51
|
Yan M, Dou T, Lv W, Wang X, Zhao L, Chang X, Zhou Z. Integrated analysis of paraquat-induced microRNAs-mRNAs changes in human neural progenitor cells. Toxicol In Vitro 2017; 44:196-205. [DOI: 10.1016/j.tiv.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/30/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
|
52
|
Bearson BL, Bearson SMD, Looft T, Cai G, Shippy DC. Characterization of a Multidrug-Resistant Salmonella enterica Serovar Heidelberg Outbreak Strain in Commercial Turkeys: Colonization, Transmission, and Host Transcriptional Response. Front Vet Sci 2017; 4:156. [PMID: 28993809 PMCID: PMC5622158 DOI: 10.3389/fvets.2017.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
In recent years, multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg (S. Heidelberg) has been associated with numerous human foodborne illness outbreaks due to consumption of poultry. For example, in 2011, an MDR S. Heidelberg outbreak associated with ground turkey sickened 136 individuals and resulted in 1 death. In response to this outbreak, 36 million pounds of ground turkey were recalled, one of the largest meat recalls in U.S. history. To investigate colonization of turkeys with an MDR S. Heidelberg strain isolated from the ground turkey outbreak, two turkey trials were performed. In experiment 1, 3-week-old turkeys were inoculated with 108 or 1010 CFU of the MDR S. Heidelberg isolate, and fecal shedding and tissue colonization were detected following colonization for up to 14 days. Turkey gene expression in response to S. Heidelberg exposure revealed 18 genes that were differentially expressed at 2 days following inoculation compared to pre-inoculation. In a second trial, 1-day-old poults were inoculated with 104 CFU of MDR S. Heidelberg to monitor transmission of Salmonella from inoculated poults (index group) to naive penmates (sentinel group). The transmission of MDR S. Heidelberg from index to sentinel poults was efficient with cecum colonization increasing 2 Log10 CFU above the inoculum dose at 9 days post-inoculation. This differed from the 3-week-old poults inoculated with 1010 CFU of MDR S. Heidelberg in experiment 1 as Salmonella fecal shedding and tissue colonization decreased over the 14-day period compared to the inoculum dose. These data suggest that young poults are susceptible to colonization by MDR S. Heidelberg, and interventions must target turkeys when they are most vulnerable to prevent Salmonella colonization and transmission in the flock. Together, the data support the growing body of literature indicating that Salmonella establishes a commensal-like condition in livestock and poultry, contributing to the asymptomatic carrier status of the human foodborne pathogen in our animal food supply.
Collapse
Affiliation(s)
- Bradley L Bearson
- National Laboratory for Agriculture and the Environment, United States Department of Agriculture (USDA), ARS, Ames, IA, United States
| | - Shawn M D Bearson
- National Animal Disease Center, United States Department of Agriculture (USDA), ARS, Ames, IA, United States
| | - Torey Looft
- National Animal Disease Center, United States Department of Agriculture (USDA), ARS, Ames, IA, United States
| | - Guohong Cai
- Crop Production and Pest Control Research, United States Department of Agriculture (USDA), ARS, West Lafayette, IN, United States
| | - Daniel C Shippy
- National Animal Disease Center, United States Department of Agriculture (USDA), ARS, Ames, IA, United States
| |
Collapse
|
53
|
Choi MH, Na JE, Yoon YR, Lee HJ, Yoon S, Rhyu IJ, Baik JH. Role of Dopamine D2 Receptor in Stress-Induced Myelin Loss. Sci Rep 2017; 7:11654. [PMID: 28912499 PMCID: PMC5599541 DOI: 10.1038/s41598-017-10173-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Dopaminergic systems play a major role in reward-related behavior and dysregulation of dopamine (DA) systems can cause several mental disorders, including depression. We previously reported that dopamine D2 receptor knockout (D2R-/-) mice display increased anxiety and depression-like behaviors upon chronic stress. Here, we observed that chronic stress caused myelin loss in wild-type (WT) mice, while the myelin level in D2R-/- mice, which was already lower than that in WT mice, was not affected upon stress. Fewer mature oligodendrocytes (OLs) were observed in the corpus callosum of stressed WT mice, while in D2R-/- mice, both the control and stressed group displayed a decrease in the number of mature OLs. We observed a decrease in the number of active β-catenin (ABC)-expressing and TCF4-expressing cells among OL lineage cells in the corpus callosum of stressed WT mice, while such regulation was not found in D2R-/- mice. Administration of lithium normalized the behavioral impairments and myelin damage induced by chronic stress in WT mice, and restored the number of ABC-positive and TCF4-positive OLs, while such effect was not found in D2R-/- mice. Together, our findings indicate that chronic stress induces myelin loss through the Wnt/β-catenin signaling pathway in association with DA signaling through D2R.
Collapse
Affiliation(s)
- Mi-Hyun Choi
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ye Ran Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyo Jin Lee
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
54
|
Tao C, Hu X, Li H, You C. White Matter Injury after Intracerebral Hemorrhage: Pathophysiology and Therapeutic Strategies. Front Hum Neurosci 2017; 11:422. [PMID: 28890692 PMCID: PMC5575148 DOI: 10.3389/fnhum.2017.00422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/04/2017] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for 10%–30% of all types of stroke. Bleeding within the brain parenchyma causes gray matter (GM) destruction as well as proximal or distal white matter (WM) injury (WMI) due to complex pathophysiological mechanisms. Because WM has a distinct cellular architecture, blood supply pattern and corresponding function, and its response to stroke may vary from that of GM, a better understanding of the characteristics of WMI following ICH is essential and may shed new light on treatment options. Current evidence using histological, radiological and chemical biomarkers clearly confirms the spatio-temporal distribution of WMI post- ICH. Although certain types of pathological damage such as inflammatory, oxidative and neuro-excitotoxic injury to WM have been identified, the exact molecular mechanisms remain unclear. In this review article, we briefly describe the constitution and physiological function of brain WM, summarize evidence regarding WMI, and focus on the underlying pathophysiological mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Chuanyuan Tao
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Xin Hu
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Hao Li
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Chao You
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| |
Collapse
|
55
|
Temporal Profiling of Astrocyte Precursors Reveals Parallel Roles for Asef during Development and after Injury. J Neurosci 2017; 36:11904-11917. [PMID: 27881777 DOI: 10.1523/jneurosci.1658-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022] Open
Abstract
Lineage development is a stepwise process, governed by stage-specific regulatory factors and associated markers. Astrocytes are one of the principle cell types in the CNS and the stages associated with their development remain very poorly defined. To identify these stages, we performed gene-expression profiling on astrocyte precursor populations in the spinal cord, identifying distinct patterns of gene induction during their development that are strongly correlated with human astrocytes. Validation studies identified a new cohort of astrocyte-associated genes during development and demonstrated their expression in reactive astrocytes in human white matter injury (WMI). Functional studies on one of these genes revealed that mice lacking Asef exhibited impaired astrocyte differentiation during development and repair after WMI, coupled with compromised blood-brain barrier integrity in the adult CNS. These studies have identified distinct stages of astrocyte lineage development associated with human WMI and, together with our functional analysis of Asef, highlight the parallels between astrocyte development and their reactive counterparts associated with injury. SIGNIFICANCE STATEMENT Astrocytes play a central role in CNS function and associated diseases. Yet the mechanisms that control their development remain poorly defined. Using the developing mouse spinal cord as a model system, we identify molecular changes that occur in developing astrocytes. These molecular signatures are strongly correlated with human astrocyte expression profiles and validation in mouse spinal cord identifies a host of new genes associated with the astrocyte lineage. These genes are present in reactive astrocytes in human white matter injury, and functional studies reveal that one of these genes, Asef, contributes to reactive astrocyte responses after injury. These studies identify distinct stages of astrocyte lineage development and highlight the parallels between astrocyte development and their reactive counterparts associated with injury.
Collapse
|
56
|
Shih Y, Ly PTT, Wang J, Pallen CJ. Glial and Neuronal Protein Tyrosine Phosphatase Alpha (PTPα) Regulate Oligodendrocyte Differentiation and Myelination. J Mol Neurosci 2017. [PMID: 28647856 DOI: 10.1007/s12031-017-0941-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CNS myelination defects occur in mice deficient in receptor-like protein tyrosine phosphatase alpha (PTPα). Here, we investigated the role of PTPα in oligodendrocyte differentiation and myelination using cells and tissues from wild-type (WT) and PTPα knockout (KO) mice. PTPα promoted the timely differentiation of neural stem cell-derived oligodendrocyte progenitor cells (OPCs). Compared to WT OPCs, KO OPC cultures had more NG2+ progenitors, fewer myelin basic protein (MBP)+ oligodendrocytes, and reduced morphological complexity. In longer co-cultures with WT neurons, more KO than WT OPCs remained NG2+ and while equivalent MBP+ populations of WT and KO cells formed, the reduced area occupied by the MBP+ KO cells suggested that their morphological maturation was impeded. These defects were associated with reduced myelin formation in KO OPC/WT neuron co-cultures. Myelin formation was also impaired when WT OPCs were co-cultured with KO neurons, revealing a novel role for neuronal PTPα in myelination. Canonical Wnt/β-catenin signaling is an important regulator of OPC differentiation and myelination. Wnt signaling activity was not dysregulated in OPCs lacking PTPα, but suppression of Wnt signaling by the small molecule XAV939 remediated defects in KO oligodendrocyte differentiation and enhanced myelin formation by KO oligodendrocytes. However, the myelin segments that formed were significantly shorter than those produced by WT oligodendrocytes, raising the possibility of a role for glial PTPα in myelin extension distinct from its pro-differentiating actions. Altogether, this study reveals PTPα as a molecular coordinator of oligodendroglial and neuronal signals that controls multiple aspects of oligodendrocyte development and myelination.
Collapse
Affiliation(s)
- Yuda Shih
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Philip T T Ly
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Jing Wang
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Catherine J Pallen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
57
|
Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci U S A 2017; 114:E1168-E1177. [PMID: 28137846 DOI: 10.1073/pnas.1609905114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) is a defining and early feature of multiple sclerosis (MS) that directly damages the central nervous system (CNS), promotes immune cell infiltration, and influences clinical outcomes. There is an urgent need for new therapies to protect and restore BBB function, either by strengthening endothelial tight junctions or suppressing endothelial vesicular transcytosis. Although wingless integrated MMTV (Wnt)/β-catenin signaling plays an essential role in BBB formation and maintenance in healthy CNS, its role in BBB repair in neurologic diseases such as MS remains unclear. Using a Wnt/β-catenin reporter mouse and several downstream targets, we demonstrate that the Wnt/β-catenin pathway is up-regulated in CNS endothelial cells in both human MS and the mouse model experimental autoimmune encephalomyelitis (EAE). Increased Wnt/β-catenin activity in CNS blood vessels during EAE progression correlates with up-regulation of neuronal Wnt3 expression, as well as breakdown of endothelial cell junctions. Genetic inhibition of the Wnt/β-catenin pathway in CNS endothelium before disease onset exacerbates the clinical presentation of EAE, CD4+ T-cell infiltration into the CNS, and demyelination by increasing expression of vascular cell adhesion molecule-1 and the transcytosis protein Caveolin-1 and promoting endothelial transcytosis. However, Wnt signaling attenuation does not affect the progressive degradation of tight junction proteins or paracellular BBB leakage. These results suggest that reactivation of Wnt/β-catenin signaling in CNS vessels during EAE/MS partially restores functional BBB integrity and limits immune cell infiltration into the CNS.
Collapse
|
58
|
Borjini N, Fernández M, Giardino L, Calzà L. Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis. J Neuroinflammation 2016; 13:291. [PMID: 27846891 PMCID: PMC5111339 DOI: 10.1186/s12974-016-0757-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Experimental allergic encephalomyelitis (EAE) is the most commonly used experimental animal model for human multiple sclerosis (MS) that has been used so far to study the acute and remission-relapsing phases of the disease. Despite the vast literature on neuroinflammation onset and progression in EAE, important questions are still open regarding in particular the early asymptomatic phase between immunization and clinical onset. METHODS In this study, we performed a time-course investigation of neuroinflammation and demyelination biomarkers in the spinal cord (SC), cerebrospinal fluid (CSF), and blood in EAE induced in dark agouti (DA) female rats compared to the controls and adjuvant-injected rats, using high-throughput technologies for gene expression and protein assays and focusing on the time-course between immunization, clinical onset (1, 5, 8 days post-immunization (DPI)), and progression (11 and 18 DPI). The expression profile of 84 genes related to T cell activation/signaling, adaptive immunity, cytokine/chemokine inflammation, demyelination, and cellular stress were analyzed in the tissue; 24 cytokines were measured in the CSF and plasma. RESULTS The macrophage colony-stimulating factor (CSF1) was the first up-regulated protein as far as 1 DPI, not only in blood but also in CSF and SC. A treatment with GW2580, a selective CSF1R inhibitor, slowed the disease progression, significantly reduced the severity, and prevented the relapse phase. Moreover, both pro-inflammatory (IL-1β, TNF-α) and anti-inflammatory cytokines (IL-5, IL-10, VEGF) were up-regulated starting from 8 DPI. Myelin genes were down-regulated starting from 8 DPI, especially MAL, MBP, and PMP22 while an opposite expression profile was observed for inflammation-related genes, such as CXCL11 and CXCL10. CONCLUSIONS This early cytokine and chemokine regulation indicates that novel biomarkers and therapeutic options could be explored in the asymptomatic phase of EAE. Overall, our findings provide clear evidence that CSF1R signaling regulates inflammation in EAE, supporting therapeutic targeting of CSF1R in MS.
Collapse
Affiliation(s)
- Nozha Borjini
- Research and Development, Chiesi Farmaceutici S.p.A, Via Palermo 26/A, Parma, 43100 Italy
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia I 40064 Italy
- IRET Foundation, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia 40064 Italy
| | - Mercedes Fernández
- Department of Pharmacy and Biotechnology, University of Bologna, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia 40064 Italy
| | - Luciana Giardino
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia I 40064 Italy
- IRET Foundation, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia 40064 Italy
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano Emilia, BO 40064 Italy
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia I 40064 Italy
- IRET Foundation, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia 40064 Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Via Tolara di Sopra 41/E, Bologna, Ozzano Emilia 40064 Italy
| |
Collapse
|
59
|
Chamberlain KA, Nanescu SE, Psachoulia K, Huang JK. Oligodendrocyte regeneration: Its significance in myelin replacement and neuroprotection in multiple sclerosis. Neuropharmacology 2016; 110:633-643. [PMID: 26474658 PMCID: PMC4841742 DOI: 10.1016/j.neuropharm.2015.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Oligodendrocytes readily regenerate and replace myelin membranes around axons in the adult mammalian central nervous system (CNS) following injury. The ability to regenerate oligodendrocytes depends on the availability of neural progenitors called oligodendrocyte precursor cells (OPCs) in the adult CNS that respond to injury-associated signals to induce OPC expansion followed by oligodendrocyte differentiation, axonal contact and myelin regeneration (remyelination). Remyelination ensures the maintenance of axonal conduction, and the oligodendrocytes themselves provide metabolic factors that are necessary to maintain neuronal integrity. Recent advances in oligodendrocyte regeneration research are beginning to shed light on critical intrinsic signals, as well as extrinsic, environmental factors that regulate the distinct steps of oligodendrocyte lineage progression and myelin replacement under CNS injury. These studies may offer novel pharmacological targets for regenerative medicine in inflammatory demyelinating disorders in the CNS such as multiple sclerosis. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Department of Biology, Georgetown University, Washington, D.C., USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, D.C., USA
| | - Sonia E Nanescu
- Department of Biology, Georgetown University, Washington, D.C., USA
| | | | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, D.C., USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, D.C., USA.
| |
Collapse
|
60
|
Cui Q, Xie P. Correlation Between Daam2 Expression Changes and Demyelination in Guillain-Barre Syndrome. Cell Mol Neurobiol 2016; 36:683-8. [PMID: 26293489 PMCID: PMC11482514 DOI: 10.1007/s10571-015-0248-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Wnt signaling has been implicated in developmental and regenerative myelination of the CNS and PNS. The present translational investigation was undertaken to assess whether a soluble factor like Wnt may be responsible for the critically important skeletal muscle neuromuscular junction-Schwann cell communication. Specifically, three key aspects were examined: (a) whether the expression of Daam2, disheveled-associated activator of morphogenesis, a key Wnt signaling downstream effector, and PIP5K is changed in the demyelinating conditions and under different stages of progress of clinical recovery of patients with Guillain-Barre syndrome; (b) whether critical protein interactions of Daam2 with disheveled and Arf6 are changed; and (c) whether expression of c-Jun/Krox, a key negative regulator of remyelination, is changed. Daam2 was elevated in acute presentation in GB syndrome. Reduction occurred with clinical improvement of the patients. With progressive clinical improvement, c-Jun/Krox expression significantly reduced with time. Wnt signaling likely causes immediate early gene activation and transcriptional shutdown of factors critical for formation and maintenance of myelination. Whether the findings of the present study are specific to pathophysiology of demyelination in acute infectious polyradiculopathy and multiple sclerosis or a generalized aspect of demyelinating diseases merits to be examined in future studies.
Collapse
Affiliation(s)
- Quanquan Cui
- Department of Neurology, Hospital of Chongqing Armed Police Force, Chongqing, 404000, China
| | - Peng Xie
- Chongqing University of Medical Science, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
61
|
Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol 2016; 283:501-11. [PMID: 26957369 DOI: 10.1016/j.expneurol.2016.03.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Abstract
The restoration of myelin sheaths on demyelinated axons remains a major obstacle in the treatment of multiple sclerosis (MS). Currently approved therapies work by modulating the immune system to reduce the number and rate of lesion formation but are only partially effective since they are not able to restore lost myelin. In the healthy CNS, myelin continues to be generated throughout life and spontaneous remyelination occurs readily in response to insults. In patients with MS, however, remyelination eventually fails, at least in part as a result of a failure of oligodendrocyte precursor cell (OPC) differentiation and the subsequent production of new myelin. A better understanding of the molecular mechanisms and signaling pathways that drive the process of myelin sheath formation is therefore important in order to speed the development of novel therapeutics designed to target remyelination. Here we review data supporting critical roles for three highly conserved intracellular signaling pathways: Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK in the regulation of OPC differentiation and myelination both during development and in remyelination. Potential points of crosstalk between the three pathways and important areas for future research are also discussed.
Collapse
|
62
|
Xu Z, Chen Y, Yu J, Yin D, Liu C, Chen X, Zhang D. TCF4 Mediates the Maintenance of Neuropathic Pain Through Wnt/β-Catenin Signaling Following Peripheral Nerve Injury in Rats. J Mol Neurosci 2015; 56:397-408. [PMID: 25963533 DOI: 10.1007/s12031-015-0565-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/14/2015] [Indexed: 01/20/2023]
Abstract
Neuropathic pain is elicited after a serious disorder of the nervous system and is along with the neural damage. It is usually chronic and challenging to treat. Transcription factor 4 (TCF4) is a key transcription factor of Wnt signaling system. Recent studies have shown that TCF4 interacts with β-catenin in the Wnt signaling pathway and coactivates downstream target genes in diverse systems. However, it is not well elucidated in the pathogenesis of neuropathic pain. In the present study, we investigated the role of TCF4 in the maintenance of neuropathic pain after chronic constriction injury (CCI) in rats. CCI induced persistent TCF4 upregulation in the dorsal root ganglion and spinal cord. Interestingly, TCF4 was mainly colocalized with neurons in the injured dorsal root ganglion and spinal cord on CCI day 7. Moreover, the expression patterns of β-catenin and glycogen synthase kinase-3β (GSK-3β) were parallel with that of TCF4 in vivo studies. Intrathecal injection of Wnt/β-catenin pathway inhibitor IWR-1-endo and TCF4 small interfering RNA (siRNA) significantly attenuated CCI-induced mechanical allodynia and heat hyperalgesia. The results suggest that TCF4 in the dorsal root ganglion and spinal cord is involved in the maintenance of CCI-induced neuropathic pain. Targeting TCF4 or Wnt/β-catenin signaling may be a potential treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Lee HK, Laug D, Zhu W, Patel JM, Ung K, Arenkiel BR, Fancy SPJ, Mohila C, Deneen B. Apcdd1 stimulates oligodendrocyte differentiation after white matter injury. Glia 2015; 63:1840-9. [PMID: 25946682 DOI: 10.1002/glia.22848] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS, therefore it is critical to understand how the factors associated with the various regulatory layers of this complex pathway contribute to these processes. Recently, Apcdd1 was identified as a negative regulator of proximal Wnt signaling, however its role in oligodendrocyte (OL) differentiation and reymelination in the CNS remain undefined. Analysis of Apcdd1 expression revealed dynamic expression during OL development, where its expression is upregulated during differentiation. Functional studies using ex vivo and in vitro OL systems revealed that Apcdd1 promotes OL differentiation, suppresses Wnt signaling, and associates with β-catenin. Application of these findings to white matter injury (WMI) models revealed that Apcdd1 similarly promotes OL differentiation after gliotoxic injury in vivo and acute hypoxia ex vivo. Examination of Apcdd1 expression in white matter lesions from neonatal WMI and adult multiple sclerosis revealed its expression in subsets of oligodendrocyte (OL) precursors. These studies describe, for the first time, the role of Apcdd1 in OLs after WMI and reveal that negative regulators of the proximal Wnt pathway can influence regenerative myelination, suggesting a new therapeutic strategy for modulating Wnt signaling and stimulating repair after WMI.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Dylan Laug
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Wenyi Zhu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Jay M Patel
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Kevin Ung
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas.,Duncan Neurological Research Institute, Houston, Texas
| | - Stephen P J Fancy
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Carrie Mohila
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Duncan Neurological Research Institute, Houston, Texas
| |
Collapse
|