51
|
Davis ZW, Muller L, Reynolds JH. Spontaneous Spiking Is Governed by Broadband Fluctuations. J Neurosci 2022; 42:5159-5172. [PMID: 35606140 PMCID: PMC9236292 DOI: 10.1523/jneurosci.1899-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/31/2022] Open
Abstract
Populations of cortical neurons generate rhythmic fluctuations in their ongoing spontaneous activity. These fluctuations can be seen in the local field potential (LFP), which reflects summed return currents from synaptic activity in the local population near a recording electrode. The LFP is spectrally broad, and many researchers view this breadth as containing many narrowband oscillatory components that may have distinct functional roles. This view is supported by the observation that the phase of narrowband oscillations is often correlated with cortical excitability and can relate to the timing of spiking activity and the fidelity of sensory evoked responses. Accordingly, researchers commonly tune in to these channels by narrowband filtering the LFP. Alternatively, neural activity may be fundamentally broadband and composed of transient, nonstationary rhythms that are difficult to approximate as oscillations. In this view, the instantaneous state of the broad ensemble relates directly to the excitability of the local population with no particular allegiance to any frequency band. To test between these alternatives, we asked whether the spiking activity of neocortical neurons in marmoset of either sex is better aligned with the phase of the LFP within narrow frequency bands or with a broadband measure. We find that the phase of broadband LFP fluctuations provides a better predictor of spike timing than the phase after filtering in narrow bands. These results challenge the view of the neocortex as a system composed of narrowband oscillators and supports a view in which neural activity fluctuations are intrinsically broadband.SIGNIFICANCE STATEMENT Research into the dynamical state of neural populations often attributes unique significance to the state of narrowband oscillatory components. However, rhythmic fluctuations in cortical activity are nonstationary and broad spectrum. We find that the timing of spontaneous spiking activity is better captured by the state of broadband fluctuations over any latent oscillatory component. These results suggest narrowband interpretations of rhythmic population activity may be limited, and broader representations may provide higher fidelity in describing moment-to-moment fluctuations in cortical activity.
Collapse
Affiliation(s)
- Zachary W Davis
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - John H Reynolds
- Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
52
|
Malik A, Eldaly ABM, Chen K, Chan LLH. Neuronal Oscillatory Signatures in the Developing Mouse Visual Cortex After Short-Term Monocular Deprivation. Cereb Cortex 2022; 32:2657-2667. [DOI: 10.1093/cercor/bhab372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Development and maturation in cortical networks depend on neuronal activity. For stabilization and pruning of connections, synchronized oscillations play a crucial role. A fundamental mechanism that enables coordinated activity during brain functioning is formed of synchronized neuronal oscillations in low- (delta and theta) and high- (gamma) frequency bands. The relationship between neural synchrony, cognition, and the perceptual process has been widely studied, but any possible role of neural synchrony in amblyopia has been less explored. We hypothesized that monocular deprivation (MD) during early postnatal life would lead to changes in neuronal activity that would be demonstrated by changes in phase-amplitude coupling (PAC) and altered power in specific oscillatory frequency. Our results demonstrate that functional connectivity in the visual cortex is altered by MD during adolescence. The amplitude of high-frequency oscillations is modulated by the phase of low-frequency oscillations. Demonstration of enhanced delta–gamma and theta–gamma PAC indicates that our results are relevant for a broad range of nested oscillatory markers. These markers are inherent to neuronal processing and are consistent with the hypothesized increase in the intrinsic coupling that arises from neural oscillatory phase alignment. Our results reveal distinct frequency bands exhibit altered power and coherence variations modulated by experience-driven plasticity.
Collapse
Affiliation(s)
- Anju Malik
- Department of Electrical Engineering , City University of Hong Kong, Hong Kong SAR 999077, China
| | - Abdelrahman B M Eldaly
- Department of Electrical Engineering , City University of Hong Kong, Hong Kong SAR 999077, China
- Electrical Engineering Department , Faculty of Engineering, Minia University, Minia 61517, Egypt
| | - Ke Chen
- Sichuan Provincial People’s Hospital , School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Leanne Lai-Hang Chan
- Department of Electrical Engineering , City University of Hong Kong, Hong Kong SAR 999077, China
- Center for Biosystems , Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
53
|
Nunez-Elizalde AO, Krumin M, Reddy CB, Montaldo G, Urban A, Harris KD, Carandini M. Neural correlates of blood flow measured by ultrasound. Neuron 2022; 110:1631-1640.e4. [PMID: 35278361 PMCID: PMC9235295 DOI: 10.1016/j.neuron.2022.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022]
Abstract
Functional ultrasound imaging (fUSI) is an appealing method for measuring blood flow and thus infer brain activity, but it relies on the physiology of neurovascular coupling and requires extensive signal processing. To establish to what degree fUSI trial-by-trial signals reflect neural activity, we performed simultaneous fUSI and neural recordings with Neuropixels probes in awake mice. fUSI signals strongly correlated with the slow (<0.3 Hz) fluctuations in the local firing rate and were closely predicted by the smoothed firing rate of local neurons, particularly putative inhibitory neurons. The optimal smoothing filter had a width of ∼3 s, matched the hemodynamic response function of awake mice, was invariant across mice and stimulus conditions, and was similar in the cortex and hippocampus. fUSI signals also matched neural firing spatially: firing rates were as highly correlated across hemispheres as fUSI signals. Thus, blood flow measured by ultrasound bears a simple and accurate relationship to neuronal firing.
Collapse
Affiliation(s)
| | - Michael Krumin
- UCL Institute of Ophthalmology, University College London, London WC1E 6AE, UK
| | - Charu Bai Reddy
- UCL Institute of Ophthalmology, University College London, London WC1E 6AE, UK
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, 3001 Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium; Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, 3001 Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium; Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London WC1E 6AE, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London WC1E 6AE, UK.
| |
Collapse
|
54
|
Baratham VL, Dougherty ME, Hermiz J, Ledochowitsch P, Maharbiz MM, Bouchard KE. Columnar Localization and Laminar Origin of Cortical Surface Electrical Potentials. J Neurosci 2022; 42:3733-3748. [PMID: 35332084 PMCID: PMC9087723 DOI: 10.1523/jneurosci.1787-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Electrocorticography (ECoG) methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. To address this gap, we recorded from rat auditory cortex using customized μECoG, and simulated cortical surface electrical potentials with a full-scale, biophysically detailed cortical column model. Experimentally, μECoG-derived auditory representations were tonotopically organized and signals were anisotropically localized to less than or equal to ±200 μm, that is, a single cortical column. Biophysical simulations reproduce experimental findings and indicate that neurons in cortical layers V and VI contribute ∼85% of evoked high-gamma signal recorded at the surface. Cell number and synchrony were the primary biophysical properties determining laminar contributions to evoked μECoG signals, whereas distance was only a minimal factor. Thus, evoked μECoG signals primarily originate from neurons in the infragranular layers of a single cortical column.SIGNIFICANCE STATEMENT ECoG methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. We investigated the localization and origins of sensory-evoked ECoG responses. We experimentally found that ECoG responses were anisotropically localized to a cortical column. Biophysically detailed simulations revealed that neurons in layers V and VI were the primary sources of evoked ECoG responses. These results indicate that evoked ECoG high-gamma responses are primarily generated by the population spike rate of pyramidal neurons in layers V and VI of single cortical columns and highlight the possibility of understanding how microscopic sources produce mesoscale signals.
Collapse
Affiliation(s)
- Vyassa L Baratham
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California-Berkeley, Berkeley, California 94720
| | - Maximilian E Dougherty
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - John Hermiz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Michel M Maharbiz
- Center for Neural Engineering and Prosthesis, University of California-Berkeley/San Francisco, Berkeley, California 94720-3370
- Department of Electrical Engineering and Computer Science, University of California-Berkeley, Berkeley, California 94720
| | - Kristofer E Bouchard
- Center for Neural Engineering and Prosthesis, University of California-Berkeley/San Francisco, Berkeley, California 94720-3370
- Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience, University of California-Berkeley, Berkeley, California 94720
- Scientific Data Division, Lawerence Berkeley National Lab, Berkeley, California 94720
- Biological Systems and Engineering Division, Lawerence Berkeley National Lab, Berkeley, California 94720
| |
Collapse
|
55
|
Shah S, Mancarella M, Hembrook-Short JR, Mock VL, Briggs F. Attention differentially modulates multiunit activity in the lateral geniculate nucleus and V1 of macaque monkeys. J Comp Neurol 2022; 530:1064-1080. [PMID: 33950555 PMCID: PMC8568737 DOI: 10.1002/cne.25168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
Attention promotes the selection of behaviorally relevant sensory signals from the barrage of sensory information available. Visual attention modulates the gain of neuronal activity in all visual brain areas examined, although magnitudes of gain modulations vary across areas. For example, attention gain magnitudes in the dorsal lateral geniculate nucleus (LGN) and primary visual cortex (V1) vary tremendously across fMRI measurements in humans and electrophysiological recordings in behaving monkeys. We sought to determine whether these discrepancies are due simply to differences in species or measurement, or more nuanced properties unique to each visual brain area. We also explored whether robust and consistent attention effects, comparable to those measured in humans with fMRI, are observable in the LGN or V1 of monkeys. We measured attentional modulation of multiunit activity in the LGN and V1 of macaque monkeys engaged in a contrast change detection task requiring shifts in covert visual spatial attention. Rigorous analyses of LGN and V1 multiunit activity revealed robust and consistent attentional facilitation throughout V1, with magnitudes comparable to those observed with fMRI. Interestingly, attentional modulation in the LGN was consistently negligible. These findings demonstrate that discrepancies in attention effects are not simply due to species or measurement differences. We also examined whether attention effects correlated with the feature selectivity of recorded multiunits. Distinct relationships suggest that attentional modulation of multiunit activity depends upon the unique structure and function of visual brain areas.
Collapse
Affiliation(s)
- Shraddha Shah
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Marc Mancarella
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | | | - Vanessa L. Mock
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester NY 14627 USA
- Center for Visual Science, University of Rochester, Rochester NY 14627 USA
| |
Collapse
|
56
|
Bühning F, Miguel Telega L, Tong Y, Pereira J, Coenen V, Döbrössy M. Electrophysiological and molecular effects of bilateral deep brain stimulation of the medial forebrain bundle in a rodent model of depression. Exp Neurol 2022; 355:114122. [DOI: 10.1016/j.expneurol.2022.114122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/04/2022]
|
57
|
Shuffrey LC, Pini N, Potter M, Springer P, Lucchini M, Rayport Y, Sania A, Firestein M, Brink L, Isler JR, Odendaal H, Fifer WP. Aperiodic electrophysiological activity in preterm infants is linked to subsequent autism risk. Dev Psychobiol 2022; 64:e22271. [PMID: 35452546 PMCID: PMC9169229 DOI: 10.1002/dev.22271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022]
Abstract
Approximately 7% of preterm infants receive an autism spectrum disorder (ASD) diagnosis. Yet, there is a significant gap in the literature in identifying prospective markers of neurodevelopmental risk in preterm infants. The present study examined two electroencephalography (EEG) parameters during infancy, absolute EEG power and aperiodic activity of the power spectral density (PSD) slope, in association with subsequent autism risk and cognitive ability in a diverse cohort of children born preterm in South Africa. Participants were 71 preterm infants born between 25 and 36 weeks gestation (34.60 ± 2.34 weeks). EEG was collected during sleep between 39 and 41 weeks postmenstrual age adjusted (40.00 ± 0.42 weeks). The Bayley Scales of Infant Development and Brief Infant Toddler Social Emotional Assessment (BITSEA) were administered at approximately 3 years of age adjusted (34 ± 2.7 months). Aperiodic activity, but not the rhythmic oscillatory activity, at multiple electrode sites was associated with subsequent increased autism risk on the BITSEA at three years of age. No associations were found between the PSD slope or absolute EEG power and cognitive development. Our findings highlight the need to examine potential markers of subsequent autism risk in high-risk populations other than infants at familial risk.
Collapse
Affiliation(s)
- Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Mandy Potter
- Department of Obstetrics and Gynaecology, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Priscilla Springer
- Paediatrics and Child Health, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Yael Rayport
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Ayesha Sania
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Morgan Firestein
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Lucy Brink
- Department of Obstetrics and Gynaecology, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Joseph R Isler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Hein Odendaal
- Department of Obstetrics and Gynaecology, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA.,Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
58
|
Chaloner FA, Cooke SF. Multiple Mechanistically Distinct Timescales of Neocortical Plasticity Occur During Habituation. Front Cell Neurosci 2022; 16:840057. [PMID: 35465612 PMCID: PMC9033275 DOI: 10.3389/fncel.2022.840057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recognizing familiar but innocuous stimuli and suppressing behavioral response to those stimuli are critical steps in dedicating cognitive resources to significant elements of the environment. Recent work in the visual system has uncovered key neocortical mechanisms of this familiarity that emerges over days. Specifically, exposure to phase-reversing gratings of a specific orientation causes long-lasting stimulus-selective response potentiation (SRP) in layer 4 of mouse primary visual cortex (V1) as the animal's behavioral responses are reduced through habituation. This plasticity and concomitant learning require the NMDA receptor and the activity of parvalbumin-expressing (PV+) inhibitory neurons. Changes over the course of seconds and minutes have been less well studied in this paradigm, so we have here characterized cortical plasticity occurring over seconds and minutes, as well as days, to identify separable forms of plasticity accompanying familiarity. In addition, we show evidence of interactions between plasticity over these different timescales and reveal key mechanistic differences. Layer 4 visual-evoked potentials (VEPs) are potentiated over days, and they are depressed over minutes, even though both forms of plasticity coincide with significant reductions in behavioral response. Adaptation, classically described as a progressive reduction in synaptic or neural activity, also occurs over the course of seconds, but appears mechanistically separable over a second as compared to tens of seconds. Interestingly, these short-term forms of adaptation are modulated by long-term familiarity, such that they occur for novel but not highly familiar stimuli. Genetic knock-down of NMDA receptors within V1 prevents all forms of plasticity while, importantly, the modulation of short-term adaptation by long-term familiarity is gated by PV+ interneurons. Our findings demonstrate that different timescales of adaptation/habituation have divergent but overlapping mechanisms, providing new insight into how the brain is modified by experience to encode familiarity.
Collapse
Affiliation(s)
- Francesca A. Chaloner
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| | - Sam F. Cooke
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
59
|
Bujar Baruah SM, Roy S. Modelling neuron fiber interaction and coupling in non-myelinated bundled fiber. Biomed Phys Eng Express 2022; 8. [PMID: 35349986 DOI: 10.1088/2057-1976/ac620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
Understanding the local dynamics of a neural network relies heavily on local field potential and cell-field interaction. But it is still unclear how local the local potential is and what kinds of consequences the trans-membrane current flow and produced electric field have on the local neural fiber. Mimicking signal transmission in neighboring nerve fiber, a simulation model is built to analyze local behavior due to trans-membrane current, cell-field interactions, and their repercussions on the bundled fiber system. Simulation studies reveal that depending on the coupling parameters, activity in one fiber can depolarize or hyper-polarize adjacent fibers. The suggested cell-field interaction model was tested using an orientation-selective coupled retinal ganglion cell network, which was compared to its uncoupled counterpart. The proposed work has been used to model and simulate local signal dynamics in a bundled fiber system of an orientation-selective RGC network due to cell-field interaction, as well as to gain insight into the possible significance of dendritic fiber coupling in orientation selectivity bandwidth adjustment.
Collapse
Affiliation(s)
| | - Soumik Roy
- Department of Electronics and Communication Engineering, Tezpur University, Napam, Tezpur, Assam-784028, India
| |
Collapse
|
60
|
Zarei M, Jahed M, Dezfouli MP, Daliri MR. Sensory representation of visual stimuli in the coupling of low-frequency phase to spike times. Brain Struct Funct 2022; 227:1641-1654. [PMID: 35106628 DOI: 10.1007/s00429-022-02460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Neural synchronization has been engaged in several brain mechanisms. Previous studies have shown that the interaction between the time of spiking activity and phase of local field potentials (LFPs) plays a key role in many cognitive functions. However, the potential role of this spike-LFP phase coupling (SPC) in neural coding is not fully understood. Here, we sought to investigate the role of this SPC for encoding the sensory properties of visual stimuli. To this end, we measured SPC strength in the preferred and anti-preferred motion directions of stimulus presented inside the receptive field of middle temporal (MT) neurons. We found a selective response in terms of SPC strength for different directions of motion. Remarkably, this selective function is inverted with respect to the spiking activity. In other words, the least SPC occurs for the preferred direction (based on the spike rate), and vice versa; the strongest SPC is induced in the anti-preferred direction. Altogether, these findings imply that the neural system may use spike-LFP phase coupling in the primate visual cortex to encode sensory information.
Collapse
Affiliation(s)
- Mohammad Zarei
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,School of Electrical Engineering, Sharif University of Technology (SUT), Tehran, Iran
| | - Mehran Jahed
- School of Electrical Engineering, Sharif University of Technology (SUT), Tehran, Iran.
| | - Mohsen Parto Dezfouli
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Reza Daliri
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
61
|
Montgomery DP, Hayden DJ, Chaloner FA, Cooke SF, Bear MF. Stimulus-Selective Response Plasticity in Primary Visual Cortex: Progress and Puzzles. Front Neural Circuits 2022; 15:815554. [PMID: 35173586 PMCID: PMC8841555 DOI: 10.3389/fncir.2021.815554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Stimulus-selective response plasticity (SRP) is a robust and lasting modification of primary visual cortex (V1) that occurs in response to exposure to novel visual stimuli. It is readily observed as a pronounced increase in the magnitude of visual evoked potentials (VEPs) recorded in response to phase-reversing grating stimuli in neocortical layer 4. The expression of SRP at the individual neuron level is equally robust, but the qualities vary depending on the neuronal type and how activity is measured. This form of plasticity is highly selective for stimulus features such as stimulus orientation, spatial frequency, and contrast. Several key insights into the significance and underlying mechanisms of SRP have recently been made. First, it occurs concomitantly and shares core mechanisms with behavioral habituation, indicating that SRP reflects the formation of long-term familiarity that can support recognition of innocuous stimuli. Second, SRP does not manifest within a recording session but only emerges after an off-line period of several hours that includes sleep. Third, SRP requires not only canonical molecular mechanisms of Hebbian synaptic plasticity within V1, but also the opposing engagement of two key subclasses of cortical inhibitory neuron: the parvalbumin- and somatostatin-expressing GABAergic interneurons. Fourth, pronounced shifts in the power of cortical oscillations from high frequency (gamma) to low frequency (alpha/beta) oscillations provide respective readouts of the engagement of these inhibitory neuronal subtypes following familiarization. In this article we will discuss the implications of these findings and the outstanding questions that remain to gain a deeper understanding of this striking form of experience-dependent plasticity.
Collapse
Affiliation(s)
- Daniel P. Montgomery
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dustin J. Hayden
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Francesca A. Chaloner
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Samuel F. Cooke
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Mark F. Bear
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
62
|
Multi-Region Local Field Potential Signatures in Response to the Formalin-induced Inflammatory Stimulus in Male Rats. Brain Res 2022; 1778:147779. [PMID: 35007546 DOI: 10.1016/j.brainres.2022.147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Pain can be ignited by noxious chemical (e.g., acid), mechanical (e.g., pressure), and thermal (e.g., heat) stimuli and generated by the activation of sensory neurons and their axonal terminals called nociceptors in the periphery. Nociceptive information transmitted from the periphery is projected to the central nervous system (thalamus, somatosensory cortex, insular, anterior cingulate cortex, amygdala, periaqueductal grey, prefrontal cortex, etc.) to generate a unified experience of pain. Local field potential (LFP) recording is one of the neurophysiological tools to investigate the combined neuronal activity, ranging from several hundred micrometers to a few millimeters (radius), located around the embedded electrode. The advantage of recording LFP is that it provides stable simultaneous activities in various brain regions in response to external stimuli. In this study, differential LFP activities from the contralateral anterior cingulate cortex (ACC), ventral tegmental area (VTA), and bilateral amygdala in response to peripheral noxious formalin injection were recorded in anesthetized male rats. The results indicated increased power of delta, theta, alpha, beta, and gamma bands in the ACC and amygdala but no change of gamma-band in the right amygdala. Within the VTA, intensities of the delta, theta, and beta bands were only enhanced significantly after formalin injection. It was found that the connectivity (i.t. the coherence) among these brain regions reduced significantly under the formalin-induced nociception, which suggests a significant interruption within the brain. With further study, it will sort out the key combination of structures that will serve as the signature for pain state.
Collapse
|
63
|
Effects of Acute Ethanol Intoxication on Local Field Potentials in the Rat Lateral Septum. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
64
|
Adelhöfer N, Paulus T, Mückschel M, Bäumer T, Bluschke A, Takacs A, Tóth-Fáber E, Tárnok Z, Roessner V, Weissbach A, Münchau A, Beste C. Increased scale-free and aperiodic neural activity during sensorimotor integration-a novel facet in Tourette syndrome. Brain Commun 2021; 3:fcab250. [PMID: 34805995 PMCID: PMC8599001 DOI: 10.1093/braincomms/fcab250] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Tourette syndrome is a common neurodevelopmental disorder defined by multiple motor and phonic tics. Tics in Tourette syndrome resemble spontaneously occurring movements in healthy controls and are therefore sometimes difficult to distinguish from these. Tics may in fact be mis-interpreted as a meaningful action, i.e. a signal with social content, whereas they lack such information and could be conceived a surplus of action or 'motor noise'. These and other considerations have led to a 'neural noise account' of Tourette syndrome suggesting that the processing of neural noise and adaptation of the signal-to-noise ratio during information processing is relevant for the understanding of Tourette syndrome. So far, there is no direct evidence for this. Here, we tested the 'neural noise account' examining 1/f noise, also called scale-free neural activity as well as aperiodic activity, in n = 74 children, adolescents and adults with Tourette syndrome and n = 74 healthy controls during task performance using EEG data recorded during a sensorimotor integration task. In keeping with results of a previous study in adults with Tourette syndrome, behavioural data confirmed that sensorimotor integration was also stronger in this larger Tourette syndrome cohort underscoring the relevance of perceptual-action processes in this disorder. More importantly, we show that 1/f noise and aperiodic activity during sensorimotor processing is increased in patients with Tourette syndrome supporting the 'neural noise account'. This implies that asynchronous/aperiodic neural activity during sensorimotor integration is stronger in patients with Tourette syndrome compared to healthy controls, which is probably related to abnormalities of GABAergic and dopaminergic transmission in these patients. Differences in 1/f noise and aperiodic activity between patients with Tourette syndrome and healthy controls were driven by high-frequency oscillations and not lower-frequency activity currently discussed to be important in the pathophysiology of tics. This and the fact that Bayesian statistics showed that there is evidence for the absence of a correlation between neural noise and clinical measures of tics, suggest that increased 1/f noise and aperiodic activity are not directly related to tics but rather represents a novel facet of Tourette syndrome.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Theresa Paulus
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany.,Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, 1064 Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient Clinic, 1021 Budapest, Hungary
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Qianfoshan Campus, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, China
| |
Collapse
|
65
|
Klink PC, Chen X, Vanduffel V, Roelfsema P. Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex. eLife 2021; 10:67304. [PMID: 34730515 PMCID: PMC8641953 DOI: 10.7554/elife.67304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023] Open
Abstract
Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.
Collapse
Affiliation(s)
| | - Xing Chen
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - Pieter Roelfsema
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
66
|
Malik A, Eldaly ABM, Lai-Hang Chan L. Phase-amplitude modulation during critical period plasticity in mouse visual cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:96-99. [PMID: 34891248 DOI: 10.1109/embc46164.2021.9629593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Much of our understanding of experience-dependent plasticity originates from the level of single cells and synapses through the well-established techniques of whole-cell recording and calcium imaging. The study of cortical plasticity of neural oscillatory networks remains largely unexplored. Cross-frequency coupling has become an emerging tool to study the underlying mechanisms for synchronization and interaction between local and global processes of cortical networks. The phase of low-frequency oscillations modulates the amplitude of high-frequency oscillations through a phase-amplitude coupling. Recent studies found that gamma-band oscillations associate with critical period plasticity. The existence of such mechanisms in ocular dominance plasticity is yet to be fully demonstrated. In this study, in-vivo electrophysiological methods for recording local field potentials in the primary visual cortex (V1) of anesthetized mice are employed. Our results reveal the mechanisms of neuronal oscillatory activities for the experience-dependent plasticity of developing visual cortical circuits.
Collapse
|
67
|
Davis ZW, Benigno GB, Fletterman C, Desbordes T, Steward C, Sejnowski TJ, H Reynolds J, Muller L. Spontaneous traveling waves naturally emerge from horizontal fiber time delays and travel through locally asynchronous-irregular states. Nat Commun 2021; 12:6057. [PMID: 34663796 PMCID: PMC8523565 DOI: 10.1038/s41467-021-26175-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
Studies of sensory-evoked neuronal responses often focus on mean spike rates, with fluctuations treated as internally-generated noise. However, fluctuations of spontaneous activity, often organized as traveling waves, shape stimulus-evoked responses and perceptual sensitivity. The mechanisms underlying these waves are unknown. Further, it is unclear whether waves are consistent with the low rate and weakly correlated “asynchronous-irregular” dynamics observed in cortical recordings. Here, we describe a large-scale computational model with topographically-organized connectivity and conduction delays relevant to biological scales. We find that spontaneous traveling waves are a general property of these networks. The traveling waves that occur in the model are sparse, with only a small fraction of neurons participating in any individual wave. Consequently, they do not induce measurable spike correlations and remain consistent with locally asynchronous irregular states. Further, by modulating local network state, they can shape responses to incoming inputs as observed in vivo. Spontaneous traveling cortical waves shape neural responses. Using a large-scale computational model, the authors show that transmission delays shape locally asynchronous spiking dynamics into traveling waves without inducing correlations and boost responses to external input, as observed in vivo.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Gabriel B Benigno
- Department of Applied Mathematics, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | | | - Theo Desbordes
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON, Canada. .,Brain and Mind Institute, Western University, London, ON, Canada.
| |
Collapse
|
68
|
Williams B, Del Rosario J, Muzzu T, Peelman K, Coletta S, Bichler EK, Speed A, Meyer-Baese L, Saleem AB, Haider B. Spatial modulation of dark versus bright stimulus responses in the mouse visual system. Curr Biol 2021; 31:4172-4179.e6. [PMID: 34314675 PMCID: PMC8478832 DOI: 10.1016/j.cub.2021.06.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
A fundamental task of the visual system is to respond to both increases and decreases of luminance with action potentials (ON and OFF responses1-4). OFF responses are stronger, faster, and more salient than ON responses in primary visual cortex (V1) of both cats5,6 and primates,7,8 but in ferrets9 and mice,10 ON responses can be stronger, weaker,11 or balanced12 in comparison to OFF responses. These discrepancies could arise from differences in species, experimental techniques, or stimulus properties, particularly retinotopic location in the visual field, as has been speculated;9 however, the role of retinotopy for ON/OFF dominance has not been systematically tested across multiple scales of neural activity within species. Here, we measured OFF versus ON responses across large portions of visual space with silicon probe and whole-cell patch-clamp recordings in mouse V1 and lateral geniculate nucleus (LGN). We found that OFF responses dominated in the central visual field, whereas ON and OFF responses were more balanced in the periphery. These findings were consistent across local field potential (LFP), spikes, and subthreshold membrane potential in V1, and were aligned with spatial biases in ON and OFF responses in LGN. Our findings reveal that retinotopy may provide a common organizing principle for spatial modulation of OFF versus ON processing in mammalian visual systems.
Collapse
Affiliation(s)
- Brice Williams
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Joseph Del Rosario
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Tomaso Muzzu
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Kayla Peelman
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Edyta K Bichler
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lisa Meyer-Baese
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
69
|
Inferring entire spiking activity from local field potentials. Sci Rep 2021; 11:19045. [PMID: 34561480 PMCID: PMC8463692 DOI: 10.1038/s41598-021-98021-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Extracellular recordings are typically analysed by separating them into two distinct signals: local field potentials (LFPs) and spikes. Previous studies have shown that spikes, in the form of single-unit activity (SUA) or multiunit activity (MUA), can be inferred solely from LFPs with moderately good accuracy. SUA and MUA are typically extracted via threshold-based technique which may not be reliable when the recordings exhibit a low signal-to-noise ratio (SNR). Another type of spiking activity, referred to as entire spiking activity (ESA), can be extracted by a threshold-less, fast, and automated technique and has led to better performance in several tasks. However, its relationship with the LFPs has not been investigated. In this study, we aim to address this issue by inferring ESA from LFPs intracortically recorded from the motor cortex area of three monkeys performing different tasks. Results from long-term recording sessions and across subjects revealed that ESA can be inferred from LFPs with good accuracy. On average, the inference performance of ESA was consistently and significantly higher than those of SUA and MUA. In addition, local motor potential (LMP) was found to be the most predictive feature. The overall results indicate that LFPs contain substantial information about spiking activity, particularly ESA. This could be useful for understanding LFP-spike relationship and for the development of LFP-based BMIs.
Collapse
|
70
|
Schaworonkow N, Voytek B. Enhancing oscillations in intracranial electrophysiological recordings with data-driven spatial filters. PLoS Comput Biol 2021; 17:e1009298. [PMID: 34411096 PMCID: PMC8407590 DOI: 10.1371/journal.pcbi.1009298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
In invasive electrophysiological recordings, a variety of neural oscillations can be detected across the cortex, with overlap in space and time. This overlap complicates measurement of neural oscillations using standard referencing schemes, like common average or bipolar referencing. Here, we illustrate the effects of spatial mixing on measuring neural oscillations in invasive electrophysiological recordings and demonstrate the benefits of using data-driven referencing schemes in order to improve measurement of neural oscillations. We discuss referencing as the application of a spatial filter. Spatio-spectral decomposition is used to estimate data-driven spatial filters, a computationally fast method which specifically enhances signal-to-noise ratio for oscillations in a frequency band of interest. We show that application of these data-driven spatial filters has benefits for data exploration, investigation of temporal dynamics and assessment of peak frequencies of neural oscillations. We demonstrate multiple use cases, exploring between-participant variability in presence of oscillations, spatial spread and waveform shape of different rhythms as well as narrowband noise removal with the aid of spatial filters. We find high between-participant variability in the presence of neural oscillations, a large variation in spatial spread of individual rhythms and many non-sinusoidal rhythms across the cortex. Improved measurement of cortical rhythms will yield better conditions for establishing links between cortical activity and behavior, as well as bridging scales between the invasive intracranial measurements and noninvasive macroscale scalp measurements.
Collapse
Affiliation(s)
- Natalie Schaworonkow
- Department of Cognitive Science, University of California, San Diego, California, United States of America
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego, California, United States of America
- Halıcıoğlu Data Science Institute, University of California, San Diego, California, United States of America
- Neurosciences Graduate Program, University of California, San Diego, California, United States of America
- Kavli Institute for Brain and Mind, University of California, San Diego, California, United States of America
| |
Collapse
|
71
|
Barbero‐Castillo A, Riefolo F, Matera C, Caldas‐Martínez S, Mateos‐Aparicio P, Weinert JF, Garrido‐Charles A, Claro E, Sanchez‐Vives MV, Gorostiza P. Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005027. [PMID: 34018704 PMCID: PMC8292914 DOI: 10.1002/advs.202005027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/19/2021] [Indexed: 05/03/2023]
Abstract
The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.
Collapse
Affiliation(s)
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
- Department of Pharmaceutical SciencesUniversity of MilanMilan20133Italy
| | - Sara Caldas‐Martínez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Pedro Mateos‐Aparicio
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Julia F. Weinert
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Aida Garrido‐Charles
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Enrique Claro
- Institut de Neurociències and Departament de Bioquímica i Biologia MolecularUnitat de Bioquímica de MedicinaUniversitat Autònoma de Barcelona (UAB)Barcelona08193Spain
| | - Maria V. Sanchez‐Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| |
Collapse
|
72
|
Roh H, Kim JH, Koh SB, Kim JH. Correlating Beta Oscillations from Intraoperative Microelectrode and Postoperative Implanted Electrode in Patients Undergoing Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease; A Feasibility Study. World Neurosurg 2021; 152:e532-e539. [PMID: 34144163 DOI: 10.1016/j.wneu.2021.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We sought to investigate the feasibility of intraoperative local field potential (LFP) recording from the microelectrode during deep brain stimulation surgery for patients with Parkinson disease. METHODS Sixteen subthalamic nucleus recordings from 10 Parkinson disease patients who underwent deep brain stimulation surgery were included in this study. Signals from microelectrodes were amplified and differently filtered to display real-time single-unit neuronal activity and LFP simultaneously during surgery. LFP recordings were also recorded postoperatively from the implanted macroelectrodes and, power spectral density and peak frequency of beta oscillation of LFP (beta LFP) between 2 conditions were compared. RESULTS Stable intraoperative beta LFP were observed in 68.75% (11 of 16) cases. There was no significant difference of peak frequency between intraoperative and postoperative beta-LFP but significant difference of mean percentage of beta LFP was noted between 2 conditions. CONCLUSIONS Despite low signal-to-noise ratio and susceptibility to noises from external sources, this study shows that intraoperative recording of beta LFP using microelectrode is feasible. And, given that no significant difference in peak frequency of beta LFP between intraoperative and postoperative LFP was found, we suggest that not only intraoperative beta LFP can be used as a reliable surrogate for postoperative beta LFP, but it can also provide us an information for estimating the location with maximal power of beta oscillation within the subthalamic nucleus.
Collapse
Affiliation(s)
- Haewon Roh
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea; Trauma Center, Armed Forces Capital Hospital, Gyeonggi-do, Republic of Korea
| | - Jang Hun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Seong-Beom Koh
- Department of Neurology, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong Hyun Kim
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
73
|
Liu Y, Long X, Martin PR, Solomon SG, Gong P. Lévy walk dynamics explain gamma burst patterns in primate cerebral cortex. Commun Biol 2021; 4:739. [PMID: 34131276 PMCID: PMC8206356 DOI: 10.1038/s42003-021-02256-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Lévy walks describe patterns of intermittent motion with variable step sizes. In complex biological systems, Lévy walks (non-Brownian, superdiffusive random walks) are associated with behaviors such as search patterns of animals foraging for food. Here we show that Lévy walks also describe patterns of oscillatory activity in primate cerebral cortex. We used a combination of empirical observation and modeling to investigate high-frequency (gamma band) local field potential activity in visual motion-processing cortical area MT of marmoset monkeys. We found that gamma activity is organized as localized burst patterns that propagate across the cortical surface with Lévy walk dynamics. Lévy walks are fundamentally different from either global synchronization, or regular propagating waves, because they include large steps that enable activity patterns to move rapidly over cortical modules. The presence of Lévy walk dynamics therefore represents a previously undiscovered mode of brain activity, and implies a novel way for the cortex to compute. We apply a biophysically realistic circuit model to explain that the Lévy walk dynamics arise from critical-state transitions between asynchronous and localized propagating wave states, and that these dynamics yield optimal spatial sampling of the cortical sheet. We hypothesise that Lévy walk dynamics could help the cortex to efficiently process variable inputs, and to find links in patterns of activity among sparsely spiking populations of neurons.
Collapse
Affiliation(s)
- Yuxi Liu
- School of Physics, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Xian Long
- School of Physics, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Paul R Martin
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Samuel G Solomon
- Department of Experimental Psychology, University College London, London, UK
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
74
|
Miller SR, Yu S, Pajevic S, Plenz D. Long-term stability of avalanche scaling and integrative network organization in prefrontal and premotor cortex. Netw Neurosci 2021; 5:505-526. [PMID: 34189375 PMCID: PMC8233112 DOI: 10.1162/netn_a_00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
Ongoing neuronal activity in the brain establishes functional networks that reflect normal and pathological brain function. Most estimates of these functional networks suffer from low spatiotemporal resolution and indirect measures of neuronal population activity, limiting the accuracy and reliability in their reconstruction over time. Here, we studied the stability of neuronal avalanche dynamics and corresponding reconstructed functional networks in the adult brain. Using chronically implanted high-density microelectrode arrays, the local field potential (LFP) of resting-state activity was recorded in prefrontal and premotor cortex of awake nonhuman primates. Avalanche dynamics revealed stable scaling exhibiting an inverted parabolic profile and collapse exponent of 2 in line with a critical branching process over many days and weeks. Functional networks were based on a Bayesian-derived estimator and demonstrated stable integrative properties characterized by nontrivial high neighborhood overlap between strongly connected nodes and robustness to weak-link pruning. Entropy-based mixing analysis revealed significant changes in strong link weights over weeks. The long-term stability in avalanche scaling and integrative network organization in the face of individual link weight changes should support the development of noninvasive biomarkers to characterize normal and abnormal brain states in the adult brain. The brain is spontaneously active even in the absence of specific sensations or movements. This ongoing activity arises from the interactions among hundreds of thousands of neurons, which has been captured by a variety of distinct functional networks predictive of healthy and pathological brain functions. The global dynamical states and overarching network principles that underlie such ongoing brain activity are not well understood. Here we identify avalanche dynamics and “friendship” networks as two major features of ongoing activity in the frontal cortex of nonhuman primates. We demonstrate their stability over weeks in the face of local network changes. Deviation from avalanche dynamics and “friendship” organization might provide robust biomarkers to identify normal and pathological brain states.
Collapse
Affiliation(s)
- Stephanie R Miller
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Shan Yu
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Sinisa Pajevic
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Development, NIH, Bethesda, MD, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
75
|
Akkol S, Kucyi A, Hu W, Zhao B, Zhang C, Sava-Segal C, Liu S, Razavi B, Zhang J, Zhang K, Parvizi J. Intracranial Electroencephalography Reveals Selective Responses to Cognitive Stimuli in the Periventricular Heterotopias. J Neurosci 2021; 41:3870-3878. [PMID: 33727335 PMCID: PMC8084321 DOI: 10.1523/jneurosci.2785-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/27/2020] [Accepted: 03/06/2021] [Indexed: 11/21/2022] Open
Abstract
Our recent work suggests that non-lesional epileptic brain tissue is capable of generating normal neurophysiological responses during cognitive tasks, which are then seized by ongoing pathologic epileptic activity. Here, we aim to extend the scope of our work to epileptic periventricular heterotopias (PVH) and examine whether the PVH tissue also exhibits normal neurophysiological responses and network-level integration with other non-lesional cortical regions. As part of routine clinical assessment, three adult patients with PVH underwent implantation of intracranial electrodes and participated in experimental cognitive tasks. We obtained simultaneous recordings from PVH and remote cortical sites during rest as well as controlled experimental conditions. In all three subjects (two females), cognitive experimental conditions evoked significant electrophysiological responses in discrete locations within the PVH tissue that were correlated with responses seen in non-epileptic cortical sites. Moreover, the responsive PVH sites exhibited correlated electrophysiological activity with responsive, non-lesional cortical sites during rest conditions. Taken together, our work clearly demonstrates that the PVH tissue may be functionally organized and it may be functionally integrated within cognitively engaged cortical networks despite its anatomic displacement during neurodevelopment.SIGNIFICANCE STATEMENT Periventricular heterotopias (PVH) are developmentally abnormal brain tissues that frequently cause epileptic seizures. In a rare opportunity to obtain direct electrophysiological recordings from PVH, we were able to show that, contrary to common assumptions, PVH functional activity is similar to healthy cortical sites during a well-established cognitive task and exhibits clear resting state connectivity with the responsive cortical regions.
Collapse
Affiliation(s)
- Serdar Akkol
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Aaron Kucyi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Clara Sava-Segal
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Su Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Babak Razavi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
76
|
Le Merre P, Ährlund-Richter S, Carlén M. The mouse prefrontal cortex: Unity in diversity. Neuron 2021; 109:1925-1944. [PMID: 33894133 DOI: 10.1016/j.neuron.2021.03.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
The prefrontal cortex (PFC) is considered to constitute the highest stage of neural integration and to be devoted to representation and production of actions. Studies in primates have laid the foundation for theories regarding the principles of prefrontal function and provided mechanistic insights. The recent surge of studies of the PFC in mice holds promise for evolvement of present theories and development of novel concepts, particularly regarding principles shared across mammals. Here we review recent empirical work on the mouse PFC capitalizing on the experimental toolbox currently privileged to studies in this species. We conclude that this line of research has revealed cellular and structural distinctions of the PFC and neuronal activity with direct relevance to theories regarding the functions of the PFC. We foresee that data-rich mouse studies will be key to shed light on the general prefrontal architecture and mechanisms underlying cognitive aspects of organized actions.
Collapse
Affiliation(s)
- Pierre Le Merre
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.
| |
Collapse
|
77
|
Münchau A, Colzato LS, AghajaniAfjedi A, Beste C. A neural noise account of Gilles de la Tourette syndrome. NEUROIMAGE-CLINICAL 2021; 30:102654. [PMID: 33839644 PMCID: PMC8055711 DOI: 10.1016/j.nicl.2021.102654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
A neural noise account on Tourette syndrome is conceptualized. We outline how neurophysiological methods can be used to test this account. The neural noise account may lead to novel treatment options.
Tics, often preceded by premonitory urges, are the clinical hallmark of Tourette syndrome. They resemble spontaneous movements, but are exaggerated, repetitive and appear misplaced in a given communication context. Given that tics often go unnoticed, it has been suggested that they represent a surplus of action, or motor noise. In this conceptual position paper, we propose that tics and urges, but also patterns of the cognitive profile in Tourette syndrome might be explained by the principle of processing of neural noise and adaptation to it during information processing. We review evidence for this notion in the light of Tourette pathophysiology and outline why neurophysiological and imaging approaches are central to examine a possibly novel view on Tourette syndrome. We discuss how neurophysiological data at multiple levels of inspections, i.e., from local field potentials using intra-cranial recording to scalp-measured EEG data, in combination with imaging approaches, can be used to examine the neural noise account in Tourette syndrome. We outline what signal processing methods may be suitable for that. We argue that, as a starting point, the analysis of 1/f neural noise or scale-free activity may be suitable to investigate the role of neural noise and its adaptation during information processing in Tourette syndrome. We outline, how the neural noise perspective, if substantiated by further neurophysiological studies and re-analyses of existing data, may pave the way to novel interventions directly targeting neural noise levels and patterns in Tourette syndrome.
Collapse
Affiliation(s)
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany; Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Azam AghajaniAfjedi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
78
|
Trumpis M, Chiang CH, Orsborn AL, Bent B, Li J, Rogers JA, Pesaran B, Cogan G, Viventi J. Sufficient sampling for kriging prediction of cortical potential in rat, monkey, and human µECoG. J Neural Eng 2021; 18. [PMID: 33326943 DOI: 10.1088/1741-2552/abd460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Objective. Large channel count surface-based electrophysiology arrays (e.g. µECoG) are high-throughput neural interfaces with good chronic stability. Electrode spacing remains ad hoc due to redundancy and nonstationarity of field dynamics. Here, we establish a criterion for electrode spacing based on the expected accuracy of predicting unsampled field potential from sampled sites.Approach. We applied spatial covariance modeling and field prediction techniques based on geospatial kriging to quantify sufficient sampling for thousands of 500 ms µECoG snapshots in human, monkey, and rat. We calculated a probably approximately correct (PAC) spacing based on kriging that would be required to predict µECoG fields at≤10% error for most cases (95% of observations).Main results. Kriging theory accurately explained the competing effects of electrode density and noise on predicting field potential. Across five frequency bands from 4-7 to 75-300 Hz, PAC spacing was sub-millimeter for auditory cortex in anesthetized and awake rats, and posterior superior temporal gyrus in anesthetized human. At 75-300 Hz, sub-millimeter PAC spacing was required in all species and cortical areas.Significance. PAC spacing accounted for the effect of signal-to-noise on prediction quality and was sensitive to the full distribution of non-stationary covariance states. Our results show that µECoG arrays should sample at sub-millimeter resolution for applications in diverse cortical areas and for noise resilience.
Collapse
Affiliation(s)
- Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Amy L Orsborn
- Center for Neural Science, New York University, New York, NY 10003, United States of America.,Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, United States of America.,Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States of America.,Washington National Primate Research Center, Seattle, Washington 98195, United States of America
| | - Brinnae Bent
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Jinghua Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America.,Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America.,Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, United States of America
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America.,Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, United States of America.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States of America.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003, United States of America
| | - Gregory Cogan
- Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, United States of America.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States of America.,Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States of America.,Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, United States of America
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America.,Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, United States of America.,Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, United States of America.,Department of Neurobiology, Duke School of Medicine, Durham, NC 27710, United States of America
| |
Collapse
|
79
|
Wang B, Han C, Wang T, Dai W, Li Y, Yang Y, Yang G, Zhong L, Zhang Y, Wu Y, Wang G, Yu H, Xing D. Superimposed gratings induce diverse response patterns of gamma oscillations in primary visual cortex. Sci Rep 2021; 11:4941. [PMID: 33654121 PMCID: PMC7925546 DOI: 10.1038/s41598-021-83923-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Stimulus-dependence of gamma oscillations (GAMMA, 30-90 Hz) has not been fully understood, but it is important for revealing neural mechanisms and functions of GAMMA. Here, we recorded spiking activity (MUA) and the local field potential (LFP), driven by a variety of plaids (generated by two superimposed gratings orthogonal to each other and with different contrast combinations), in the primary visual cortex of anesthetized cats. We found two distinct narrow-band GAMMAs in the LFPs and a variety of response patterns to plaids. Similar to MUA, most response patterns showed that the second grating suppressed GAMMAs driven by the first one. However, there is only a weak site-by-site correlation between cross-orientation interactions in GAMMAs and those in MUAs. We developed a normalization model that could unify the response patterns of both GAMMAs and MUAs. Interestingly, compared with MUAs, the GAMMAs demonstrated a wider range of model parameters and more diverse response patterns to plaids. Further analysis revealed that normalization parameters for high GAMMA, but not those for low GAMMA, were significantly correlated with the discrepancy of spatial frequency between stimulus and sites' preferences. Consistent with these findings, normalization parameters and diversity of high GAMMA exhibited a clear transition trend and region difference between area 17 to 18. Our results show that GAMMAs are also regulated in the form of normalization, but that the neural mechanisms for these normalizations might differ from those of spiking activity. Normalizations in different brain signals could be due to interactions of excitation and inhibitions at multiple stages in the visual system.
Collapse
Affiliation(s)
- Bin Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Chuanliang Han
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Weifeng Dai
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yang Li
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yi Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Guanzhong Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Lvyan Zhong
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yange Zhang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Gang Wang
- grid.410318.f0000 0004 0632 3409Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, 100085 China
| | - Hongbo Yu
- grid.8547.e0000 0001 0125 2443Vision Research Laboratory, Center for Brain Science Research and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433 China
| | - Dajun Xing
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
80
|
Abbaspourazad H, Choudhury M, Wong YT, Pesaran B, Shanechi MM. Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nat Commun 2021; 12:607. [PMID: 33504797 PMCID: PMC7840738 DOI: 10.1038/s41467-020-20197-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
Motor function depends on neural dynamics spanning multiple spatiotemporal scales of population activity, from spiking of neurons to larger-scale local field potentials (LFP). How multiple scales of low-dimensional population dynamics are related in control of movements remains unknown. Multiscale neural dynamics are especially important to study in naturalistic reach-and-grasp movements, which are relatively under-explored. We learn novel multiscale dynamical models for spike-LFP network activity in monkeys performing naturalistic reach-and-grasps. We show low-dimensional dynamics of spiking and LFP activity exhibited several principal modes, each with a unique decay-frequency characteristic. One principal mode dominantly predicted movements. Despite distinct principal modes existing at the two scales, this predictive mode was multiscale and shared between scales, and was shared across sessions and monkeys, yet did not simply replicate behavioral modes. Further, this multiscale mode's decay-frequency explained behavior. We propose that multiscale, low-dimensional motor cortical state dynamics reflect the neural control of naturalistic reach-and-grasp behaviors.
Collapse
Affiliation(s)
- Hamidreza Abbaspourazad
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mahdi Choudhury
- Center for Neural Science, New York University, New York City, NY, 10003, USA
| | - Yan T Wong
- Center for Neural Science, New York University, New York City, NY, 10003, USA
- Department of Physiology, and Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, 3800, Australia
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York City, NY, 10003, USA
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
81
|
Li Z, Du Y, Xiao Y, Yin L. Predicting Grating Orientations With Cross-Frequency Coupling and Least Absolute Shrinkage and Selection Operator in V1 and V4 of Rhesus Monkeys. Front Comput Neurosci 2021; 14:605104. [PMID: 33584234 PMCID: PMC7874040 DOI: 10.3389/fncom.2020.605104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Orientation selectivity, as an emergent property of neurons in the visual cortex, is of critical importance in the processing of visual information. Characterizing the orientation selectivity based on neuronal firing activities or local field potentials (LFPs) is a hot topic of current research. In this paper, we used cross-frequency coupling and least absolute shrinkage and selection operator (LASSO) to predict the grating orientations in V1 and V4 of two rhesus monkeys. The experimental data were recorded by utilizing two chronically implanted multi-electrode arrays, which were placed, respectively, in V1 and V4 of two rhesus monkeys performing a selective visual attention task. The phase-amplitude coupling (PAC) and amplitude-amplitude coupling (AAC) were employed to characterize the cross-frequency coupling of LFPs under sinusoidal grating stimuli with different orientations. Then, a LASSO logistic regression model was constructed to predict the grating orientation based on the strength of PAC and AAC. Moreover, the cross-validation method was used to evaluate the performance of the model. It was found that the average accuracy of the prediction based on the combination of PAC and AAC was 73.9%, which was higher than the predicting accuracy with PAC or AAC separately. In conclusion, a LASSO logistic regression model was introduced in this study, which can predict the grating orientations with relatively high accuracy by using PAC and AAC together. Our results suggest that the principle behind the LASSO model is probably an alternative direction to explore the mechanism for generating orientation selectivity.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China.,Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China
| | - Yue Du
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Youben Xiao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Liyong Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
82
|
Bellay T, Shew WL, Yu S, Falco-Walter JJ, Plenz D. Selective Participation of Single Cortical Neurons in Neuronal Avalanches. Front Neural Circuits 2021; 14:620052. [PMID: 33551757 PMCID: PMC7862716 DOI: 10.3389/fncir.2020.620052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal avalanches are scale-invariant neuronal population activity patterns in the cortex that emerge in vivo in the awake state and in vitro during balanced excitation and inhibition. Theory and experiments suggest that avalanches indicate a state of cortex that improves numerous aspects of information processing by allowing for the transient and selective formation of local as well as system-wide spanning neuronal groups. If avalanches are indeed involved with information processing, one might expect that single neurons would participate in avalanche patterns selectively. Alternatively, all neurons could participate proportionally to their own activity in each avalanche as would be expected for a population rate code. Distinguishing these hypotheses, however, has been difficult as robust avalanche analysis requires technically challenging measures of their intricate organization in space and time at the population level, while also recording sub- or suprathreshold activity from individual neurons with high temporal resolution. Here, we identify repeated avalanches in the ongoing local field potential (LFP) measured with high-density microelectrode arrays in the cortex of awake nonhuman primates and in acute cortex slices from young and adult rats. We studied extracellular unit firing in vivo and intracellular responses of pyramidal neurons in vitro. We found that single neurons participate selectively in specific LFP-based avalanche patterns. Furthermore, we show in vitro that manipulating the balance of excitation and inhibition abolishes this selectivity. Our results support the view that avalanches represent the selective, scale-invariant formation of neuronal groups in line with the idea of Hebbian cell assemblies underlying cortical information processing.
Collapse
Affiliation(s)
- Timothy Bellay
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Woodrow L. Shew
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Shan Yu
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jessica J. Falco-Walter
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
83
|
Han C, Wang T, Wu Y, Li Y, Yang Y, Li L, Wang Y, Xing D. The Generation and Modulation of Distinct Gamma Oscillations with Local, Horizontal, and Feedback Connections in the Primary Visual Cortex: A Model Study on Large-Scale Networks. Neural Plast 2021; 2021:8874516. [PMID: 33531893 PMCID: PMC7834828 DOI: 10.1155/2021/8874516] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 11/23/2022] Open
Abstract
Gamma oscillation (GAMMA) in the local field potential (LFP) is a synchronized activity commonly found in many brain regions, and it has been thought as a functional signature of network connectivity in the brain, which plays important roles in information processing. Studies have shown that the response property of GAMMA is related to neural interaction through local recurrent connections (RC), feed-forward (FF), and feedback (FB) connections. However, the relationship between GAMMA and long-range horizontal connections (HC) in the brain remains unclear. Here, we aimed to understand this question in a large-scale network model for the primary visual cortex (V1). We created a computational model composed of multiple excitatory and inhibitory units with biologically plausible connectivity patterns for RC, FF, FB, and HC in V1; then, we quantitated GAMMA in network models at different strength levels of HC and other connection types. Surprisingly, we found that HC and FB, the two types of large-scale connections, play very different roles in generating and modulating GAMMA. While both FB and HC modulate a fast gamma oscillation (around 50-60 Hz) generated by FF and RC, HC generates a new GAMMA oscillating around 30 Hz, whose power and peak frequency can also be modulated by FB. Furthermore, response properties of the two GAMMAs in a network with both HC and FB are different in a way that is highly consistent with a recent experimental finding for distinct GAMMAs in macaque V1. The results suggest that distinct GAMMAs are signatures for neural connections in different spatial scales and they might be related to different functions for information integration. Our study, for the first time, pinpoints the underlying circuits for distinct GAMMAs in a mechanistic model for macaque V1, which might provide a new framework to study multiple gamma oscillations in other cortical regions.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yizheng Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
84
|
Krishna A, Tanabe S, Kohn A. Decision Signals in the Local Field Potentials of Early and Mid-Level Macaque Visual Cortex. Cereb Cortex 2021; 31:169-183. [PMID: 32852540 PMCID: PMC7727373 DOI: 10.1093/cercor/bhaa218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
The neural basis of perceptual decision making has typically been studied using measurements of single neuron activity, though decisions are likely based on the activity of large neuronal ensembles. Local field potentials (LFPs) may, in some cases, serve as a useful proxy for population activity and thus be useful for understanding the neural basis of perceptual decision making. However, little is known about whether LFPs in sensory areas include decision-related signals. We therefore analyzed LFPs recorded using two 48-electrode arrays implanted in primary visual cortex (V1) and area V4 of macaque monkeys trained to perform a fine orientation discrimination task. We found significant choice information in low (0-30 Hz) and higher (70-500 Hz) frequency components of the LFP, but little information in gamma frequencies (30-70 Hz). Choice information was more robust in V4 than V1 and stronger in LFPs than in simultaneously measured spiking activity. LFP-based choice information included a global component, common across electrodes within an area. Our findings reveal the presence of robust choice-related signals in the LFPs recorded in V1 and V4 and suggest that LFPs may be a useful complement to spike-based analyses of decision making.
Collapse
Affiliation(s)
- Aravind Krishna
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India
| | - Seiji Tanabe
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
85
|
Sun B, Zhang H, Zhang Y, Wu Z, Bao B, Hu Y, Li T. Compressed sensing of large-scale local field potentials using adaptive sparsity analysis and Non-convex Optimization. J Neural Eng 2020; 18. [PMID: 33348334 DOI: 10.1088/1741-2552/abd578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Energy consumption is a critical issue in resource-constrained wireless neural recording applications with limited data bandwidth. Compressed sensing (CS) has emerged as a powerful framework in addressing this issue owing to its highly efficient data compression procedure. In this paper, a CS-based approach termed Simultaneous Analysis Non-Convex Optimization (SANCO) is proposed for large-scale, multi-channel local field potentials (LFPs) recording. APPROACH The SANCO method consists of three parts: (1) the analysis model is adopted to reinforce sparsity of the multi-channel LFPs, therefore overcoming the drawbacks of conventional synthesis models. (2) An optimal continuous order difference matrix is constructed as the analysis operator, enhancing the recovery performance while saving both computational resources and data storage space. (3) A non-convex optimizer that can by efficiently solved with alternating direction method of multipliers (ADMM) is developed for multi-channel LFPs reconstruction. MAIN RESULTS Experimental results on real datasets reveal that the proposed approach outperforms state-of-the-art CS methods in terms of both recovery quality and computational efficiency. SIGNIFICANCE Energy efficiency of the SANCO make it an ideal candidate for resource-constrained, large scale wireless neural recording. Particularly, the proposed method ensures that the key features of LFPs had little degradation even when data are compressed by 16x, making it very suitable for long term wireless neural recording applications.
Collapse
Affiliation(s)
- Biao Sun
- School of Electrical and Information Engineering, Tianjin University, No92, Weijin Road, Nankai District, Tianjin, Tianjin, 300072, CHINA
| | - Han Zhang
- School of Electrical and Information Engineering, Tianjin University, No92, Weijin Road, Nankai District, Tianjin, 300072, CHINA
| | - Yunyan Zhang
- Department of Physics, Paderborn University, Warburger Strase 100, 33098 Paderborn, Paderborn, Nordrhein-Westfalen, 33098, GERMANY
| | - Zexu Wu
- School of Electrical and Information Engineering, Tianjin University, No92, Weijin Road, Nankai District, Tianjin, 300072, CHINA
| | - Botao Bao
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, No 236, Baidi Road, Nankai District, Tianjin, Tianjin, 300192, CHINA
| | - Yong Hu
- Department of Orthopaedics and Traumatology, Hong Kong University, Professorial Block, Queen Mary Hospital, Pok Fu Lam, Hong Kong, Hong Kong, 999077, HONG KONG
| | - Ting Li
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, No 236, Baidi Road, Nankai District, Tianjin, 300192, CHINA
| |
Collapse
|
86
|
Ahmadi N, Constandinou T, Bouganis CS. Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. J Neural Eng 2020; 18. [PMID: 33242850 DOI: 10.1088/1741-2552/abce3c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE There has recently been an increasing interest in local field potential (LFP) for brain-machine interface (BMI) applications due to its desirable properties (signal stability and low bandwidth). LFP is typically recorded with respect to a single unipolar reference which is susceptible to common noise. Several referencing schemes have been proposed to eliminate the common noise, such as bipolar reference, current source density (CSD), and common average reference (CAR). However, to date, there have not been any studies to investigate the impact of these referencing schemes on decoding performance of LFP-based BMIs. APPROACH To address this issue, we comprehensively examined the impact of different referencing schemes and LFP features on the performance of hand kinematic decoding using a deep learning method. We used LFPs chronically recorded from the motor cortex area of a monkey while performing reaching tasks. MAIN RESULTS Experimental results revealed that local motor potential (LMP) emerged as the most informative feature regardless of the referencing schemes. Using LMP as the feature, CAR was found to yield consistently better decoding performance than other referencing schemes over long-term recording sessions. Significance Overall, our results suggest the potential use of LMP coupled with CAR for enhancing the decoding performance of LFP-based BMIs.
Collapse
Affiliation(s)
- Nur Ahmadi
- Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Timothy Constandinou
- Electrical & Electronic Engineering, Imperial College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Christos-Savvas Bouganis
- Electrical and Electronic Engineering, Imperial College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
87
|
Torres D, Makarova J, Ortuño T, Benito N, Makarov VA, Herreras O. Local and Volume-Conducted Contributions to Cortical Field Potentials. Cereb Cortex 2020; 29:5234-5254. [PMID: 30941394 DOI: 10.1093/cercor/bhz061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Brain field potentials (FPs) can reach far from their sources, making difficult to know which waves come from where. We show that modern algorithms efficiently segregate the local and remote contributions to cortical FPs by recovering the generator-specific spatial voltage profiles. We investigated experimentally and numerically the local and remote origin of FPs in different cortical areas in anesthetized rats. All cortices examined show significant state, layer, and region dependent contribution of remote activity, while the voltage profiles help identify their subcortical or remote cortical origin. Co-activation of different cortical modules can be discriminated by the distinctive spatial features of the corresponding profiles. All frequency bands contain remote activity, thus influencing the FP time course, in cases drastically. The reach of different FP patterns is boosted by spatial coherence and curved geometry of the sources. For instance, slow cortical oscillations reached the entire brain, while hippocampal theta reached only some portions of the cortex. In anterior cortices, most alpha oscillations have a remote origin, while in the visual cortex the remote theta and gamma even surpass the local contribution. The quantitative approach to local and distant FP contributions helps to refine functional connectivity among cortical regions, and their relation to behavior.
Collapse
Affiliation(s)
- Daniel Torres
- Department of Translational Neuroscience, Cajal Institute - CSIC, Av. Dr. Arce 37, Madrid, Spain
| | - Julia Makarova
- Department of Translational Neuroscience, Cajal Institute - CSIC, Av. Dr. Arce 37, Madrid, Spain
| | - Tania Ortuño
- Department of Translational Neuroscience, Cajal Institute - CSIC, Av. Dr. Arce 37, Madrid, Spain
| | - Nuria Benito
- Department of Translational Neuroscience, Cajal Institute - CSIC, Av. Dr. Arce 37, Madrid, Spain
| | - Valeri A Makarov
- Instituto de Matemática Interdisciplinar, Faculty of Mathematics, Universidad, Complutense de Madrid, Madrid, Spain.,N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Oscar Herreras
- Department of Translational Neuroscience, Cajal Institute - CSIC, Av. Dr. Arce 37, Madrid, Spain
| |
Collapse
|
88
|
Stock A, Pertermann M, Mückschel M, Beste C. High-dose ethanol intoxication decreases 1/f neural noise or scale-free neural activity in the resting state. Addict Biol 2020; 25:e12818. [PMID: 31368192 DOI: 10.1111/adb.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Abstract
Binge drinking is a frequent phenomenon in many western societies and has been associated with an increased risk of developing alcohol use disorder later in life. Yet, the effects of high-dose alcohol intoxication on neurophysiological processes are still quite poorly understood. This is particularly the case given that neurophysiological brain activity not only contains recurring (oscillatory) patterns of activity, but also a significant fraction of "scale-free" or arrhythmic dynamics referred to as 1/f type activity, pink noise, or 1/f neural noise. Neurobiological considerations suggest that it should be modulated by alcohol intoxication. To investigate this assumption, we collected resting state EEG data from n = 23 healthy young male subjects in a crossover design, where each subject was once tested sober and once tested while intoxicated (mean breath alcohol concentration of 1.1 permille ±0.2). Analyses of the 1/f neural dynamics showed that ethanol intoxication decreased resting state 1/f neural noise, as compared with a sober state. The effects were strongest when the eyes were closed and particularly reliable in the beta frequency band. Given that the dynamics of the beta band have been shown to strongly depend on GABAA receptor neural transmission, this finding nicely aligns with the fact that ethanol increases GABAergic signaling. The study reveals a currently unreported effect of binge drinking on neurophysiological dynamics, which likely revealed a higher sensitivity for ethanol effects than most commonly considered measures of power in neural oscillations. Implications and applicability of these findings are discussed.
Collapse
Affiliation(s)
- Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| | - Maik Pertermann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Germany
| |
Collapse
|
89
|
Davis ZW, Muller L, Martinez-Trujillo J, Sejnowski T, Reynolds JH. Spontaneous travelling cortical waves gate perception in behaving primates. Nature 2020; 587:432-436. [PMID: 33029013 PMCID: PMC7677221 DOI: 10.1038/s41586-020-2802-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Perceptual sensitivity varies from moment to moment. One potential source of variability is spontaneous fluctuations in cortical activity that can travel as a wave1. Spontaneous traveling waves have been reported during anesthesia2–7, but it is not known whether spontaneous traveling waves play a role during waking perception. Using newly developed analytic techniques to characterize the moment-to-moment dynamics of noisy multielectrode data, we find spontaneous waves of activity in extrastriate visual cortex of awake, behaving marmosets (Callithrix jacchus). In monkeys trained to detect faint visual targets, the timing and position of spontaneous traveling waves, prior to target onset, predict the magnitude of target-evoked activity and the likelihood of target detection. In contrast, spatially disorganized fluctuations of neural activity are much less predictive. These results reveal an important role for spontaneous traveling waves in sensory processing through modulating neural and perceptual sensitivity.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lyle Muller
- The Salk Institute for Biological Studies, La Jolla, CA, USA.,Department of Applied Mathematics, Western University, London, Ontario, Canada.,Robarts Research and Brain and Mind Institute, Western University, London, Ontario, Canada.,Institut de Neurosciences de la Timone (INT), UMR7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Julio Martinez-Trujillo
- Robarts Research and Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
90
|
Martini ML, Oermann EK, Opie NL, Panov F, Oxley T, Yaeger K. Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review. Neurosurgery 2020; 86:E108-E117. [PMID: 31361011 DOI: 10.1093/neuros/nyz286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/04/2019] [Indexed: 12/23/2022] Open
Abstract
Brain-computer interface (BCI) technology is rapidly developing and changing the paradigm of neurorestoration by linking cortical activity with control of an external effector to provide patients with tangible improvements in their ability to interact with the environment. The sensor component of a BCI circuit dictates the resolution of brain pattern recognition and therefore plays an integral role in the technology. Several sensor modalities are currently in use for BCI applications and are broadly either electrode-based or functional neuroimaging-based. Sensors vary in their inherent spatial and temporal resolutions, as well as in practical aspects such as invasiveness, portability, and maintenance. Hybrid BCI systems with multimodal sensory inputs represent a promising development in the field allowing for complimentary function. Artificial intelligence and deep learning algorithms have been applied to BCI systems to achieve faster and more accurate classifications of sensory input and improve user performance in various tasks. Neurofeedback is an important advancement in the field that has been implemented in several types of BCI systems by showing users a real-time display of their recorded brain activity during a task to facilitate their control over their own cortical activity. In this way, neurofeedback has improved BCI classification and enhanced user control over BCI output. Taken together, BCI systems have progressed significantly in recent years in terms of accuracy, speed, and communication. Understanding the sensory components of a BCI is essential for neurosurgeons and clinicians as they help advance this technology in the clinical setting.
Collapse
Affiliation(s)
- Michael L Martini
- Department of Neurosurgery, Mount Sinai Hospital, New York, New York
| | - Eric Karl Oermann
- Department of Neurosurgery, Mount Sinai Hospital, New York, New York
| | - Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, Melbourne University, Melbourne, Australia
| | - Fedor Panov
- Department of Neurosurgery, Mount Sinai Hospital, New York, New York
| | - Thomas Oxley
- Department of Neurosurgery, Mount Sinai Hospital, New York, New York.,Vascular Bionics Laboratory, Department of Medicine, Melbourne University, Melbourne, Australia
| | - Kurt Yaeger
- Department of Neurosurgery, Mount Sinai Hospital, New York, New York
| |
Collapse
|
91
|
Flexible Electrocorticography Electrode Array for Epileptiform Electrical Activity Recording under Glutamate and GABA Modulation on the Primary Somatosensory Cortex of Rats. MICROMACHINES 2020; 11:mi11080732. [PMID: 32751055 PMCID: PMC7465452 DOI: 10.3390/mi11080732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Epilepsy is a common neurological disorder. There is still a lack of methods to accurately detect cortical activity and locate lesions. In this work, a flexible electrocorticography (ECoG) electrode array based on polydimethylsiloxane (PDMS)-parylene was fabricated to detect epileptiform activity under glutamate (Glu) and gamma-aminobutyric acid (GABA) modulation on primary somatosensory cortex of rats. The electrode with a thickness of 20 μm has good flexibility to establish reliable contact with the cortex. Fourteen recording sites with a diameter of 60 μm are modified by electroplating platinum black nanoparticles, which effectively improve the performance with lower impedance, obtaining a sensitive sensing interface. The electrode enables real-time capturing changes in neural activity under drug modulation. Under Glu modulation, neuronal populations showed abnormal excitability, manifested as hypsarrhythmia rhythm and continuous or periodic spike wave epileptiform activity, with power increasing significantly. Under GABA modulation, the excitement was inhibited, with amplitude and power reduced to normal. The flexible ECoG electrode array could monitor cortical activity, providing us with an effective tool for further studying epilepsy and locating lesions.
Collapse
|
92
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
93
|
Telenczuk B, Telenczuk M, Destexhe A. A kernel-based method to calculate local field potentials from networks of spiking neurons. J Neurosci Methods 2020; 344:108871. [PMID: 32687850 DOI: 10.1016/j.jneumeth.2020.108871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The local field potential (LFP) is usually calculated from current sources arising from transmembrane currents, in particular in asymmetric cellular morphologies such as pyramidal neurons. NEW METHOD Here, we adopt a different point of view and relate the spiking of neurons to the LFP through efferent synaptic connections and provide a method to calculate LFPs. RESULTS We show that the so-called unitary LFPs (uLFP) provide the key to such a calculation. We show experimental measurements and simulations of uLFPs in neocortex and hippocampus, for both excitatory and inhibitory neurons. We fit a "kernel" function to measurements of uLFPs, and we estimate its spatial and temporal spread by using simulations of morphologically detailed reconstructions of hippocampal pyramidal neurons. Assuming that LFPs are the sum of uLFPs generated by every neuron in the network, the LFP generated by excitatory and inhibitory neurons can be calculated by convolving the trains of action potentials with the kernels estimated from uLFPs. This provides a method to calculate the LFP from networks of spiking neurons, even for point neurons for which the LFP is not easily defined. We show examples of LFPs calculated from networks of point neurons and compare to the LFP calculated from synaptic currents. CONCLUSIONS The kernel-based method provides a practical way to calculate LFPs from networks of point neurons.
Collapse
Affiliation(s)
- Bartosz Telenczuk
- Paris-Saclay University, Institute of Neuroscience (NeuroPSI), CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Maria Telenczuk
- Paris-Saclay University, Institute of Neuroscience (NeuroPSI), CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Alain Destexhe
- Paris-Saclay University, Institute of Neuroscience (NeuroPSI), CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France.
| |
Collapse
|
94
|
Li Z, Dong Z, Bai X, Liu M. Characterizing the orientation selectivity in V1 and V4 of macaques by quadratic phase coupling. J Neural Eng 2020; 17:036028. [PMID: 32480396 DOI: 10.1088/1741-2552/ab9843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Orientation selectivity is one of the significant characteristics of neurons in the primary visual cortex (V1). Some neurons in extrastriate visual cortical areas also exhibit certain orientation selectivity. But it is still not well understood that how the orientation selectivity generates. Most previous studies about the orientation selectivity are based on the spike firing rate. However, the spikes are prone to be biased by the detection and sorting algorithms. Then, in this paper, the local field potential (LFP) is adopted to investigate the mechanism of orientation selectivity. APPROACH We used the quadratic phase coupling (QPC), which was calculated by wavelet bicoherence, to describe the characteristics of orientation selectivity available in V1 and V4. The raw wideband neural signals were recorded by two chronically implanted multi-electrode arrays, which were placed in V1 and V4 respectively in two macaques performing a selective visual attention task. MAIN RESULTS There is a strong correlation between the total bicoherence (TotalBic), which is a quantization for the overall QPC of frequency pairs in gamma band, and the grating orientation. Furthermore, the QPC distribution at the non-preferred orientation is mainly concentrated in the low frequencies (30-40 Hz) of gamma; while the QPC distribution at the preferred orientation concentrates in both the low frequencies and high frequencies (60-80 Hz) of gamma. In addition, the TotalBic of the gamma-band LFP between V1 and V4 varies with the grating orientations, indicating that the QPC is available in the feedforward link and the gamma-band LFP in V1 modulates the QPC in V4. SIGNIFICANCE The QPC reflects the orientations of the sinusoidal grating and describes the interaction of gamma-band LFP between different brain regions. Our results suggest that the QPC is an alternative avenue to explore the mechanism for generating orientation selectivity of visual neurons effectively.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, People's Republic of China. Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, People's Republic of China
| | | | | | | |
Collapse
|
95
|
Liu J, Whiteway MR, Sheikhattar A, Butts DA, Babadi B, Kanold PO. Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits. Cell Rep 2020; 27:872-885.e7. [PMID: 30995483 DOI: 10.1016/j.celrep.2019.03.069] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Natural sounds have rich spectrotemporal dynamics. Spectral information is spatially represented in the auditory cortex (ACX) via large-scale maps. However, the representation of temporal information, e.g., sound offset, is unclear. We perform multiscale imaging of neuronal and thalamic activity evoked by sound onset and offset in awake mouse ACX. ACX areas differed in onset responses (On-Rs) and offset responses (Off-Rs). Most excitatory L2/3 neurons show either On-Rs or Off-Rs, and ACX areas are characterized by differing fractions of On and Off-R neurons. Somatostatin and parvalbumin interneurons show distinct temporal dynamics, potentially amplifying Off-Rs. Functional network analysis shows that ACX areas contain distinct parallel onset and offset networks. Thalamic (MGB) terminals show either On-Rs or Off-Rs, indicating a thalamic origin of On and Off-R pathways. Thus, ACX areas spatially represent temporal features, and this representation is created by spatial convergence and co-activation of distinct MGB inputs and is refined by specific intracortical connectivity.
Collapse
Affiliation(s)
- Ji Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Whiteway
- Applied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USA
| | - Alireza Sheikhattar
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Daniel A Butts
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Applied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - Behtash Babadi
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
96
|
Song XM, Li M, Xu T, Hu D, Roe AW. Precise Targeting of Single Microelectrodes to Orientation Pinwheel Centers. Bio Protoc 2020; 10:e3643. [PMID: 33659313 DOI: 10.21769/bioprotoc.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 11/02/2022] Open
Abstract
In the mammalian visual system, early stages of visual form perception begin with orientation selective neurons in primary visual cortex (V1). In many species (including humans, monkeys, tree shrews, cats, and ferrets), these neurons are organized in pinwheel-like orientation columns. To study the functional organization within orientation pinwheels, it is important to target pinwheel subdomains precisely. We therefore developed a technique to provide a quantitative determination of the location of pinwheel centers (PCs). Previous studies relied solely on blood vessel images of the cortical surface to guide electrode penetrations to PCs in orientation maps. However, considerable spatial error remained using this method. In the present study, we improved the accuracy of targeting PCs by ensuring perpendicularity of electrodes and by utilizing the orientation tuning of local field potentials (LFP) recorded at or near the optically determined positions.
Collapse
Affiliation(s)
- Xue Mei Song
- Mental Health Center, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China.,Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Li
- College of Artificial Intelligence, National University of Defense Technology, Changsha 410073, China
| | - Tao Xu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Dewen Hu
- College of Artificial Intelligence, National University of Defense Technology, Changsha 410073, China
| | - Anna Wang Roe
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
97
|
Sharafeldin A, Mock VL, Meisenhelter S, Hembrook-Short JR, Briggs F. Changes in Local Network Activity Approximated by Reverse Spike-Triggered Local Field Potentials Predict the Focus of Attention. Cereb Cortex Commun 2020; 1:tgaa014. [PMID: 32864614 PMCID: PMC7446294 DOI: 10.1093/texcom/tgaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
The effects of visual spatial attention on neuronal firing rates have been well characterized for neurons throughout the visual processing hierarchy. Interestingly, the mechanisms by which attention generates more or fewer spikes in response to a visual stimulus remain unknown. One possibility is that attention boosts the likelihood that synaptic inputs to a neuron result in spikes. We performed a novel analysis to measure local field potentials (LFPs) just prior to spikes, or reverse spike-triggered LFP “wavelets,” for neurons recorded in primary visual cortex (V1) of monkeys performing a contrast change detection task requiring covert shifts in visual spatial attention. We used dimensionality reduction to define LFP wavelet shapes with single numerical values, and we found that LFP wavelet shape changes correlated with changes in neuronal firing rate. We then tested whether a simple classifier could predict monkeys’ focus of attention from LFP wavelet shape. LFP wavelet shapes sampled in discrete windows were predictive of the locus of attention for some neuronal types. These findings suggest that LFP wavelets are a useful proxy for local network activity influencing spike generation, and changes in LFP wavelet shape are predictive of the focus of attention.
Collapse
Affiliation(s)
- Abdelrahman Sharafeldin
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Vanessa L Mock
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Stephen Meisenhelter
- Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH 03755, USA
| | | | - Farran Briggs
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.,Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
98
|
Dhingra RR, Dick TE, Furuya WI, Galán RF, Dutschmann M. Volumetric mapping of the functional neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. J Physiol 2020; 598:2061-2079. [PMID: 32100293 DOI: 10.1113/jp279605] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional neuroanatomy of the mammalian respiratory network is far from being understood since experimental tools that measure neural activity across this brainstem-wide circuit are lacking. Here, we use silicon multi-electrode arrays to record respiratory local field potentials (rLFPs) from 196-364 electrode sites within 8-10 mm3 of brainstem tissue in single arterially perfused brainstem preparations with respect to the ongoing respiratory motor pattern of inspiration (I), post-inspiration (PI) and late-expiration (E2). rLFPs peaked specifically at the three respiratory phase transitions, E2-I, I-PI and PI-E2. We show, for the first time, that only the I-PI transition engages a brainstem-wide network, and that rLFPs during the PI-E2 transition identify a hitherto unknown role for the dorsal respiratory group. Volumetric mapping of pontomedullary rLFPs in single preparations could become a reliable tool for assessing the functional neuroanatomy of the respiratory network in health and disease. ABSTRACT While it is widely accepted that inspiratory rhythm generation depends on the pre-Bötzinger complex, the functional neuroanatomy of the neural circuits that generate expiration is debated. We hypothesized that the compartmental organization of the brainstem respiratory network is sufficient to generate macroscopic local field potentials (LFPs), and if so, respiratory (r) LFPs could be used to map the functional neuroanatomy of the respiratory network. We developed an approach using silicon multi-electrode arrays to record spontaneous LFPs from hundreds of electrode sites in a volume of brainstem tissue while monitoring the respiratory motor pattern on phrenic and vagal nerves in the perfused brainstem preparation. Our results revealed the expression of rLFPs across the pontomedullary brainstem. rLFPs occurred specifically at the three transitions between respiratory phases: (1) from late expiration (E2) to inspiration (I), (2) from I to post-inspiration (PI), and (3) from PI to E2. Thus, respiratory network activity was maximal at respiratory phase transitions. Spatially, the E2-I, and PI-E2 transitions were anatomically localized to the ventral and dorsal respiratory groups, respectively. In contrast, our data show, for the first time, that the generation of controlled expiration during the post-inspiratory phase engages a distributed neuronal population within ventral, dorsal and pontine network compartments. A group-wise independent component analysis demonstrated that all preparations exhibited rLFPs with a similar temporal structure and thus share a similar functional neuroanatomy. Thus, volumetric mapping of rLFPs could allow for the physiological assessment of global respiratory network organization in health and disease.
Collapse
Affiliation(s)
- Rishi R Dhingra
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne, Australia
| | - Thomas E Dick
- Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, USA
| | - Werner I Furuya
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne, Australia
| | - Roberto F Galán
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
99
|
Wyeth M, Nagendran M, Buckmaster PS. Ictal onset sites and γ-aminobutyric acidergic neuron loss in epileptic pilocarpine-treated rats. Epilepsia 2020; 61:856-867. [PMID: 32242932 DOI: 10.1111/epi.16490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The present study tested whether ictal onset sites are regions of more severe interneuron loss in epileptic pilocarpine-treated rats, a model of human temporal lobe epilepsy. METHODS Local field potential recordings were evaluated to identify ictal onset sites. Electrode sites were visualized in Nissl-stained sections. Adjacent sections were processed with proximity ligation in situ hybridization for glutamic acid decarboxylase 2 (Gad2). Gad2 neuron profile numbers at ictal onset sites were compared to contralateral regions. Other sections were processed with immunocytochemistry for reelin or nitric oxide synthase (NOS), which labeled major subtypes of granule cell layer-associated interneurons. Stereology was used to estimate numbers of reelin and NOS granule cell layer-associated interneurons per hippocampus. RESULTS Ictal onset sites varied between and within rats but were mostly in the ventral hippocampus and were frequently bilateral. There was no conclusive evidence of more severe Gad2 neuron profile loss at sites of earliest seizure activity compared to contralateral regions. Numbers of granule cell layer-associated NOS neurons were reduced in the ventral hippocampus. SIGNIFICANCE In epileptic pilocarpine-treated rats, ictal onset sites were mostly in the ventral hippocampus, where there was loss of granule cell layer-associated NOS interneurons. These findings suggest the hypothesis that loss of granule cell layer-associated NOS interneurons in the ventral hippocampus is a mechanism of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Megan Wyeth
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Monica Nagendran
- Department of Medicine-Pulmonary and Critical Care, Stanford University, Stanford, California
| | - Paul S Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California.,Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
100
|
Hagen S, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J. Spatially Dissociated Intracerebral Maps for Face- and House-Selective Activity in the Human Ventral Occipito-Temporal Cortex. Cereb Cortex 2020; 30:4026-4043. [PMID: 32301963 DOI: 10.1093/cercor/bhaa022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report a comprehensive mapping of the human ventral occipito-temporal cortex (VOTC) for selective responses to frequency-tagged faces or landmarks (houses) presented in rapid periodic trains of objects, with intracerebral recordings in a large sample (N = 75). Face-selective contacts are three times more numerous than house-selective contacts and show a larger amplitude, with a right hemisphere advantage for faces. Most importantly, these category-selective contacts are spatially dissociated along the lateral-to-medial VOTC axis, respectively, consistent with neuroimaging evidence. At the minority of "overlap" contacts responding selectively to both faces and houses, response amplitude to the two categories is not correlated, suggesting a contribution of distinct populations of neurons responding selectively to each category. The medio-lateral dissociation also extends into the underexplored anterior temporal lobe (ATL). In this region, a relatively high number of intracerebral recording contacts show category-exclusive responses (i.e., without any response to baseline visual objects) to faces but rarely to houses, in line with the proposed role of this region in processing people-related semantic information. Altogether, these observations shed novel insight on the neural basis of human visual recognition and strengthen the validity of the frequency-tagging approach coupled with intracerebral recordings in epileptic patients to understand human brain function.
Collapse
Affiliation(s)
- Simen Hagen
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France
| | - Corentin Jacques
- Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve B-1348, Belgium
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy F-54000, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, Nancy F-54000, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve B-1348, Belgium.,Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy F-54000, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy F-54000, France
| |
Collapse
|