51
|
Mourão AA, Shimoura CG, Andrade MA, Truong TT, Pedrino GR, Toney GM. Local ionotropic glutamate receptors are required to trigger and sustain ramping of sympathetic nerve activity by hypothalamic paraventricular nucleus TNF α. Am J Physiol Heart Circ Physiol 2021; 321:H580-H591. [PMID: 34355986 DOI: 10.1152/ajpheart.00322.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor-α (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to increased sympathetic nerve activity (SNA) in cardiovascular disease models, but mechanisms are incompletely understood. As previously reported, bilateral PVN TNFα (0.6 pmol, 50 nL) induced acute ramping of splanchnic SNA (SSNA) that averaged +64 ± 7% after 60 min and +109 ± 17% after 120 min (P < 0.0001, n = 10). Given that TNFα can rapidly strengthen glutamatergic transmission, we hypothesized that progressive activation of ionotropic glutamate receptors is critically involved. When compared with that of vehicle (n = 5), prior blockade of PVN AMPA or NMDA receptors in anesthetized (urethane/α-chloralose) adult male Sprague-Dawley rats dose-dependently (ED50: 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), 2.48 nmol; D-(-)-2-amino-5-phosphonopentanoic acid (APV), 12.33 nmol), but incompletely (Emax: NBQX, 64%; APV, 41%), attenuated TNFα-induced SSNA ramping (n = 5/dose). By contrast, combined receptor blockade prevented ramping (1.3 ± 2.1%, P < 0.0001, n = 5). Whereas separate blockade of PVN AMPA or NMDA receptors (n = 5/group) had little effect on continued SSNA ramping when performed 60 min after TNFα injection, combined blockade (n = 5) or PVN inhibition with the GABA-A receptor agonist muscimol (n = 5) effectively stalled, without reversing, the SSNA ramp. Notably, PVN TNFα increased local TNFα immunofluorescence after 120, but not 60 min. Findings indicate that AMPA and NMDA receptors each contribute to SSNA ramping to PVN TNFα, and that their collective availability and ongoing activity are required to initiate and sustain the ramping response. We conclude that acute sympathetic activation by PVN TNFα involves progressive local glutamatergic excitation that recruits downstream neurons capable of maintaining heightened SSNA, but incapable of sustaining SSNA ramping.NEW & NOTEWORTHY The proinflammatory cytokine TNFα contributes to heightened SNA in cardiovascular disease models, but mechanisms remain obscure. Here, we demonstrate that TNFα injection into the hypothalamic PVN triggers SNA ramping by mechanisms dependent on local ionotropic glutamate receptor availability, but largely independent of TNFα autoinduction. Continued SNA ramping depends on ionotropic glutamate receptor and neuronal activity in PVN, indicating that strengthening and/or increased efficacy of glutamatergic transmission is necessary for acute sympathoexcitation by PVN TNFα.
Collapse
Affiliation(s)
- Aline A Mourão
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, Goias, Brazil
| | - Caroline G Shimoura
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Tamara T Truong
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, Goias, Brazil
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
52
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
53
|
Stoessel MB, Majewska AK. Little cells of the little brain: microglia in cerebellar development and function. Trends Neurosci 2021; 44:564-578. [PMID: 33933255 PMCID: PMC8222145 DOI: 10.1016/j.tins.2021.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022]
Abstract
Microglia are long-lived resident macrophages of the brain with diverse roles that span development, adulthood, and aging. Once thought to be a relatively homogeneous population, there is a growing recognition that microglia are highly specialized to suit their specific brain region. Cerebellar microglia represent an example of such specialization, exhibiting a dynamical, transcriptional, and immunological profile that differs from that of other microglial populations. Here we review the evidence that cerebellar microglia shape the cerebellar environment and are in turn shaped by it. We examine the roles microglia play in cerebellar function, development, and aging. The emerging findings on cerebellar microglia may also provide insights into disease processes involving cerebellar dysfunction.
Collapse
Affiliation(s)
- Mark B Stoessel
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; Neuroscience Graduate Program, University of Rochester, Rochester, NY 14642, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
54
|
Cary BA, Turrigiano GG. Stability of neocortical synapses across sleep and wake states during the critical period in rats. eLife 2021; 10:66304. [PMID: 34151775 PMCID: PMC8275129 DOI: 10.7554/elife.66304] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/20/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep is important for brain plasticity, but its exact function remains mysterious. An influential but controversial idea is that a crucial function of sleep is to drive widespread downscaling of excitatory synaptic strengths. Here, we used real-time sleep classification, ex vivo measurements of postsynaptic strength, and in vivo optogenetic monitoring of thalamocortical synaptic efficacy to ask whether sleep and wake states can constitutively drive changes in synaptic strength within the neocortex of juvenile rats. We found that miniature excitatory postsynaptic current amplitudes onto L4 and L2/3 pyramidal neurons were stable across sleep- and wake-dense epochs in both primary visual (V1) and prefrontal cortex (PFC). Further, chronic monitoring of thalamocortical synaptic efficacy in V1 of freely behaving animals revealed stable responses across even prolonged periods of natural sleep and wake. Together, these data demonstrate that sleep does not drive widespread downscaling of synaptic strengths during the highly plastic critical period in juvenile animals. Whether this remarkable stability across sleep and wake generalizes to the fully mature nervous system remains to be seen.
Collapse
Affiliation(s)
- Brian A Cary
- Department of Biology, Brandeis University, Waltham, United States
| | | |
Collapse
|
55
|
Huang L, Lafaille JJ, Yang G. Learning-dependent dendritic spine plasticity is impaired in spontaneous autoimmune encephalomyelitis. Dev Neurobiol 2021; 81:736-745. [PMID: 33949123 DOI: 10.1002/dneu.22827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/12/2022]
Abstract
Cognitive impairment is often observed in multiple sclerosis and its animal models, experimental autoimmune encephalomyelitis (EAE). Using mice with immunization-induced EAE, we have previously shown that the stability of cortical synapses is markedly decreased before the clinical onset of EAE. In this study, we examined learning-dependent structural synaptic plasticity in a spontaneous EAE model. Transgenic mice expressing myelin basic protein-specific T cell receptor genes develop EAE spontaneously at around 8 weeks of age. Using in vivo two-photon microscopy, we found that the elimination and formation rates of postsynaptic dendritic spines in somatosensory and motor cortices increased weeks before detectable signs of EAE and remained to be high during the disease onset. Despite the elevated basal spine turnover, motor learning-induced spine formation was reduced in presymptomatic EAE mice, in line with their impaired ability to retain learned motor skills. Additionally, we found a substantial elevation of IFN-γ mRNA in the brain of 4-week-old presymptomatic mice, and treatment of anti-IFN-γ antibody reduced dendritic spine elimination in the cortex. Together, these findings reveal synaptic instability and failure to form new synapses after learning as early brain pathology of EAE, which may contribute to cognitive and behavioral deficits seen in autoimmune diseases.
Collapse
Affiliation(s)
- Lianyan Huang
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.,Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan J Lafaille
- Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Guang Yang
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.,Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
56
|
Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunol 2021; 12:644294. [PMID: 33953715 PMCID: PMC8091963 DOI: 10.3389/fimmu.2021.644294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
The basal ganglia network is represented by an interconnected group of subcortical nuclei traditionally thought to play a crucial role in motor learning and movement execution. During the last decades, knowledge about basal ganglia physiology significantly evolved and this network is now considered as a key regulator of important cognitive and emotional processes. Accordingly, the disruption of basal ganglia network dynamics represents a crucial pathogenic factor in many neurological and psychiatric disorders. The striatum is the input station of the circuit. Thanks to the synaptic properties of striatal medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum exerts a fundamental integrative and filtering role in the basal ganglia network, influencing the functional output of the whole circuit. Although it is currently established that the immune system is able to regulate neuronal transmission and plasticity in specific cortical areas, the role played by immune molecules and immune/glial cells in the modulation of intra-striatal connections and basal ganglia activity still needs to be clarified. In this manuscript, we review the available evidence of immune-based regulation of synaptic activity in the striatum, also discussing how an abnormal immune activation in this region could be involved in the pathogenesis of inflammatory and degenerative central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Section of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
57
|
Wang Y, Fu AKY, Ip NY. Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms. FEBS J 2021; 289:2202-2218. [PMID: 33864430 PMCID: PMC9290076 DOI: 10.1111/febs.15878] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
In the adult hippocampus, synaptic plasticity is important for information processing, learning, and memory encoding. Astrocytes, the most common glial cells, play a pivotal role in the regulation of hippocampal synaptic plasticity. While astrocytes were initially described as a homogenous cell population, emerging evidence indicates that in the adult hippocampus, astrocytes are highly heterogeneous and can differentially respond to changes in neuronal activity in a subregion‐dependent manner to actively modulate synaptic plasticity. In this review, we summarize how local neuronal activity changes regulate the interactions between astrocytes and synapses, either by modulating the secretion of gliotransmitters and synaptogenic proteins or via contact‐mediated signaling pathways. In turn, these specific responses induced in astrocytes mediate the interactions between astrocytes and neurons, thus shaping synaptic communication in the adult hippocampus. Importantly, the activation of astrocytic signaling is required for memory performance including memory acquisition and recall. Meanwhile, the dysregulation of this signaling can cause hippocampal circuit dysfunction in pathological conditions, resulting in cognitive impairment and neurodegeneration. Indeed, reactive astrocytes, which have dysregulated signaling associated with memory, are induced in the brains of patients with Alzheimer's disease (AD) and transgenic mouse model of AD. Emerging technologies that can precisely manipulate and monitor astrocytic signaling in vivo enable the examination of the specific actions of astrocytes in response to neuronal activity changes as well as how they modulate synaptic connections and circuit activity. Such findings will clarify the roles of astrocytes in hippocampal synaptic plasticity and memory in health and disease.
Collapse
Affiliation(s)
- Ye Wang
- Division of Life Science, The Hong Kong University of Science and Technology, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China.,Hong Kong Center for Neurodegenerative Diseases, China
| | - Amy K Y Fu
- Division of Life Science, The Hong Kong University of Science and Technology, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China.,Hong Kong Center for Neurodegenerative Diseases, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China.,Hong Kong Center for Neurodegenerative Diseases, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| |
Collapse
|
58
|
Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci 2021; 15:656921. [PMID: 33854417 PMCID: PMC8039148 DOI: 10.3389/fnins.2021.656921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD, United States
- Aevis Bio, Inc., Daejeon, South Korea
| | | | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
59
|
Torrado Pacheco A, Bottorff J, Gao Y, Turrigiano GG. Sleep Promotes Downward Firing Rate Homeostasis. Neuron 2021; 109:530-544.e6. [PMID: 33232655 PMCID: PMC7864886 DOI: 10.1016/j.neuron.2020.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/15/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Homeostatic plasticity is hypothesized to bidirectionally regulate neuronal activity around a stable set point to compensate for learning-related plasticity, but to date only upward firing rate homeostasis (FRH) has been demonstrated in vivo. We combined chronic electrophysiology in freely behaving animals with an eye-reopening paradigm to enhance firing in primary visual cortex (V1) and found that neurons bidirectionally regulate firing rates around an individual set point. Downward FRH did not require N-methyl-D-aspartate receptor (NMDAR) signaling and was associated with homeostatic scaling down of synaptic strengths. Like upward FRH, downward FRH was gated by arousal state but in the opposite direction: it occurred during sleep, not during wake. In contrast, firing rate depression associated with Hebbian plasticity happened independently of sleep and wake. Thus, sleep and wake states temporally segregate upward and downward FRH, which might prevent interference or provide unopposed homeostatic compensation when it is needed most.
Collapse
Affiliation(s)
| | - Juliet Bottorff
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Ya Gao
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
60
|
Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020; 6:47-66. [PMID: 33680846 PMCID: PMC7903009 DOI: 10.3233/bpl-190095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neurogenesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor (TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review, we discuss the variable findings of TNF's effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmission, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing neurogenic deficit after alcohol exposure, there is no evidence for TNF's essential involvement in alcohol's effect on neurogenesis. Overall, defining TNF's role in alcohol use disorder is complicated by poor understanding of its variable effects on synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF's effects within the brain.
Collapse
Affiliation(s)
- Ignatius Alvarez Cooper
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Kate Beecher
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
61
|
Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci U S A 2020; 118:2020810118. [PMID: 33443211 PMCID: PMC7817131 DOI: 10.1073/pnas.2020810118] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Synaptic plasticity in the hippocampus is important for learning and memory formation. In particular, homeostatic synaptic plasticity enables neurons to restore their activity levels in response to chronic neuronal activity changes. While astrocytes modulate synaptic functions via the secretion of factors, the underlying molecular mechanisms remain unclear. Here, we show that suppression of hippocampal neuronal activity increases cytokine IL-33 release from astrocytes in the CA1 region. Activation of IL-33 and its neuronal ST2 receptor complex promotes functional excitatory synapse formation. Moreover, IL-33/ST2 signaling is important for the neuronal activity blockade-induced increase of CA1 excitatory synapses in vivo and spatial memory formation. This study suggests that astrocyte-secreted IL-33 acts as a negative feedback control signal to regulate hippocampal homeostatic synaptic plasticity. Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.
Collapse
|
62
|
Kasamatsu T, Imamura K. Ocular dominance plasticity: Molecular mechanisms revisited. J Comp Neurol 2020; 528:3039-3074. [PMID: 32737874 DOI: 10.1002/cne.25001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Ocular dominance plasticity (ODP) is a type of cortical plasticity operating in visual cortex of mammals that are endowed with binocular vision based on the competition-driven disparity. Earlier, a molecular mechanism was proposed that catecholamines play an important role in the maintenance of ODP in kittens. Having survived the initial test, the hypothesis was further advanced to identify noradrenaline (NA) as a key factor that regulates ODP in the immature cortex. Later, the ODP-promoting effect of NA is extended to the adult with age-related limitations. Following the enhanced NA availability, the chain events downstream lead to the β-adrenoreceptor-induced cAMP accumulation, which in turn activates the protein kinase A. Eventually, the protein kinase translocates to the cell nucleus to activate cAMP responsive element binding protein (CREB). CREB is a cellular transcription factor that controls the transcription of various genes, underpinning neuronal plasticity and long-term memory. In the advent of molecular genetics in that various types of new tools have become available with relative ease, ODP research has lightly adopted in the rodent model the original concepts and methodologies. Here, after briefly tracing the strategic maturation of our quest, the review moves to the later development of the field, with the emphasis placed around the following issues: (a) Are we testing ODP per se? (b) What does monocular deprivation deprive of the immature cortex? (c) The critical importance of binocular competition, (d) What is the adult plasticity? (e) Excitation-Inhibition balance in local circuits, and (f) Species differences in the animal models.
Collapse
Affiliation(s)
- Takuji Kasamatsu
- Smith-Kettlewell Eye Research Institute, San Francisco, California, USA
| | - Kazuyuki Imamura
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi-shi, Gunma, Japan
| |
Collapse
|
63
|
Birch EE, Jost RM, Wang SX, Kelly KR. A pilot randomized trial of contrast-rebalanced binocular treatment for deprivation amblyopia. J AAPOS 2020; 24:344.e1-344.e5. [PMID: 33069871 PMCID: PMC8005476 DOI: 10.1016/j.jaapos.2020.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Binocular neural architecture may be preserved in children with deprivation amblyopia due to unilateral cataract. The purpose of this study was to investigate whether a contrast-rebalanced binocular treatment, recently used with success to treat the interocular suppression and amblyopia in strabismic and anisometropic children, can contribute to rehabilitation of visual acuity in children with deprivation amblyopia secondary to monocular cataract. METHODS In a pilot randomized trial, 15 children (4-13 years of age) were enrolled and randomized to continue with their current treatment only (n = 7) or to continue with their current treatment and add contrast-rebalanced binocular iPad game play 5 hours/week for 4 weeks (n = 8). The primary outcome was change in visual acuity at 4 weeks. RESULTS Although 10 of 15 participants were patching, there was little change in visual acuity during the 3 months prior to enrollment. At the 4-week primary outcome visit, the mean improvement in visual acuity for the binocular game group was significantly greater than that for the current-treatment group (0.08 ± 0.10 logMAR vs -0.03 ± 0.05 logMAR [t10.2 = 2.53, P = 0.03]). None of the children who had dense congenital cataract achieved improved visual acuity with binocular treatment. CONCLUSIONS In this study cohort, visual acuity improved over 8 weeks in children with unilateral deprivation amblyopia who played a binocular contrast-rebalanced binocular iPad game.
Collapse
Affiliation(s)
- Eileen E Birch
- Retina Foundation of the Southwest, Dallas, Texas; Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas.
| | - Reed M Jost
- Retina Foundation of the Southwest, Dallas, Texas
| | - Serena X Wang
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas
| | - Krista R Kelly
- Retina Foundation of the Southwest, Dallas, Texas; Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
64
|
Abstract
Recent work has transformed our ideas about the neural mechanisms, behavioral consequences and effective therapies for amblyopia. Since the 1700's, the clinical treatment for amblyopia has consisted of patching or penalizing the strong eye, to force the "lazy" amblyopic eye, to work. This treatment has generally been limited to infants and young children during a sensitive period of development. Over the last 20 years we have learned much about the nature and neural mechanisms underlying the loss of spatial and binocular vision in amblyopia, and that a degree of neural plasticity persists well beyond the sensitive period. Importantly, the last decade has seen a resurgence of research into new approaches to the treatment of amblyopia both in children and adults, which emphasize that monocular therapies may not be the most effective for the fundamentally binocular disorder that is amblyopia. These approaches include perceptual learning, video game play and binocular methods aimed at reducing inhibition of the amblyopic eye by the strong fellow eye, and enhancing binocular fusion and stereopsis. This review focuses on the what we've learned over the past 20 years or so, and will highlight both the successes of these new treatment approaches in labs around the world, and their failures in clinical trials. Reconciling these results raises important new questions that may help to focus future directions.
Collapse
Affiliation(s)
- Dennis M Levi
- University of California, Berkeley, School of Optometry & Helen Wills Neuroscience Institute, Berkeley, CA, USA.
| |
Collapse
|
65
|
Heir R, Stellwagen D. TNF-Mediated Homeostatic Synaptic Plasticity: From in vitro to in vivo Models. Front Cell Neurosci 2020; 14:565841. [PMID: 33192311 PMCID: PMC7556297 DOI: 10.3389/fncel.2020.565841] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Since it was first described almost 30 years ago, homeostatic synaptic plasticity (HSP) has been hypothesized to play a key role in maintaining neuronal circuit function in both developing and adult animals. While well characterized in vitro, determining the in vivo roles of this form of plasticity remains challenging. Since the discovery that the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) mediates some forms of HSP, it has been possible to probe some of the in vivo contribution of TNF-mediated HSP. Work from our lab and others has found roles for TNF-HSP in a variety of functions, including the developmental plasticity of sensory systems, models of drug addiction, and the response to psychiatric drugs.
Collapse
Affiliation(s)
- Renu Heir
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| |
Collapse
|
66
|
Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, Levine JD, Hensch TK. Critical period regulation across multiple timescales. Proc Natl Acad Sci U S A 2020; 117:23242-23251. [PMID: 32503914 PMCID: PMC7519216 DOI: 10.1073/pnas.1820836117] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brain plasticity is dynamically regulated across the life span, peaking during windows of early life. Typically assessed in the physiological range of milliseconds (real time), these trajectories are also influenced on the longer timescales of developmental time (nurture) and evolutionary time (nature), which shape neural architectures that support plasticity. Properly sequenced critical periods of circuit refinement build up complex cognitive functions, such as language, from more primary modalities. Here, we consider recent progress in the biological basis of critical periods as a unifying rubric for understanding plasticity across multiple timescales. Notably, the maturation of parvalbumin-positive (PV) inhibitory neurons is pivotal. These fast-spiking cells generate gamma oscillations associated with critical period plasticity, are sensitive to circadian gene manipulation, emerge at different rates across brain regions, acquire perineuronal nets with age, and may be influenced by epigenetic factors over generations. These features provide further novel insight into the impact of early adversity and neurodevelopmental risk factors for mental disorders.
Collapse
Affiliation(s)
- Rebecca K Reh
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian G Dias
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA 30322
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329
| | - Charles A Nelson
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Graduate School of Education, Harvard University, Cambridge, MA 02138
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Takao K Hensch
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115;
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA 02138
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
| |
Collapse
|
67
|
Fatoba O, Itokazu T, Yamashita T. Microglia as therapeutic target in central nervous system disorders. J Pharmacol Sci 2020; 144:102-118. [PMID: 32921391 DOI: 10.1016/j.jphs.2020.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic microglial activation is associated with the pathogenesis of several CNS disorders. Microglia show phenotypic diversity and functional complexity in diseased CNS. Thus, understanding the pathology-specific heterogeneity of microglial behavior is crucial for the future development of microglia-modulating therapy for variety of CNS disorders. This review summarizes up-to-date knowledge on how microglia contribute to CNS homeostasis during development and throughout adulthood. We discuss the heterogeneity of microglial phenotypes in the context of CNS disorders with an emphasis on neurodegenerative diseases, demyelinating diseases, CNS trauma, and epilepsy. We conclude this review with a discussion about the disease-specific heterogeneity of microglial function and how it could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
68
|
Xu W, Löwel S, Schlüter OM. Silent Synapse-Based Mechanisms of Critical Period Plasticity. Front Cell Neurosci 2020; 14:213. [PMID: 32765222 PMCID: PMC7380267 DOI: 10.3389/fncel.2020.00213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Critical periods are postnatal, restricted time windows of heightened plasticity in cortical neural networks, during which experience refines principal neuron wiring configurations. Here, we propose a model with two distinct types of synapses, innate synapses that establish rudimentary networks with innate function, and gestalt synapses that govern the experience-dependent refinement process. Nascent gestalt synapses are constantly formed as AMPA receptor-silent synapses which are the substrates for critical period plasticity. Experience drives the unsilencing and stabilization of gestalt synapses, as well as synapse pruning. This maturation process changes synapse patterning and consequently the functional architecture of cortical excitatory networks. Ocular dominance plasticity (ODP) in the primary visual cortex (V1) is an established experimental model for cortical plasticity. While converging evidence indicates that the start of the critical period for ODP is marked by the maturation of local inhibitory circuits, recent results support our model that critical periods end through the progressive maturation of gestalt synapses. The cooperative yet opposing function of two postsynaptic signaling scaffolds of excitatory synapses, PSD-93 and PSD-95, governs the maturation of gestalt synapses. Without those proteins, networks do not progress far beyond their innate functionality, resulting in rather impaired perception. While cortical networks remain malleable throughout life, the cellular mechanisms and the scope of critical period and adult plasticity differ. Critical period ODP is initiated with the depression of deprived eye responses in V1, whereas adult ODP is characterized by an initial increase in non-deprived eye responses. Our model proposes the gestalt synapse-based mechanism for critical period ODP, and also predicts a different mechanism for adult ODP based on the sparsity of nascent gestalt synapses at that age. Under our model, early life experience shapes the boundaries (the gestalt) for network function, both for its optimal performance as well as for its pathological state. Thus, reintroducing nascent gestalt synapses as plasticity substrates into adults may improve the network gestalt to facilitate functional recovery.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Neuroscience, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, University of Göttingen, Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Oliver M. Schlüter
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
69
|
Apostolopoulou AA, Lin AC. Mechanisms underlying homeostatic plasticity in the Drosophila mushroom body in vivo. Proc Natl Acad Sci U S A 2020; 117:16606-16615. [PMID: 32601210 PMCID: PMC7368247 DOI: 10.1073/pnas.1921294117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural network function requires an appropriate balance of excitation and inhibition to be maintained by homeostatic plasticity. However, little is known about homeostatic mechanisms in the intact central brain in vivo. Here, we study homeostatic plasticity in the Drosophila mushroom body, where Kenyon cells receive feedforward excitation from olfactory projection neurons and feedback inhibition from the anterior paired lateral neuron (APL). We show that prolonged (4-d) artificial activation of the inhibitory APL causes increased Kenyon cell odor responses after the artificial inhibition is removed, suggesting that the mushroom body compensates for excess inhibition. In contrast, there is little compensation for lack of inhibition (blockade of APL). The compensation occurs through a combination of increased excitation of Kenyon cells and decreased activation of APL, with differing relative contributions for different Kenyon cell subtypes. Our findings establish the fly mushroom body as a model for homeostatic plasticity in vivo.
Collapse
Affiliation(s)
- Anthi A Apostolopoulou
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom;
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
70
|
|
71
|
Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, Taloma SE, Barron JJ, Molofsky AB, Kheirbek MA, Molofsky AV. Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. Cell 2020; 182:388-403.e15. [PMID: 32615087 DOI: 10.1016/j.cell.2020.05.050] [Citation(s) in RCA: 388] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.
Collapse
Affiliation(s)
- Phi T Nguyen
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Leah C Dorman
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Pan
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ilia D Vainchtein
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rafael T Han
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sunrae E Taloma
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jerika J Barron
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Anna V Molofsky
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
72
|
Kakeda S, Watanabe K, Nguyen H, Katsuki A, Sugimoto K, Igata N, Abe O, Yoshimura R, Korogi Y. An independent component analysis reveals brain structural networks related to TNF-α in drug-naïve, first-episode major depressive disorder: a source-based morphometric study. Transl Psychiatry 2020; 10:187. [PMID: 32522975 PMCID: PMC7287077 DOI: 10.1038/s41398-020-00873-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
In a previous mouse study, social defeat stress-induced microglial activation released tumor necrosis factor-α (TNF-α), leading to neuronal changes in the prefrontal cortex (PFC) and behavioral changes (anxiety). We aimed to investigate the relationship between gray-matter (GM) structural networks and serum TNF-α in patients with major depression disorder (MDD) using multivariate source-based morphometry (SBM). Forty-five first-episode and drug-naïve MDD patients and 38 healthy subjects (HSs) were recruited. High-resolution T1-weighted imaging was performed and serum TNF-α levels were measured in all MDD patients and HSs. After acquiring GM structural networks using SBM, we compared the Z-transformed loading coefficients (Z-scores) between MDD patients and HSs, and investigated the relationship between the Z-scores and the serum TNF-α levels in MDD patients. The serum TNF-α levels in MDD patients were significantly higher than those in HSs. We extracted two independent GM structural networks (the prefrontal network and the insula-temporal network) with significant differences between MDD patients and HSs (-0.305 ± 0.85 and 0.253 ± 0.82; P = 0.03 in the prefrontal network, and -0.268 ± 0.86 and 0.467 ± 0.71; P < 0.01 in the insula-temporal network). The serum TNF-α levels were significantly correlated with the Z-scores in the prefrontal network after Bonferroni correction (r = -0.419, p < 0.01); however, the correlation in the insula-temporal network was not significant (r = -0.290, p = 0.11). Elevated serum TNF-α levels in the early stage of MDD were associated with alteration of the prefrontal network.
Collapse
Affiliation(s)
- Shingo Kakeda
- grid.257016.70000 0001 0673 6172Department of Diagnostic Radiology, Hirosaki University Graduate School of Medicine Radiology, Aomori, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan.
| | - Hoa Nguyen
- grid.271052.30000 0004 0374 5913Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Asuka Katsuki
- grid.271052.30000 0004 0374 5913Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Koichiro Sugimoto
- grid.271052.30000 0004 0374 5913Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Natsuki Igata
- grid.271052.30000 0004 0374 5913Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Osamu Abe
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiji Yoshimura
- grid.271052.30000 0004 0374 5913Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yukunori Korogi
- grid.271052.30000 0004 0374 5913Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| |
Collapse
|
73
|
Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Cereb Cortex 2020; 30:2555-2572. [PMID: 31832634 PMCID: PMC7174998 DOI: 10.1093/cercor/bhz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.
Collapse
Affiliation(s)
- Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Sb Finnie
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taekeun Kim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eitan S Kaplan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Samuel F Cooke
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Maurice Wohl Institute for Clinical Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- The Medical Research Council Centre for Neurodevelopmental Disorders (MRC CNDD), King's College London, London SE5 8AF, UK
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
74
|
Tatavarty V, Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, Miska NJ, Hengen KB, Wagner FF, Van Hooser SD, Turrigiano GG. Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent V1. Neuron 2020; 106:769-777.e4. [PMID: 32199104 DOI: 10.1016/j.neuron.2020.02.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Mutations in Shank3 are strongly associated with autism spectrum disorders and neural circuit changes in several brain areas, but the cellular mechanisms that underlie these defects are not understood. Homeostatic forms of plasticity allow central circuits to maintain stable function during experience-dependent development, leading us to ask whether loss of Shank3 might impair homeostatic plasticity and circuit-level compensation to perturbations. We found that Shank3 loss in vitro abolished synaptic scaling and intrinsic homeostatic plasticity, deficits that could be rescued by treatment with lithium. Further, Shank3 knockout severely compromised the in vivo ability of visual cortical circuits to recover from perturbations to sensory drive. Finally, lithium treatment ameliorated a repetitive self-grooming phenotype in Shank3 knockout mice. These findings demonstrate that Shank3 loss severely impairs the ability of central circuits to harness homeostatic mechanisms to compensate for perturbations in drive, which, in turn, may render them more vulnerable to such perturbations.
Collapse
Affiliation(s)
| | | | | | - Heather Lin
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Priya Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | | | - Keith B Hengen
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
75
|
Petralia MC, Mazzon E, Fagone P, Basile MS, Lenzo V, Quattropani MC, Di Nuovo S, Bendtzen K, Nicoletti F. The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmun Rev 2020; 19:102504. [PMID: 32173514 DOI: 10.1016/j.autrev.2020.102504] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a common condition that afflicts the general population across a broad spectrum of ages and social backgrounds. MDD has been identified by the World Health Organization as a leading cause of disability worldwide. Approximately 30% of patients are poor responsive to standard of care (SOC) treatment and novel therapeutic approaches are warranted. Since chronic inflammation, as it is often observed in certain cancers, type 2 diabetes, psoriasis and chronic arthritis, are accompanied by depression, it has been suggested that immunoinflammatory processes may be involved in the pathogenesis of MDD. Cytokines are a group of glycoproteins secreted from lymphoid and non-lymphoid cells that orchestrate immune responses. It has been suggested that a dysregulated production of cytokines may be implicated in the pathogenesis and maintenance of MDD. On the basis of their functions, cytokines can be subdivided in pro-inflammatory and anti-inflammatory cytokines. Since abnormal blood and cerebrospinal fluid of both pro and anti-inflammatory cytokines are altered in MDD, it has been suggested that abnormal cytokine homeostasis may be implicated in the pathogenesis of MDD and possibly to induction of therapeutic resistance. We review current data that indicate that cytokines may represent a useful tool to identify MDD patients that may benefit from tailored immunotherapeutic approaches and may represent a potential tailored therapeutic target.
Collapse
Affiliation(s)
| | | | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vittorio Lenzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Santo Di Nuovo
- Department of Educational Sciences, University of Catania, Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
76
|
Mitchell DE, Crowder NA, Duffy KR. The critical period for darkness-induced recovery of the vision of the amblyopic eye following early monocular deprivation. J Vis 2020; 19:25. [PMID: 31251809 DOI: 10.1167/19.6.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure of kittens to complete darkness for 10 days has been shown (Duffy & Mitchell, 2013) to reverse the loss of visual acuity that follows a prior period of monocular deprivation (MD). In that study, recovery of acuity in the previously deprived eye was fast despite the fact that darkness was imposed 2 months after the period of MD when kittens were 3 months old. In a later study (Holman, Duffy, & Mitchell, 2018), it was demonstrated that the same period of darkness was ineffective when it was imposed on cats about 1 year old, suggesting that dark exposure may only promote recovery when applied within an early critical period. To determine the profile of this critical period, the identical period of darkness (10 days) was imposed on kittens at various ages that had all received the same 7-day period of MD from postnatal day 30 (P30). Recovery of the acuity of the deprived eye as measured by use of a jumping stand was complete when darkness was imposed prior to P186 days, but thereafter, darkness induced progressively smaller acuity improvements and was ineffective in kittens when it began at or beyond P191 days of age. These data indicate a critical period for darkness-induced recovery with an abrupt end over a 5-day period.
Collapse
Affiliation(s)
- Donald E Mitchell
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS Canada
| | - Nathan A Crowder
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS Canada
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
77
|
Dubes S, Favereaux A, Thoumine O, Letellier M. miRNA-Dependent Control of Homeostatic Plasticity in Neurons. Front Cell Neurosci 2019; 13:536. [PMID: 31866828 PMCID: PMC6906196 DOI: 10.3389/fncel.2019.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Homeostatic plasticity is a form of plasticity in which neurons compensate for changes in neuronal activity through the control of key physiological parameters such as the number and the strength of their synaptic inputs and intrinsic excitability. Recent studies revealed that miRNAs, which are small non-coding RNAs repressing mRNA translation, participate in this process by controlling the translation of multiple effectors such as glutamate transporters, receptors, signaling molecules and voltage-gated ion channels. In this review, we present and discuss the role of miRNAs in both cell-wide and compartmentalized forms of homeostatic plasticity as well as their implication in pathological processes associated with homeostatic failure.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Alexandre Favereaux
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mathieu Letellier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| |
Collapse
|
78
|
Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a Factor of Neurodegenerative Disease: Thalidomide Analogs as Treatments. Front Cell Dev Biol 2019; 7:313. [PMID: 31867326 PMCID: PMC6904283 DOI: 10.3389/fcell.2019.00313] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is initiated when glial cells, mainly microglia, are activated by threats to the neural environment, such as pathogen infiltration or neuronal injury. Although neuroinflammation serves to combat these threats and reinstate brain homeostasis, chronic inflammation can result in excessive cytokine production and cell death if the cause of inflammation remains. Overexpression of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine with a central role in microglial activation, has been associated with neuronal excitotoxicity, synapse loss, and propagation of the inflammatory state. Thalidomide and its derivatives, termed immunomodulatory imide drugs (IMiDs), are a class of drugs that target the 3'-untranslated region (3'-UTR) of TNF-α mRNA, inhibiting TNF-α production. Due to their multi-potent effects, several IMiDs, including thalidomide, lenalidomide, and pomalidomide, have been repurposed as drug treatments for diseases such as multiple myeloma and psoriatic arthritis. Preclinical studies of currently marketed IMiDs, as well as novel IMiDs such as 3,6'-dithiothalidomide and adamantyl thalidomide derivatives, support the development of IMiDs as therapeutics for neurological disease. IMiDs have a competitive edge compared to similar anti-inflammatory drugs due to their blood-brain barrier permeability and high bioavailability, with the potential to alleviate symptoms of neurodegenerative disease and slow disease progression. In this review, we evaluate the role of neuroinflammation in neurodegenerative diseases, focusing specifically on the role of TNF-α in neuroinflammation, as well as appraise current research on the potential of IMiDs as treatments for neurological disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | | | | | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
79
|
Cingolani LA, Vitale C, Dityatev A. Intra- and Extracellular Pillars of a Unifying Framework for Homeostatic Plasticity: A Crosstalk Between Metabotropic Receptors and Extracellular Matrix. Front Cell Neurosci 2019; 13:513. [PMID: 31803023 PMCID: PMC6877475 DOI: 10.3389/fncel.2019.00513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022] Open
Abstract
In the face of chronic changes in incoming sensory inputs, neuronal networks are capable of maintaining stable conditions of electrical activity over prolonged periods of time by adjusting synaptic strength, to amplify or dampen incoming inputs [homeostatic synaptic plasticity (HSP)], or by altering the intrinsic excitability of individual neurons [homeostatic intrinsic plasticity (HIP)]. Emerging evidence suggests a synergistic interplay between extracellular matrix (ECM) and metabotropic receptors in both forms of homeostatic plasticity. Activation of dopaminergic, serotonergic, or glutamate metabotropic receptors stimulates intracellular signaling through calmodulin-dependent protein kinase II, protein kinase A, protein kinase C, and inositol trisphosphate receptors, and induces changes in expression of ECM molecules and proteolysis of both ECM molecules (lecticans) and ECM receptors (NPR, CD44). The resulting remodeling of perisynaptic and synaptic ECM provides permissive conditions for HSP and plays an instructive role by recruiting additional signaling cascades, such as those through metabotropic glutamate receptors and integrins. The superimposition of all these signaling events determines intracellular and diffusional trafficking of ionotropic glutamate receptors, resulting in HSP and modulation of conditions for inducing Hebbian synaptic plasticity (i.e., metaplasticity). It also controls cell-surface delivery and activity of voltage- and Ca2+-gated ion channels, resulting in HIP. These mechanisms may modify epileptogenesis and become a target for therapeutic interventions.
Collapse
Affiliation(s)
- Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Carmela Vitale
- Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
80
|
Zhang J. Blast-induced tinnitus: Animal models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3811. [PMID: 31795642 DOI: 10.1121/1.5132551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blast-induced tinnitus is a prevalent problem among military personnel and veterans, as blast-related trauma damages the vulnerable microstructures within the cochlea, impacts auditory and non-auditory brain structures, and causes tinnitus and other disorders. Thus far, there is no effective treatment of blast-induced tinnitus due to an incomplete understanding of its underlying mechanisms, necessitating development of reliable animal models. This article focuses on recent animal studies using behavioral, electrophysiological, imaging, and pharmacological tools. The mechanisms underlying blast-induced tinnitus are largely similar to those underlying noise-induced tinnitus: increased spontaneous firing rates, bursting, and neurosynchrony, Mn++ accumulation, and elevated excitatory synaptic transmission. The differences mainly lie in the data variability and time course. Noise trauma-induced tinnitus mainly originates from direct peripheral deafferentation at the cochlea, and its etiology subsequently develops along the ascending auditory pathways. Blast trauma-induced tinnitus, on the other hand, results from simultaneous impact on both the peripheral and central auditory systems, and the resultant maladaptive neuroplasticity may also be related to the additional traumatic brain injury. Consequently, the neural correlates of blast-induced tinnitus have different time courses and less uniform manifestations of its neural correlates.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, USA
| |
Collapse
|
81
|
Zhang Y, Xu H, Wang J, Ren F, Shao F, Ellenbroek B, Lin W, Wang W. Transient upregulation of immune activity induced by adolescent social stress is involved in cognitive deficit in adult male mice and early intervention with minocycline. Behav Brain Res 2019; 374:112136. [DOI: 10.1016/j.bbr.2019.112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
82
|
Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, Stoessel MB, Bidlack JM, Brown E, Sur M, Majewska AK. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci 2019; 22:1782-1792. [PMID: 31636451 PMCID: PMC6875777 DOI: 10.1038/s41593-019-0514-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Microglia are the brain's resident innate immune cells and also have a role in synaptic plasticity. Microglial processes continuously survey the brain parenchyma, interact with synaptic elements and maintain tissue homeostasis. However, the mechanisms that control surveillance and its role in synaptic plasticity are poorly understood. Microglial dynamics in vivo have been primarily studied in anesthetized animals. Here we report that microglial surveillance and injury response are reduced in awake mice as compared to anesthetized mice, suggesting that arousal state modulates microglial function. Pharmacologic stimulation of β2-adrenergic receptors recapitulated these observations and disrupted experience-dependent plasticity, and these effects required the presence of β2-adrenergic receptors in microglia. These results indicate that microglial roles in surveillance and synaptic plasticity in the mouse brain are modulated by noradrenergic tone fluctuations between arousal states and emphasize the need to understand the effect of disruptions of adrenergic signaling in neurodevelopment and neuropathology.
Collapse
Affiliation(s)
- Rianne D Stowell
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Grayson O Sipe
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan P Dawes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Hanna N Batchelor
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Katheryn A Lordy
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan S Whitelaw
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark B Stoessel
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Jean M Bidlack
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
83
|
Yli-Karjanmaa M, Larsen KS, Fenger CD, Kristensen LK, Martin NA, Jensen PT, Breton A, Nathanson L, Nielsen PV, Lund MC, Carlsen SL, Gramsbergen JB, Finsen B, Stubbe J, Frich LH, Stolp H, Brambilla R, Anthony DC, Meyer M, Lambertsen KL. TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex. Brain Behav Immun 2019; 82:279-297. [PMID: 31505254 DOI: 10.1016/j.bbi.2019.08.195] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. MATERIALS AND METHODS To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF-/-) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF-/- mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF-/- mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. RESULTS TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. CONCLUSION TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment.
Collapse
Affiliation(s)
- Minna Yli-Karjanmaa
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kathrine Solevad Larsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lotte Kellemann Kristensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nellie Anne Martin
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Peter Toft Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Pernille Vinther Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Minna Christiansen Lund
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stephanie Lindeman Carlsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Bert Gramsbergen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Frich
- Orthopedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helen Stolp
- Department of Pharmacology, University of Oxford, Oxford, UK; Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Clive Anthony
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Pharmacology, University of Oxford, Oxford, UK; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
84
|
Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex. Proc Natl Acad Sci U S A 2019; 116:21812-21820. [PMID: 31591211 DOI: 10.1073/pnas.1914661116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 d. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity.
Collapse
|
85
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
86
|
|
87
|
Vasalauskaite A, Morgan JE, Sengpiel F. Plasticity in Adult Mouse Visual Cortex Following Optic Nerve Injury. Cereb Cortex 2019; 29:1767-1777. [PMID: 30668659 PMCID: PMC6418869 DOI: 10.1093/cercor/bhy347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022] Open
Abstract
Optic nerve (ON) injury is an established model of axonal injury which results in retrograde degeneration and death of retinal ganglion cells as well anterograde loss of transmission and Wallerian degeneration of the injured axons. While the local impact of ON crush has been extensively documented we know comparatively little about the functional changes that occur in higher visual structures such as primary visual cortex (V1). We explored the extent of adult cortical plasticity using ON crush in aged mice. V1 function of the contralateral hemisphere was assessed longitudinally by intrinsic signal imaging and 2-photon calcium imaging before and after ON crush. Functional imaging demonstrated an immediate shift in V1 ocular dominance towards the ipsilateral, intact eye, due to the expected almost complete loss of responses to contralateral eye stimulation. Surprisingly, within 2 weeks we observed a delayed increase in ipsilateral eye responses. Additionally, spontaneous activity in V1 was reduced, similar to the lesion projection zone after retinal lesions. The observed changes in V1 activity indicate that severe ON injury in adulthood evokes cortical plasticity not only cross-modally but also within the visual cortex; this plasticity may be best compared with that seen after retinal lesions.
Collapse
Affiliation(s)
| | - James E Morgan
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
- Neuroscience & Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
88
|
Homer1a Is Required for Establishment of Contralateral Bias and Maintenance of Ocular Dominance in Mouse Visual Cortex. J Neurosci 2019; 39:3897-3905. [PMID: 30867257 DOI: 10.1523/jneurosci.3188-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
It is well established across many species that neurons in the primary visual cortex (V1) display preference for visual input from one eye or the other, which is termed ocular dominance (OD). In rodents, V1 neurons exhibit a strong bias toward the contralateral eye. Molecular mechanisms of how OD is established and later maintained by plastic changes are largely unknown. Here we report a novel role of an activity-dependent immediate early gene Homer1a (H1a) in these processes. Using both sexes of H1a knock-out (KO) mice, we found that there is basal reduction in the OD index of V1 neurons measured using intrinsic signal imaging. This was because of a reduction in the strength of inputs from the contralateral eye, which is normally dominant in mice. The abnormal basal OD index was not dependent on visual experience and is driven by postnatal expression of H1a. Despite this, H1a KOs still exhibited normal shifts in OD index following a short-term (2-3 d) monocular deprivation (MD) of the contralateral eye with lid suture. However, unlike wild-type counterparts, H1a KOs continued to shift OD index with a longer duration (5-6 d) of MD. The same phenotype was recapitulated in a mouse model that has reduced Homer1 binding to metabotropic glutamate receptor 5 (mGluR5). Our results suggest a novel role of H1a and its interaction with mGluR5 in strengthening contralateral eye inputs during postnatal development to establish normal contralateral bias in mouse V1 without much impact on OD shift with brief MD.SIGNIFICANCE STATEMENT Visual cortical neurons display varying degree of responsiveness to visual stimuli through each eye, which determines their ocular dominance (OD). Molecular mechanisms responsible for establishing normal OD are largely unknown. Development of OD has been shown to be largely independent of visual experience, but guided by molecular cues and spontaneous activity. We found that activity-dependent immediate early gene H1a is critical for establishing normal OD in V1 of mice, which show contralateral eye dominance. Despite the weaker contralateral bias, H1aKOs undergo largely normal OD plasticity. The basic phenotype of H1aKO was recapitulated by mGluR5 mutation that severely reduces H1a interaction. Our results suggest a novel role of mGluR5-H1a interaction in strengthening contralateral eye inputs to V1 during postnatal development.
Collapse
|
89
|
Teichert M, Isstas M, Liebmann L, Hübner CA, Wieske F, Winter C, Lehmann K, Bolz J. Visual deprivation independent shift of ocular dominance induced by cross-modal plasticity. PLoS One 2019; 14:e0213616. [PMID: 30856226 PMCID: PMC6411125 DOI: 10.1371/journal.pone.0213616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 11/18/2022] Open
Abstract
There is convincing evidence that the deprivation of one sense can lead to adaptive neuronal changes in spared primary sensory cortices. However, the repercussions of late-onset sensory deprivations on functionality of the remaining sensory cortices are poorly understood. Using repeated intrinsic signal imaging we investigated the effects of whisker or auditory deprivation (WD or AD, respectively) on responsiveness of the binocular primary visual cortex (V1) in fully adult mice. The binocular zone of mice is innervated by both eyes, with the contralateral eye always dominating V1 input over ipsilateral eye input, the normal ocular dominance (OD) ratio. Strikingly, we found that 3 days of WD or AD induced a transient shift of OD, which was mediated by a potentiation of V1 input through the ipsilateral eye. This cross-modal effect was accompanied by strengthening of layer 4 synapses in V1, required visual experience through the ipsilateral eye and was mediated by an increase of the excitation/inhibition ratio in V1. Finally, we demonstrate that both WD and AD induced a long-lasting improvement of visual performance. Our data provide evidence that the deprivation of a non-visual sensory modality cross-modally induces experience dependent V1 plasticity and improves visual behavior, even in adult mice.
Collapse
Affiliation(s)
- Manuel Teichert
- Institute of General Zoology and Animal Physiology, University of Jena, Jena, Germany
- Synapses-Circuits-Plasticity, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Marcel Isstas
- Institute of General Zoology and Animal Physiology, University of Jena, Jena, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, University of Jena, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, University Hospital Jena, University of Jena, Jena, Germany
| | - Franziska Wieske
- Department of Psychiatry, Technical University Dresden, Dresden, Germany
| | - Christine Winter
- Department of Psychiatry, Technical University Dresden, Dresden, Germany
| | - Konrad Lehmann
- Institute of General Zoology and Animal Physiology, University of Jena, Jena, Germany
| | - Jürgen Bolz
- Institute of General Zoology and Animal Physiology, University of Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
90
|
Abstract
Microglial cells derive from fetal macrophages which immigrate into and disseminate throughout the central nervous system (CNS) in early embryogenesis. After settling in the nerve tissue, microglial progenitors acquire an idiosyncratic morphological phenotype with small cell body and moving thin and highly ramified processes currently defined as "resting or surveillant microglia". Physiology of microglia is manifested by second messenger-mediated cellular excitability, low resting membrane conductance, and expression of receptors to pathogen- or damage-associated molecular patterns (PAMPs and DAMPs), as well as receptors to classical neurotransmitters and neurohormones. This specific physiological profile reflects adaptive changes of myeloid cells to the CNS environment.
Collapse
Affiliation(s)
- Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
91
|
An opposing function of paralogs in balancing developmental synapse maturation. PLoS Biol 2018; 16:e2006838. [PMID: 30586380 PMCID: PMC6324823 DOI: 10.1371/journal.pbio.2006838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
The disc-large (DLG)-membrane-associated guanylate kinase (MAGUK) family of proteins forms a central signaling hub of the glutamate receptor complex. Among this family, some proteins regulate developmental maturation of glutamatergic synapses, a process vulnerable to aberrations, which may lead to neurodevelopmental disorders. As is typical for paralogs, the DLG-MAGUK proteins postsynaptic density (PSD)-95 and PSD-93 share similar functional domains and were previously thought to regulate glutamatergic synapses similarly. Here, we show that they play opposing roles in glutamatergic synapse maturation. Specifically, PSD-95 promoted, whereas PSD-93 inhibited maturation of immature α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor (AMPAR)-silent synapses in mouse cortex during development. Furthermore, through experience-dependent regulation of its protein levels, PSD-93 directly inhibited PSD-95's promoting effect on silent synapse maturation in the visual cortex. The concerted function of these two paralogs governed the critical period of juvenile ocular dominance plasticity (jODP), and fine-tuned visual perception during development. In contrast to the silent synapse-based mechanism of adjusting visual perception, visual acuity improved by different mechanisms. Thus, by controlling the pace of silent synapse maturation, the opposing but properly balanced actions of PSD-93 and PSD-95 are essential for fine-tuning cortical networks for receptive field integration during developmental critical periods, and imply aberrations in either direction of this process as potential causes for neurodevelopmental disorders.
Collapse
|
92
|
How Senses Work Together: Cross-Modal Interactions between Primary Sensory Cortices. Neural Plast 2018; 2018:5380921. [PMID: 30647732 PMCID: PMC6311735 DOI: 10.1155/2018/5380921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022] Open
Abstract
On our way through a town, the things we see can make us change the way we go. The things that we hear can make us stop or walk on, or the things we feel can cause us to wear a warm jacket or just a t-shirt. All these behaviors are mediated by highly complex processing mechanisms in our brain and reflect responses to many important sensory inputs. The mammalian cerebral cortex, which processes the sensory information, consists of largely specialized sensory areas mainly receiving information from their corresponding sensory modalities. The first cortical regions receiving the input from the outer world are the so called primary sensory cortices. Strikingly, there is convincing evidence that primary sensory cortices do not work in isolation but are substantially affected by other sensory modalities. Here, we will review previous and current literature on this cross-modal interplay.
Collapse
|
93
|
Blanco-Suarez E, Liu TF, Kopelevich A, Allen NJ. Astrocyte-Secreted Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic GluA2 AMPA Receptors. Neuron 2018; 100:1116-1132.e13. [PMID: 30344043 PMCID: PMC6382071 DOI: 10.1016/j.neuron.2018.09.043] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
In the developing brain, immature synapses contain calcium-permeable AMPA glutamate receptors (AMPARs) that are subsequently replaced with GluA2-containing calcium-impermeable AMPARs as synapses stabilize and mature. Here, we show that this essential switch in AMPARs and neuronal synapse maturation is regulated by astrocytes. Using biochemical fractionation of astrocyte-secreted proteins and mass spectrometry, we identified that astrocyte-secreted chordin-like 1 (Chrdl1) is necessary and sufficient to induce mature GluA2-containing synapses to form. This function of Chrdl1 is independent of its role as an antagonist of bone morphogenetic proteins (BMPs). Chrdl1 expression is restricted to cortical astrocytes in vivo, peaking at the time of the AMPAR switch. Chrdl1 knockout (KO) mice display reduced synaptic GluA2 AMPARs, altered kinetics of synaptic events, and enhanced remodeling in an in vivo plasticity assay. Studies have shown that humans with mutations in Chrdl1 display enhanced learning. Thus astrocytes, via the release of Chrdl1, promote GluA2-dependent synapse maturation and thereby limit synaptic plasticity.
Collapse
Affiliation(s)
- Elena Blanco-Suarez
- The Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tong-Fei Liu
- The Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex Kopelevich
- The Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicola J Allen
- The Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
94
|
Rose T, Bonhoeffer T. Experience-dependent plasticity in the lateral geniculate nucleus. Curr Opin Neurobiol 2018; 53:22-28. [DOI: 10.1016/j.conb.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
|
95
|
Cross-modal Restoration of Juvenile-like Ocular Dominance Plasticity after Increasing GABAergic Inhibition. Neuroscience 2018; 393:1-11. [PMID: 30300702 DOI: 10.1016/j.neuroscience.2018.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022]
Abstract
In juvenile and young adult mice monocular deprivation (MD) shifts the ocular dominance (OD) of binocular neurons in the primary visual cortex (V1) away from the deprived eye. However, OD plasticity is completely absent in mice older than 110 days, but can be reactivated by treatments which decrease GABA levels in V1. Typically, these OD shifts can be prevented by increasing GABAergic transmission with diazepam. We could recently demonstrate that both bilateral whisker and auditory deprivation (WD, AD), can also restore OD plasticity in mice older than 110 days, since MD for 7 days in WD mice caused a potentiation of V1 input through the ipsilateral (open) eye, the characteristic feature of OD plasticity of "young adult" mice. Here we examined whether WD for 7 days also decreases GABA levels. For this, we performed post mortem HPLC analysis of V1 tissue. Indeed, we found that WD significantly decreased GABA levels in V1. Surprisingly, enhancing GABAergic inhibition by diazepam did not abolish OD shifts in WD mice, as revealed by repeated intrinsic signal imaging. On the contrary, this treatment led to a depression of V1 input through the previously closed contralateral eye, the characteristic signature of OD plasticity in juvenile mice during the critical period. Interestingly, the same result was obtained after AD. Taken together, these results suggest that cross-modally restored OD plasticity does not only depend on reduction of GABA levels in V1, but also requires other, so far unknown mechanisms.
Collapse
|
96
|
Guidolin D, Fede C, Tortorella C. Nerve cells developmental processes and the dynamic role of cytokine signaling. Int J Dev Neurosci 2018; 77:3-17. [PMID: 30465872 DOI: 10.1016/j.ijdevneu.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
The stunning diversity of neurons and glial cells makes possible the higher functions of the central nervous system (CNS), allowing the organism to sense, interpret and respond appropriately to the external environment. This cellular diversity derives from a single primary progenitor cell type initiating lineage leading to the formation of both differentiated neurons and glial cells. The processes governing the differentiation of the progenitor pool of cells into mature nerve cells will be here briefly reviewed. They involve morphological transformations, specialized modes of cell division, migration, and controlled cell death, and are regulated through cell-cell interactions and cues provided by the extracellular matrix, as well as by humoral factors from the cerebrospinal fluid and the blood system. In this respect, a quite large body of studies have been focused on cytokines, proteins representing the main signaling network that coordinates immune defense and the maintenance of homeostasis. At the same time, they are deeply involved in CNS development as regulatory factors. This dual role in the nervous system appears of particular relevance for CNS pathology, since cytokine dysregulation (occurring as a consequence of maternal infection, exposure to environmental factors or prenatal hypoxia) can profoundly impact on neurodevelopment and likely influence the response of the adult tissue during neuroinflammatory events.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, via Gabelli 65, I-35121, Padova, Italy
| | - Caterina Fede
- Department of Neuroscience, University of Padova, via Gabelli 65, I-35121, Padova, Italy
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, via Gabelli 65, I-35121, Padova, Italy
| |
Collapse
|
97
|
Vanderheyden WM, Goodman AG, Taylor RH, Frank MG, Van Dongen HPA, Gerstner JR. Astrocyte expression of the Drosophila TNF-alpha homologue, Eiger, regulates sleep in flies. PLoS Genet 2018; 14:e1007724. [PMID: 30379810 PMCID: PMC6209136 DOI: 10.1371/journal.pgen.1007724] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/30/2018] [Indexed: 01/15/2023] Open
Abstract
Sleep contributes to cognitive functioning and is sufficient to alter brain morphology and function. However, mechanisms underlying sleep regulation remain poorly understood. In mammals, tumor necrosis factor-alpha (TNFα) is known to regulate sleep, and cytokine expression may represent an evolutionarily ancient mechanism in sleep regulation. Here we show that the Drosophila TNFα homologue, Eiger, mediates sleep in flies. We show that knockdown of Eiger in astrocytes, but not in neurons, significantly reduces sleep duration, and total loss-of-function reduces the homeostatic response to sleep loss. In addition, we show that neuronal, but not astrocyte, expression of the TNFα receptor superfamily member, Wengen, is necessary for sleep deprivation-induced homeostatic response and for mediating increases in sleep in response to human TNFα. These data identify a novel astrocyte-to-neuron signaling mechanism in the regulation of sleep homeostasis and show that the Drosophila cytokine, Eiger, represents an evolutionarily conserved mechanism of sleep regulation across phylogeny. Every animal sleeps, from fruit flies to humans. However, the function of sleep is still currently unknown. Identifying conserved mechanisms of sleep regulation in evolutionarily ancient organisms may help us to understand the function of sleep. Therefore, we have examined whether Eiger, the homologue of the cytokine tumor necrosis factor-alpha (TNFα), regulates sleep in the fruit fly as it does in higher mammals. Cytokines are inflammatory molecules and are typically elevated following infection or fever and may contribute to increased sleepiness when sick. We found that, in the fruit fly, Eiger regulates sleep duration just like TNFα does in mammals: increasing cytokine levels increased sleep duration while decreasing Eiger reduced sleep. In addition, we found that Eiger expression in glial astrocytes, is responsible for the alteration in sleep duration. We also examined the necessity of Eiger receptor activation on neurons and found that astrocyte-to-neuron communication was required for regulating the normal increases in sleep following sleep deprivation. These data show that a novel cytokine mechanism regulates sleep in flies and mammals, and provides insight into conserved roles of astrocytes in sleep behavior.
Collapse
Affiliation(s)
- William M. Vanderheyden
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
- * E-mail: (WMV); (JRG)
| | - Alan G. Goodman
- School of Molecular Biosciences and Paul G. Allen School of Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Rebecca H. Taylor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
| | - Marcos G. Frank
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
| | - Hans P. A. Van Dongen
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
| | - Jason R. Gerstner
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
- * E-mail: (WMV); (JRG)
| |
Collapse
|
98
|
Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex. J Neurosci 2018; 38:10454-10466. [PMID: 30355624 DOI: 10.1523/jneurosci.1133-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022] Open
Abstract
Homeostatic synaptic plasticity is a synaptic mechanism through which the nervous system adjusts synaptic excitation and inhibition to maintain network stability. Retinoic acid (RA) and its receptor RARα have been established as critical mediators of homeostatic synaptic plasticity. In vitro studies reveal that RA signaling enhances excitatory synaptic strength and decreases inhibitory synaptic strength. However, it is unclear whether RA-mediated homeostatic synaptic plasticity occurs in vivo, and if so, whether it operates at specific types of synapses. Here, we examine the impact of RA/RARα signaling in the monocular zone of primary visual cortex (V1m) in mice of either sex. Exogenous RA treatment in acute cortical slices resulted in a reduction in mIPSCs of layer 2/3 pyramidal neurons, an effect mimicked by visual deprivation induced by binocular enucleation in postcritical period animals. Postnatal deletion of RARα blocked RA's effect on mIPSCs. Cell type-specific deletion of RARα revealed that RA acted specifically on parvalbumin (PV)-expressing interneurons. RARα deletion in PV+ interneurons blocked visual deprivation-induced changes in mIPSCs, demonstrating the critical involvement of RA signaling in PV+ interneurons in vivo Moreover, visual deprivation- or RA-induced downregulation of synaptic inhibition was absent in the visual cortical circuit of constitutive and PV-specific Fmr1 KO mice, strongly suggesting a functional interaction between fragile X mental retardation protein and RA signaling pathways. Together, our results demonstrate that RA/RARα signaling acts as a key component for homeostatic regulation of synaptic transmission at the inhibitory synapses of the visual cortex.SIGNIFICANCE STATEMENT In vitro studies established that retinoic acid (RA) and its receptor RARα play key roles in homeostatic synaptic plasticity, a mechanism by which synaptic excitation/inhibition balance and network stability are maintained. However, whether synaptic RA signaling operates in vivo remains undetermined. Here, using a conditional RARα KO mouse and cell type-specific Cre-driver lines, we showed that RARα signaling in parvalbumin-expressing interneurons is crucial for visual deprivation-induced homeostatic synaptic plasticity at inhibitory synapses in visual cortical circuits. Importantly, this form of synaptic plasticity is absent when fragile X mental retardation protein is selectively deleted in parvalbumin-expressing interneurons, suggesting a functional connection between RARα and fragile X mental retardation protein signaling pathways in vivo Thus, dysfunction of RA-dependent homeostatic plasticity may contribute to cortical circuit abnormalities in fragile X syndrome.
Collapse
|
99
|
Da Mesquita S, Fu Z, Kipnis J. The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron 2018; 100:375-388. [PMID: 30359603 PMCID: PMC6268162 DOI: 10.1016/j.neuron.2018.09.022] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
The nature of fluid dynamics within the brain parenchyma is a focus of intensive research. Of particular relevance is its participation in diseases associated with protein accumulation and aggregation in the brain, such as Alzheimer's disease (AD). The meningeal lymphatic vessels have recently been recognized as an important player in the complex circulation and exchange of soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). In aging mammals, for example, impaired functioning of the meningeal lymphatic vessels can lead to accelerated accumulation of toxic amyloid beta protein in the brain parenchyma, thus aggravating AD-related pathology. Given that meningeal lymphatic vessels are functionally linked to paravascular influx/efflux of the CSF/ISF, and in light of recent findings that certain cytokines, classically perceived as immune molecules, exert neuromodulatory effects, it is reasonable to suggest that the activity of meningeal lymphatics could alter the accessibility of CSF-borne immune neuromodulators to the brain parenchyma, thereby altering their effects on the brain. Accordingly, in this Perspective we propose that the meningeal lymphatic system can be viewed as a novel player in neurophysiology.
Collapse
Affiliation(s)
- Sandro Da Mesquita
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | - Zhongxiao Fu
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
100
|
Van Horn MR, Ruthazer ES. Glial regulation of synapse maturation and stabilization in the developing nervous system. Curr Opin Neurobiol 2018; 54:113-119. [PMID: 30347385 DOI: 10.1016/j.conb.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023]
Abstract
The dynamic interaction between neurons and glia is a fundamental aspect of developmental neurobiology. Astrocytic processes are extremely complex and can physically surround neuronal synapses where they are involved in regulating neuronal activity and synaptic plasticity. This review describes important roles glial cells play in synapse maturation and stabilization in the developing central nervous system. We highlight recent evidence showing that the motility of astrocytic and radial glial processes is modulated by neuronal signals and is important for normal synapse maturation and function. Examples of glia-derived molecules that influence synapse maturation and stabilization are presented. We close by touching on recent and future trends in neuron-glia research.
Collapse
Affiliation(s)
- Marion R Van Horn
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|