the mammalian nervous system has been hampered by the dearth of ligands available to select between individual AMPA receptors subtypes. Here we provide a perspective on opportunities for developing a complete pharmacology for AMPA receptors.
Collapse
Affiliation(s)
- James J Fleming
- Department of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
63
|
Stein ELA, Chetkovich DM. Regulation of stargazin synaptic trafficking by C-terminal PDZ ligand phosphorylation in bidirectional synaptic plasticity. J Neurochem 2009; 113:42-53. [PMID: 19968761 DOI: 10.1111/j.1471-4159.2009.06529.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stargazin is a transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory protein that controls the surface and synaptic expression of AMPA-type glutamate receptors (AMPARs). Synaptic anchoring of AMPARs is influenced by the interaction between stargazin's C-terminal post-synaptic density-95 (PSD-95)/discs large/zona occludens-1 (PDZ) ligand and the synaptic scaffolding protein PSD-95. Phosphorylation of the stargazin PDZ ligand by protein kinase A (PKA) disrupts stargazin's interaction with PSD-95, but whether this phosphorylation plays a role in activity-dependent regulation of stargazin/AMPAR synaptic trafficking is unknown. Here, we show that stargazin is phosphorylated within the PDZ ligand at threonine residue 321 (T321) by mitogen-activated protein kinases (MAPKs) as well as PKA. By expressing constructs that selectively block T321 phosphorylation by either PKA or MAPKs, we show that stargazin T321 phosphorylation is required for activity-dependent changes in stargazin synaptic clustering in dissociated rat hippocampal neuron cultures. Specifically, we find that mutations that block stargazin T321 phosphorylation by PKA prevent activity-dependent increases in stargazin synaptic clustering, whereas a point mutant that blocks MAPK phosphorylation of T321 prevents activity-dependent decreases in stargazin synaptic clustering. Taken together, our studies implicate phosphorylation of stargazin T321 by PKA and MAPKs in bidirectional control of stargazin/AMPAR synaptic clustering during synaptic plasticity.
Collapse
Affiliation(s)
- Emma L A Stein
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-3008, USA
| | | |
Collapse
|
64
|
Larsson M. Ionotropic glutamate receptors in spinal nociceptive processing. Mol Neurobiol 2009; 40:260-88. [PMID: 19876771 DOI: 10.1007/s12035-009-8086-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/29/2009] [Indexed: 02/07/2023]
Abstract
Glutamate is the predominant excitatory transmitter used by primary afferent synapses and intrinsic neurons in the spinal cord dorsal horn. Accordingly, ionotropic glutamate receptors mediate basal spinal transmission of sensory, including nociceptive, information that is relayed to supraspinal centers. However, it has become gradually more evident that these receptors are also crucially involved in short- and long-term plasticity of spinal nociceptive transmission, and that such plasticity have an important role in the pain hypersensitivity that may result from tissue or nerve injury. This review will cover recent findings on pre- and postsynaptic regulation of synaptic function by ionotropic glutamate receptors in the dorsal horn and how such mechanisms contribute to acute and chronic pain.
Collapse
Affiliation(s)
- Max Larsson
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, Norway.
| |
Collapse
|
65
|
Sager C, Terhag J, Kott S, Hollmann M. C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function. J Biol Chem 2009; 284:32413-24. [PMID: 19773551 DOI: 10.1074/jbc.m109.039891] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors are essential players in fast synaptic transmission in the vertebrate central nervous system. Their synaptic delivery and localization as well as their electrophysiological properties are regulated by transmembrane AMPA receptor regulatory proteins (TARPs). However, the exact mechanisms of how the four originally designated TARPs (gamma2, gamma3, gamma4, and gamma8) modulate AMPA receptor function remain largely unknown. Previous studies suggested the C-terminal domain (CTD) of gamma2 to mediate increased trafficking and reduced desensitization of AMPA receptors. As it remained unclear whether these findings extend to other TARPs, we set out to investigate and compare the role of the CTDs of the four original TARPs in AMPA receptor modulation. To address this issue, we replaced the TARP CTDs with the CTD of the homologous subunit gamma1, a voltage-dependent calcium channel subunit expressed in skeletal muscle that lacks TARP properties. We analyzed the impact of the resulting chimeras on GluR1 functional properties in Xenopus oocytes and HEK293 cells. Interestingly, the CTDs of all TARPs not only modulate the extent and kinetics of desensitization but also modulate agonist potencies of AMPA receptors. Furthermore, the CTDs are required for TARP-induced modulation of AMPA receptor gating, including conversion of antagonists to partial agonists and constitutive channel openings. Strikingly, we found a special role of the cytoplasmic tail of gamma4, suggesting that the underlying mechanisms of modulation of AMPA receptor function are different among the TARPs. We propose that the intracellularly located CTD is the origin of TARP-specific functional modulation and not merely a facilitator of trafficking.
Collapse
Affiliation(s)
- Charlotte Sager
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Germany
| | | | | | | |
Collapse
|
66
|
TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains. Proc Natl Acad Sci U S A 2009; 106:11348-51. [PMID: 19549880 DOI: 10.1073/pnas.0905570106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work has established stargazin and its related family of transmembrane AMPA receptor regulatory proteins (TARPs) as auxiliary subunits of AMPA receptors (AMPARs) that control synaptic strength both by targeting AMPARs to synapses through an intracellular PDZ-binding motif and by modulating their gating through an extracellular domain. However, TARPs gamma-2 and gamma-8 differentially regulate the synaptic targeting of AMPARs, despite having identical PDZ-binding motifs. Here, we investigate the structural elements that contribute to this functional difference between TARP subtypes by using domain transplantation and truncation. We identify a component of synaptic AMPAR trafficking that is independent of the TARP C-terminal PDZ-binding motif, and we establish previously uncharacterized roles for the TARP intracellular N terminus, loop, and C terminus in modulating both the trafficking and gating of synaptic AMPARs.
Collapse
|
67
|
Roles of stargazin and phosphorylation in the control of AMPA receptor subcellular distribution. Nat Neurosci 2009; 12:888-96. [PMID: 19543281 DOI: 10.1038/nn.2340] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/10/2009] [Indexed: 11/08/2022]
Abstract
Understanding how the subcellular fate of newly synthesized AMPA receptors (AMPARs) is controlled is important for elucidating the mechanisms of neuronal function. We examined the effect of increased synthesis of AMPAR subunits on their subcellular distribution in rat hippocampal neurons. Virally expressed AMPAR subunits (GluR1 or GluR2) accumulated in cell bodies and replaced endogenous dendritic AMPAR with little effect on total dendritic amounts and caused no change in synaptic transmission. Coexpressing stargazin (STG) or mimicking GluR1 phosphorylation enhanced dendritic GluR1 levels by protecting GluR1 from lysosomal degradation. However, STG interaction or GluR1 phosphorylation did not increase surface or synaptic GluR1 levels. Unlike GluR1, STG did not protect GluR2 from lysosomal degradation or increase dendritic GluR2 levels. In general, AMPAR surface levels, and not intracellular amounts, correlated strongly with synaptic levels. Our results suggest that AMPAR surface expression, but not its intracellular production or accumulation, is critical for regulating synaptic transmission.
Collapse
|
68
|
Shi Y, Lu W, Milstein AD, Nicoll RA. The stoichiometry of AMPA receptors and TARPs varies by neuronal cell type. Neuron 2009; 62:633-40. [PMID: 19524523 PMCID: PMC3119531 DOI: 10.1016/j.neuron.2009.05.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/13/2009] [Accepted: 05/15/2009] [Indexed: 11/25/2022]
Abstract
Synaptic AMPA receptors (AMPARs) are regulated by a family of auxiliary subunits known as transmembrane AMPA receptor regulatory proteins (TARPs). TARPs control the trafficking and gating of AMPARs. However, the number of TARP molecules that assemble within individual AMPAR channels is unknown. Here, we covalently link AMPARs to TARPs to investigate the properties of TARP/AMPAR complexes with known stoichiometry in HEK cells. We find that AMPARs are functional when associated with four, two, or no TARPs, and that the efficacy of the partial agonist kainate varies across these conditions, providing a sensitive assay for TARP/AMPAR stoichiometry. A comparison of these results with data obtained from hippocampal neurons demonstrates that native AMPARs associate with TARPs with a variable stoichiometry that depends on TARP expression level. Interestingly, AMPARs in hippocampal pyramidal neurons are saturated by TARP expression, while those in dentate gyrus granule neurons are not, indicating that variable TARP/AMPAR stoichiometry provides a mechanism for cell-type-specific regulation of AMPAR function.
Collapse
Affiliation(s)
- Yun Shi
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California San Francisco, California 94143, USA
| | - Wei Lu
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California San Francisco, California 94143, USA
| | - Aaron D. Milstein
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California San Francisco, California 94143, USA
| | - Roger A. Nicoll
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California San Francisco, California 94143, USA
| |
Collapse
|
69
|
Bressloff PC, Earnshaw BA. A dynamic corral model of receptor trafficking at a synapse. Biophys J 2009; 96:1786-802. [PMID: 19254538 DOI: 10.1016/j.bpj.2008.12.3889] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022] Open
Abstract
The postsynaptic density (PSD) is a cytoskeletal specialization within the postsynaptic membrane of a neuron that helps to concentrate and organize neurotransmitter receptors at a chemical synapse. The total number of receptors within the PSD, which is a major factor in determining the physiological strength or weight of a synapse, fluctuates due to the surface diffusion of receptors into and out of the PSD, and the interactions of receptors with scaffolding proteins and cytoskeletal elements within the PSD. In this article, we present a stochastic model of protein receptor trafficking at the PSD that takes into account these various processes. The PSD is treated as a stochastically gated corral, which contributes a source of extrinsic or environmental noise that supplements the intrinsic noise arising from small receptor numbers. Using a combination of stochastic analysis and Monte Carlo simulations, we determine the time-dependent variation in the mean and variance of synaptic receptor numbers for a variety of initial conditions that simulate fluorescence recovery after photobleaching experiments, and indicate how such data might be used to infer certain properties of the PSD.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.
| | | |
Collapse
|
70
|
Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 2009; 62:254-68. [PMID: 19409270 PMCID: PMC3632349 DOI: 10.1016/j.neuron.2009.02.027] [Citation(s) in RCA: 516] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/06/2009] [Accepted: 02/14/2009] [Indexed: 11/24/2022]
Abstract
The precise subunit composition of synaptic ionotropic receptors in the brain is poorly understood. This information is of particular importance with regard to AMPA-type glutamate receptors, the multimeric complexes assembled from GluA1-A4 subunits, as the trafficking of these receptors into and out of synapses is proposed to depend upon the subunit composition of the receptor. We report a molecular quantification of synaptic AMPA receptors (AMPARs) by employing a single-cell genetic approach coupled with electrophysiology in hippocampal CA1 pyramidal neurons. In contrast to prevailing views, we find that GluA1A2 heteromers are the dominant AMPARs at CA1 cell synapses (approximately 80%). In cells lacking GluA1, -A2, and -A3, synapses are devoid of AMPARs, yet synaptic NMDA receptors (NMDARs) and dendritic morphology remain unchanged. These data demonstrate a functional dissociation of AMPARs from trafficking of NMDARs and neuronal morphogenesis. This study provides a functional quantification of the subunit composition of AMPARs in the CNS and suggests novel roles for AMPAR subunits in receptor trafficking.
Collapse
Affiliation(s)
- Wei Lu
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94143, USA
| | - Yun Shi
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94143, USA
| | - Alexander C. Jackson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94143, USA
| | - Kirsten Bjorgan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94143, USA
| | - Matthew J. During
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210
| | - Rolf Sprengel
- Departments of Molecular Neurobiology, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
| | - Peter H. Seeburg
- Departments of Molecular Neurobiology, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94143, USA
| |
Collapse
|
71
|
Waites CL, Specht CG, Härtel K, Leal-Ortiz S, Genoux D, Li D, Drisdel RC, Jeyifous O, Cheyne JE, Green WN, Montgomery JM, Garner CC. Synaptic SAP97 isoforms regulate AMPA receptor dynamics and access to presynaptic glutamate. J Neurosci 2009; 29:4332-45. [PMID: 19357261 PMCID: PMC3230533 DOI: 10.1523/jneurosci.4431-08.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/20/2009] [Accepted: 02/22/2009] [Indexed: 11/21/2022] Open
Abstract
The synaptic insertion of GluR1-containing AMPA-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, mechanisms responsible for GluR1 insertion and retention at the synapse are unclear. The synapse-associated protein SAP97 directly binds GluR1 and participates in its forward trafficking from the Golgi network to the plasma membrane. Whether SAP97 also plays a role in scaffolding GluR1 at the postsynaptic membrane is controversial, attributable to its expression as a collection of alternatively spliced isoforms with ill-defined spatial and temporal distributions. In the present study, we have used live imaging and electrophysiology to demonstrate that two postsynaptic, N-terminal isoforms of SAP97 directly modulate the levels, dynamics, and function of synaptic GluR1-containing AMPARs. Specifically, the unique N-terminal domains confer distinct subsynaptic localizations onto SAP97, targeting the palmitoylated alpha-isoform to the postsynaptic density (PSD) and the L27 domain-containing beta-isoform primarily to non-PSD, perisynaptic regions. Consequently, alpha- and betaSAP97 differentially influence the subsynaptic localization and dynamics of AMPARs by creating binding sites for GluR1-containing receptors within their respective subdomains. These results indicate that N-terminal splicing of SAP97 can control synaptic strength by regulating the distribution of AMPARs and, hence, their responsiveness to presynaptically released glutamate.
Collapse
Affiliation(s)
- Clarissa L. Waites
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California 94304-5485
| | - Christian G. Specht
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California 94304-5485
| | - Kai Härtel
- Department of Physiology, University of Auckland, Auckland, New Zealand, and
| | - Sergio Leal-Ortiz
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California 94304-5485
| | - David Genoux
- Department of Physiology, University of Auckland, Auckland, New Zealand, and
| | - Dong Li
- Department of Physiology, University of Auckland, Auckland, New Zealand, and
| | - Renaldo C. Drisdel
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Okun Jeyifous
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California 94304-5485
| | - Juliette E. Cheyne
- Department of Physiology, University of Auckland, Auckland, New Zealand, and
| | - William N. Green
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | | | - Craig C. Garner
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California 94304-5485
| |
Collapse
|
72
|
Abstract
In mediating fast synaptic communication in the brain, AMPA receptors require TARP auxiliary proteins. It seems that another distinct class of proteins also bind to AMPA receptors and regulate their function.
Collapse
|
73
|
Soto D, Coombs ID, Renzi M, Zonouzi M, Farrant M, Cull-Candy SG. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5. Nat Neurosci 2009; 12:277-85. [PMID: 19234459 PMCID: PMC2735763 DOI: 10.1038/nn.2266] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/29/2008] [Indexed: 12/12/2022]
Abstract
Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (gamma-2), no TARP has been described that can specifically regulate the important class of calcium-permeable (CP-) AMPARs. We examined the stargazin-related protein gamma-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. gamma-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, gamma-5 acts as a TARP and serves this role in Bergmann glia. Whereas gamma-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role for gamma-5 in regulating the functional contribution of CP-AMPARs.
Collapse
Affiliation(s)
| | | | - Massimiliano Renzi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT UK
| | - Marzieh Zonouzi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT UK
| | - Stuart G. Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT UK
| |
Collapse
|
74
|
Morimoto-Tomita M, Zhang W, Straub C, Cho CH, Kim KS, Howe JR, Tomita S. Autoinactivation of neuronal AMPA receptors via glutamate-regulated TARP interaction. Neuron 2009; 61:101-12. [PMID: 19146816 PMCID: PMC2649795 DOI: 10.1016/j.neuron.2008.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Neuronal AMPA receptors autoinactivate at high concentrations of glutamate, i.e., the current declines at glutamate concentrations above 10-100 microM. The mechanisms underlying this phenomenon are unclear. Stargazin-like TARPs are AMPA receptor auxiliary subunits that modulate receptor trafficking and channel properties. Here, we found that neuronal AMPA receptors and recombinant AMPA receptors coexpressed with stargazin autoinactivate at high concentrations of glutamate, whereas recombinant AMPA receptors expressed alone do not. The reduction of currents at high glutamate concentrations is not associated with a reduction of AMPA receptor number, but rather with the loss of stargazin-associated allosteric modulation of channel gating. We show that receptor desensitization promotes the dissociation of TARP-AMPA receptor complexes in a few milliseconds. This dissociation mechanism contributes to synaptic short-term modulation. The results demonstrate a mechanism for dynamic regulation of AMPA receptor activity to tune synaptic strength.
Collapse
Affiliation(s)
- Megumi Morimoto-Tomita
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Christoph Straub
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Chang-Hoon Cho
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Kwang S. Kim
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - James R. Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
75
|
Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 2009; 162:656-65. [PMID: 19185052 PMCID: PMC3217091 DOI: 10.1016/j.neuroscience.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Heterogeneity among AMPA receptor (AMPAR) subtypes is thought to be one of the key postsynaptic factors giving rise to diversity in excitatory synaptic signaling in the CNS. Recently, compelling evidence has emerged that ancillary AMPAR subunits—the so-called transmembrane AMPA receptor regulatory proteins (TARPs)—also play a vital role in influencing the variety of postsynaptic signaling. This TARP family of molecules controls both trafficking and functional properties of AMPARs at most, if not all, excitatory central synapses. Furthermore, individual TARPs differ in their effects on the biophysical and pharmacological properties of AMPARs. The critical importance of TARPs in synaptic transmission was first revealed in experiments on cerebellar granule cells from stargazer mice. These lack the prototypic TARP stargazin, present in granule cells from wild-type animals, and consequently lack synaptic transmission at the mossy fibre-to-granule cell synapse. Subsequent work has identified many other members of the stargazin family which act as functional TARPs. It has also provided valuable information about specific TARPs present in many central neurons. Because much of the initial work on TARPs was carried out on stargazer granule cells, the important functional properties of TARPs present throughout the cerebellum have received particular attention. Here we discuss some of these recent findings in relation to the main TARPs and the AMPAR subunits identified in cerebellar neurons and glia.
Collapse
Affiliation(s)
- I D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
76
|
Santos S, Carvalho A, Caldeira M, Duarte C. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 2009; 158:105-25. [DOI: 10.1016/j.neuroscience.2008.02.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/02/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
77
|
Menuz K, Kerchner GA, O’Brien JL, Nicoll RA. Critical role for TARPs in early development despite broad functional redundancy. Neuropharmacology 2009; 56:22-9. [PMID: 18634809 PMCID: PMC3111090 DOI: 10.1016/j.neuropharm.2008.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/23/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs), including gamma-2, gamma-3, gamma-4, and gamma-8, are auxiliary subunits for AMPA receptors. Based on studies in single knockout mice, it has been suggested that nearly all native AMPA receptors are associated with TARPs. To study the interplay between TARP family members and AMPA receptors in vivo, we generated mice lacking multiple TARPs. Triple knockout mice lacking gamma-3, gamma-4, and gamma-8 are viable and fertile, and synaptic AMPA receptor activity is reduced to a level comparable to that seen in gamma-8 single knockout mice. In contrast, triple knockout mice lacking gamma-2, gamma-3, and either gamma-4 or gamma-8 cannot survive ex utero. In particular, gamma-2, gamma-3, gamma-4 triple knockout mice are born apneic and paralyzed, despite normal AMPA receptor function in cortical and spinal neurons. We found that gamma-8 is expressed at low levels in early postnatal mice and regulates AMPA receptor levels at this developmental time period. Thus, the early expression of gamma-8 may be responsible for maintaining AMPA receptor functions in neonatal neurons. Together, our data indicate that TARPs, in particular gamma-2, are essential for early development, and that most neurons express multiple members of this functionally redundant protein family.
Collapse
Affiliation(s)
- Karen Menuz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
- The Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
| | - Geoffrey A. Kerchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
- The Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143 USA
| | - Jessica L. O’Brien
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143 USA
| |
Collapse
|
78
|
Liebl FLW, Featherstone DE. Identification and investigation of Drosophila postsynaptic density homologs. Bioinform Biol Insights 2008; 2:369-81. [PMID: 19812789 PMCID: PMC2735971 DOI: 10.4137/bbi.s2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AMPA receptors are responsible for fast excitatory transmission in the CNS and the trafficking of these receptors has been implicated in LTP and learning and memory. These receptors reside in the postsynaptic density, a network of proteins that links the receptors to downstream signaling components and to the neuronal cytoskeleton. To determine whether the fruit fly, Drosophila melanogaster, possesses a similar array of proteins as are found at the mammalian PSD, we identified Drosophila homologs of 95.8% of mammalian PSD proteins. We investigated, for the first time, the role of one of these PSD proteins, Pod1 in GluR cluster formation at the Drosophila neuromuscular junction and found that mutations in pod1 resulted in a specific loss of A-type receptors at the synapse.
Collapse
Affiliation(s)
- Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA. fl
| | | |
Collapse
|
79
|
Lysakowski A, Goldberg JM. Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). J Comp Neurol 2008; 511:47-64. [PMID: 18729176 PMCID: PMC2828494 DOI: 10.1002/cne.21827] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Type I hair cells outnumber type II hair cells (HCs) in squirrel monkey (Saimiri sciureus) cristae by a nearly 3:1 ratio. Associated with this type I HC preponderance, calyx fibers make up a much larger fraction of the afferent innervation than in rodents (Fernández et al. [1995] J. Neurophysiol. 73:1253-1269). To study how this affects synaptic architecture, we used disector methods to estimate various features associated with type I and type II HCs in central (CZ) and peripheral (PZ) zones of monkey cristae. Each type I HC makes, on average, 5-10 ribbon synapses with the inner face of a calyx ending. Inner-face synapses outnumber those on calyx outer faces by a 40:1 ratio. Expressed per afferent, there are, on average, 15 inner-face ribbon synapses, 0.38 outer-face ribbons, and 2.6 efferent boutons on calyx-bearing endings. Calyceal invaginations per type I HC range from 19 in CZ to 3 in PZ. For type II HCs, there are many more ribbons and afferent boutons in PZ than in CZ, whereas efferent innervation is relatively uniform throughout the neuroepithelium. Despite outer-face ribbons being more numerous in chinchilla than in squirrel monkey, afferent discharge properties are similar (Lysakowski et al. [1995] J. Neurophysiol. 73:1270-1281), reinforcing the importance of inner-face ribbons in synaptic transmission. Comparisons across mammalian species suggest that the prevalence of type I HCs is a primate characteristic, rather than an arboreal life-style adaptation. Unlike cristae, type II HCs predominate in monkey maculae. Differences in hair-cell counts may reflect the stimulus magnitudes handled by semicircular canals and otolith organs.
Collapse
Affiliation(s)
- Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Illinois 60612, USA.
| | | |
Collapse
|
80
|
|
81
|
Renner M, Specht CG, Triller A. Molecular dynamics of postsynaptic receptors and scaffold proteins. Curr Opin Neurobiol 2008; 18:532-40. [PMID: 18832033 DOI: 10.1016/j.conb.2008.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/17/2022]
Abstract
The activity of neurotransmitter receptors determines the strength of synaptic transmission. Therefore, the clustering of receptors at synapses is an important mechanism underlying synaptic plasticity. The dynamic exchange of receptors between synaptic and extrasynaptic membranes is dependent on their interaction with synaptic scaffold proteins. Here, we review the recent advances and emerging concepts related to the dynamics of synaptic proteins at inhibitory and excitatory synapses. These include the imaging techniques that enable the study of protein dynamics in cells, the differences and similarities of receptor dynamics at excitatory and inhibitory synapses, the relationship between the exchange of receptor and scaffold proteins, as well as the role of receptor fluxes in the modulation of synaptic strength.
Collapse
Affiliation(s)
- Marianne Renner
- Inserm U789, Biologie Cellulaire de la Synapse, ENS, Paris, France
| | | | | |
Collapse
|
82
|
Famous KR, Kumaresan V, Sadri-Vakili G, Schmidt HD, Mierke DF, Cha JHJ, Pierce RC. Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. J Neurosci 2008; 28:11061-70. [PMID: 18945913 PMCID: PMC2601563 DOI: 10.1523/jneurosci.1221-08.2008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 01/22/2023] Open
Abstract
A growing body of evidence indicates that enhanced AMPA-mediated glutamate transmission in the core of the nucleus accumbens is critically involved in cocaine priming-induced reinstatement of drug seeking, an animal model of relapse. However, the extent to which increased glutamate transmission in the other major subregion of the nucleus accumbens, the shell, contributes to the reinstatement of cocaine seeking remains unclear. In the present experiments, administration of the AMPA/kainate receptor antagonist CNQX (0, 0.03, or 0.3 mug) into either the core or the shell of the nucleus accumbens before a systemic cocaine priming injection (10 mg/kg, i.p.) dose-dependently attenuated the reinstatement of drug seeking. Cocaine priming-induced reinstatement of cocaine seeking also was associated with increases in GluR2-pSer880 in the nucleus accumbens shell. The phosphorylation of GluR2 by PKC at Ser880 plays an important role in the trafficking of GluR2-containing AMPA receptors from the plasma membrane. The current results showed that administration of a cell-permeable peptide that disrupts GluR2 trafficking (Pep2-EVKI) into either the accumbens core or shell attenuated cocaine-induced reinstatement of drug seeking. Together, these findings indicate that changes in AMPA receptor-mediated glutamate transmission in both the nucleus accumbens core and shell are necessary for the reinstatement of drug seeking induced by a priming injection of cocaine. The present results also demonstrate that the reinstatement of cocaine seeking is associated with increases in the phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens.
Collapse
Affiliation(s)
| | | | - Ghazaleh Sadri-Vakili
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and
| | | | - Dale F. Mierke
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
| | - Jang-Ho J. Cha
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and
| | - R. Christopher Pierce
- Departments of Pharmacology and
- Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
83
|
Menuz K, O'Brien JL, Karmizadegan S, Bredt DS, Nicoll RA. TARP redundancy is critical for maintaining AMPA receptor function. J Neurosci 2008; 28:8740-6. [PMID: 18753375 PMCID: PMC3159041 DOI: 10.1523/jneurosci.1319-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 11/21/2022] Open
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that influence diverse aspects of receptor function. However, the full complement of physiological roles for TARPs in vivo remains poorly understood. Here we find that double knock-out mice lacking TARPs gamma-2 and gamma-3 are profoundly ataxic and fail to thrive. We demonstrate that these TARPs are critical for the synaptic targeting and kinetics of AMPA receptors in cerebellar Golgi cells, but that either alone is sufficient to fully preserve function. By analyzing the few remaining synaptic AMPA receptors in the gamma-2, gamma-3 double knock-out mice, we unexpectedly find that these TARPs specify AMPA receptor subunit composition. This study establishes a new role for TARPs in regulating AMPA receptor assembly and suggests that TARPs are necessary for proper AMPA receptor localization and function in most, if not all, neurons of the CNS.
Collapse
Affiliation(s)
- Karen Menuz
- Departments of Cellular and Molecular Pharmacology and
| | | | - Siavash Karmizadegan
- Physiology, University of California, San Francisco, San Francisco, California 94143
| | - David S. Bredt
- Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Roger A. Nicoll
- Departments of Cellular and Molecular Pharmacology and
- Physiology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
84
|
Powell K, Kyi M, Reid C, Paradiso L, D'Abaco G, Kaye A, Foote S, O'Brien T. Genetic absence epilepsy rats from Strasbourg have increased corticothalamic expression of stargazin. Neurobiol Dis 2008; 31:261-5. [DOI: 10.1016/j.nbd.2008.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/30/2022] Open
|
85
|
Penzes P, Jones KA. Dendritic spine dynamics--a key role for kalirin-7. Trends Neurosci 2008; 31:419-27. [PMID: 18597863 PMCID: PMC3973420 DOI: 10.1016/j.tins.2008.06.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/23/2008] [Accepted: 06/02/2008] [Indexed: 11/20/2022]
Abstract
Changes in the structure and function of dendritic spines contribute to numerous physiological processes such as synaptic transmission and plasticity, as well as behavior, including learning and memory. Moreover, altered dendritic spine morphogenesis and plasticity is an endophenotype of many neurodevelopmental and neuropsychiatric disorders. Hence, the molecular mechanisms that control spine plasticity and pathology have been under intense investigation over the past few years. A series of recent studies has improved our understanding of spine dynamics by establishing kalirin-7 as an important regulator of dendritic spine development as well as structural and functional plasticity, providing a model for the molecular control of structural plasticity and implicating kalirin-7 in synaptic pathology in several disorders including schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
86
|
Milstein AD, Nicoll RA. Regulation of AMPA receptor gating and pharmacology by TARP auxiliary subunits. Trends Pharmacol Sci 2008; 29:333-9. [PMID: 18514334 PMCID: PMC2819157 DOI: 10.1016/j.tips.2008.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 12/01/2022]
Abstract
Presynaptic glutamate release elicits brief waves of membrane depolarization in neurons by activating AMPA receptors. Depending on its precise size and shape, current through AMPA receptors gates downstream processes like NMDA receptor activation and action potential generation. Over a decade of research on AMPA receptor structure and function has identified binding sites on AMPA receptors for agonists, antagonists and allosteric modulators as well as key residues underlying differences in the gating behavior of various AMPA receptor subtypes. However, the recent discovery that AMPA receptors are accompanied in the synaptic membrane by a family of auxiliary subunits known as transmembrane AMPA receptor regulatory proteins (TARPs) has revealed that the kinetics and pharmacology of neuronal AMPA receptors differ in many respects from those predicted by classical studies of AMPA receptors in heterologous systems. Here, we summarize recent work and discuss remaining questions concerning the structure and function of native TARP-AMPA receptor complexes.
Collapse
Affiliation(s)
- Aaron D Milstein
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
87
|
Esteban JA. Intracellular machinery for the transport of AMPA receptors. Br J Pharmacol 2008; 153 Suppl 1:S35-43. [PMID: 18026130 PMCID: PMC2268045 DOI: 10.1038/sj.bjp.0707525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 01/03/2023] Open
Abstract
AMPA-type glutamate receptors are one of the most dynamic components of excitatory synapses. Their regulated addition and removal from synapses leads to long-lasting forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term depression (LTD). In addition, AMPA receptors reach their synaptic targets after a complicated journey involving multiple transport steps through different membrane compartments. This review summarizes our current knowledge of the trafficking pathways of AMPARs and their relation to synaptic function and plasticity.
Collapse
Affiliation(s)
- J A Esteban
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
88
|
Riegel AC, Williams JT. CRF facilitates calcium release from intracellular stores in midbrain dopamine neurons. Neuron 2008; 57:559-70. [PMID: 18304485 PMCID: PMC2696265 DOI: 10.1016/j.neuron.2007.12.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/20/2007] [Accepted: 12/21/2007] [Indexed: 11/22/2022]
Abstract
Changes in cytosolic calcium are crucial for numerous processes including neuronal plasticity. This study investigates the regulation of cytosolic calcium by corticotropin-releasing factor (CRF) in midbrain dopamine neurons. The results demonstrate that CRF stimulates the release of intracellular calcium from stores through activation of adenylyl cyclase and PKA. Imaging and photolysis experiments showed that the calcium originated from dendrites and required both functional IP3 and ryanodine receptor channels. The elevation in cytosolic calcium potentiated calcium-sensitive potassium channels (sK) activated by action potentials and metabotropic Gq-coupled receptors for glutamate and acetylcholine. This increase in cytosolic calcium activated by postsynaptic Gs-coupled CRF receptors may represent a fundamental mechanism by which stress peptides and hormones can shape Gq-coupled receptor-mediated regulation of neuronal excitability and synaptic plasticity in dopamine neurons.
Collapse
Affiliation(s)
- Arthur C Riegel
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
89
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
90
|
Abstract
Experiences, whether they be learning in a classroom, a stressful event, or ingestion of a psychoactive substance, impact the brain by modifying the activity and organization of specific neural circuitry. A major mechanism by which the neural activity generated by an experience modifies brain function is via modifications of synaptic transmission; that is, synaptic plasticity. Here, we review current understanding of the mechanisms of the major forms of synaptic plasticity at excitatory synapses in the mammalian brain. We also provide examples of the possible developmental and behavioral functions of synaptic plasticity and how maladaptive synaptic plasticity may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ami Citri
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University School of Medicine, Palo Alto, CA 94304-5485, USA
| | | |
Collapse
|
91
|
Synaptic adhesion molecules and PSD-95. Prog Neurobiol 2007; 84:263-83. [PMID: 18206289 DOI: 10.1016/j.pneurobio.2007.10.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/31/2007] [Accepted: 10/26/2007] [Indexed: 11/21/2022]
Abstract
Synaptic adhesion molecules are known to participate in various steps of synapse development including initial contacts between dendrites and axons, formation of early synapses, and their maturation and plastic changes. Notably, a significant subset of synaptic adhesion molecules associates with synaptic scaffolding proteins, suggesting that they may act in concert to couple trans-synaptic adhesion to molecular organization of synaptic proteins. Here, we describe an emerging group of synaptic adhesion molecules that directly interact with the abundant postsynaptic scaffold PSD-95, which include neuroligins, NGLs, SALMs, and ADAM22, and discuss how these proteins and PSD-95 act together to regulate synaptic development. PSD-95 may be one of the central organizers of synaptic adhesion that recruits diverse proteins to sites of synaptic adhesion, promotes trans-synaptic signaling, and couples neuronal activity with changes in synaptic adhesion.
Collapse
|
92
|
Bedoukian MA, Whitesell JD, Peterson EJ, Clay CM, Partin KM. The stargazin C terminus encodes an intrinsic and transferable membrane sorting signal. J Biol Chem 2007; 283:1597-1600. [PMID: 17986442 DOI: 10.1074/jbc.m708141200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activity-dependent plasticity of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors is regulated by their auxiliary subunit, stargazin. Association with stargazin enhances alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor surface expression and modifies the receptor's biophysical properties. Fusing the cytoplasmic C terminus of stargazin to the C-terminal domains of either GluR1 or the gonadotropin-releasing hormone receptor permits efficient trafficking from the endoplasmic reticulum and sorting to the basolateral membrane without altering other properties of either receptor.
Collapse
Affiliation(s)
- Matthew A Bedoukian
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617
| | - Jennifer D Whitesell
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617
| | - Erik J Peterson
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617
| | - Colin M Clay
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617
| | - Kathryn M Partin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617.
| |
Collapse
|
93
|
Menuz K, Stroud RM, Nicoll RA, Hays FA. TARP Auxiliary Subunits Switch AMPA Receptor Antagonists into Partial Agonists. Science 2007; 318:815-7. [DOI: 10.1126/science.1146317] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
94
|
Cho CH, St-Gelais F, Zhang W, Tomita S, Howe JR. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 2007; 55:890-904. [PMID: 17880893 DOI: 10.1016/j.neuron.2007.08.024] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/06/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are auxiliary AMPA receptor subunits that regulate both the trafficking and gating properties of AMPA receptors, and different TARP isoforms display distinct expression patterns in brain. Here, we compared the effects of four TARP isoforms on the kinetics of AMPA receptor currents. Each isoform slowed the deactivation of GluR1 currents, but the slowing was greatest with gamma-4 and gamma-8. Isoform-specific differences in desensitization were also observed that correlated with effects on deactivation. TARP isoforms also differentially modulated responses to trains of glutamate applications designed to mimic high-frequency presynaptic firing. Importantly, whereas both stargazin and gamma-4 rescued excitatory synaptic transmission in cerebellar granule cells from stargazer mice, the decay of miniature EPSCs was 2-fold slower in neurons expressing gamma-4. The results show that heterogeneity in the composition of AMPA receptor/TARP complexes contributes to synapse-specific differences in EPSC decays and frequency-dependent modulation of neurotransmission.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | | | |
Collapse
|
95
|
Milstein AD, Zhou W, Karimzadegan S, Bredt DS, Nicoll RA. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 2007; 55:905-18. [PMID: 17880894 PMCID: PMC3167227 DOI: 10.1016/j.neuron.2007.08.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/01/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
A family of transmembrane AMPA receptor regulatory proteins (TARPs) profoundly affects the trafficking and gating of AMPA receptors (AMPARs). Although TARP subtypes are differentially expressed throughout the CNS, it is unclear whether this imparts functional diversity to AMPARs in distinct neuronal populations. Here, we examine the effects of each TARP subtype on the kinetics of AMPAR gating in heterologous cells and in neurons. We report a striking heterogeneity in the effects of TARP subtypes on AMPAR deactivation and desensitization, which we demonstrate controls the time course of synaptic transmission. In addition, we find that some TARP subtypes dramatically slow AMPAR activation kinetics. Synaptic AMPAR kinetics also depend on TARP expression level, suggesting a variable TARP/AMPAR stoichiometry. Analysis of quantal synaptic transmission in a TARP gamma-4 knockout (KO) mouse corroborates our expression data and demonstrates that TARP subtype-specific gating of AMPARs contributes to the kinetics of native AMPARs at central synapses.
Collapse
Affiliation(s)
- Aaron D. Milstein
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Neuroscience Graduate Program, University of California, San Francisco, CA 94143
| | - Wei Zhou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | | | - David S. Bredt
- Department of Physiology, University of California, San Francisco, CA 94143
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
| |
Collapse
|
96
|
Soto D, Coombs ID, Kelly L, Farrant M, Cull-Candy SG. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat Neurosci 2007; 10:1260-7. [PMID: 17873873 PMCID: PMC2430330 DOI: 10.1038/nn1966] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 07/20/2007] [Indexed: 11/09/2022]
Abstract
Endogenous polyamines profoundly affect the activity of various ion channels, including that of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs). Here we show that stargazin, a transmembrane AMPAR regulatory protein (TARP) known to influence transport, gating and desensitization of AMPARs, greatly reduces block of CP-AMPARs by intracellular polyamines. By decreasing CP-AMPAR affinity for cytoplasmic polyamines, stargazin enhances the charge transfer following single glutamate applications and eliminates the frequency-dependent facilitation seen with repeated applications. In cerebellar stellate cells, which express both synaptic CP-AMPARs and stargazin, we found that the rectification and unitary conductance of channels underlying excitatory postsynaptic currents were matched by those of recombinant AMPARs only when the latter were associated with stargazin. Taken together, our observations establish modulatory actions of stargazin that are specific to CP-AMPARs, and suggest that during synaptic transmission the activity of such receptors, and thus calcium influx, is fundamentally changed by TARPs.
Collapse
Affiliation(s)
- David Soto
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
97
|
Silverman JB, Restituito S, Lu W, Lee-Edwards L, Khatri L, Ziff EB. Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes. J Neurosci 2007; 27:8505-16. [PMID: 17687028 PMCID: PMC6672939 DOI: 10.1523/jneurosci.1395-07.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cadherins function in the adhesion of presynaptic and postsynaptic membranes at excitatory synapses. Here we show that the cadherin-associated protein neural plakophilin-related arm protein (NPRAP; also called delta-catenin) binds via a postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 (PDZ) interaction to AMPA receptor (AMPAR)-binding protein (ABP) and the related glutamate receptor (GluR)-interacting protein (GRIP), two multi-PDZ proteins that bind the GluR2 and GluR3 AMPAR subunits. The resulting cadherin-NPRAP-ABP/GRIP complexes serve as anchorages for AMPARs. Exogenous NPRAP that was bound to cadherins at adherens junctions of Madin-Darby canine kidney cells recruited ABP from the cytosol to form cadherin-NPRAP-ABP complexes, dependent on NPRAP interaction with the ABP PDZ domain 2. The cadherin-NPRAP-ABP complexes also bound GluR2. In cultured hippocampal neurons, dominant-negative mutants of NPRAP designed to disrupt tethering of ABP to NPRAP-cadherin complexes reduced surface levels of endogenous GluR2, indicating that interaction with cadherin-NPRAP-ABP complexes stabilized GluR2 at the neuronal plasma membrane. Cadherins, NPRAP, GRIP, and GluR2 copurified in the fractionation of synaptosomes and the postsynaptic density, two fractions enriched in synaptic proteins. Furthermore, synaptosomes contain NPRAP-GRIP complexes, and NPRAP localizes with the postsynaptic marker PSD-95 and with AMPARs and GRIP at spines of hippocampal neurons. Thus, tethering is likely to take place at synaptic or perisynaptic sites. NPRAP also binds PSD-95, which is a scaffold for NMDA receptors, for AMPARs in complexes with auxiliary subunits, the TARPs (transmembrane AMPA receptor regulator proteins), and for adhesion molecules. Thus, the interaction of scaffolding proteins with cadherin-NPRAP complexes may anchor diverse signaling and adhesion molecules at cadherins.
Collapse
Affiliation(s)
| | | | - Wei Lu
- Program in Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016
| | | | | | | |
Collapse
|
98
|
Greger IH, Ziff EB, Penn AC. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 2007; 30:407-16. [PMID: 17629578 DOI: 10.1016/j.tins.2007.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/10/2007] [Accepted: 06/22/2007] [Indexed: 11/24/2022]
Abstract
AMPA-type (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) glutamate receptors (AMPARs) mediate post-synaptic depolarization and fast excitatory transmission in the central nervous system. AMPARs are tetrameric ion channels that assemble in the endoplasmic reticulum (ER) in a poorly understood process. The subunit composition determines channel conductance properties and gating kinetics, and also regulates vesicular traffic to and from synaptic sites, and is thus critical for synaptic function and plasticity. The distribution of functionally different AMPARs varies within and between neuronal circuits, and even within individual neurons. In addition, synapses employ channels with specific subunit stoichiometries, depending on the type of input and the frequency of stimulation. Taken together, it appears that assembly is not simply a stochastic process. Recently, progress has been made in understanding the molecular mechanisms underlying subunit assembly and receptor biogenesis in the ER. These processes ultimately determine the size and shape of the postsynaptic response, and are the subject of this review.
Collapse
Affiliation(s)
- Ingo H Greger
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
99
|
Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol 2007; 17:343-52. [PMID: 17644382 DOI: 10.1016/j.tcb.2007.07.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/08/2007] [Accepted: 07/04/2007] [Indexed: 11/27/2022]
Abstract
Synaptic transmission underlies every aspect of brain function. Excitatory synapses, which release the neurotransmitter glutamate, are the most numerous type of synapse in the brain. The trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors to and from these synapses controls the strength of excitatory synaptic transmission. However, the underlying mechanisms controlling this trafficking have remained elusive. Recent studies, drawing from advances in molecular biology and electrophysiology techniques, have established an essential role for a family of synaptic scaffolding molecules, known as membrane associate guanylate kinases (MAGUKs), in this trafficking process. These studies highlight the remarkable orchestration of AMPA-type glutamate receptor synaptic trafficking by multiple MAGUKs at different synapses within the same neuron and at different developmental stages.
Collapse
|
100
|
Greger IH, Esteban JA. AMPA receptor biogenesis and trafficking. Curr Opin Neurobiol 2007; 17:289-97. [PMID: 17475474 DOI: 10.1016/j.conb.2007.04.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 04/18/2007] [Indexed: 12/25/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of fast excitatory transmission in the central nervous system. The trafficking of AMPA receptors to and from synapses alters synaptic strength and has been recognized as a central mechanism underlying various forms of synaptic plasticity. Both secretory and endocytic trafficking events seem to be driven by the subunit composition of AMPA receptor tetramers. Moreover, recent work suggests that synapses employ different tetramer combinations in response to altered synaptic input, suggesting the existence of signalling pathways that mediate remodelling of AMPA receptors. These latest developments and recent progress in elucidating the mechanisms that underlie channel assembly and trafficking are the subject of this review.
Collapse
Affiliation(s)
- Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|