51
|
Bonnafé E, Alayrangues J, Hotier L, Massou I, Renom A, Souesme G, Marty P, Allaoua M, Treilhou M, Armengaud C. Monoterpenoid-based preparations in beehives affect learning, memory, and gene expression in the bee brain. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:337-345. [PMID: 27306119 DOI: 10.1002/etc.3527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/18/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Bees are exposed in their environment to contaminants that can weaken the colony and contribute to bee declines. Monoterpenoid-based preparations can be introduced into hives to control the parasitic mite Varroa destructor. The long-term effects of monoterpenoids are poorly investigated. Olfactory conditioning of the proboscis extension reflex (PER) has been used to evaluate the impact of stressors on cognitive functions of the honeybee such as learning and memory. The authors tested the PER to odorants on bees after exposure to monoterpenoids in hives. Octopamine receptors, transient receptor potential-like (TRPL), and γ-aminobutyric acid channels are thought to play a critical role in the memory of food experience. Gene expression levels of Amoa1, Rdl, and trpl were evaluated in parallel in the bee brain because these genes code for the cellular targets of monoterpenoids and some pesticides and neural circuits of memory require their expression. The miticide impaired the PER to odors in the 3 wk following treatment. Short-term and long-term olfactory memories were improved months after introduction of the monoterpenoids into the beehives. Chronic exposure to the miticide had significant effects on Amoa1, Rdl, and trpl gene expressions and modified seasonal changes in the expression of these genes in the brain. The decrease of expression of these genes in winter could partly explain the improvement of memory. The present study has led to new insights into alternative treatments, especially on their effects on memory and expression of selected genes involved in this cognitive function. Environ Toxicol Chem 2017;36:337-345. © 2016 SETAC.
Collapse
Affiliation(s)
- Elsa Bonnafé
- Jean-François Champollion University Center, Albi, France
| | | | - Lucie Hotier
- Research Center on Animal Cognition, Integrative Biology Center, University of Toulouse, CNRS, Toulouse, France
| | - Isabelle Massou
- Research Center on Animal Cognition, Integrative Biology Center, University of Toulouse, CNRS, Toulouse, France
| | - Allan Renom
- Research Center on Animal Cognition, Integrative Biology Center, University of Toulouse, CNRS, Toulouse, France
| | - Guillaume Souesme
- Research Center on Animal Cognition, Integrative Biology Center, University of Toulouse, CNRS, Toulouse, France
| | - Pierre Marty
- Jean-François Champollion University Center, Albi, France
| | - Marion Allaoua
- Jean-François Champollion University Center, Albi, France
| | | | - Catherine Armengaud
- Research Center on Animal Cognition, Integrative Biology Center, University of Toulouse, CNRS, Toulouse, France
| |
Collapse
|
52
|
Pavlou HJ, Lin AC, Neville MC, Nojima T, Diao F, Chen BE, White BH, Goodwin SF. Neural circuitry coordinating male copulation. eLife 2016; 5:e20713. [PMID: 27855059 PMCID: PMC5114013 DOI: 10.7554/elife.20713] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes - motor neurons, interneurons and mechanosensory neurons - controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior.
Collapse
Affiliation(s)
- Hania J Pavlou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Andrew C Lin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Tetsuya Nojima
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
| | - Brian E Chen
- Department of Medicine, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
53
|
Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics. eNeuro 2016; 3:eN-NWR-0080-16. [PMID: 27588305 PMCID: PMC4994068 DOI: 10.1523/eneuro.0080-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/04/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022] Open
Abstract
Contrast enhancement mediated by lateral inhibition within the nervous system enhances the detection of salient features of visual and auditory stimuli, such as spatial and temporal edges. However, it remains unclear how mechanisms for temporal contrast enhancement in the olfactory system can enhance the detection of odor plume edges during navigation. To address this question, we delivered to Drosophila melanogaster flies pulses of high odor intensity that induce sustained peripheral responses in olfactory sensory neurons (OSNs). We use optical electrophysiology to directly measure electrical responses in presynaptic terminals and demonstrate that sustained peripheral responses are temporally sharpened by the combined activity of two types of inhibitory GABA receptors to generate contrast-enhanced voltage responses in central OSN axon terminals. Furthermore, we show how these GABA receptors modulate the time course of innate behavioral responses after odor pulse termination, demonstrating an important role for temporal contrast enhancement in odor-guided navigation.
Collapse
|
54
|
Evolution, Expression, and Function of Nonneuronal Ligand-Gated Chloride Channels in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:2003-12. [PMID: 27172217 PMCID: PMC4938653 DOI: 10.1534/g3.116.029546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ligand-gated chloride channels have established roles in inhibitory neurotransmission in the nervous systems of vertebrates and invertebrates. Paradoxically, expression databases in Drosophila melanogaster have revealed that three uncharacterized ligand-gated chloride channel subunits, CG7589, CG6927, and CG11340, are highly expressed in nonneuronal tissues. Furthermore, subunit copy number varies between insects, with some orders containing one ortholog, whereas other lineages exhibit copy number increases. Here, we show that the Dipteran lineage has undergone two gene duplications followed by expression-based functional differentiation. We used promoter-GFP expression analysis, RNA-sequencing, and in situ hybridization to examine cell type and tissue-specific localization of the three D. melanogaster subunits. CG6927 is expressed in the nurse cells of the ovaries. CG7589 is expressed in multiple tissues including the salivary gland, ejaculatory duct, malpighian tubules, and early midgut. CG11340 is found in malpighian tubules and the copper cell region of the midgut. Overexpression of CG11340 increased sensitivity to dietary copper, and RNAi and ends-out knockout of CG11340 resulted in copper tolerance, providing evidence for a specific nonneuronal role for this subunit in D. melanogaster Ligand-gated chloride channels are important insecticide targets and here we highlight copy number and functional divergence in insect lineages, raising the potential that order-specific receptors could be isolated within an effective class of insecticide targets.
Collapse
|
55
|
Crocker A, Guan XJ, Murphy CT, Murthy M. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression. Cell Rep 2016; 15:1580-1596. [PMID: 27160913 DOI: 10.1016/j.celrep.2016.04.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/21/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation.
Collapse
Affiliation(s)
- Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Xiao-Juan Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Paul F. Glenn Laboratories for Aging Research, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
56
|
Gai Y, Liu Z, Cervantes-Sandoval I, Davis RL. Drosophila SLC22A Transporter Is a Memory Suppressor Gene that Influences Cholinergic Neurotransmission to the Mushroom Bodies. Neuron 2016; 90:581-95. [PMID: 27146270 DOI: 10.1016/j.neuron.2016.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
The mechanisms that constrain memory formation are of special interest because they provide insights into the brain's memory management systems and potential avenues for correcting cognitive disorders. RNAi knockdown in the Drosophila mushroom body neurons (MBn) of a newly discovered memory suppressor gene, Solute Carrier DmSLC22A, a member of the organic cation transporter family, enhances olfactory memory expression, while overexpression inhibits it. The protein localizes to the dendrites of the MBn, surrounding the presynaptic terminals of cholinergic afferent fibers from projection neurons (Pn). Cell-based expression assays show that this plasma membrane protein transports cholinergic compounds with the highest affinity among several in vitro substrates. Feeding flies choline or inhibiting acetylcholinesterase in Pn enhances memory, an effect blocked by overexpression of the transporter in the MBn. The data argue that DmSLC22A is a memory suppressor protein that limits memory formation by helping to terminate cholinergic neurotransmission at the Pn:MBn synapse.
Collapse
Affiliation(s)
- Yunchao Gai
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ze Liu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | | | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
57
|
Tachibana SI, Touhara K, Ejima A. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster. PLoS One 2015; 10:e0135186. [PMID: 26252206 PMCID: PMC4529276 DOI: 10.1371/journal.pone.0135186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/18/2015] [Indexed: 11/29/2022] Open
Abstract
A male-specific component, 11-cis-vaccenyl acetate (cVA) works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment.
Collapse
Affiliation(s)
- Shin-Ichiro Tachibana
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto, 606–8501, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558–8585, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113–8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113–8657, Japan
| | - Aki Ejima
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto, 606–8501, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113–8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113–8657, Japan
- * E-mail:
| |
Collapse
|
58
|
Lee D. Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol 2015; 6:161. [PMID: 26300775 PMCID: PMC4523784 DOI: 10.3389/fphar.2015.00161] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc) essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC) gene rutabaga and phosphodiesterase (PDE) gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local) regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.
Collapse
Affiliation(s)
- Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University , Athens, OH, USA
| |
Collapse
|
59
|
Boitard C, Devaud JM, Isabel G, Giurfa M. GABAergic feedback signaling into the calyces of the mushroom bodies enables olfactory reversal learning in honey bees. Front Behav Neurosci 2015; 9:198. [PMID: 26283938 PMCID: PMC4518197 DOI: 10.3389/fnbeh.2015.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/13/2015] [Indexed: 11/26/2022] Open
Abstract
In reversal learning, subjects first learn to respond to a reinforced stimulus A and not to a non-reinforced stimulus B (A+ vs. B−) and then have to learn the opposite when stimulus contingencies are reversed (A− vs. B+). This change in stimulus valence generates a transitory ambiguity at the level of stimulus outcome that needs to be overcome to solve the second discrimination. Honey bees (Apis mellifera) efficiently master reversal learning in the olfactory domain. The mushroom bodies (MBs), higher-order structures of the insect brain, are required to solve this task. Here we aimed at uncovering the neural circuits facilitating reversal learning in honey bees. We trained bees using the olfactory conditioning of the proboscis extension reflex (PER) coupled with localized pharmacological inhibition of Gamma-AminoButyric Acid (GABA)ergic signaling in the MBs. We show that inhibition of ionotropic but not metabotropic GABAergic signaling into the MB calyces impairs reversal learning, but leaves intact the capacity to perform two consecutive elemental olfactory discriminations with ambiguity of stimulus valence. On the contrary, inhibition of ionotropic GABAergic signaling into the MB lobes had no effect on reversal learning. Our results are thus consistent with a specific requirement of the feedback neurons (FNs) providing ionotropic GABAergic signaling from the MB lobes to the calyces for counteracting ambiguity of stimulus valence in reversal learning.
Collapse
Affiliation(s)
- Constance Boitard
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| | - Guillaume Isabel
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| | - Martin Giurfa
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| |
Collapse
|
60
|
Bonnafé E, Drouard F, Hotier L, Carayon JL, Marty P, Treilhou M, Armengaud C. Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8022-8030. [PMID: 24590599 DOI: 10.1007/s11356-014-2616-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations.
Collapse
Affiliation(s)
- Elsa Bonnafé
- VAcBio Group, EA 4357, Champollion University Center, 81012, Albi Cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
61
|
Kim YH, Soumaila Issa M, Cooper AMW, Zhu KY. RNA interference: Applications and advances in insect toxicology and insect pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:109-17. [PMID: 25987228 DOI: 10.1016/j.pestbp.2015.01.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 05/27/2023]
Abstract
Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management.
Collapse
Affiliation(s)
- Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | | | - Anastasia M W Cooper
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA.
| |
Collapse
|
62
|
Wei Q, Wu SF, Niu CD, Yu HY, Dong YX, Gao CF. Knockdown of the ionotropic γ-aminobutyric acid receptor (GABAR) RDL gene decreases fipronil susceptibility of the small brown planthopper, Laodelphax striatellus (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:249-261. [PMID: 25808850 DOI: 10.1002/arch.21232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Insect γ-aminobutyric acid receptors (GABARs) are important molecular targets of cyclodiene and phenylpyrazole insecticides. Previously GABARs encoding rdl (resistant to dieldrin) genes responsible for dieldrin and fipronil resistance were identified in various economically important insect pests. In this study, we cloned the open reading frame cDNA sequence of rdl gene from fipronil-susceptible and fipronil-resistant strains of Laodelphax striatellus (Lsrdl). Sequence analysis confirmed the presence of a previously identified resistance-conferring mutation. Different alternative splicing variants of Lsrdl were noted. Injection of dsLsrdl reduced the mRNA abundance of Lsrdl by 27-82%, and greatly decreased fipronil-induced mortality of individuals from both susceptible and resistant strains. These data indicate that Lsrdl encodes a functional RDL subunit that mediates susceptibility to fipronil. Additionally, temporal and spatial expression analysis showed that Lsrdl was expressed at higher levels in eggs, fifth-instar nymphs, and female adults than in third-instar and fourth-instar nymphs. Lsrdl was predominantly expressed in the heads of 2-day-old female adults. All these results provide useful background knowledge for better understanding of fipronil resistance related ionotropic GABA receptor rdl gene expressed variants and potential functional differences in insects.
Collapse
Affiliation(s)
- Qi Wei
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Pesticide Sciences, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
63
|
Temporal integration of cholinergic and GABAergic inputs in isolated insect mushroom body neurons exposes pairing-specific signal processing. J Neurosci 2015; 34:16086-92. [PMID: 25429149 DOI: 10.1523/jneurosci.0714-14.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic modulation of neuronal activity plays a crucial role in physiological processes including learning and memory in both insects and mammals. During olfactory learning in honeybees (Apis mellifera) and Drosophila melanogaster the temporal relation between excitatory cholinergic and inhibitory GABAergic inputs critically affects learning. However, the cellular mechanisms of temporal integration of these antagonistic inputs are unknown. To address this question, we use calcium imaging of isolated honeybee and Drosophila Kenyon cells (KCs), which are targets of cholinergic and GABAergic inputs during olfactory learning. In the whole population of honeybee KCs we find that pairing of acetylcholine (ACh) and γ-aminobutyric acid (GABA) Comment: Please use the greek letter for gamma reduces the ACh-induced calcium influx, and depending on their temporal sequence, induces different forms of neuronal plasticity. After ACh-GABA pairing the calcium influx of a subsequent excitatory stimulus is increased, while GABA-ACh pairing affects the decay time leading to elevated calcium levels during the late phase of a subsequent excitatory stimulus. In an exactly defined subset of Drosophila KCs implicated in learning we find similar pairing-specific differences. Specifically the GABA-ACh pairing splits the KCs in two functional subgroups: one is only weakly inhibited by GABA and shows no neuronal plasticity and the other subgroup is strongly inhibited by GABA and shows elevated calcium levels during the late phase of a subsequent excitatory stimulus. Our findings provide evidence that insect KCs are capable of contributing to temporal processing of cholinergic and GABAergic inputs, which provides a neuronal mechanism of the differential temporal role of GABAergic inhibition during learning.
Collapse
|
64
|
Abstract
Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity.
Collapse
|
65
|
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4:e03868. [PMID: 25564731 PMCID: PMC4305081 DOI: 10.7554/elife.03868] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
66
|
Abstract
New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive.
Collapse
|
67
|
Liu J, Gong Z, Liu L. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila. J Neurochem 2014; 130:408-18. [PMID: 24702462 DOI: 10.1111/jnc.12735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/09/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
Abstract
Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae.
Collapse
Affiliation(s)
- Jiangqu Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
68
|
Martín-Peña A, Acebes A, Rodríguez JR, Chevalier V, Casas-Tinto S, Triphan T, Strauss R, Ferrús A. Cell types and coincident synapses in the ellipsoid body ofDrosophila. Eur J Neurosci 2014; 39:1586-601. [DOI: 10.1111/ejn.12537] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Alfonso Martín-Peña
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
- Department of Neurology; McKnight Brain Institute; College of Medicine; University of Florida; Gainesville FL USA
| | - Angel Acebes
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
- Center for Biomedical Research of the Canary Islands; Institute of Biomedical Technologies; University of La Laguna; Tenerife Spain
| | - José-Rodrigo Rodríguez
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| | - Valerie Chevalier
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| | - Sergio Casas-Tinto
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| | - Tilman Triphan
- Biozentrum der Universitaet Wuerzburg; Lehrstuhl für Genetik und Neurobiologie; Wuerzburg Germany
- HHMI Janelia Farm Research Campus; Ashburn VA USA
| | - Roland Strauss
- Biozentrum der Universitaet Wuerzburg; Lehrstuhl für Genetik und Neurobiologie; Wuerzburg Germany
- Department of Zoologie III-Neurobiologie; Johannes Gutenberg-Universitaet Mainz; Mainz Germany
| | - Alberto Ferrús
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| |
Collapse
|
69
|
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat Neurosci 2014; 17:559-68. [PMID: 24561998 PMCID: PMC4000970 DOI: 10.1038/nn.3660] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/23/2014] [Indexed: 11/22/2022]
Abstract
Sparse coding may be a general strategy of neural systems to augment memory capacity. In Drosophila, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit show that Kenyon cells activate APL and APL inhibits Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreases the sparseness of Kenyon cell odor responses, increases inter-odor correlations, and prevents flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor-specificity of memories.
Collapse
|
70
|
Comitani F, Cohen N, Ashby J, Botten D, Lummis SCR, Molteni C. Insights into the binding of GABA to the insect RDL receptor from atomistic simulations: a comparison of models. J Comput Aided Mol Des 2014; 28:35-48. [PMID: 24442887 PMCID: PMC3927061 DOI: 10.1007/s10822-013-9704-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/26/2013] [Indexed: 01/19/2023]
Abstract
The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule.
Collapse
Affiliation(s)
- Federico Comitani
- Physics Department, King's College London, Strand, London, WC2R 2LS, UK
| | | | | | | | | | | |
Collapse
|
71
|
Gatto CL, Pereira D, Broadie K. GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model. Neurobiol Dis 2014; 65:142-59. [PMID: 24423648 DOI: 10.1016/j.nbd.2014.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022] Open
Abstract
Fragile X syndrome (FXS), caused by loss of FMR1 gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 protein (FMRP) translational regulator mediates activity-dependent control of synapses. In addition to the metabotropic glutamate receptor (mGluR) hyperexcitation FXS theory, the GABA theory postulates that hypoinhibition is causative for disease state symptoms. Here, we use the Drosophila FXS model to assay central brain GABAergic circuitry, especially within the Mushroom Body (MB) learning center. All 3 GABAA receptor (GABAAR) subunits are reportedly downregulated in dfmr1 null brains. We demonstrate parallel downregulation of glutamic acid decarboxylase (GAD), the rate-limiting GABA synthesis enzyme, although GABAergic cell numbers appear unaffected. Mosaic analysis with a repressible cell marker (MARCM) single-cell clonal studies show that dfmr1 null GABAergic neurons innervating the MB calyx display altered architectural development, with early underdevelopment followed by later overelaboration. In addition, a new class of extra-calyx terminating GABAergic neurons is shown to include MB intrinsic α/β Kenyon Cells (KCs), revealing a novel level of MB inhibitory regulation. Functionally, dfmr1 null GABAergic neurons exhibit elevated calcium signaling and altered kinetics in response to acute depolarization. To test the role of these GABAergic changes, we attempted to pharmacologically restore GABAergic signaling and assay effects on the compromised MB-dependent olfactory learning in dfmr1 mutants, but found no improvement. Our results show that GABAergic circuit structure and function are impaired in the FXS disease state, but that correction of hypoinhibition alone is not sufficient to rescue a behavioral learning impairment.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Daniel Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA.
| |
Collapse
|
72
|
Twick I, Lee JA, Ramaswami M. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe. PROGRESS IN BRAIN RESEARCH 2014; 208:3-38. [PMID: 24767477 DOI: 10.1016/b978-0-444-63350-7.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory.
Collapse
Affiliation(s)
- Isabell Twick
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - John Anthony Lee
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; National Centre for Biological Science, Bangalore, India
| |
Collapse
|
73
|
Makunin IV, Shloma VV, Stephen SJ, Pheasant M, Belyakin SN. Comparison of ultra-conserved elements in drosophilids and vertebrates. PLoS One 2013; 8:e82362. [PMID: 24349264 PMCID: PMC3862641 DOI: 10.1371/journal.pone.0082362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption.
Collapse
Affiliation(s)
- Igor V. Makunin
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
- * E-mail:
| | - Viktor V. Shloma
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
| | - Stuart J. Stephen
- Computational Biology Group, CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Michael Pheasant
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
74
|
Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nat Neurosci 2013; 17:81-8. [PMID: 24241395 PMCID: PMC3995170 DOI: 10.1038/nn.3581] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022]
Abstract
Intraspecific male-male aggression, which is important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral assay in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel ppk29 and was mediated by male-specific GABAergic neurons acting on the GABAA receptor RDL in target cells. Silencing or activating this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression.
Collapse
|
75
|
Freifeld L, Clark DA, Schnitzer MJ, Horowitz MA, Clandinin TR. GABAergic lateral interactions tune the early stages of visual processing in Drosophila. Neuron 2013; 78:1075-89. [PMID: 23791198 DOI: 10.1016/j.neuron.2013.04.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2013] [Indexed: 11/19/2022]
Abstract
Early stages of visual processing must capture complex, dynamic inputs. While peripheral neurons often implement efficient encoding by exploiting natural stimulus statistics, downstream neurons are specialized to extract behaviorally relevant features. How do these specializations arise? We use two-photon imaging in Drosophila to characterize a first-order interneuron, L2, that provides input to a pathway specialized for detecting moving dark edges. GABAergic interactions, mediated in part presynaptically, create an antagonistic and anisotropic center-surround receptive field. This receptive field is spatiotemporally coupled, applying differential temporal processing to large and small dark objects, achieving significant specialization. GABAergic circuits also mediate OFF responses and balance these with responses to ON stimuli. Remarkably, the functional properties of L2 are strikingly similar to those of bipolar cells, yet emerge through different molecular and circuit mechanisms. Thus, evolution appears to have converged on a common strategy for processing visual information at the first synapse.
Collapse
Affiliation(s)
- Limor Freifeld
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
76
|
Raccuglia D, Mueller U. Focal uncaging of GABA reveals a temporally defined role for GABAergic inhibition during appetitive associative olfactory conditioning in honeybees. Learn Mem 2013; 20:410-6. [PMID: 23860600 DOI: 10.1101/lm.030205.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Throughout the animal kingdom, the inhibitory neurotransmitter γ-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two different approaches to activate GABA receptors during appetitive olfactory conditioning in the honeybee. Injection of GABA-A receptor agonist muscimol 20 min before but not 20 min after associative conditioning affects memory performance. These memory deficits were attenuated by additional training sessions. Muscimol has no effect on sensory perception, odor generalization, and nonassociative learning, indicating a specific role of GABA during associative conditioning. We used photolytic uncaging of GABA to identify the GABA-sensitive time window during the short pairing of the conditioned stimulus (CS) and the unconditioned stimulus (US) that lasts only seconds. Either uncaging of GABA in the antennal lobes or the mushroom bodies during the CS presentation of the CS-US pairing impairs memory formation, while uncaging GABA during the US phase has no effect on memory. Uncaging GABA during the CS presentation in memory retrieval also has no effect. Thus, in honeybee appetitive olfactory learning GABA specifically interferes with the integration of CS and US during associative conditioning and exerts a modulatory role in memory formation depending on the training strength.
Collapse
Affiliation(s)
- Davide Raccuglia
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB Center of Human and Molecular Biology, Faculty 8-Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | | |
Collapse
|
77
|
Abstract
Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
78
|
Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies. J Neurosci 2013; 33:5340-5. [PMID: 23516298 DOI: 10.1523/jneurosci.2287-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In insects, many complex behaviors, including olfactory memory, are controlled by a paired brain structure, the so-called mushroom bodies (MB). In Drosophila, the development, neuroanatomy, and function of intrinsic neurons of the MB, the Kenyon cells, have been well characterized. Until now, several potential neurotransmitters or neuromodulators of Kenyon cells have been anatomically identified. However, whether these neuroactive substances of the Kenyon cells are functional has not been clarified yet. Here we show that a neuropeptide precursor gene encoding four types of short neuropeptide F (sNPF) is required in the Kenyon cells for appetitive olfactory memory. We found that activation of Kenyon cells by expressing a thermosensitive cation channel (dTrpA1) leads to a decrease in sNPF immunoreactivity in the MB lobes. Targeted expression of RNA interference against the sNPF precursor in Kenyon cells results in a highly significant knockdown of sNPF levels. This knockdown of sNPF in the Kenyon cells impairs sugar-rewarded olfactory memory. This impairment is not due to a defect in the reflexive sugar preference or odor response. Consistently, knockdown of sNPF receptors outside the MB causes deficits in appetitive memory. Altogether, these results suggest that sNPF is a functional neuromodulator released by Kenyon cells.
Collapse
|
79
|
Two clusters of GABAergic ellipsoid body neurons modulate olfactory labile memory in Drosophila. J Neurosci 2013; 33:5175-81. [PMID: 23516283 DOI: 10.1523/jneurosci.5365-12.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, aversive olfactory memory is believed to be stored in a prominent brain structure, the mushroom body (MB), and two pairs of MB intrinsic neurons, the dorsal paired medial (DPM) and the anterior paired lateral (APL) neurons, are found to regulate the consolidation of middle-term memory (MTM). Here we report that another prominent brain structure, the ellipsoid body (EB), is also involved in the modulation of olfactory MTM. Activating EB R2/R4m neurons does not affect the learning index, but specifically eliminates anesthesia-sensitive memory (ASM), the labile component of olfactory MTM. We further demonstrate that approximately two-thirds of these EB neurons are GABAergic and are responsible for the suppression of ASM. Using GRASP (GFP reconstitution across synaptic partners), we reveal potential synaptic connections between the EB and MB in regions covering both the presynaptic and postsynaptic sites of EB neurons, suggesting the presence of bidirectional connections between these two important brain structures. These findings suggest the existence of direct connections between the MB and EB, and provide new insights into the neural circuit basis for olfactory labile memory in Drosophila.
Collapse
|
80
|
Lei Z, Chen K, Li H, Liu H, Guo A. The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. Biochem Biophys Res Commun 2013; 436:35-40. [PMID: 23707718 DOI: 10.1016/j.bbrc.2013.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
In the mushroom bodies (MBs) of Drosophila, an analogue of the mammalian olfactory cortex, olfactory stimuli are sparsely encoded by Kenyon cells (KCs) that exhibit a high level of odor selectivity. Sparse coding of olfactory stimuli has significant advantages for maximizing the discrimination power and storage capacity of MBs. The inhibitory gamma-aminobutyric acid (GABA) system is important for regulating information processing in MBs, but its specific role in the sparse coding of odors is unclear. In this study, we investigated the role of the GABA system in the sparse coding of odors using an in vivo calcium imaging strategy, which allowed us to measure the activity of the KC population at single cell resolution while the components of the GABA system were genetically manipulated. We found that the down-regulation of GABAA but not GABAB receptors in KCs reduced the sparseness of odor representations in the MB, as shown by an increase in the population response probability and decrease in the odor selectivity of single KCs. Furthermore, the down-regulation of GABA synthesis in a pair of large GABAergic neurons innervating the entire MB reduced the sparseness of odor representations in KCs. In conclusion, the sparse coding of odors in MBs is regulated by a pair of GABAergic neurons through the GABAA receptors on KCs, thus demonstrating a specific role of the inhibitory GABA system on information processing in the MB.
Collapse
Affiliation(s)
- Zhengchang Lei
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
81
|
Kuehn C, Duch C. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. Eur J Neurosci 2013; 37:860-75. [PMID: 23279094 PMCID: PMC3604049 DOI: 10.1111/ejn.12104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/24/2022]
Abstract
Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies.
Collapse
Affiliation(s)
- Claudia Kuehn
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
82
|
Ganguly A, Lee D. Suppression of inhibitory GABAergic transmission by cAMP signaling pathway: alterations in learning and memory mutants. Eur J Neurosci 2013; 37:1383-93. [PMID: 23387411 DOI: 10.1111/ejn.12144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/12/2012] [Accepted: 01/05/2013] [Indexed: 01/29/2023]
Abstract
The cAMP signaling pathway mediates synaptic plasticity and is essential for memory formation in both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, mutations in the cAMP pathway lead to impaired olfactory learning. These mutant genes are preferentially expressed in the mushroom body (MB), an anatomical structure essential for learning. While cAMP-mediated synaptic plasticity is known to be involved in facilitation at the excitatory synapses, little is known about its function in GABAergic synaptic plasticity and learning. In this study, using whole-cell patch-clamp techniques on Drosophila primary neuronal cultures, we demonstrate that focal application of an adenylate cyclase activator forskolin (FSK) suppressed inhibitory GABAergic postsynaptic currents (IPSCs). We observed a dual regulatory role of FSK on GABAergic transmission, where it increases overall excitability at GABAergic synapses, while simultaneously acting on postsynaptic GABA receptors to suppress GABAergic IPSCs. Further, we show that cAMP decreased GABAergic IPSCs in a PKA-dependent manner through a postsynaptic mechanism. PKA acts through the modulation of ionotropic GABA receptor sensitivity to the neurotransmitter GABA. This regulation of GABAergic IPSCs is altered in the cAMP pathway and short-term memory mutants dunce and rutabaga, with both showing altered GABA receptor sensitivity. Interestingly, this effect is also conserved in the MB neurons of both these mutants. Thus, our study suggests that alterations in cAMP-mediated GABAergic plasticity, particularly in the MB neurons of cAMP mutants, account for their defects in olfactory learning.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Biological Sciences, Neuroscience Program, Ohio University, 213 Life Science Building, Athens, OH, 45701, USA.
| | | |
Collapse
|
83
|
Drosophila Memory Research through Four Eras. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
84
|
Paranjpe P, Rodrigues V, VijayRaghavan K, Ramaswami M. Gustatory habituation in Drosophila relies on rutabaga (adenylate cyclase)-dependent plasticity of GABAergic inhibitory neurons. Learn Mem 2012; 19:627-35. [DOI: 10.1101/lm.026641.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
85
|
Boumghar K, Couret-Fauvel T, Garcia M, Armengaud C. Evidence for a role of GABA- and glutamate-gated chloride channels in olfactory memory. Pharmacol Biochem Behav 2012; 103:69-75. [DOI: 10.1016/j.pbb.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 07/26/2012] [Accepted: 08/04/2012] [Indexed: 01/11/2023]
|
86
|
Wu Y, Ren Q, Li H, Guo A. The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila. Learn Mem 2012; 19:478-86. [PMID: 22988290 DOI: 10.1101/lm.025726.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reversal learning has been widely used to probe the implementation of cognitive flexibility in the brain. Previous studies in monkeys identified an essential role of the orbitofrontal cortex (OFC) in reversal learning. However, the underlying circuits and molecular mechanisms are poorly understood. Here, we use the T-maze to investigate the neural mechanism of olfactory reversal learning in Drosophila. By adding a reversal training cycle to the classical learning protocol, we show that wild-type flies are able to reverse their choice according to the alteration of conditioned stimulus (CS)-unconditioned stimulus (US) contingency. The reversal protocol induced a specific suppression of the initial memory, an effect distinct from memory decay or extinction. GABA down-regulation in the anterior paired lateral (APL) neurons, which innervate the mushroom bodies (MBs), eliminates this suppression effect and impairs normal reversal. These findings reveal that inhibitory regulation from the GABAergic APL neurons facilitates olfactory reversal learning by suppressing initial memory in Drosophila.
Collapse
Affiliation(s)
- Yanying Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
87
|
Abstract
Recurrent inhibition, wherein excitatory principal neurons stimulate inhibitory interneurons that feedback on the same principal cells, occurs ubiquitously in the brain. However, the regulation and function of recurrent inhibition are poorly understood in terms of the contributing interneuron subtypes as well as their effect on neural and cognitive outputs. In the Drosophila olfactory system, odorants activate olfactory sensory neurons (OSNs), which stimulate projection neurons (PNs) in the antennal lobe. Both OSNs and PNs activate local inhibitory neurons (LNs) that provide either feedforward or recurrent/feedback inhibition in the lobe. During olfactory habituation, prior exposure to an odorant selectively decreases the animal's subsequent response to the odorant. We show here that habituation occurs in response to feedback from PNs. Output from PNs is necessary for olfactory habituation and, in the absence of odorant, direct PN activation is sufficient to induce the odorant-selective behavioral attenuation characteristic of olfactory habituation. PN-induced habituation occludes further odor-induced habituation and similarly requires GABA(A)Rs and NMDARs in PNs, as well as VGLUT and cAMP signaling in the multiglomerular inhibitory local interneurons (LN1) type of LN. Thus, PN output is monitored by an LN subtype whose resultant plasticity underlies behavioral habituation. We propose that recurrent inhibitory motifs common in neural circuits may similarly underlie habituation to other complex stimuli.
Collapse
|
88
|
Haehnel M, Menzel R. Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera. ACTA ACUST UNITED AC 2012; 215:559-65. [PMID: 22246265 DOI: 10.1242/jeb.059626] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Honeybees learn to associate an odor with sucrose reward under conditions that allow the monitoring of neural activity by imaging Ca(2+) transients in morphologically identified neurons. Here we report such recordings from mushroom body extrinsic neurons - which belong to a recurrent tract connecting the output of the mushroom body with its input, potentially providing inhibitory feedback - and other extrinsic neurons. The neurons' responses to the learned odor and two novel control odors were measured 24 h after learning. We found that calcium responses to the learned odor and an odor that was strongly generalized with it were enhanced compared with responses to a weakly generalized control. Thus, the physiological responses measured in these extrinsic neurons accurately reflect what is observed in behavior. We conclude that the recorded recurrent neurons feed information back to the mushroom body about the features of learned odor stimuli. Other extrinsic neurons may signal information about learned odors to different brain regions.
Collapse
Affiliation(s)
- Melanie Haehnel
- University of Florida-Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| | | |
Collapse
|
89
|
Meinertzhagen IA, Lee CH. The genetic analysis of functional connectomics in Drosophila. ADVANCES IN GENETICS 2012; 80:99-151. [PMID: 23084874 DOI: 10.1016/b978-0-12-404742-6.00003-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fly and vertebrate nervous systems share many organizational features, such as layers, columns and glomeruli, and utilize similar synaptic components, such as ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly's connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental mechanisms of neural computation that underlie behavior.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
| | | |
Collapse
|
90
|
Dupuis JP, Gauthier M, Raymond-Delpech V. Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 2011; 106:1604-13. [DOI: 10.1152/jn.00126.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetylcholine (ACh) is the main excitatory neurotransmitter of the insect brain, where nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee Apis mellifera, nAChRs are expressed in diverse structures including the primary olfactory centers of the brain, the antennal lobes (ALs) and the mushroom bodies (MBs), where they participate in olfactory information processing. To understand the nature and properties of the nAChRs involved in these processes, we performed a pharmacological and molecular characterization of nAChRs on cultured Kenyon cells of the MBs, using whole cell patch-clamp recordings combined with single-cell RT-PCR. In all cells, applications of ACh as well as nicotinic agonists such as nicotine and imidacloprid induced inward currents with fast desensitization. These currents were fully blocked by saturating doses of the antagonists α-bungarotoxin (α-BGT), dihydroxy-β-erythroidine (DHE), and methyllycaconitine (MLA) (MLA ≥ α-BGT ≥ DHE). Molecular analysis of ACh-responding cells revealed that of the 11 nicotinic receptor subunits encoded within the honeybee genome, α2, α8, and β1 subunits were expressed in adult Kenyon cells. Comparison with the expression pattern of adult AL cells revealed the supplementary presence of subunit α7, which could be responsible for the kinetic and pharmacological differences observed when comparing ACh-induced currents from AL and Kenyon cells. Together, our data demonstrate the existence of functional nAChRs on adult MB Kenyon cells that differ from nAChRs on AL cells in both their molecular composition and pharmacological properties, suggesting that changing receptor subsets could mediate different processing functions depending on the brain structure within the olfactory pathway.
Collapse
Affiliation(s)
- Julien Pierre Dupuis
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Monique Gauthier
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Valérie Raymond-Delpech
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| |
Collapse
|
91
|
Johnson O, Becnel J, Nichols CD. Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster. Neuroscience 2011; 192:372-81. [PMID: 21749913 PMCID: PMC3166404 DOI: 10.1016/j.neuroscience.2011.06.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 05/20/2011] [Accepted: 06/20/2011] [Indexed: 12/22/2022]
Abstract
Learning and memory in the fruit fly, Drosophila melanogaster, is a complex behavior with many parallels to mammalian learning and memory. Although many neurotransmitters including acetylcholine, dopamine, glutamate, and GABA have previously been demonstrated to be involved in aversive olfactory learning and memory, the role of serotonin has not been well defined. Here, we present the first evidence of the involvement of individual serotonin receptors in olfactory learning and memory in the fly. We initially followed a pharmacological approach, utilizing serotonin receptor agonists and antagonists to demonstrate that all serotonin receptor families present in the fly are necessary for short-term learning and memory. Isobolographic analysis utilizing combinations of drugs revealed functional interactions are occurring between 5-HT(1A)-like and 5-HT(2), and 5-HT(2) and 5-HT(7) receptor circuits in mediating short-term learning and memory. Examination of long-term memory suggests that 5-HT(1A)-like receptors are necessary for consolidation and important for recall, 5-HT(2) receptors are important for consolidation and recall, and 5-HT(7) receptors are involved in all three phases. Importantly, we have validated our pharmacological results with genetic experiments and showed that hypomorph strains for 5-HT(2)Dro and 5-HT(1B)Dro receptors, as well as knockdown of 5-HT(7)Dro mRNA, significantly impair performance in short-term memory. Our data highlight the importance of the serotonin system and individual serotonin receptors to influence olfactory learning and memory in the fly, and position the fly as a model system to study the role of serotonin in cognitive processes relevant to mammalian CNS function.
Collapse
Affiliation(s)
- Oralee Johnson
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center
| | - Jaime Becnel
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center
| |
Collapse
|
92
|
Gouzi JY, Moressis A, Walker JA, Apostolopoulou AA, Palmer RH, Bernards A, Skoulakis EMC. The receptor tyrosine kinase Alk controls neurofibromin functions in Drosophila growth and learning. PLoS Genet 2011; 7:e1002281. [PMID: 21949657 PMCID: PMC3174217 DOI: 10.1371/journal.pgen.1002281] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
Anaplastic Lymphoma Kinase (Alk) is a Receptor Tyrosine Kinase (RTK) activated in several cancers, but with largely unknown physiological functions. We report two unexpected roles for the Drosophila ortholog dAlk, in body size determination and associative learning. Remarkably, reducing neuronal dAlk activity increased body size and enhanced associative learning, suggesting that its activation is inhibitory in both processes. Consistently, dAlk activation reduced body size and caused learning deficits resembling phenotypes of null mutations in dNf1, the Ras GTPase Activating Protein-encoding conserved ortholog of the Neurofibromatosis type 1 (NF1) disease gene. We show that dAlk and dNf1 co-localize extensively and interact functionally in the nervous system. Importantly, genetic or pharmacological inhibition of dAlk rescued the reduced body size, adult learning deficits, and Extracellular-Regulated-Kinase (ERK) overactivation dNf1 mutant phenotypes. These results identify dAlk as an upstream activator of dNf1-regulated Ras signaling responsible for several dNf1 defects, and they implicate human Alk as a potential therapeutic target in NF1. Neurofibromatosis-1 (NF1) syndrome is a common (1/3,000 births) genetic disorder affecting multiple organ systems, including the nervous system. Its clinical features include short stature, learning disabilities, and several types of benign and malignant tumors. NF1 is caused by mutations that inactivate the NF1 gene, a crucial negative regulator of Ras signaling. Although unregulated Ras signaling is a hallmark of NF1, the specific Ras signaling pathways responsible for disease development remain largely unknown. The Drosophila and human Nf1 genes are highly conserved; and, as in patients, mutant flies are smaller than usual and present deficient learning. Here, we identified the Drosophila Receptor Tyrosine Kinase dAlk as a negative regulator of organismal growth and olfactory learning. We show that excessive dAlk activation results in growth and learning defects similar to those of Nf1 mutants. Genetic suppression studies and pharmacological inhibition indicate dAlk as a critical upstream activator of Nf1-regulated neuronal Ras/ERK signals that contribute to size determination and learning. Importantly, our results strongly suggest that Alk represents a novel, highly specific, and promising therapeutic target in human NF1.
Collapse
Affiliation(s)
- Jean Y. Gouzi
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
| | - Anastasios Moressis
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
- Department of Basic Sciences, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - James A. Walker
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anthi A. Apostolopoulou
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
| | - Ruth H. Palmer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - André Bernards
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Efthimios M. C. Skoulakis
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece
- * E-mail:
| |
Collapse
|
93
|
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36. [PMID: 21415126 PMCID: PMC3082451 DOI: 10.1124/pr.110.003293] [Citation(s) in RCA: 706] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | |
Collapse
|
94
|
Nässel DR, Wegener C. A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides 2011; 32:1335-55. [PMID: 21440021 DOI: 10.1016/j.peptides.2011.03.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Neuropeptides referred to as neuropeptide F (NPF) and short neuropeptide F (sNPF) have been identified in numerous invertebrate species. Sequence information has expanded tremendously due to recent genome sequencing and EST projects. Analysis of sequences of the peptides and prepropeptides strongly suggest that NPFs and sNPFs are not closely related. However, the NPFs are likely to be ancestrally related to the vertebrate family of neuropeptide Y (NPY) peptides. Peptide diversification may have been accomplished by different mechanisms in NPFs and sNPFs; in the former by gene duplications followed by diversification and in the sNPFs by internal duplications resulting in paracopies of peptides. We discuss the distribution and functions of NPFs and their receptors in several model invertebrates. Signaling with sNPF, however, has been investigated mainly in insects, especially in Drosophila. Both in invertebrates and in mammals NPF/NPY play roles in feeding, metabolism, reproduction and stress responses. Several other NPF functions have been studied in Drosophila that may be shared with mammals. In Drosophila sNPFs are widely distributed in numerous neurons of the CNS and some gut endocrines and their functions may be truly pleiotropic. Peptide distribution and experiments suggest roles of sNPF in feeding and growth, stress responses, modulation of locomotion and olfactory inputs, hormone release, as well as learning and memory. Available data indicate that NPF and sNPF signaling systems are distinct and not likely to play redundant roles.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
95
|
Abstract
Studies using functional cellular imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at or near acquisition and coexist with short-term behavioral memory. One trace forms with a delay after learning and coexists with intermediate-term behavioral memory. Two traces form many hours after acquisition and coexist with long-term behavioral memory. The transient memory traces may support behavior across the time windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for elucidating the logic by which the nervous system organizes and stores different temporal forms of memory.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33410, USA.
| |
Collapse
|
96
|
Mota T, Giurfa M, Sandoz JC. Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem 2011; 18:144-55. [PMID: 21330377 DOI: 10.1101/lm.2073511] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded trials if these two situations are indicated by different colors that do not themselves become associated with the reward. Despite a growing interest in nonelemental learning in insects, no study has so far attempted to study occasion setting in restrained honeybees, although this would allow direct access to the neural basis of nonelemental learning. Here we asked whether colors can modulate olfactory conditioning of the proboscis extension reflex (PER) via an occasion-setting mechanism. We show that intact, harnessed bees are not capable of learning a direct association between color and sucrose. Despite this incapacity, bees solved an occasion-setting discrimination in which colors set the occasion for appropriate responding to an odor that was rewarded or nonrewarded depending on the color. We therefore provide the first controlled demonstration of bimodal (color-odor) occasion setting in harnessed honeybees, which opens the door for studying the neural basis of such bimodal, nonelemental discriminations in insects.
Collapse
Affiliation(s)
- Theo Mota
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, Toulouse Cedex 9, France
| | | | | |
Collapse
|
97
|
Wu Z, Guo A. A model study on the circuit mechanism underlying decision-making in Drosophila. Neural Netw 2011; 24:333-44. [PMID: 21310589 DOI: 10.1016/j.neunet.2011.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/27/2010] [Accepted: 01/17/2011] [Indexed: 11/19/2022]
Abstract
Previous elegant experiments in a flight simulator showed that conditioned Drosophila is able to make a clear-cut decision to avoid potential danger. When confronted with conflicting visual cues, the relative saliency of two competing cues is found to be a sensory ruler for flies to judge which cue should be used for decision-making. Further genetic manipulations and immunohistological analysis revealed that the dopamine system and mushroom bodies are indispensable for such a clear-cut or nonlinear decision. The neural circuit mechanism, however, is far from being clear. In this paper, we adopt a computational modeling approach to investigate how different brain areas and the dopamine system work together to drive a fly to make a decision. By developing a systems-level neural network, a two-pathway circuit is proposed. Besides a direct pathway from a feature binding area to the motor center, another connects two areas via the mushroom body, a target of dopamine release. A raised dopamine level is hypothesized to be induced by complex choice tasks and to enhance lateral inhibition and steepen the units' response gain in the mushroom body. Simulations show that training helps to assign values to formerly neutral features. For a circuit model with a blocked mushroom body, the direct pathway passes all alternatives to the motor center without changing original values, giving rise to a simple choice characterized by a linear choice curve. With respect to an intact circuit, enhanced lateral inhibition dependent on dopamine critically promotes competition between alternatives, turning the linear- into nonlinear choice behavior. Results account well for experimental data, supporting the reasonableness of model working hypotheses. Several testable predictions are made for future studies.
Collapse
Affiliation(s)
- Zhihua Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences (CAS), 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | | |
Collapse
|
98
|
Kahsai L, Zars T. Learning and memory in Drosophila: behavior, genetics, and neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:139-67. [PMID: 21906539 DOI: 10.1016/b978-0-12-387003-2.00006-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The rich behavioral repertoire that Drosophila use to navigate in their natural environment suggests that flies can use memories to inform decisions. Development of paradigms to examine memories that restrict behavioral choice was essential in furthering our understanding of the genetics and neural systems of memory formation in the fly. Olfactory, visual, and place memory paradigms have proven influential in determining principles for the mechanisms of memory formation. Several parts of the nervous system have been shown to be important for different types of memories, including the mushroom bodies and the central complex. Thus far, about 40 genes have been linked to normal olfactory short-term memory. A subset of these genes have also been tested for a role in visual and place memory. Some genes have a common function in memory formation, specificity of action comes from where in the nervous system these genes act. Alternatively, some genes have a more restricted role in different types of memories.
Collapse
Affiliation(s)
- Lily Kahsai
- University of Missouri, Division of Biological Sciences, 114 Lefevre Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
99
|
Haehnel M, Menzel R. Sensory representation and learning-related plasticity in mushroom body extrinsic feedback neurons of the protocerebral tract. Front Syst Neurosci 2010; 4:161. [PMID: 21212833 PMCID: PMC3014600 DOI: 10.3389/fnsys.2010.00161] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 12/08/2010] [Indexed: 11/13/2022] Open
Abstract
Gamma-aminobutyric acid immunoreactive feedback neurons of the protocerebral tract are a major component of the honeybee mushroom body. They have been shown to be subject to learning-related plasticity and provide putative inhibitory input to Kenyon cells and the pedunculus extrinsic neuron, PE1. We hypothesize, that learning-related modulation in these neurons is mediated by varying the amount of inhibition provided by feedback neurons. We performed Ca(2+) imaging recordings of populations of neurons of the protocerebral-calycal tract (PCT) while the bees were conditioned in an appetitive olfactory paradigm and their behavioral responses were quantified using electromyographic recordings from M17, the muscle which controls the proboscis extension response. The results corroborate findings from electrophysiological studies showing that PCT neurons respond to sucrose and odor stimuli. The odor responses are concentration dependent. Odor and sucrose responses are modulated by repeated stimulus presentations. Furthermore, animals that learned to associate an odor with sucrose reward responded to the repeated presentations of the rewarded odor with less depression than they did to an unrewarded and a control odor.
Collapse
Affiliation(s)
- Melanie Haehnel
- Institut für Biologie-Neurobiologie, Freie Universitaet Berlin Berlin, Germany
| | | |
Collapse
|
100
|
Abstract
Studies of olfactory learning in Drosophila have provided key insights into the brain mechanisms underlying learning and memory. One type of olfactory learning, olfactory classical conditioning, consists of learning the contingency between an odor with an aversive or appetitive stimulus. This conditioning requires the activity of molecules that can integrate the two types of sensory information, the odorant as the conditioned stimulus and the aversive or appetitive stimulus as the unconditioned stimulus, in brain regions where the neural pathways for the two stimuli intersect. Compelling data indicate that a particular form of adenylyl cyclase functions as a molecular integrator of the sensory information in the mushroom body neurons. The neuronal pathway carrying the olfactory information from the antennal lobes to the mushroom body is well described. Accumulating data now show that some dopaminergic neurons provide information about aversive stimuli and octopaminergic neurons about appetitive stimuli to the mushroom body neurons. Inhibitory inputs from the GABAergic system appear to gate olfactory information to the mushroom bodies and thus control the ability to learn about odors. Emerging data obtained by functional imaging procedures indicate that distinct memory traces form in different brain regions and correlate with different phases of memory. The results from these and other experiments also indicate that cross talk between mushroom bodies and several other brain regions is critical for memory formation.
Collapse
Affiliation(s)
- Germain U. Busto
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida
| | | | - Ronald L. Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida
| |
Collapse
|