51
|
Optogenetic Imaging of Protein Activity Using Two-Photon Fluorescence Lifetime Imaging Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:295-308. [PMID: 33398821 DOI: 10.1007/978-981-15-8763-4_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spatiotemporal dynamics of cellular proteins, including protein-protein interactions and conformational changes, is essential for understanding cellular functions such as synaptic plasticity, cell motility, and cell division. One of the best ways to understand the mechanisms of signal transduction is to visualize protein activity with high spatiotemporal resolution in living cells within tissues. Optogenetic probes such as fluorescent proteins, in combination with Förster Resonance Energy Transfer (FRET) techniques, enable the measurement of protein-protein interactions and conformational changes in response to signaling events in living cells. Of the various FRET detection systems, two-photon fluorescence lifetime imaging microscopy (2pFLIM) is one of the methods best suited to monitoring FRET in subcellular compartments of living cells located deep within tissues, such as brain slices. This review will introduce the principle of 2pFLIM-FRET and the use of chromoproteins for imaging intracellular protein activities and protein-protein interactions. Also, we will discuss two examples of 2pFLIM-FRET application: imaging actin polymerization in synapses of hippocampal neurons in brain sections and detecting small GTPase Cdc42 activity in astrocytes.
Collapse
|
52
|
Heterosynaptic cross-talk of pre- and postsynaptic strengths along segments of dendrites. Cell Rep 2021; 34:108693. [PMID: 33503435 DOI: 10.1016/j.celrep.2021.108693] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/13/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
Dendrites are crucial for integrating incoming synaptic information. Individual dendritic branches are thought to constitute a signal processing unit, yet how neighboring synapses shape the boundaries of functional dendritic units is not well understood. Here, we address the cellular basis underlying the organization of the strengths of neighboring Schaffer collateral-CA1 synapses by optical quantal analysis and spine size measurements. Inducing potentiation at clusters of spines produces NMDA-receptor-dependent heterosynaptic plasticity. The direction of postsynaptic strength change shows distance dependency to the stimulated synapses where proximal synapses predominantly depress, whereas distal synapses potentiate; potentiation and depression are regulated by CaMKII and calcineurin, respectively. In contrast, heterosynaptic presynaptic plasticity is confined to weakening of presynaptic strength of nearby synapses, which requires CaMKII and the retrograde messenger nitric oxide. Our findings highlight the parallel engagement of multiple signaling pathways, each with characteristic spatial dynamics in shaping the local pattern of synaptic strengths.
Collapse
|
53
|
Stein IS, Park DK, Claiborne N, Zito K. Non-ionotropic NMDA receptor signaling gates bidirectional structural plasticity of dendritic spines. Cell Rep 2021; 34:108664. [PMID: 33503425 PMCID: PMC7952241 DOI: 10.1016/j.celrep.2020.108664] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Experience-dependent refinement of neuronal connections is critically important for brain development and learning. Here, we show that ion-flow-independent NMDA receptor (NMDAR) signaling is required for the long-term dendritic spine growth that is a vital component of brain circuit plasticity. We find that inhibition of p38 mitogen-activated protein kinase (p38 MAPK), which is downstream of non-ionotropic NMDAR signaling in long-term depression (LTD) and spine shrinkage, blocks long-term potentiation (LTP)-induced spine growth but not LTP. We hypothesize that non-ionotropic NMDAR signaling drives the cytoskeletal changes that support bidirectional spine structural plasticity. Indeed, we find that key signaling components downstream of non-ionotropic NMDAR function in LTD-induced spine shrinkage are also necessary for LTP-induced spine growth. Furthermore, NMDAR conformational signaling with coincident Ca2+ influx is sufficient to drive CaMKII-dependent long-term spine growth, even when Ca2+ is artificially driven through voltage-gated Ca2+ channels. Our results support a model in which non-ionotropic NMDAR signaling gates the bidirectional spine structural changes vital for brain plasticity. Structural plasticity of dendritic spines is a critical step in the remodeling of brain circuits during learning. Stein et al. demonstrate a vital role for ion-flux-independent NMDAR signaling in plasticity-associated dendritic spine growth, supporting a model in which non-ionotropic NMDAR signaling primes the spine actin cytoskeleton for bidirectional structural plasticity.
Collapse
Affiliation(s)
- Ivar S Stein
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Deborah K Park
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Nicole Claiborne
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
54
|
Savalia NK, Shao LX, Kwan AC. A Dendrite-Focused Framework for Understanding the Actions of Ketamine and Psychedelics. Trends Neurosci 2020; 44:260-275. [PMID: 33358035 DOI: 10.1016/j.tins.2020.11.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 02/09/2023]
Abstract
Pilot studies have hinted that serotonergic psychedelics such as psilocybin may relieve depression, and could possibly do so by promoting neural plasticity. Intriguingly, another psychotomimetic compound, ketamine, is a fast-acting antidepressant and induces synapse formation. The similarities in behavioral and neural effects have been puzzling because the compounds target distinct molecular receptors in the brain. In this opinion article, we develop a conceptual framework that suggests the actions of ketamine and serotonergic psychedelics may converge at the dendrites, to both enhance and suppress membrane excitability. We speculate that mismatches in the opposing actions on dendritic excitability may relate to these compounds' cell-type and region selectivity, their moderate range of effects and toxicity, and their plasticity-promoting capacities.
Collapse
Affiliation(s)
- Neil K Savalia
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ling-Xiao Shao
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
55
|
Lu J, Zuo Y. Shedding light on learning and memory: optical interrogation of the synaptic circuitry. Curr Opin Neurobiol 2020; 67:138-144. [PMID: 33279804 DOI: 10.1016/j.conb.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/02/2023]
Abstract
In the quest for the physical substrate of learning and memory, a consensus gradually emerges that memory traces are stored in specific neuronal populations and the synaptic circuits that connect them. In this review, we discuss recent progresses in understanding the reorganization of synaptic circuits and neuronal assemblies associated with learning and memory, with an emphasis on optical techniques for in vivo interrogations. We also highlight some open questions on the missing link between synaptic modifications and neuronal coding, and how stable memory persists despite synaptic and neuronal fluctuations.
Collapse
Affiliation(s)
- Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
56
|
Sulistomo HW, Nemoto T, Kage Y, Fujii H, Uchida T, Takamiya K, Sumimoto H, Kataoka H, Bito H, Takeya R. Fhod3 Controls the Dendritic Spine Morphology of Specific Subpopulations of Pyramidal Neurons in the Mouse Cerebral Cortex. Cereb Cortex 2020; 31:2205-2219. [PMID: 33251537 DOI: 10.1093/cercor/bhaa355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
Changes in the shape and size of the dendritic spines are critical for synaptic transmission. These morphological changes depend on dynamic assembly of the actin cytoskeleton and occur differently in various types of neurons. However, how the actin dynamics are regulated in a neuronal cell type-specific manner remains largely unknown. We show that Fhod3, a member of the formin family proteins that mediate F-actin assembly, controls the dendritic spine morphogenesis of specific subpopulations of cerebrocortical pyramidal neurons. Fhod3 is expressed specifically in excitatory pyramidal neurons within layers II/III and V of restricted areas of the mouse cerebral cortex. Immunohistochemical and biochemical analyses revealed the accumulation of Fhod3 in postsynaptic spines. Although targeted deletion of Fhod3 in the brain did not lead to any defects in the gross or histological appearance of the brain, the dendritic spines in pyramidal neurons within presumptive Fhod3-positive areas were morphologically abnormal. In primary cultures prepared from the Fhod3-depleted cortex, defects in spine morphology were only detected in Fhod3 promoter-active cells, a small population of pyramidal neurons, and not in Fhod3 promoter-negative pyramidal neurons. Thus, Fhod3 plays a crucial role in dendritic spine morphogenesis only in a specific population of pyramidal neurons in a cell type-specific manner.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takayuki Nemoto
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Uchida
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kogo Takamiya
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
57
|
Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2020; 221:107741. [PMID: 33189715 DOI: 10.1016/j.pharmthera.2020.107741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.
Collapse
|
58
|
Jasinska M, Woznicka O, Jasek-Gajda E, Lis GJ, Pyza E, Litwin JA. Circadian Changes of Dendritic Spine Geometry in Mouse Barrel Cortex. Front Neurosci 2020; 14:578881. [PMID: 33117123 PMCID: PMC7550732 DOI: 10.3389/fnins.2020.578881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythmicity changes the density and shape of dendritic spines in mouse somatosensory barrel cortex, influencing their stability and maturation. In this study, we analyzed the main geometric parameters of dendritic spines reflecting the strength of synapses located on these spines under light/dark (12:12) and constant darkness conditions, in order to distinguish between endogenously regulated and light-driven parameters. Using morphological analysis of serial electron micrographs, as well as three-dimensional reconstructions, we found that the light induces elongation of single-synapse spine necks and increases in the diameter of double-synapse spine necks, increasing and decreasing the isolation of synapses from the parent dendrite, respectively. During the subjective night of constant darkness, we observed an enlargement of postsynaptic density area in inhibitory synapses and an increase in the number of polyribosomes inside double-synapse spines. The results show that both endogenous effect (circadian clock/locomotor activity) and light affect the morphological parameters of single- and double-synapse spines in the somatosensory cortex: light reduces the efficiency of excitatory synapses on single-synapse spines, increases the effect of synaptic transmission in double-synapse spines, and additionally masks the endogenous clock-driven enlargement of inhibitory synapses located on double-synapse spines. This indicates a special role of double-synapse spines and their inhibitory synapses in the regulation of synaptic transmission during both circadian and diurnal cycles in the mouse somatosensory cortex.
Collapse
Affiliation(s)
- Malgorzata Jasinska
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Jan A Litwin
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
59
|
Suratkal SS, Yen YH, Nishiyama J. Imaging dendritic spines: molecular organization and signaling for plasticity. Curr Opin Neurobiol 2020; 67:66-74. [PMID: 32942126 DOI: 10.1016/j.conb.2020.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity and, ultimately, learning and memory. The process is mediated by signaling pathways that promote the reorganization of the actin cytoskeleton and subsynaptic structures, which in turn cause structural and functional changes in dendritic spines. Recent advances in optical technologies have started to reveal the fine molecular structures and dynamic signaling occurring inside spines, providing significant insights into the molecular regulation of spines. Here, we highlight recent studies to resolve the molecular mechanisms underlying the spine actin cytoskeleton and plasticity with high spatiotemporal resolution. Moreover, we discuss new genome editing-based approaches in imaging the molecular structure and plasticity of dendritic spines.
Collapse
Affiliation(s)
- Swathi Shivaram Suratkal
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yu-Hsin Yen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
60
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
61
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
62
|
Tazerart S, Mitchell DE, Miranda-Rottmann S, Araya R. A spike-timing-dependent plasticity rule for dendritic spines. Nat Commun 2020; 11:4276. [PMID: 32848151 PMCID: PMC7449969 DOI: 10.1038/s41467-020-17861-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2020] [Indexed: 12/03/2022] Open
Abstract
The structural organization of excitatory inputs supporting spike-timing-dependent plasticity (STDP) remains unknown. We performed a spine STDP protocol using two-photon (2P) glutamate uncaging (pre) paired with postsynaptic spikes (post) in layer 5 pyramidal neurons from juvenile mice. Here we report that pre-post pairings that trigger timing-dependent LTP (t-LTP) produce shrinkage of the activated spine neck and increase in synaptic strength; and post-pre pairings that trigger timing-dependent LTD (t-LTD) decrease synaptic strength without affecting spine shape. Furthermore, the induction of t-LTP with 2P glutamate uncaging in clustered spines (<5 μm apart) enhances LTP through a NMDA receptor-mediated spine calcium accumulation and actin polymerization-dependent neck shrinkage, whereas t-LTD was dependent on NMDA receptors and disrupted by the activation of clustered spines but recovered when separated by >40 μm. These results indicate that synaptic cooperativity disrupts t-LTD and extends the temporal window for the induction of t-LTP, leading to STDP only encompassing LTP.
Collapse
Affiliation(s)
- Sabrina Tazerart
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Diana E Mitchell
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Soledad Miranda-Rottmann
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada.
| |
Collapse
|
63
|
Li C, Su C, Wang Z, Han R, Wang Y, Wang H, Tian J, Gao Y. WITHDRAWN: PCC-0105002, a novel small molecule inhibitor of PSD95-nNOS protein-protein interactions, attenuates neuropathic pain and corrects motor coordination-associated side effects in neuropathic pain model. Toxicol Appl Pharmacol 2020:115208. [PMID: 32828906 DOI: 10.1016/j.taap.2020.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhezhe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Rui Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai 264005, China.
| |
Collapse
|
64
|
Wu X, Cai Q, Feng Z, Zhang M. Liquid-Liquid Phase Separation in Neuronal Development and Synaptic Signaling. Dev Cell 2020; 55:18-29. [PMID: 32726576 DOI: 10.1016/j.devcel.2020.06.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
Formation of biomolecular condensates that are not enclosed by membranes via liquid-liquid phase separation (LLPS) is a general strategy that cells adopt to organize membraneless subcellular compartments for diverse functions. Neurons are highly polarized with elaborate branching and functional compartmentalization of their neurites, thus, raising additional demand for the proper subcellular localization of both membraneless and membrane-based organelles. Recent studies have provided evidence that several protein assemblies involved in the establishment of neuronal stem cell (NSC) polarity and in the asymmetric division of NSCs form distinct molecular condensates via LLPS. In synapses of adult neurons, molecular apparatuses controlling presynaptic neurotransmitter release and postsynaptic signaling transmission are also likely formed via LLPS. These molecular condensates, though not enclosed by lipid bilayers, directly associate with plasma membranes or membrane-based organelles, indicating that direct communication between membraneless and membrane-based organelles is a common theme in neurons and other types of cells.
Collapse
Affiliation(s)
- Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
65
|
Leem YH, Yoon SS, Jo SA. Imipramine Ameliorates Depressive Symptoms by Blocking Differential Alteration of Dendritic Spine Structure in Amygdala and Prefrontal Cortex of Chronic Stress-Induced Mice. Biomol Ther (Seoul) 2020; 28:230-239. [PMID: 32028757 PMCID: PMC7216746 DOI: 10.4062/biomolther.2019.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022] Open
Abstract
Previous studies have shown disrupted synaptic plasticity and neural activity in depression. Such alteration is strongly associated with disrupted synaptic structures. Chronic stress has been known to induce changes in dendritic structure in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), but antidepressant effect on structure of these brain areas has been unclear. Here, the effects of imipramine on dendritic spine density and morphology in BLA and mPFC subregions of stressed mice were examined. Chronic restraint stress caused depressive-like behaviors such as enhanced social avoidance and despair level coincident with differential changes in dendritic spine structure. Chronic stress enhanced dendritic spine density in the lateral nucleus of BLA with no significant change in the basal nucleus of BLA, and altered the proportion of stubby or mushroom spines in both subregions. Conversely, in the apical and basal mPFC, chronic stress caused a significant reduction in spine density. The proportion of stubby or mushroom spines in these subregions overall reduced while the proportion of thin spines increased after repeated stress. Interestingly, most of these structural alterations by chronic stress were reversed by imipramine. In addition, structural changes caused by stress and blocking the changes by imipramine were corelated well with altered activation and expression of synaptic plasticity-promoting molecules such as phospho-CREB, phospho-CAMKII, and PSD-95. Collectively, our data suggest that imipramine modulates stress-induced changes in synaptic structure and synaptic plasticity-promoting molecules in a coordinated manner although structural and molecular alterations induced by stress are distinct in the BLA and mPFC.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Sang-Sun Yoon
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Sangmee Ahn Jo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
66
|
Costa JF, Dines M, Lamprecht R. The Role of Rac GTPase in Dendritic Spine Morphogenesis and Memory. Front Synaptic Neurosci 2020; 12:12. [PMID: 32362820 PMCID: PMC7182350 DOI: 10.3389/fnsyn.2020.00012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to form memories in the brain is needed for daily functions, and its impairment is associated with human mental disorders. Evidence indicates that long-term memory (LTM)-related processes such as its consolidation, extinction and forgetting involve changes of synaptic efficacy produced by alterations in neural transmission and morphology. Modulation of the morphology and number of dendritic spines has been proposed to contribute to changes in neuronal transmission mediating such LTM-related processes. Rac GTPase activity is regulated by synaptic activation and it can affect spine morphology by controlling actin-regulatory proteins. Recent evidence shows that changes in Rac GTPase activity affect memory consolidation, extinction, erasure and forgetting and can affect spine morphology in brain areas that mediate these behaviors. Altered Rac GTPase activity is associated with abnormal spine morphology and brain disorders. By affecting Rac GTPase activity we can further understand the roles of spine morphogenesis in memory. Moreover, manipulation of Rac GTPase activity may serve as a therapeutic tool for the treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | | | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
67
|
Mikuni T, Uchigashima M. Methodological approaches to understand the molecular mechanism of structural plasticity of dendritic spines. Eur J Neurosci 2020; 54:6902-6911. [PMID: 32248570 DOI: 10.1111/ejn.14734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Dendritic spines are tiny protrusions emanating from the neuronal dendrites, typically housing single excitatory postsynapses. Structural plasticity of dendritic spines is considered to be essential for synaptic functional plasticity and also reorganization of neural circuits during learning and memory. Structural plasticity of spines is mediated by complex biochemical signaling with various spatial and temporal scales. A variety of methods based on pharmacological, genetic, molecular, imaging and optical approaches has been developed and applied to dissect the complex signal transduction pathways. In this review, we overview both conventional and new methodological approaches to identify, monitor and manipulate key molecules for structural plasticity of dendritic spines, ultimately aiming to understand the molecular mechanism of learning and memory in behaving animals.
Collapse
Affiliation(s)
- Takayasu Mikuni
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
68
|
Involvement of CX3CL1/CX3CR1 in depression and cognitive impairment induced by chronic unpredictable stress and relevant underlying mechanism. Behav Brain Res 2020; 381:112371. [DOI: 10.1016/j.bbr.2019.112371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
|
69
|
Tu X, Yasuda R, Colgan LA. Rac1 is a downstream effector of PKCα in structural synaptic plasticity. Sci Rep 2020; 10:1777. [PMID: 32019972 PMCID: PMC7000694 DOI: 10.1038/s41598-020-58610-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Structural and functional plasticity of dendritic spines is the basis of animal learning. The rapid remodeling of actin cytoskeleton is associated with spine enlargement and shrinkage, which are essential for structural plasticity. The calcium-dependent protein kinase C isoform, PKCα, has been suggested to be critical for this actin-dependent plasticity. However, mechanisms linking PKCα and structural plasticity of spines are unknown. Here, we examine the spatiotemporal activation of actin regulators, including small GTPases Rac1, Cdc42 and Ras, in the presence or absence of PKCα during single-spine structural plasticity. Removal of PKCα expression in the postsynapse attenuated Rac1 activation during structural plasticity without affecting Ras or Cdc42 activity. Moreover, disruption of a PDZ binding domain within PKCα led to impaired Rac1 activation and deficits in structural spine remodeling. These results demonstrate that PKCα positively regulates the activation of Rac1 during structural plasticity.
Collapse
Affiliation(s)
- Xun Tu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- International Max Planck Research School for Brain and Behavior, Jupiter, FL, USA
- FAU/Max Planck Florida Institute Joint Graduate Program in Integrative Biology and Neuroscience, Florida Atlantic University, Boca Raton, FL, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- International Max Planck Research School for Brain and Behavior, Jupiter, FL, USA.
- FAU/Max Planck Florida Institute Joint Graduate Program in Integrative Biology and Neuroscience, Florida Atlantic University, Boca Raton, FL, USA.
| | - Lesley A Colgan
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
70
|
Abstract
Emerging evidence indicates that liquid-liquid phase separation, the formation of a condensed molecular assembly within another diluted aqueous solution, is a means for cells to organize highly condensed biological assemblies (also known as biological condensates or membraneless compartments) with very broad functions and regulatory properties in different subcellular regions. Molecular machineries dictating synaptic transmissions in both presynaptic boutons and postsynaptic densities of neuronal synapses may be such biological condensates. Here we review recent developments showing how phase separation can build dense synaptic molecular clusters, highlight unique features of such condensed clusters in the context of synaptic development and signaling, discuss how aberrant phase-separation-mediated synaptic assembly formation may contribute to dysfunctional signaling in psychiatric disorders, and present some challenges and opportunities of phase separation in synaptic biology.
Collapse
|
71
|
Silent synapses dictate cocaine memory destabilization and reconsolidation. Nat Neurosci 2019; 23:32-46. [PMID: 31792465 PMCID: PMC6930359 DOI: 10.1038/s41593-019-0537-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 10/10/2019] [Indexed: 02/04/2023]
Abstract
Cocaine-associated memories are persistent, but, upon retrieval, become temporarily destabilized and vulnerable to disruptions, followed by reconsolidation. To explore the synaptic underpinnings for these memory dynamics, we studied AMPA receptor (AMPAR)-silent excitatory synapses, which are generated in the nucleus accumbens by cocaine self-administration, and subsequently mature after prolonged withdrawal by recruiting AMPARs, echoing acquisition and consolidation of cocaine memories. We show that, upon memory retrieval after prolonged withdrawal, the matured silent synapses become AMPAR-silent again, followed by re-maturation ~6 hr later, defining the onset and termination of a destabilization window of cocaine memories. These synaptic dynamics are controlled by Rac1, with decreased and increased Rac1 activities opening and closing, respectively, the silent synapse-mediated destabilization window. Preventing silent synapse re-maturation within the destabilization window decreases cue-induced cocaine seeking. Thus, cocaine-generated silent synapses constitute a discrete synaptic ensemble dictating the dynamics of cocaine-associated memories and can be targeted for memory disruption.
Collapse
|
72
|
Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y, Gao B, Qian H, Bi G, Song S, Yang JJ, Wu H. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902761. [PMID: 31550405 DOI: 10.1002/adma.201902761] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/16/2019] [Indexed: 05/08/2023]
Abstract
As the research on artificial intelligence booms, there is broad interest in brain-inspired computing using novel neuromorphic devices. The potential of various emerging materials and devices for neuromorphic computing has attracted extensive research efforts, leading to a large number of publications. Going forward, in order to better emulate the brain's functions, its relevant fundamentals, working mechanisms, and resultant behaviors need to be re-visited, better understood, and connected to electronics. A systematic overview of biological and artificial neural systems is given, along with their related critical mechanisms. Recent progress in neuromorphic devices is reviewed and, more importantly, the existing challenges are highlighted to hopefully shed light on future research directions.
Collapse
Affiliation(s)
- Jianshi Tang
- Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Fang Yuan
- Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, 100084, China
| | - Xinke Shen
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhongrui Wang
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingyi Rao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yuanyuan He
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuhao Sun
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xinyi Li
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Wenbin Zhang
- Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, 100084, China
| | - Yijun Li
- Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, 100084, China
| | - Bin Gao
- Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - He Qian
- Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Guoqiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - J Joshua Yang
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Huaqiang Wu
- Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
73
|
Kruijssen DLH, Wierenga CJ. Single Synapse LTP: A Matter of Context? Front Cell Neurosci 2019; 13:496. [PMID: 31780899 PMCID: PMC6861208 DOI: 10.3389/fncel.2019.00496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
The most commonly studied form of synaptic plasticity is long-term potentiation (LTP). Over the last 15 years, it has been possible to induce structural and functional LTP in dendritic spines using two-photon glutamate uncaging, allowing for studying the signaling mechanisms of LTP with single synapse resolution. In this review, we compare different stimulation methods to induce single synapse LTP and discuss how LTP is expressed. We summarize the underlying signaling mechanisms that have been studied with high spatiotemporal resolution. Finally, we discuss how LTP in a single synapse can be affected by excitatory and inhibitory synapses nearby. We argue that single synapse LTP is highly dependent on context: the choice of induction method, the history of the dendritic spine and the dendritic vicinity crucially affect signaling pathways and expression of single synapse LTP.
Collapse
Affiliation(s)
- Dennis L H Kruijssen
- Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands
| | - Corette J Wierenga
- Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
74
|
Kerlin A, Mohar B, Flickinger D, MacLennan BJ, Dean MB, Davis C, Spruston N, Svoboda K. Functional clustering of dendritic activity during decision-making. eLife 2019; 8:46966. [PMID: 31663507 PMCID: PMC6821494 DOI: 10.7554/elife.46966] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decision task. A custom microscope allowed us to image the soma and up to 300 μm of contiguous dendrite at 15 Hz, while resolving individual spines. New analysis methods were used to estimate the frequency and spatial scales of activity in dendritic branches and spines. The majority of dendritic calcium transients were coincident with global events. However, task-associated calcium signals in dendrites and spines were compartmentalized by dendritic branching and clustered within branches over approximately 10 μm. Diverse behavior-related signals were intermingled and distributed throughout the dendritic arbor, potentially supporting a large learning capacity in individual neurons.
Collapse
Affiliation(s)
- Aaron Kerlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Boaz Mohar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel Flickinger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Bryan J MacLennan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Matthew B Dean
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Courtney Davis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
75
|
Nishiyama J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Psychiatry Clin Neurosci 2019; 73:541-550. [PMID: 31215705 DOI: 10.1111/pcn.12899] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
Dendritic spines are tiny postsynaptic protrusions from a dendrite that receive most of the excitatory synaptic input in the brain. Functional and structural changes in dendritic spines are critical for synaptic plasticity, a cellular model of learning and memory. Conversely, altered spine morphology and plasticity are common hallmarks of human neurodevelopmental disorders, such as intellectual disability and autism. The advances in molecular and optical techniques have allowed for exploration of dynamic changes in structure and signal transduction at single-spine resolution, providing significant insights into the molecular regulation underlying spine structural plasticity. Here, I review recent findings on: how synaptic stimulation leads to diverse forms of spine structural plasticity; how the associated biochemical signals are initiated and transmitted into neuronal compartments; and how disruption of single genes associated with neurodevelopmental disorders can lead to abnormal spine structure in human and mouse brains. In particular, I discuss the functions of the Ras superfamily of small GTPases in spatiotemporal regulation of the actin cytoskeleton and protein synthesis in dendritic spines. Multiple lines of evidence implicate disrupted Ras signaling pathways in the spine structural abnormalities observed in neurodevelopmental disorders. Both deficient and excessive Ras activities lead to disrupted spine structure and deficits in learning and memory. Dysregulation of spine Ras signaling, therefore, may play a key role in the pathogenesis of multiple neurodevelopmental disorders with distinct etiologies.
Collapse
Affiliation(s)
- Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
76
|
Cugno A, Bartol TM, Sejnowski TJ, Iyengar R, Rangamani P. Geometric principles of second messenger dynamics in dendritic spines. Sci Rep 2019; 9:11676. [PMID: 31406140 PMCID: PMC6691135 DOI: 10.1038/s41598-019-48028-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/29/2019] [Indexed: 01/27/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along dendrites in neurons and play a critical role in synaptic transmission. Dendritic spines come in a variety of shapes that depend on their developmental state. Additionally, roughly 14-19% of mature spines have a specialized endoplasmic reticulum called the spine apparatus. How does the shape of a postsynaptic spine and its internal organization affect the spatio-temporal dynamics of short timescale signaling? Answers to this question are central to our understanding the initiation of synaptic transmission, learning, and memory formation. In this work, we investigated the effect of spine and spine apparatus size and shape on the spatio-temporal dynamics of second messengers using mathematical modeling using reaction-diffusion equations in idealized geometries (ellipsoids, spheres, and mushroom-shaped). Our analyses and simulations showed that in the short timescale, spine size and shape coupled with the spine apparatus geometries govern the spatiotemporal dynamics of second messengers. We show that the curvature of the geometries gives rise to pseudo-harmonic functions, which predict the locations of maximum and minimum concentrations along the spine head. Furthermore, we showed that the lifetime of the concentration gradient can be fine-tuned by localization of fluxes on the spine head and varying the relative curvatures and distances between the spine apparatus and the spine head. Thus, we have identified several key geometric determinants of how the spine head and spine apparatus may regulate the short timescale chemical dynamics of small molecules that control synaptic plasticity.
Collapse
Affiliation(s)
- Andrea Cugno
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, CA, United States
| | - Thomas M Bartol
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, CA, United States.
| |
Collapse
|
77
|
Bell M, Bartol T, Sejnowski T, Rangamani P. Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. J Gen Physiol 2019; 151:1017-1034. [PMID: 31324651 PMCID: PMC6683673 DOI: 10.1085/jgp.201812261] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 01/27/2023] Open
Abstract
Dendritic spines are small subcompartments that protrude from the dendrites of neurons and are important for signaling activity and synaptic communication. These subcompartments have been characterized to have different shapes. While it is known that these shapes are associated with spine function, the specific nature of these shape-function relationships is not well understood. In this work, we systematically investigated the relationship between the shape and size of both the spine head and spine apparatus, a specialized endoplasmic reticulum compartment within the spine head, in modulating rapid calcium dynamics using mathematical modeling. We developed a spatial multicompartment reaction-diffusion model of calcium dynamics in three dimensions with various flux sources, including N-methyl-D-aspartate receptors (NMDARs), voltage-sensitive calcium channels (VSCCs), and different ion pumps on the plasma membrane. Using this model, we make several important predictions. First, the volume to surface area ratio of the spine regulates calcium dynamics. Second, membrane fluxes impact calcium dynamics temporally and spatially in a nonlinear fashion. Finally, the spine apparatus can act as a physical buffer for calcium by acting as a sink and rescaling the calcium concentration. These predictions set the stage for future experimental investigations of calcium dynamics in dendritic spines.
Collapse
Affiliation(s)
- Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA
| | - Tom Bartol
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA
| | - Terrence Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA
- Division of Biological Sciences, University of California, San Diego, San Diego, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
78
|
Mitchell DE, Martineau É, Tazerart S, Araya R. Probing Single Synapses via the Photolytic Release of Neurotransmitters. Front Synaptic Neurosci 2019; 11:19. [PMID: 31354469 PMCID: PMC6640007 DOI: 10.3389/fnsyn.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The development of two-photon microscopy has revolutionized our understanding of how synapses are formed and how they transform synaptic inputs in dendritic spines-tiny protrusions that cover the dendrites of pyramidal neurons that receive most excitatory synaptic information in the brain. These discoveries have led us to better comprehend the neuronal computations that take place at the level of dendritic spines as well as within neuronal circuits with unprecedented resolution. Here, we describe a method that uses a two-photon (2P) microscope and 2P uncaging of caged neurotransmitters for the activation of single and multiple spines in the dendrites of cortical pyramidal neurons. In addition, we propose a cost-effective description of the components necessary for the construction of a one laser source-2P microscope capable of nearly simultaneous 2P uncaging of neurotransmitters and 2P calcium imaging of the activated spines and nearby dendrites. We provide a brief overview on how the use of these techniques have helped researchers in the last 15 years unravel the function of spines in: (a) information processing; (b) storage; and (c) integration of excitatory synaptic inputs.
Collapse
Affiliation(s)
- Diana E. Mitchell
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Éric Martineau
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sabrina Tazerart
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
79
|
Dittmer PJ, Dell'Acqua ML, Sather WA. Synaptic crosstalk conferred by a zone of differentially regulated Ca 2+ signaling in the dendritic shaft adjoining a potentiated spine. Proc Natl Acad Sci U S A 2019; 116:13611-13620. [PMID: 31209051 PMCID: PMC6613087 DOI: 10.1073/pnas.1902461116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Patterns of postsynaptic activity that induce long-term potentiation of fast excitatory transmission at glutamatergic synapses between hippocampal neurons cause enlargement of the dendritic spine and promote growth in spine endoplasmic reticulum (ER) content. Such postsynaptic activity patterns also impact Ca2+ signaling in the adjoining dendritic shaft, in a zone centered on the spine-shaft junction and extending ∼10-20 µm in either direction along the shaft. Comparing this specialized zone in the shaft with the dendrite in general, plasticity-inducing stimulation of a single spine causes more profound depletion of Ca2+ stores in the ER, a greater degree of interaction between stromal interaction molecule 1 (STIM1) and L-type Ca2+ channels, and thus stronger STIM1 inhibition of these channels. Here we show that the length of this zone along the dendritic axis can be approximately doubled through the neuromodulatory action of β-adrenergic receptors (βARs). The mechanism of βAR enlargement of the zone arises from protein kinase A-mediated enhancement of L-type Ca2+ current, which in turn lowers [Ca2+]ER through ryanodine receptor-dependent Ca2+-induced Ca2+ release and activates STIM1 feedback inhibition of L-type Ca2+ channels. An important function of this dendritic zone is to support crosstalk between spines along its length such that spines neighboring a strongly stimulated spine are enabled to undergo structural plasticity in response to stimulation that would otherwise be subthreshold for spine structural plasticity. This form of crosstalk requires L-type Ca2+ channel current to activate STIM1, and βAR activity extends the range along the shaft over which such spine-to-spine communication can occur.
Collapse
Affiliation(s)
- Philip J Dittmer
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - William A Sather
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
80
|
Sleep Deprivation by Exposure to Novel Objects Increases Synapse Density and Axon-Spine Interface in the Hippocampal CA1 Region of Adolescent Mice. J Neurosci 2019; 39:6613-6625. [PMID: 31263066 DOI: 10.1523/jneurosci.0380-19.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
Sleep has been hypothesized to rebalance overall synaptic strength after ongoing learning during waking leads to net synaptic potentiation. If so, because synaptic strength and size are correlated, synapses on average should be larger after wake and smaller after sleep. This prediction was recently confirmed in mouse cerebral cortex using serial block-face electron microscopy (SBEM). However, whether these findings extend to other brain regions is unknown. Moreover, sleep deprivation by gentle handling was reported to produce hippocampal spine loss, raising the question of whether synapse size and number are differentially affected by sleep and waking. Here we applied SBEM to measure axon-spine interface (ASI), the contact area between pre-synapse and post-synapse, and synapse density in CA1 stratum radiatum. Adolescent YFP-H mice were studied after 6-8 h of sleep (S = 6), spontaneous wake at night (W = 4) or wake enforced during the day by novelty exposure (EW = 4; males/females balanced). In each animal ≥425 ASIs were measured and synaptic vesicles were counted in ~100 synapses/mouse. Reconstructed dendrites included many small, nonperforated synapses and fewer large, perforated synapses. Relative to S, ASI sizes in perforated synapses shifted toward higher values after W and more so after EW. ASI sizes in nonperforated synapses grew after EW relative to S and W, and so did their density. ASI size correlated with presynaptic vesicle number but the proportion of readily available vesicles decreased after EW, suggesting presynaptic fatigue. Thus, CA1 synapses undergo changes consistent with sleep-dependent synaptic renormalization and their number increases after extended wake.SIGNIFICANCE STATEMENT Sleep benefits learning, memory consolidation, and the integration of new with old memories, but the underlying mechanisms remain highly debated. One hypothesis suggests that sleep's cognitive benefits stem from its ability to renormalize total synaptic strength, after ongoing learning during wake leads to net synaptic potentiation. Supporting evidence for this hypothesis mainly comes from the cerebral cortex, including the observation that cortical synapses are larger after wake and smaller after sleep. Using serial electron microscopy, we find here that sleep/wake synaptic changes consistent with sleep-dependent synaptic renormalization also occur in the CA1 region. Thus, the role of sleep in maintaining synaptic homeostasis may extend to the hippocampus, a key area for learning and synaptic plasticity.
Collapse
|
81
|
Padmanabhan P, Martínez-Mármol R, Xia D, Götz J, Meunier FA. Frontotemporal dementia mutant Tau promotes aberrant Fyn nanoclustering in hippocampal dendritic spines. eLife 2019; 8:45040. [PMID: 31237563 PMCID: PMC6592683 DOI: 10.7554/elife.45040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
The Src kinase Fyn plays critical roles in memory formation and Alzheimer’s disease. Its targeting to neuronal dendrites is regulated by Tau via an unknown mechanism. As nanoclustering is essential for efficient signaling, we used single-molecule tracking to characterize the nanoscale distribution of Fyn in mouse hippocampal neurons, and manipulated the expression of Tau to test whether it controls Fyn nanoscale organization. We found that dendritic Fyn exhibits at least three distinct motion states, two of them associated with nanodomains. Fyn mobility decreases in dendrites during neuronal maturation, suggesting a dynamic synaptic reorganization. Removing Tau increases Fyn mobility in dendritic shafts, an effect that is rescued by re-expressing wildtype Tau. By contrast, expression of frontotemporal dementia P301L mutant Tau immobilizes Fyn in dendritic spines, affecting its motion state distribution and nanoclustering. Tau therefore controls the nanoscale organization of Fyn in dendrites, with the pathological Tau P301L mutation potentially contributing to synaptic dysfunction by promoting aberrant Fyn nanoclustering in spines.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Di Xia
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| |
Collapse
|
82
|
Basnayake K, Mazaud D, Bemelmans A, Rouach N, Korkotian E, Holcman D. Fast calcium transients in dendritic spines driven by extreme statistics. PLoS Biol 2019; 17:e2006202. [PMID: 31163024 PMCID: PMC6548358 DOI: 10.1371/journal.pbio.2006202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Fast calcium transients (<10 ms) remain difficult to analyse in cellular microdomains, yet they can modulate key cellular events such as trafficking, local ATP production by endoplasmic reticulum-mitochondria complex (ER-mitochondria complex), or spontaneous activity in astrocytes. In dendritic spines receiving synaptic inputs, we show here that in the presence of a spine apparatus (SA), which is an extension of the smooth ER, a calcium-induced calcium release (CICR) is triggered at the base of the spine by the fastest calcium ions arriving at a Ryanodyne receptor (RyR). The mechanism relies on the asymmetric distributions of RyRs and sarco/ER calcium-ATPase (SERCA) pumps that we predict using a computational model and further confirm experimentally in culture and slice hippocampal neurons. The present mechanism for which the statistics of the fastest particles arriving at a small target, followed by an amplification, is likely to be generic in molecular transduction across cellular microcompartments, such as thin neuronal processes, astrocytes, endfeets, or protrusions.
Collapse
Affiliation(s)
- Kanishka Basnayake
- Computational Biology and Applied Mathematics, Institut de Biologie de l'École Normale Supérieure, Paris, France
| | - David Mazaud
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, Paris Sciences et Lettres Research University, Paris, France
| | - Alexis Bemelmans
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center and Centre National de la Recherche Scientifique UMR9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, Paris Sciences et Lettres Research University, Paris, France
| | - Eduard Korkotian
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Faculty of Biology, Perm State University, Perm, Russia
| | - David Holcman
- Computational Biology and Applied Mathematics, Institut de Biologie de l'École Normale Supérieure, Paris, France
- Department of Applied Mathematics and Theoretical Physics, Churchill College, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
83
|
Wilson RS, Rauniyar N, Sakaue F, Lam TT, Williams KR, Nairn AC. Development of Targeted Mass Spectrometry-Based Approaches for Quantitation of Proteins Enriched in the Postsynaptic Density (PSD). Proteomes 2019; 7:12. [PMID: 30986977 PMCID: PMC6630806 DOI: 10.3390/proteomes7020012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
The postsynaptic density (PSD) is a structural, electron-dense region of excitatory glutamatergic synapses, which is involved in a variety of cellular and signaling processes in neurons. The PSD is comprised of a large network of proteins, many of which have been implicated in a wide variety of neuropsychiatric disorders. Biochemical fractionation combined with mass spectrometry analyses have enabled an in-depth understanding of the protein composition of the PSD. However, the PSD composition may change rapidly in response to stimuli, and robust and reproducible methods to thoroughly quantify changes in protein abundance are warranted. Here, we report on the development of two types of targeted mass spectrometry-based assays for quantitation of PSD-enriched proteins. In total, we quantified 50 PSD proteins in a targeted, parallel reaction monitoring (PRM) assay using heavy-labeled, synthetic internal peptide standards and identified and quantified over 2100 proteins through a pre-determined spectral library using a data-independent acquisition (DIA) approach in PSD fractions isolated from mouse cortical brain tissue.
Collapse
Affiliation(s)
- Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA.
- W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06511, USA.
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | - Fumika Sakaue
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA.
- W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06511, USA.
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA.
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| |
Collapse
|
84
|
Rademacher N, Kuropka B, Kunde SA, Wahl MC, Freund C, Shoichet SA. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions. eLife 2019; 8:41299. [PMID: 30864948 PMCID: PMC6438691 DOI: 10.7554/elife.41299] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
PSD-95 MAGUK family scaffold proteins are multi-domain organisers of synaptic transmission that contain three PDZ domains followed by an SH3-GK domain tandem. This domain architecture allows coordinated assembly of protein complexes composed of neurotransmitter receptors, synaptic adhesion molecules and downstream signalling effectors. Here we show that binding of monomeric CRIPT-derived PDZ3 ligands to the third PDZ domain of PSD-95 induces functional changes in the intramolecular SH3-GK domain assembly that influence subsequent homotypic and heterotypic complex formation. We identify PSD-95 interactors that differentially bind to the SH3-GK domain tandem depending on its conformational state. Among these interactors, we further establish the heterotrimeric G protein subunit Gnb5 as a PSD-95 complex partner at dendritic spines of rat hippocampal neurons. The PSD-95 GK domain binds to Gnb5, and this interaction is triggered by CRIPT-derived PDZ3 ligands binding to the third PDZ domain of PSD-95, unraveling a hierarchical binding mechanism of PSD-95 complex formation.
Collapse
Affiliation(s)
- Nils Rademacher
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stella-Amrei Kunde
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus C Wahl
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sarah A Shoichet
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
85
|
Ge D, Noakes PG, Lavidis NA. Seasonal comparison of the neuromuscular junction morphology of Bufo marinus. J Comp Neurol 2019; 527:1931-1939. [PMID: 30737989 DOI: 10.1002/cne.24661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
At mammalian neuromuscular junctions (NMJs), prolonged inactivity leads to muscle denervation and atrophy. By contrast, amphibian NMJs do not show such degeneration even though they can remain in a state of drought-imposed dormancy (hibernation) for many years. We have previously reported that during the dry season, toad (Bufo marinus) NMJs display decreased sensitivity to extracellular calcium-dependent neurotransmitter release, which leads to minimal neuromuscular transmission. In the present study, we examined and compared NMJ morphology of toads obtained from the wild during the wet season (February-March) when these toads are active, to toads obtained from dry season (October-November) when toads are inactive. Iliofibularis muscles were isolated and prepared for immunostaining with anti-SV2, a monoclonal antibody that labels synaptic vesicle glycoprotein SV2. The corresponding postsynaptic acetylcholine receptors were stained using Alexa Fluro-555 conjugated α-bungarotoxin. Confocal microscopy and three-dimensional reconstructions were then used to examine the pre-and postsynaptic morphology of toads NMJs from the dry (inactive) and wet (active) seasons. Total axon branch number, the percentage of axon branches with discontinuous distributions of synaptic vesicles, and further the Pearson value of colocalization of pre and postsynaptic elements in each NMJs from both the dry and wet season were compared. While our previous studies on dry toads revealed a significant reduction in evoked neurotransmission, our present findings show that the structure of the NMJs suffered limited level of remodeling, suggesting a mechanism utilized by NMJs in dry season toads to support quick recover from their dormant state after the heavy rain in wet season.
Collapse
Affiliation(s)
- Dengyun Ge
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Nickolas A Lavidis
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| |
Collapse
|
86
|
Li N, Li C, Han R, Wang Y, Yang M, Wang H, Tian J. LPM580098, a Novel Triple Reuptake Inhibitor of Serotonin, Noradrenaline, and Dopamine, Attenuates Neuropathic Pain. Front Pharmacol 2019; 10:53. [PMID: 30837867 PMCID: PMC6382704 DOI: 10.3389/fphar.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Sedation and somnolence remain serious adverse effects of the existing analgesics (e.g., pregabalin, duloxetine) for neuropathic pain. The available evidence indicates that serotonin (5-HT), noradrenaline (NE), and dopamine (DA) play important roles in modulating the descending inhibitory pain pathway and sleep-wake cycle. The aim of this work was to test the hypothesis that LPM580098, a novel triple reuptake inhibitor (TRI) of 5-HT, NE, and DA, has analgesic effect, and does not induce significant adverse effects associated with central inhibition, such as sedation and somnolence. Methods: The analgesic activity of LPM580098 was assessed on formalin test and spinal nerve ligation (SNL)-induced neuropathic pain model. Locomotor activity, pentobarbital sodium-induced sleeping and rota-rod tests were also conducted. In vitro binding and uptake assays, and Western blotting were performed to examine the potential mechanisms. Results: LPM580098 suppressed the nocifensive behaviors during phase II of the formalin test in mice. In SNL rats, LPM580098 (16 mg kg-1) inhibited mechanical allodynia, thermal hyperalgesia and hyperexcitation of wide-dynamic range (WDR) neurons, in which the effect of LPM580098 was similar to pregabalin (30 mg kg-1). However, pregabalin altered the spontaneous locomotion, affected pentobarbital sodium-induced sleep, and showed a trend to perform motor dysfunction, which were not induced by LPM580098. Mechanistically, LPM580098 inhibited the uptake of 5-HT, NE, and DA, improved pain-induced changes of the synaptic functional plasticity and structural plasticity possibly via downregulating the NR2B/CaMKIIα/GluR1 and Rac1/RhoA signaling pathways. Conclusion: Our results suggest that LPM580098, a novel TRI, is effective in attenuating neuropathic pain without producing unwanted sedation and somnolence associated with central nervous system (CNS) depressants.
Collapse
Affiliation(s)
- Nannan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Rui Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mina Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
87
|
Lee KS, Vandemark K, Mezey D, Shultz N, Fitzpatrick D. Functional Synaptic Architecture of Callosal Inputs in Mouse Primary Visual Cortex. Neuron 2019; 101:421-428.e5. [PMID: 30658859 DOI: 10.1016/j.neuron.2018.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/25/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022]
Abstract
Callosal projections are thought to play a critical role in coordinating neural activity between the cerebral hemispheres in placental mammals, but the rules that govern the arrangement of callosal synapses on the dendrites of their target neurons remain poorly understood. Here we describe a high-throughput method to map the functional organization of callosal connectivity by combining in vivo 3D random-access two-photon calcium imaging of the dendritic spines of single V1 neurons with optogenetic stimulation of the presynaptic neural population in the contralateral hemisphere. We find that callosal-recipient spines are more likely to cluster with non-callosal-recipient spines with similar orientation preference. These observations, based on optogenetic stimulation, were confirmed by direct anatomical visualization of callosal synaptic connections using post hoc expansion microscopy. Our results demonstrate, for the first time, that functional synaptic clustering in a short dendritic segment could play a role in integrating distinct neuronal circuits.
Collapse
Affiliation(s)
- Kuo-Sheng Lee
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA; International Max Planck Research School for Brain and Behavior, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Kaeli Vandemark
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Dávid Mezey
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Nicole Shultz
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - David Fitzpatrick
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
88
|
Tendilla-Beltrán H, Antonio Vázquez-Roque R, Judith Vázquez-Hernández A, Garcés-Ramírez L, Flores G. Exploring the Dendritic Spine Pathology in a Schizophrenia-related Neurodevelopmental Animal Model. Neuroscience 2019; 396:36-45. [DOI: 10.1016/j.neuroscience.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023]
|
89
|
Feng Z, Chen X, Zeng M, Zhang M. Phase separation as a mechanism for assembling dynamic postsynaptic density signalling complexes. Curr Opin Neurobiol 2018; 57:1-8. [PMID: 30599311 DOI: 10.1016/j.conb.2018.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
The postsynaptic density (PSD) is an electron dense, semi-membrane bound compartment that lies beneath postsynaptic membranes. This region is densely packed with thousands of proteins that are involved in extensive interactions. During synaptic plasticity, the PSD undergoes changes in size and composition along with changes in synaptic strength that lead to long term potentiation (LTP) or depression (LTD). It is therefore essential to understand the organization principles underlying PSD assembly and rearrangement. Here, we review exciting new findings from recent in vitro reconstitution studies and propose a hypothesis that liquid-liquid phase separation mediates PSD formation and regulation. We also discuss how the properties of PSD formed via phase separation might contribute to the biological functions observed from decades of researches. Finally, we highlight unanswered questions regarding PSD organization and how in vitro reconstitution systems may help to answer these questions in the coming years.
Collapse
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
90
|
Wiegert JS, Pulin M, Gee CE, Oertner TG. The fate of hippocampal synapses depends on the sequence of plasticity-inducing events. eLife 2018; 7:39151. [PMID: 30311904 PMCID: PMC6205809 DOI: 10.7554/elife.39151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023] Open
Abstract
Synapses change their strength in response to specific activity patterns. This functional plasticity is assumed to be the brain’s primary mechanism for information storage. We used optogenetic stimulation of rat hippocampal slice cultures to induce long-term potentiation (LTP), long-term depression (LTD), or both forms of plasticity in sequence. Two-photon imaging of spine calcium signals allowed us to identify stimulated synapses and to follow their fate for the next 7 days. We found that plasticity-inducing protocols affected the synapse’s chance for survival: LTP increased synaptic stability, LTD destabilized synapses, and the effect of the last stimulation protocol was dominant over earlier stimulations. Interestingly, most potentiated synapses were resistant to depression-inducing protocols delivered 24 hr later. Our findings suggest that activity-dependent changes in the transmission strength of individual synapses are transient, but have long-lasting consequences for synaptic lifetime.
Collapse
Affiliation(s)
- J Simon Wiegert
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mauro Pulin
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Elizabeth Gee
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
91
|
Leem YH, Chang H. The ameliorating effect of exercise on long-term memory impairment and dendritic retraction via the mild activation of AMP-activated protein kinase in chronically stressed hippocampal CA1 neurons. J Exerc Nutrition Biochem 2018; 22:35-41. [PMID: 30343560 PMCID: PMC6199488 DOI: 10.20463/jenb.2018.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
[Purpose] Chronic stress affects the neuronal architecture of hippocampal subfields including the Cornu Ammonis 1 (CA1) region, which governs long-term memory. Exercise exerts a beneficial effect on memory improvement via hippocampal AMP-activated protein kinase (AMPK) activation. However, the relationship between the two phenomena is poorly understood. This study used animal and cell culture experimental systems to investigate whether chronic stress-induced impairment of memory consolidation and maladaptation of the neuronal architecture in the hippocampal CA1 area is prevented by regular exercise through AMPK activation. [Methods] Mice underwent four weeks of treadmill running with or without a 6h/21d-restraint stress regimen, along with treatment with Compound C. Memory consolidation was assessed using the Morris Water Maze (MWM). Dendritic rearrangement of hippocampal CA1 neurons was evaluated using the Golgi-Cox stain and Sholl analysis. Additionally, the primary hippocampal culture system was adopted for in vitro experiments. [Results] Chronic stress-induced failure of memory retention and reduction in AMPK activation were ameliorated by the exercise regimen. Chronic stress-or repeated corticosterone (CORT)-provoked malformation of the neuronal architecture was also suppressed by both exercise and treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). [Conclusion] Chronic stress causes dendritic retraction among dorsal hippocampal CA1 neurons via the downregulation of AMPK activation, thereby leading to failure of memory retention. In contrast, regular exercise protects against chronic stress-evoked defects in memory consolidation and changes in neuronal morphology in the dorsal hippocampal CA1 area via mild activation of AMPK.
Collapse
|
92
|
Nakahata Y, Yasuda R. Plasticity of Spine Structure: Local Signaling, Translation and Cytoskeletal Reorganization. Front Synaptic Neurosci 2018; 10:29. [PMID: 30210329 PMCID: PMC6123351 DOI: 10.3389/fnsyn.2018.00029] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Dendritic spines are small protrusive structures on dendritic surfaces, and function as postsynaptic compartments for excitatory synapses. Plasticity of spine structure is associated with many forms of long-term neuronal plasticity, learning and memory. Inside these small dendritic compartments, biochemical states and protein-protein interactions are dynamically modulated by synaptic activity, leading to the regulation of protein synthesis and reorganization of cytoskeletal architecture. This in turn causes plasticity of structure and function of the spine. Technical advances in monitoring molecular behaviors in single dendritic spines have revealed that each signaling pathway is differently regulated across multiple spatiotemporal domains. The spatial pattern of signaling activity expands from a single spine to the nearby dendritic area, dendritic branch and the nucleus, regulating different cellular events at each spatial scale. Temporally, biochemical events are typically triggered by short Ca2+ pulses (~10–100 ms). However, these signals can then trigger activation of downstream protein cascades that can last from milliseconds to hours. Recent imaging studies provide many insights into the biochemical processes governing signaling events of molecular assemblies at different spatial localizations. Here, we highlight recent findings of signaling dynamics during synaptic plasticity and discuss their roles in long-term structural plasticity of dendritic spines.
Collapse
Affiliation(s)
- Yoshihisa Nakahata
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience (MPFI), Jupiter, FL, United States
| | - Ryohei Yasuda
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience (MPFI), Jupiter, FL, United States
| |
Collapse
|
93
|
Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity. Cell 2018; 174:1172-1187.e16. [PMID: 30078712 DOI: 10.1016/j.cell.2018.06.047] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/17/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
Abstract
Synapses are semi-membraneless, protein-dense, sub-micron chemical reaction compartments responsible for signal processing in each and every neuron. Proper formation and dynamic responses to stimulations of synapses, both during development and in adult, are fundamental to functions of mammalian brains, although the molecular basis governing formation and modulation of compartmentalized synaptic assemblies is unclear. Here, we used a biochemical reconstitution approach to show that, both in solution and on supported membrane bilayers, multivalent interaction networks formed by major excitatory postsynaptic density (PSD) scaffold proteins led to formation of PSD-like assemblies via phase separation. The reconstituted PSD-like assemblies can cluster receptors, selectively concentrate enzymes, promote actin bundle formation, and expel inhibitory postsynaptic proteins. Additionally, the condensed phase PSD assemblies have features that are distinct from those in homogeneous solutions and fit for synaptic functions. Thus, we have built a molecular platform for understanding how neuronal synapses are formed and dynamically regulated.
Collapse
|
94
|
Ju F, Ran Y, Zhu L, Cheng X, Gao H, Xi X, Yang Z, Zhang S. Increased BBB Permeability Enhances Activation of Microglia and Exacerbates Loss of Dendritic Spines After Transient Global Cerebral Ischemia. Front Cell Neurosci 2018; 12:236. [PMID: 30123113 PMCID: PMC6085918 DOI: 10.3389/fncel.2018.00236] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/16/2018] [Indexed: 12/02/2022] Open
Abstract
Ischemic stroke can induce rapid disruption of blood-brain barrier (BBB). It has been suggested that increased BBB permeability can affect the pathological progression of ischemic tissue. However, the impact of increased BBB permeability on microglial activation and synaptic structures following reperfusion after ischemia remains unclear. In this study, we investigated microglial activation, dendritic damage and plasticity of dendritic spines after increasing BBB permeability following transient global cerebral ischemia in the somatosensory cortices in mice. Bilateral common carotid artery ligation (BCAL) was used to induce transient global cerebral ischemia. Mannitol was used to increase the BBB permeability. Intravital two-photon imaging was performed to image the dendritic structures and BBB extravasation. Microglial morphology was quantitated using a skeletonization analysis method. To evaluate inflammation of cerebral cortex, the mRNA expression levels of integrin alpha M (CD11b), CD68, chemokine (C-X-C motif) ligand 10 (IP10) and tumor necrosis factor alpha (TNF-α) were measured by fluorescent quantitative PCR. Intravital two-photon imaging revealed that mannitol caused a drastic increase in BBB extravasation during reperfusion after transient global ischemia. Increased BBB permeability induced by mannitol had no significant effect on inflammation and dendritic spines in healthy mice but triggered a marked de-ramification of microglia; importantly, in ischemic animals, mannitol accelerated de-ramification of microglia and aggravated inflammation at 3 h but not at 3 days following reperfusion after ischemia. Although mannitol did not cause significant change in the percentage of blebbed dendrites and did not affect the reversible recovery of the dendritic structures, excessive extravasation was accompanied with significant decrease in spine formation and increase in spine elimination during reperfusion in ischemic mice. These findings suggest that increased BBB permeability induced by mannitol can lead to acute activation of microglia and cause excessive loss of dendritic spines after transient global cerebral ischemia.
Collapse
Affiliation(s)
- Furong Ju
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanli Ran
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaofeng Cheng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoxia Xi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhanli Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
95
|
Sancho L, Bloodgood BL. Functional Distinctions between Spine and Dendritic Synapses Made onto Parvalbumin-Positive Interneurons in Mouse Cortex. Cell Rep 2018; 24:2075-2087. [DOI: 10.1016/j.celrep.2018.07.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/15/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022] Open
|
96
|
Nishiyama J. Genome editing in the mammalian brain using the CRISPR-Cas system. Neurosci Res 2018; 141:4-12. [PMID: 30076877 DOI: 10.1016/j.neures.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
Recent advances in genome editing technologies such as the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 have enabled the rapid and efficient modification of endogenous genomes in a variety of cell types, accelerating biomedical research. In particular, precise genome editing in somatic cells in vivo allows for the rapid generation of genetically modified cells in living animals and holds great promise for the possibility of directly correcting genetic defects associated with human diseases. However, because of the limited efficiency and suitability of these technologies in the brain, especially in postmitotic neurons, the practical application of genome editing technologies has been largely limited in the field of neuroscience. Recent technological advances overcome significant challenges facing genome editing in the brain and have enabled us to precisely edit the genome in both mitotic cells and mature postmitotic neurons in vitro and in vivo, providing powerful means for studying gene function and dysfunction in the brain. This review highlights the development of genome editing technologies for the brain and discusses their applications, limitations, and future challenges.
Collapse
Affiliation(s)
- Jun Nishiyama
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
97
|
PKCα integrates spatiotemporally distinct Ca 2+ and autocrine BDNF signaling to facilitate synaptic plasticity. Nat Neurosci 2018; 21:1027-1037. [PMID: 30013171 PMCID: PMC6100743 DOI: 10.1038/s41593-018-0184-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
The Protein Kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca2+-dependent PKC isozymes are activated in dendritic spines during plasticity, and if so, how this synaptic activity is encoded by PKC. Here, using newly-developed, isozyme-specific sensors, we demonstrate that classic isozymes are activated to varying degrees and with unique kinetics. PKCα is activated robustly and rapidly in stimulated spines and is the only isozyme required for structural plasticity. This specificity, depends on a PDZ-binding domain present only in PKCα. The activation of PKCα during plasticity requires both NMDAR Ca2+-flux and autocrine BDNF-TrkB signaling, two pathways that differ vastly in their spatiotemporal scales of signaling. Our results suggest that by integrating these signals, PKCα combines a measure of recent, nearby synaptic plasticity with local synaptic input, enabling complex cellular computations such as heterosynaptic facilitation of plasticity necessary for efficient hippocampal-dependent learning.
Collapse
|
98
|
Antunes G, Simoes-de-Souza FM. AMPA receptor trafficking and its role in heterosynaptic plasticity. Sci Rep 2018; 8:10349. [PMID: 29985438 PMCID: PMC6037747 DOI: 10.1038/s41598-018-28581-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/22/2018] [Indexed: 01/11/2023] Open
Abstract
Historically, long-term potentiation (LTP) and long-term depression (LTD), the best-characterized forms of long-term synaptic plasticity, are viewed as experience-dependent and input-specific processes. However, cumulative experimental and theoretical data have demonstrated that LTP and LTD can promote compensatory alterations in non-stimulated synapses. In this work, we have developed a computational model of a tridimensional spiny dendritic segment to investigate the role of AMPA receptor (AMPAR) trafficking during synaptic plasticity at specific synapses and its consequences for the populations of AMPAR at nearby synapses. Our results demonstrated that the mechanisms of AMPAR trafficking involved with LTP and LTD can promote heterosynaptic plasticity at non-stimulated synapses. These alterations are compensatory and arise from molecular competition. Moreover, the heterosynaptic changes observed in our model can modulate further activity-driven inductions of synaptic plasticity.
Collapse
Affiliation(s)
- G Antunes
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - F M Simoes-de-Souza
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
99
|
Evidence for altered dendritic spine compartmentalization in Alzheimer's disease and functional effects in a mouse model. Acta Neuropathol 2018; 135:839-854. [PMID: 29696365 DOI: 10.1007/s00401-018-1847-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short ("stubby") spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known. We analyzed biopsies from AD patients and APP x presenilin 1 knock-in mice that were previously shown to present a loss of pyramidal neurons in the CA1 area of the hippocampus. We observed that the proportion of stubby spines and the width of spine necks are inversely correlated with synapse density in frontal cortical biopsies from non-AD and AD patients. In mice, the reduction in the density of synapses in the stratum radiatum was preceded by an alteration of spine morphology, with a reduction of their length and an enlargement of their neck. Serial sectioning examined with electron microscopy allowed us to precisely measure spine parameters. Mathematical modeling indicated that the shortening and widening of the necks should alter the electrical compartmentalization of the spines, leading to reduced postsynaptic potentials in spine heads, but not in soma. Accordingly, there was no alteration in basal synaptic transmission, but long-term potentiation and spatial memory were impaired. These results indicate that an alteration of spine morphology could be involved in the early cognitive deficits associated with AD.
Collapse
|
100
|
Regulation of filial imprinting and structural plasticity by mTORC1 in newborn chickens. Sci Rep 2018; 8:8044. [PMID: 29795185 PMCID: PMC5966437 DOI: 10.1038/s41598-018-26479-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling leads to memory deficits and abnormal social behaviors in adults. However, whether mTORC1 is involved in critical periods of early learning remains largely unexplored. Our study addressed this question by investigating imprinting, a form of learning constrained to a sensitive period that supports filial attachment, in newborn chickens. Imprinting to virtual objects and sounds was assessed after acute manipulations of mTORC1. To further understand the role of mTORC1 during the critical period, structural plasticity was analyzed using DiOlistic labeling of dendritic spines. We found that mTORC1 is required for the emergence of experience-dependent preferences and structural plasticity within brain regions controlling behavior. Furthermore, upon critical period closure, pharmacological activation of the AKT/mTORC1 pathway was sufficient to rescue imprinting across sensory modalities. Thus, our results uncover a novel role of mTORC1 in the formation of imprinted memories and experience-dependent reorganization of neural circuits during a critical period.
Collapse
|