51
|
Schmid R, Evans RJ. ATP-Gated P2X Receptor Channels: Molecular Insights into Functional Roles. Annu Rev Physiol 2018; 81:43-62. [PMID: 30354932 DOI: 10.1146/annurev-physiol-020518-114259] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the nervous system, ATP is co-stored in vesicles with classical transmitters and released in a regulated manner. ATP from the intracellular compartment can also exit the cell through hemichannels and following shear stress or membrane damage. In the past 30 years, the action of ATP as an extracellular transmitter at cell-surface receptors has evolved from somewhat of a novelty that was treated with skepticism to purinergic transmission being accepted as having widespread important functional roles mediated by ATP-gated ionotropic P2X receptors (P2XRs). This review focuses on work published in the last five years and provides an overview of ( a) structural studies, ( b) the molecular basis of channel properties and regulation of P2XRs, and ( c) the physiological and pathophysiological roles of ATP acting at defined P2XR subtypes.
Collapse
Affiliation(s)
- Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom;
| |
Collapse
|
52
|
Peverini L, Beudez J, Dunning K, Chataigneau T, Grutter T. New Insights Into Permeation of Large Cations Through ATP-Gated P2X Receptors. Front Mol Neurosci 2018; 11:265. [PMID: 30108481 PMCID: PMC6080412 DOI: 10.3389/fnmol.2018.00265] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022] Open
Abstract
The permeability of large cations through the P2X pore has remained arguably the most controversial and complicated topic in P2X-related research, with the emergence of conflicting studies on the existence, mechanism and physiological relevance of a so-called “dilated” state. Due to the important role of several “dilating” P2X subtypes in numerous diseases, a clear and detailed understanding of this phenomenon represents a research priority. Recent advances, however, have challenged the existence of a progressive, ATP-induced pore dilation, by demonstrating that this phenomenon is an artifact of the method employed. Here, we discuss briefly the history of this controversial and enigmatic dilated state, from its initial discovery to its recent reconsideration. We will discuss the literature in which mechanistic pathways to a large cation-permeable state are proposed, as well as important advances in the methodology employed to study this elusive state. Considering recent literature, we will also open the discussion as to whether an intrinsically dilating P2X pore exists, as well as the physiological relevance of such a large cation-permeable pore and its potential use as therapeutic pathway.
Collapse
Affiliation(s)
- Laurie Peverini
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Juline Beudez
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Kate Dunning
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thierry Chataigneau
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thomas Grutter
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
53
|
Lalo U, Bogdanov A, Pankratov Y. Diversity of Astroglial Effects on Aging- and Experience-Related Cortical Metaplasticity. Front Mol Neurosci 2018; 11:239. [PMID: 30057525 PMCID: PMC6053488 DOI: 10.3389/fnmol.2018.00239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Activity-dependent regulation of synaptic plasticity, or metaplasticity, plays a key role in the adaptation of neuronal networks to physiological and biochemical changes in aging brain. There is a growing evidence that experience-related alterations in the mechanisms of synaptic plasticity can underlie beneficial effects of physical exercise and caloric restriction (CR) on brain health and cognition. Astrocytes, which form neuro-vascular interface and can modulate synaptic plasticity by release of gliotransmitters, attract an increasing attention as important element of brain metaplasticity. We investigated the age- and experience-related alterations in astroglial calcium signaling and stimulus-dependence of long-term synaptic plasticity in the neocortex of mice exposed to the mild CR and environmental enrichment (EE) which included ad libitum physical exercise. We found out that astrocytic Ca2+-signaling underwent considerable age-related decline but EE and CR enhanced astroglial signaling, in particular mediated by noradrenaline (NA) and endocannabinoid receptors. The release of ATP and D-Serine from astrocytes followed the same trends of age-related declined and EE-induced increase. Our data also showed that astrocyte-derived ATP and D-Serine can have diverse effects on the threshold and magnitude of long-term changes in the strength of neocortical synapses; these effects were age-dependent. The CR- and EE-induced enhancement of astroglial Ca2+-signaling had more stronger effect on synaptic plasticity in the old (14–18 months) than in the young (2–5 months) wild-type (WT) mice. The effects of CR and EE on synaptic plasticity were significantly altered in both young and aged dnSNARE mice. Combined, our data suggest astrocyte-neuron interactions are important for dynamic regulation of cortical synaptic plasticity. This interaction can significantly decline with aging and thus contributes to the age-related cognitive impairment. On another hand, experience-related increase in the astroglial Ca2+-signaling can ameliorate the age-related decline.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Alexander Bogdanov
- Institute for Chemistry and Biology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
54
|
Mayhew J, Graham BA, Biber K, Nilsson M, Walker FR. Purinergic modulation of glutamate transmission: An expanding role in stress-linked neuropathology. Neurosci Biobehav Rev 2018; 93:26-37. [PMID: 29959963 DOI: 10.1016/j.neubiorev.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 02/04/2023]
Abstract
Chronic stress has been extensively linked to disturbances in glutamatergic signalling. Emerging from this field of research is a considerable number of studies identifying the ability of purines at the pre-, post-, and peri-synaptic levels to tune glutamatergic neurotransmission. While the evidence describing purinergic control of glutamate has continued to grow, there has been relatively little attention given to how chronic stress modulates purinergic functions. The available research on this topic has demonstrated that chronic stress can not only disturb purinergic receptors involved in the regulation of glutamate neurotransmission, but also perturb glial-dependent purinergic signalling. This review will provide a detailed examining of the complex literature relating to glutamatergic-purinergic interactions with a focus on both neuronal and glial contributions. Once these detailed interactions have been described and contextualised, we will integrate recent findings from the field of stress research.
Collapse
Affiliation(s)
- J Mayhew
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - K Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, 79104 Freiburg, Germany; Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - M Nilsson
- Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
55
|
Dynamic landscape of the local translation at activated synapses. Mol Psychiatry 2018; 23:107-114. [PMID: 29203851 PMCID: PMC5754473 DOI: 10.1038/mp.2017.245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is the central regulator of cap-dependent translation at the synapse. Disturbances in mTOR pathway have been associated with several neurological diseases, such as autism and epilepsy. RNA-binding protein FMRP, a negative regulator of translation initiation, is one of the key components of the local translation system. Activation and inactivation of FMRP occurs via phosphorylation by S6 kinase and dephosphorylation by PP2A phosphatase, respectively. S6 kinase and PP2A phosphatase are activated in response to mGluR receptor stimulation through different signaling pathways and at different rates. The dynamic aspects of this system are poorly understood. We developed a mathematical model of FMRP-dependent regulation of postsynaptic density (PSD) protein synthesis in response to mGluR receptor stimulation and conducted in silico experiments to study the regulatory circuit functioning. The modeling results revealed the possibility of generating oscillatory (cyclic and quasi-cyclic), chaotic and even hyperchaotic dynamics of postsynaptic protein synthesis as well as the presence of multiple attractors in a wide range of parameters of the local translation system. The results suggest that autistic disorders associated with mTOR pathway hyperactivation may be due to impaired proteome stability associated with the formation of complex dynamic regimes of PSD protein synthesis in response to stimulation of mGluR receptors on the postsynaptic membrane of excitatory synapses on pyramidal hippocampal cells.
Collapse
|
56
|
Menéndez-Méndez A, Díaz-Hernández JI, Ortega F, Gualix J, Gómez-Villafuertes R, Miras-Portugal MT. Specific Temporal Distribution and Subcellular Localization of a Functional Vesicular Nucleotide Transporter (VNUT) in Cerebellar Granule Neurons. Front Pharmacol 2017; 8:951. [PMID: 29311945 PMCID: PMC5744399 DOI: 10.3389/fphar.2017.00951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Adenosine triphosphate (ATP) is an important extracellular neurotransmitter that participates in several critical processes like cell differentiation, neuroprotection or axon guidance. Prior to its exocytosis, ATP must be stored in secretory vesicles, a process that is mediated by the Vesicular Nucleotide Transporter (VNUT). This transporter has been identified as the product of the SLC17A9 gene and it is prominently expressed in discrete brain areas, including the cerebellum. The main population of cerebellar neurons, the glutamatergic granule neurons, depends on purinergic signaling to trigger neuroprotective responses. However, while nucleotide receptors like P2X7 and P2Y13 are known to be involved in neuroprotection, the mechanisms that regulate ATP release in relation to such events are less clearly understood. In this work, we demonstrate that cerebellar granule cells express a functional VNUT that is involved in the regulation of ATP exocytosis. Numerous vesicles loaded with this nucleotide can be detected in these granule cells and are staining by the fluorescent ATP-marker, quinacrine. High potassium stimulation reduces quinacrine fluorescence in granule cells, indicating they release ATP via calcium dependent exocytosis. Specific subcellular markers were used to assess the localization of VNUT in granule cells, and the transporter was detected in both the axonal and somatodendritic compartments, most predominantly in the latter. However, co-localization with the specific lysosomal marker LAMP-1 indicated that VNUT can also be found in non-synaptic vesicles, such as lysosomes. Interestingly, the weak co-localization between VNUT and VGLUT1 suggests that the ATP and glutamate vesicle pools are segregated, as also observed in the cerebellar cortex. During post-natal cerebellar development, VNUT is found in granule cell precursors, co-localizing with markers of immature cells like doublecortin, suggesting that this transporter may be implicated in the initial stages of granule cell development.
Collapse
Affiliation(s)
- Aida Menéndez-Méndez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan I Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - María T Miras-Portugal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.,University Institute of Neurochemistry Research (IUIN), Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
57
|
Conde SV, Monteiro EC, Sacramento JF. Purines and Carotid Body: New Roles in Pathological Conditions. Front Pharmacol 2017; 8:913. [PMID: 29311923 PMCID: PMC5733106 DOI: 10.3389/fphar.2017.00913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2017] [Indexed: 01/28/2023] Open
Abstract
It is known that adenosine and adenosine-5′-triphosphate (ATP) are excitatory mediators involved in carotid body (CB) hypoxic signaling. The CBs are peripheral chemoreceptors classically defined by O2, CO2, and pH sensors. When hypoxia activates the CB, it induces the release of neurotransmitters from chemoreceptor cells leading to an increase in the action potentials frequency at the carotid sinus nerve (CSN). This increase in the firing frequency of the CSN is integrated in the brainstem to induce cardiorespiratory compensatory responses. In the last decade several pathologies, as, hypertension, diabetes, obstructive sleep apnea and heart failure have been associated with CB overactivation. In the first section of the present manuscript we review in a concise manner fundamental aspects of purine metabolism. The second section is devoted to the role of purines on the hypoxic response of the CB, providing the state-of-the art for the presence of adenosine and ATP receptors in the CB; for the role of purines at presynaptic level in CB chemoreceptor cells, as well as, its metabolism and regulation; at postsynaptic level in the CSN activity; and on the ventilatory responses to hypoxia. Recently, we have showed that adenosine is involved in CB hypersensitization during chronic intermittent hypoxia (CIH), which mimics obstructive sleep apnea, since caffeine, a non-selective adenosine receptor antagonist that inhibits A2A and A2B adenosine receptors, decreased CSN chemosensory activity in animals subjected to CIH. Apart from this involvement of adenosine in CB sensitization in sleep apnea, it was recently found that P2X3 ATP receptor in the CB contributes to increased chemoreflex hypersensitivity and hypertension in spontaneously hypertension rats. Therefore the last section of this manuscript is devoted to review the recent findings on the role of purines in CB-mediated pathologies as hypertension, diabetes and sleep apnea emphasizing the potential clinical importance of modulating purines levels and action to treat pathologies associated with CB dysfunction.
Collapse
Affiliation(s)
- Silvia V Conde
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Emilia C Monteiro
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
58
|
Heller JP, Rusakov DA. The Nanoworld of the Tripartite Synapse: Insights from Super-Resolution Microscopy. Front Cell Neurosci 2017; 11:374. [PMID: 29225567 PMCID: PMC5705901 DOI: 10.3389/fncel.2017.00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Synaptic connections between individual nerve cells are fundamental to the process of information transfer and storage in the brain. Over the past decades a third key partner of the synaptic machinery has been unveiled: ultrathin processes of electrically passive astroglia which often surround pre- and postsynaptic structures. The recent advent of super-resolution (SR) microscopy has begun to uncover the dynamic nanoworld of synapses and their astroglial environment. Here we overview and discuss the current progress in our understanding of the synaptic nanoenvironment, as gleaned from the imaging methods that go beyond the diffraction limit of conventional light microscopy. We argue that such methods are essential to achieve a new level of comprehension pertinent to the principles of signal integration in the brain.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Neuroscience, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
59
|
Conley JM, Radhakrishnan S, Valentino SA, Tantama M. Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor. PLoS One 2017; 12:e0187481. [PMID: 29121644 PMCID: PMC5679667 DOI: 10.1371/journal.pone.0187481] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) is a key purinergic signal that mediates cell-to-cell communication both within and between organ systems. We address the need for a robust and minimally invasive approach to measuring extracellular ATP by re-engineering the ATeam ATP sensor to be expressed on the cell surface. Using this approach, we image real-time changes in extracellular ATP levels with a sensor that is fully genetically-encoded and does not require an exogenous substrate. In addition, the sensor is ratiometric to allow for reliable quantitation of extracellular ATP fluxes. Using live-cell microscopy, we characterize sensor performance when expressed on cultured Neuro2A cells, and we measure both stimulated release of ATP and its clearance by ectonucleotidases. Thus, this proof-of-principle demonstrates a first-generation sensor to report extracellular ATP dynamics that may be useful for studying purinergic signaling in living specimens.
Collapse
Affiliation(s)
- Jason M. Conley
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Saranya Radhakrishnan
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Science Graduate Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Stephen A. Valentino
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Mathew Tantama
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Science Graduate Program, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
60
|
North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0427. [PMID: 27377721 DOI: 10.1098/rstb.2015.0427] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- R Alan North
- Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
61
|
Beamer E, Kovács G, Sperlágh B. ATP released from astrocytes modulates action potential threshold and spontaneous excitatory postsynaptic currents in the neonatal rat prefrontal cortex. Brain Res Bull 2017; 135:129-142. [PMID: 29030320 DOI: 10.1016/j.brainresbull.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023]
Abstract
Maternal immune activation during pregnancy is a risk factor for neurodevelopmental disorders, such as schizophrenia; however, a full mechanistic understanding has yet to be established. The activity of a transient cell population, the subplate neurons, is critical for the development of cortical inhibition and functional thalamocortical connections. Sensitivity of these cells to factors released during inflammation, therefore, may offer a link between maternal immune activation and the aberrant cortical development underlying some neuropsychiatric disorders. An elevated extracellular ATP concentration is associated with inflammation and has been shown to have an effect on neuronal activity. Here, we investigated the effect of ATP on the electrophysiological properties of subplate neurons. Exogenous ATP increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) at micromolar concentrations. Further, ATP released by astrocytes activated by the PAR-1 agonist, TFLLR-NH2, also increased the amplitude and frequency of sEPSCs in subplate neurons. The electrophysiological properties of subplate neurons recorded from prefrontal cortical (PFC) slices from neonatal rats were also disrupted in a maternal immune activation rat model of schizophrenia, with a suramin-sensitive increase in frequency and amplitude of sEPSCs. An alternative neurodevelopmental rat model of schizophrenia, MAM-E17, which did not rely on maternal immune activation, however, showed no change in subplate neuron activity. Both models were validated with behavioral assays, showing schizophrenia-like endophenotypes in young adulthood. The purinergic modulation of subplate neuron activity offers a potential explanatory link between maternal immune activation and disruptions in cortical development that lead to the emergence of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Edward Beamer
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kovács
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
62
|
Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors. Neural Plast 2017; 2017:9454275. [PMID: 28845311 PMCID: PMC5563405 DOI: 10.1155/2017/9454275] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023] Open
Abstract
Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.
Collapse
|
63
|
Piacentini R, Puma DDL, Mainardi M, Lazzarino G, Tavazzi B, Arancio O, Grassi C. Reduced gliotransmitter release from astrocytes mediates tau-induced synaptic dysfunction in cultured hippocampal neurons. Glia 2017; 65:1302-1316. [PMID: 28519902 PMCID: PMC5520670 DOI: 10.1002/glia.23163] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/19/2023]
Abstract
Tau is a microtubule-associated protein exerting several physiological functions in neurons. In Alzheimer's disease (AD) misfolded tau accumulates intraneuronally and leads to axonal degeneration. However, tau has also been found in the extracellular medium. Recent studies indicated that extracellular tau uploaded from neurons causes synaptic dysfunction and contributes to tau pathology propagation. Here we report novel evidence that extracellular tau oligomers are abundantly and rapidly accumulated in astrocytes where they disrupt intracellular Ca2+ signaling and Ca2+ -dependent release of gliotransmitters, especially ATP. Consequently, synaptic vesicle release, the expression of pre- and postsynaptic proteins, and mEPSC frequency and amplitude were reduced in neighboring neurons. Notably, we found that tau uploading from astrocytes required the amyloid precursor protein, APP. Collectively, our findings suggests that astrocytes play a critical role in the synaptotoxic effects of tau via reduced gliotransmitter availability, and that astrocytes are major determinants of tau pathology in AD.
Collapse
Affiliation(s)
- Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Marco Mainardi
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, 630 W 168th St., NY 10032 USA
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
64
|
Comparison of GCaMP3 and GCaMP6f for studying astrocyte Ca2+ dynamics in the awake mouse brain. PLoS One 2017; 12:e0181113. [PMID: 28742117 PMCID: PMC5524333 DOI: 10.1371/journal.pone.0181113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/25/2017] [Indexed: 12/16/2022] Open
Abstract
In recent years it has become increasingly clear that astrocytes play a much more active role in neural processes than the traditional view of them as supporting cells suggests. Although not electrically excitable, astrocytes exhibit diverse Ca2+ dynamics across spatial and temporal scales, more or less dependent on the animal's behavioral state. Ca2+ dynamics range from global elevations lasting multiple seconds encompassing the soma up to the finest processes, to short elevations restricted to so-called microdomains within fine processes. Investigations of astrocyte Ca2+ dynamics have particularly benefitted from the development of Genetically-Encoded Calcium Indicators (GECIs). GECI expression can be achieved non-invasively in a cell type-specific manner and it can be genetically targeted to subcellular domains. The GCaMP family, a group of GECIs derived from the green fluorescent protein, has experienced some of the fastest advancements during the past decade. As a consequence we are now facing the challenge of needing to compare published data obtained with different versions of GECIs. With the intention to provide some guidance, here we compared Ca2+ dynamics across scales in awake transgenic mice expressing either the well-established GCaMP3, or the increasingly popular GCaMP6f, specifically in astrocytes. We found that locomotion-induced global Ca2+ elevations in cortical astrocytes displayed only minor kinetic differences and their apparent dynamic ranges for Ca2+ sensing were not different. In contrast, Ca2+ waves in processes and microdomain Ca2+ transients were much more readily detectable with GCaMP6f. Our findings suggest that behavioral state-dependent global astrocyte Ca2+ responses can be studied with either GCaMP3 or GCaMP6f whereas the latter is more appropriate for studies of spatially restricted weak and fast Ca2+ dynamics.
Collapse
|
65
|
Tapia M, Dominguez A, Zhang W, Del Puerto A, Ciorraga M, Benitez MJ, Guaza C, Garrido JJ. Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment. Front Cell Neurosci 2017; 11:5. [PMID: 28179879 PMCID: PMC5263140 DOI: 10.3389/fncel.2017.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022] Open
Abstract
Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies will be necessary to determine which CB1R-dependent mechanisms can coordinate these two domains, and what may be the impact of these early developmental changes once neurons mature and are embedded in a functional brain network.
Collapse
Affiliation(s)
- Mónica Tapia
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - Ana Dominguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - Wei Zhang
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - Ana Del Puerto
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - María Ciorraga
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - María José Benitez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain; Department of Quimica Fisica Aplicada, Universidad Autónoma de MadridMadrid, Spain
| | - Carmen Guaza
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - Juan José Garrido
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| |
Collapse
|
66
|
Lalo U, Pankratov Y. Exploring the Ca 2+-dependent synaptic dynamics in vibro-dissociated cells. Cell Calcium 2017; 64:91-101. [PMID: 28143648 DOI: 10.1016/j.ceca.2017.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Dynamic alteration of the synaptic strength is one of the most important processes occurring in the nervous system. Combination of electrophysiology, confocal imaging and molecular biology led to significant advances in this research field. Yet, a progress in this area, in particular in studies of changes in the quantal behavior of central synapses and impact of glial cells on individual synapses, is hampered by technical difficulties of resolving small quantal synaptic currents. In this paper we will show how the technique of non-enzymatic vibro-dissociation, which enables to isolate living neurons avoiding artifacts of cell culture and preserving functional synapse, can be used to obtain a valuable information on fine details and mechanisms of synaptic plasticity. In particular, we will describe our recent results on Ca2+-dependent modulation of the postsynaptic AMPA and NMDA receptors in the individual synaptic boutons.
Collapse
Affiliation(s)
- Ulyana Lalo
- The University of Warwick, School of Life Sciences, Coventry, UK
| | - Yuriy Pankratov
- The University of Warwick, School of Life Sciences, Coventry, UK; School of Life Sciences, Immanuel Kant Baltic Federal University, 2 Universitetskaya str., Kaliningrad, Russia.
| |
Collapse
|
67
|
Xin W, Edwards N, Bonci A. VTA dopamine neuron plasticity - the unusual suspects. Eur J Neurosci 2016; 44:2975-2983. [PMID: 27711998 PMCID: PMC11466316 DOI: 10.1111/ejn.13425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) are involved in a variety of physiological and pathological conditions, ranging from motivated behaviours to substance use disorders. While many studies have shown that these neurons can express plasticity at excitatory and inhibitory synapses, little is known about how inhibitory inputs and glial activity shape the output of DA neurons and therefore, merit greater discussion. In this review, we will attempt to fill in a bit more of the puzzle, with a focus on inhibitory transmission and astrocyte function. We summarize the findings within the VTA as well as observations made in other brain regions that have important implications for plasticity in general and should be considered in the context of DA neuron plasticity.
Collapse
Affiliation(s)
- Wendy Xin
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Edwards
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
68
|
McClain JL, Gulbransen BD. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins. J Neurophysiol 2016; 117:365-375. [PMID: 27784805 DOI: 10.1152/jn.00507.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022] Open
Abstract
Glia play key roles in the regulation of neurotransmission in the nervous system. Fluoroacetate (FA) is a metabolic poison widely used to study glial functions by disrupting the tricarboxylic acid cycle enzyme aconitase. Despite the widespread use of FA, the effects of FA on essential glial functions such as calcium (Ca2+) signaling and hemichannel function remain unknown. Therefore, our goal was to assess specifically the impact of FA on essential glial cell functions that are involved with neurotransmission in the enteric nervous system. To this end, we generated a new optogenetic mouse model to study specifically the effects of FA on enteric glial Ca2+ signaling by crossing PC::G5-tdTomato mice with Sox10::creERT2 mice. FA did not change the peak glial Ca2+ response when averaged across all glia within a ganglion. However, FA decreased the percent of responding glia by 30% (P < 0.05) and increased the peak Ca2+ response of the glial cells that still exhibited a response by 26% (P < 0.01). Disruption of Ca2+ signaling with FA impaired the activity-dependent uptake of ethidium bromide through connexin-43 (Cx43) hemichannels (P < 0.05) but did not affect baseline Cx43-dependent dye uptake. FA did not cause overt glial or neurodegeneration, but glial cells significantly increased glial fibrillary acid protein by 56% (P < 0.05) following treatment with FA. Together, these data show that the acute impairment of glial metabolism with FA causes key changes in glial functions associated with their roles in neurotransmission and phenotypic changes indicative of reactive gliosis. NEW & NOTEWORTHY Our study shows that the acute impairment of enteric glial metabolism with fluoroacetate (FA) alters specific glial functions that are associated with the modification of neurotransmission in the gut. These include subtle changes to glial agonist-evoked calcium signaling, the subsequent disruption of connexin-43 hemichannels, and changes in protein expression that are consistent with a transition to reactive glia. These changes in glial function offer a mechanistic explanation for the effects of FA on peripheral neuronal networks.
Collapse
Affiliation(s)
- Jonathon L McClain
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan; and .,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
69
|
ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 2016; 6:33609. [PMID: 27640997 PMCID: PMC5027525 DOI: 10.1038/srep33609] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity.
Collapse
|
70
|
Pougnet JT, Compans B, Martinez A, Choquet D, Hosy E, Boué-Grabot E. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons. Sci Rep 2016; 6:31836. [PMID: 27624155 PMCID: PMC5022001 DOI: 10.1038/srep31836] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/27/2016] [Indexed: 11/09/2022] Open
Abstract
Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression.
Collapse
Affiliation(s)
- Johan-Till Pougnet
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Compans
- Univ. de Bordeaux, Institut Interdisciplinaire des Neurosciences, UMR 5297, F-33000 Bordeaux, France.,CNRS, Institut Interdisciplinaire des Neurosciences, UMR 5297, F-33000 Bordeaux, France
| | - Audrey Martinez
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Daniel Choquet
- Univ. de Bordeaux, Institut Interdisciplinaire des Neurosciences, UMR 5297, F-33000 Bordeaux, France.,CNRS, Institut Interdisciplinaire des Neurosciences, UMR 5297, F-33000 Bordeaux, France.,Bordeaux Imaging Center, UMS 3420-US4 CNRS, INSERM, Université de Bordeaux, Bordeaux, France
| | - Eric Hosy
- Univ. de Bordeaux, Institut Interdisciplinaire des Neurosciences, UMR 5297, F-33000 Bordeaux, France.,CNRS, Institut Interdisciplinaire des Neurosciences, UMR 5297, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
71
|
Xu J, Bernstein AM, Wong A, Lu XH, Khoja S, Yang XW, Davies DL, Micevych P, Sofroniew MV, Khakh BS. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. J Neurosci 2016; 36:8902-20. [PMID: 27559172 PMCID: PMC4995303 DOI: 10.1523/jneurosci.1496-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding.
Collapse
Affiliation(s)
- Ji Xu
- Departments of Physiology and
| | - Alexander M Bernstein
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Angela Wong
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, California 90095
| | - Sheraz Khoja
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, California 90095, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, and
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Paul Micevych
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Michael V Sofroniew
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Baljit S Khakh
- Departments of Physiology and Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
72
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
73
|
Pai YH, Lim CS, Park KA, Cho HS, Lee GS, Shin YS, Kim HW, Jeon BH, Yoon SH, Park JB. Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:425-32. [PMID: 27382359 PMCID: PMC4930911 DOI: 10.4196/kjpp.2016.20.4.425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023]
Abstract
In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic INMDA in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg2+ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in Iholding (IGLU) at a holding potential (Vholding) of –70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive IGLU was observed even in normal aCSF at Vholding of –40 mV or –20 mV. IGLU was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in Iholding (IAMPA) in SON MNCs. Pretreatment with AP5 attenuated IAMPA amplitudes to ~60% of the control levels in low-Mg2+ aCSF, but not in normal aCSF at Vholding of –70 mV. IAMPA attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced IAMPA attenuation in SON MNCs. Finally, chronic dehydration did not affect IAMPA attenuation by AP5 in the neurons. These results suggest that tonic INMDA, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.
Collapse
Affiliation(s)
- Yoon Hyoung Pai
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Chae Seong Lim
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyung-Ah Park
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun Sil Cho
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gyu-Seung Lee
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yong Sup Shin
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun-Woo Kim
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seok Hwa Yoon
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Bong Park
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
74
|
A New Mechanism of Receptor Targeting by Interaction between Two Classes of Ligand-Gated Ion Channels. J Neurosci 2016; 36:1456-70. [PMID: 26843630 DOI: 10.1523/jneurosci.2390-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The 5-HT3 receptors are serotonin-gated ion channels that physically couple with purinergic P2X2 receptors to trigger a functional cross-inhibition leading to reciprocal channel occlusion. Although this functional receptor-receptor coupling seems to serve a modulatory role on both channels, this might not be its main physiological purpose. Using primary cultures of rat hippocampal neurons as a quantitative model of polarized targeting, we show here a novel function for this interaction. In this model, 5-HT3A receptors did not exhibit by themselves the capability of distal targeting in dendrites and axons but required the presence of P2X2R for their proper subcellular localization. 5-HT3AR distal targeting occurred with a delayed time course and exhibited a neuron phenotype dependency. In the subpopulation of neurons expressing endogenous P2X2R, 5-HT3AR distal neuritic localization correlated with P2X2R expression and could be selectively inhibited by P2X2R RNA interference. Cotransfection of both receptors revealed a specific colocalization, cotrafficking in common surface clusters, and the axonal rerouting of 5-HT3AR. The physical association between the two receptors was dependent on the second intracellular loop of the 5-HT3A subunit, but not on the P2X2R C-terminal tail that triggers the functional cross-inhibition with the 5-HT3AR. Together, these data establish that 5-HT3AR distal targeting in axons and dendrites primarily depends on P2X2R expression. Because several P2XR have now been shown to functionally interact with several other members of the 4-TMD family of receptor channels, we propose to reconsider the real functional role for this receptor family, as trafficking partner proteins dynamically involved in other receptors targeting. SIGNIFICANCE STATEMENT So far, receptor targeting mechanisms were found to involve intracellular partner proteins or supramolecular complexes that couple receptors to cytoskeletal elements and recruit them into cargo vesicles. In this paper, we describe a new trafficking mechanism for the neuronal serotonin 5-HT3A ionotropic channel receptor, in which the role of routing partner is endowed by a functionally interacting purinergic receptor: the P2X2 receptor. This work not only unveils the mechanism by which 5-HT3 receptors can reach their axonal localization required for the control of neurotransmitter release, but also suggests that, in addition to their modulatory role, the family of P2X receptors could have a previously undescribed functional role of trafficking partner proteins dynamically involved in the targeting of other receptors.
Collapse
|
75
|
Bele T, Fabbretti E. The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex. J Neurochem 2016; 138:587-97. [PMID: 27217099 DOI: 10.1111/jnc.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level.
Collapse
Affiliation(s)
- Tanja Bele
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica, Slovenia
| | - Elsa Fabbretti
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
76
|
Rassendren F, Audinat E. Purinergic signaling in epilepsy. J Neurosci Res 2016; 94:781-93. [PMID: 27302739 DOI: 10.1002/jnr.23770] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
Until recently, analysis of the mechanisms underlying epilepsy was centered on neuron dysfunctions. Accordingly, most of the available pharmacological treatments aim at reducing neuronal excitation or at potentiating neuronal inhibition. These therapeutic options can lead to obvious secondary effects, and, moreover, seizures cannot be controlled by any known medication in one-third of the patients. A purely neurocentric view of brain functions and dysfunctions has been seriously questioned during the past 2 decades because of the accumulation of experimental data showing the functional importance of reciprocal interactions between glial cells and neurons. In the case of epilepsy, our current knowledge of the human disease and analysis of animal models clearly favor the involvement of astrocytes and microglial cells during the progression of the disease, including at very early stages, opening the way to the identification of new therapeutic targets. Purinergic signaling is a fundamental feature of neuron-glia interactions, and increasing evidence indicates that modifications of this pathway contribute to the functional remodeling of the epileptic brain. This Review discusses the recent experimental results indicating the roles of astrocytic and microglial P2X and P2Y receptors in epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- François Rassendren
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, UMR5203, Montpellier, France.,Labex ICST, Montpellier, France
| | - Etienne Audinat
- INSERM, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Paris Descartes University, Paris, France
| |
Collapse
|
77
|
Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks. Proc Natl Acad Sci U S A 2016; 113:E2685-94. [PMID: 27118849 DOI: 10.1073/pnas.1523717113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca(2+) signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca(2+) channels. Intracellular infusion of NMDARs or Ca(2+)-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites.
Collapse
|
78
|
P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction. Neural Plast 2016; 2016:1207393. [PMID: 27069691 PMCID: PMC4812485 DOI: 10.1155/2016/1207393] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/10/2016] [Indexed: 01/02/2023] Open
Abstract
ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.
Collapse
|
79
|
George J, Cunha RA, Mulle C, Amédée T. Microglia-derived purines modulate mossy fibre synaptic transmission and plasticity through P2X4 and A1 receptors. Eur J Neurosci 2016; 43:1366-78. [PMID: 27199162 PMCID: PMC5069607 DOI: 10.1111/ejn.13191] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/21/2016] [Indexed: 12/15/2022]
Abstract
Recent data have provided evidence that microglia, the brain‐resident macrophage‐like cells, modulate neuronal activity in both physiological and pathophysiological conditions, and microglia are therefore now recognized as synaptic partners. Among different neuromodulators, purines, which are produced and released by microglia, have emerged as promising candidates to mediate interactions between microglia and synapses. The cellular effects of purines are mediated through a large family of receptors for adenosine and for ATP (P2 receptors). These receptors are present at brain synapses, but it is unknown whether they can respond to microglia‐derived purines to modulate synaptic transmission and plasticity. Here, we used a simple model of adding immune‐challenged microglia to mouse hippocampal slices to investigate their impact on synaptic transmission and plasticity at hippocampal mossy fibre (MF) synapses onto CA3 pyramidal neurons. MF–CA3 synapses show prominent forms of presynaptic plasticity that are involved in the encoding and retrieval of memory. We demonstrate that microglia‐derived ATP differentially modulates synaptic transmission and short‐term plasticity at MF–CA3 synapses by acting, respectively, on presynaptic P2X4 receptors and on adenosine A1 receptors after conversion of extracellular ATP to adenosine. We also report that P2X4 receptors are densely located in the mossy fibre tract in the dentate gyrus–CA3 circuitry. In conclusion, this study reveals an interplay between microglia‐derived purines and MF–CA3 synapses, and highlights microglia as potent modulators of presynaptic plasticity.
Collapse
Affiliation(s)
- Jimmy George
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France.,CNC Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Thierry Amédée
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France.,IINS, UMR 5297 CNRS - Université de Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
80
|
Walker A, Russmann V, Deeg CA, von Toerne C, Kleinwort KJH, Szober C, Rettenbeck ML, von Rüden EL, Goc J, Ongerth T, Boes K, Salvamoser JD, Vezzani A, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain Behav Immun 2016; 53:138-158. [PMID: 26685804 DOI: 10.1016/j.bbi.2015.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Detailed knowledge about the patterns of molecular alterations during epileptogenesis is a presupposition for identifying targets for preventive or disease-modifying approaches, as well as biomarkers of the disease. Large-scale differential proteome analysis can provide unique and novel perspectives based on comprehensive data sets informing about the complex regulation patterns in the disease proteome. Thus, we have completed an elaborate differential proteome analysis based on label-free LC-MS/MS in a rat model of epileptogenesis. Hippocampus and parahippocampal cortex tissues were sampled and analyzed separately at three key time points chosen for monitoring disease development following electrically-induced status epilepticus, namely, the early post-insult phase, the latency phase, and the chronic phase with spontaneous recurrent seizures. We focused the bioinformatics analysis on proteins linked to immune and inflammatory responses, because of the emerging evidence of the specific pathogenic role of inflammatory signalings during epileptogenesis. In the early post-insult and the latency phases, pathway enrichment analysis revealed an extensive over-representation of Toll-like receptor signaling, pro-inflammatory cytokines, heat shock protein regulation, and transforming growth factor beta signaling and leukocyte transendothelial migration. The inflammatory response in the chronic phase proved to be more moderate with differential expression in the parahippocampal cortex exceeding that in the hippocampus. The data sets provide novel information about numerous differentially expressed proteins, which serve as interaction partners or modulators in key disease-associated inflammatory signaling events. Noteworthy, a set of proteins which act as modulators of the ictogenic Toll-like receptor signaling proved to be differentially expressed. In addition, we report novel data demonstrating the regulation of different Toll-like receptor ligands during epileptogenesis. Taken together, the findings deepen our understanding of modulation of inflammatory signaling during epileptogenesis providing an excellent and comprehensive basis for the identification of target and biomarker candidates.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | | | - Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christoph Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joanna Goc
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Tanja Ongerth
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Boes
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annamaria Vezzani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
81
|
Liu SB, Zhang MM, Cheng LF, Shi J, Lu JS, Zhuo M. Long-term upregulation of cortical glutamatergic AMPA receptors in a mouse model of chronic visceral pain. Mol Brain 2015; 8:76. [PMID: 26585043 PMCID: PMC4653882 DOI: 10.1186/s13041-015-0169-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders and it causes long-lasting visceral pain and discomfort. AMPA receptor mediated long-term potentiation (LTP) has been shown to play a critical role in animal models of neuropathic and inflammatory pain. No report is available for central changes in the ACC of mice with chronic visceral pain. Results In this study, we used integrative methods to investigate potential central plastic changes in the anterior cingulate cortex (ACC) of a visceral pain mouse model induced by intracolonic injection of zymosan. We found that visceral pain induced an increased expression of AMPA receptors (at the post synapses) in the ACC via an enhanced trafficking of the AMPA receptors to the membrane. Both GluA1 and GluA2/3 subunits were significantly increased. Supporting biochemical changes, excitatory synaptic transmission in the ACC were also significantly enhanced. Microinjection of AMPA receptor inhibitor IEM1460 into the ACC inhibited visceral and spontaneous pain behaviors. Furthermore, we found that the phosphorylation of GluA1 at the Ser845 site was increased, suggesting that GluA1 phosphorylation may contribute to AMPA receptor trafficking. Using genetically knockout mice lacking calcium-calmodulin stimulated adenylyl cyclase subtype 1 (AC1), we found that AMPA receptor phosphorylation and its membrane trafficking induced by zymosan injection were completely blocked. Conclusions Our results provide direct evidence for cortical AMPA receptors to contribute to zymosan-induced visceral and spontaneous pain and inhibition of AC1 activity may help to reduce chronic visceral pain.
Collapse
Affiliation(s)
- Shui-Bing Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China. .,Department of Pharmacology, Pharmacy of School, Fourth Military Medical University, Xian, Shaanxi, 710032, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Ming-Ming Zhang
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China. .,Department of Pharmacology, Pharmacy of School, Fourth Military Medical University, Xian, Shaanxi, 710032, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical University, Xian, Shaanxi, 710032, China.
| | - Jiao Shi
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China.
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
82
|
Köles L, Kató E, Hanuska A, Zádori ZS, Al-Khrasani M, Zelles T, Rubini P, Illes P. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal 2015; 12:1-24. [PMID: 26542977 DOI: 10.1007/s11302-015-9480-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Adrienn Hanuska
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
83
|
Seibt F, Schlichter R. Noradrenaline-mediated facilitation of inhibitory synaptic transmission in the dorsal horn of the rat spinal cord involves interlaminar communications. Eur J Neurosci 2015; 42:2654-65. [PMID: 26370319 DOI: 10.1111/ejn.13077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
Abstract
In the dorsal horn of the spinal cord (DH), noradrenaline (NA) is released by axons originating from the locus coeruleus and induces spinal analgesia, the mechanisms of which are poorly understood. Here, the effects of NA on synaptic transmission in the deep laminae (III-V) of the DH were characterized. It was shown that exogenously applied, as well as endogenously released, NA facilitated inhibitory [γ-aminobutyric acid (GABA)ergic and glycinergic] synaptic transmission in laminae III-IV of the DH by activating α1-, α2- and β-adrenoceptors (ARs). In contrast, NA had no effect on excitatory (glutamatergic) synaptic transmission. Physical interruption of communications between deep and more superficial laminae (by a mechanical transection between laminae IV and V) totally blocked the effects of α2-AR agonists and strongly reduced the effects of α1-AR agonists on inhibitory synaptic transmission in laminae III-IV without directly impairing synaptic release of GABA or glycine from neurons. Short-term pretreatment of intact spinal cord slices with the glial cell metabolism inhibitor fluorocitrate or pharmacological blockade of ionotropic glutamate and ATP receptors mimicked the consequences of a mechanical transection between laminae IV and V. Taken together, the current results indicate that the facilitation of inhibitory synaptic transmission in laminae III-IV of the DH by NA requires functional interlaminar connections between deep and more superficial laminae, and might strongly depend on glia to neuron interactions. These interlaminar connections and glia to neuron interactions could represent interesting targets for analgesic strategies.
Collapse
Affiliation(s)
- Frederik Seibt
- Centre National de la Recherche Scientifique (CNRS UPR 3212), Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Rémy Schlichter
- Centre National de la Recherche Scientifique (CNRS UPR 3212), Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
84
|
Pankratov Y, Lalo U. Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex. Front Cell Neurosci 2015; 9:230. [PMID: 26136663 PMCID: PMC4468378 DOI: 10.3389/fncel.2015.00230] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/02/2015] [Indexed: 01/14/2023] Open
Abstract
Communication between neuronal and glial cells is thought to be very important for many brain functions. Acting via release of gliotransmitters, astrocytes can modulate synaptic strength. The mechanisms underlying gliotransmission remain uncertain with exocytosis being the most intriguing and debated pathway. We demonstrate that astroglial α1-adrenoreceptors are very sensitive to noradrenaline (NA) and make a significant contribution to intracellular Ca2+-signaling in layer 2/3 neocortical astrocytes. We also show that astroglial α1-adrenoreceptors are prone to desensitization upon prolonged exposure to NA. We show that within neocortical slices, α-1adrenoreceptors can activate vesicular release of ATP and D-serine from cortical astrocytes which initiate a burst of ATP receptor-mediated currents in adjacent pyramidal neurons. These purinergic currents can be inhibited by intracellular perfusion of astrocytes with Tetanus Toxin light chain, verifying their origin via astroglial exocytosis. We show that α1 adrenoreceptor-activated release of gliotransmitters is important for the induction of synaptic plasticity in the neocortex:long-term potentiation (LTP) of neocortical excitatory synaptic potentials can be abolished by the selective α1-adrenoreceptor antagonist terazosin. We show that weak sub-threshold theta-burst stimulation (TBS) can induce LTP when astrocytes are additionally activated by 1 μM NA. This facilitation is dependent on the activation of neuronal ATP receptors and is abolished in neocortical slices from dn-SNARE mice which have impaired glial exocytosis. Importantly, facilitation of LTP by NA can be significantly reduced by perfusion of individual astrocytes with Tetanus Toxin. Our results strongly support the physiological importance of astroglial adrenergic signaling and exocytosis of gliotransmitters for modulation of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Yuriy Pankratov
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry, UK
| | - Ulyana Lalo
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry, UK
| |
Collapse
|
85
|
Sáez-Orellana F, Godoy PA, Bastidas CY, Silva-Grecchi T, Guzmán L, Aguayo LG, Fuentealba J. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of β-amyloid peptide in hippocampal neurons. Neuropharmacology 2015; 100:116-23. [PMID: 25896766 DOI: 10.1016/j.neuropharm.2015.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/10/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023]
Abstract
Recent studies suggest that the toxic effects of Aβ can be attributed to its capability to insert in membranes and form pore-like structures, which are permeable to cations and molecules such as ATP. Our working hypothesis is that Aβ increases extracellular ATP causing activation of P2X receptors and potentiating excitatory synaptic activity. We found that soluble oligomers of β-amyloid peptide increased cytosolic Ca(2+) 4-fold above control (415 ± 28% of control). Also, ATP leakage (157 ± 10% of control) was independent of extracellular Ca(2+), suggesting that ATP traveled from the cytosol through an Aβ pore-mediated efflux and not from exocytotic mechanisms. The subsequent activation of P2XR by ATP can contribute to the cytosolic Ca(2+) increase observed with Aβ. Additionally, we found that β-amyloid oligomers bind preferentially to excitatory neurons inducing an increase in excitatory synaptic current frequency (248.1 ± 32.7%) that was blocked by the use of P2XR antagonists such as PPADS (Aβ + PPADS: 110.9 ± 18.35%) or Apyrase plus DPCPX (Aβ + inhibitors: 98.97 ± 17.4%). Taken together, we suggest that Aβ induces excitotoxicity by binding preferentially to excitatory neuron membranes forming a non-selective pore and by increasing intracellular calcium by itself and through P2XR activation by extracellular ATP leading to an augmention in mEPSC activity. All these effects were blocked with a non-specific P2XR antagonist, indicating that part of the neurotoxicity of Aβ is mediated by P2XR activation and facilitation of excitatory neurotransmitter release. These findings suggest that P2XR can be considered as a potential new target for the development of drugs or pharmacological tools to treat Alzheimer's disease. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- F Sáez-Orellana
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - P A Godoy
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - C Y Bastidas
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - T Silva-Grecchi
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - L Guzmán
- Neurophysiology Laboratory, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - L G Aguayo
- Neurophysiology Laboratory, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - J Fuentealba
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile; Center for Advanced Research on Biomedicine (CIAB-UdeC), Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
86
|
Microglial activation enhances associative taste memory through purinergic modulation of glutamatergic neurotransmission. J Neurosci 2015; 35:3022-33. [PMID: 25698740 DOI: 10.1523/jneurosci.3028-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebral innate immune system is able to modulate brain functioning and cognitive processes. During activation of the cerebral innate immune system, inflammatory factors produced by microglia, such as cytokines and adenosine triphosphate (ATP), have been directly linked to modulation of glutamatergic system on one hand and learning and memory functions on the other hand. However, the cellular mechanisms by which microglial activation modulates cognitive processes are still unclear. Here, we used taste memory tasks, highly dependent on glutamatergic transmission in the insular cortex, to investigate the behavioral and cellular impacts of an inflammation restricted to this cortical area in rats. We first show that intrainsular infusion of the endotoxin lipopolysaccharide induces a local inflammation and increases glutamatergic AMPA, but not NMDA, receptor expression at the synaptic level. This cortical inflammation also enhances associative, but not incidental, taste memory through increase of glutamatergic AMPA receptor trafficking. Moreover, we demonstrate that ATP, but not proinflammatory cytokines, is responsible for inflammation-induced enhancement of both associative taste memory and AMPA receptor expression in insular cortex. In conclusion, we propose that inflammation restricted to the insular cortex enhances associative taste memory through a purinergic-dependent increase of glutamatergic AMPA receptor expression at the synapse.
Collapse
|
87
|
Abstract
ATP-gated P2X receptors are widely expressed in the nervous system, but their physiological roles are not fully understood. New insights from Pougnet et al. (2014) in this issue of Neuron show that postsynaptic P2X receptors may be activated by ATP released from astrocytes and function to downregulate synaptic AMPA receptors in hippocampal neurons.
Collapse
|