51
|
St George-Hyslop F, Haneklaus M, Kivisild T, Livesey FJ. Loss of CNTNAP2 Alters Human Cortical Excitatory Neuron Differentiation and Neural Network Development. Biol Psychiatry 2023; 94:780-791. [PMID: 37001843 DOI: 10.1016/j.biopsych.2023.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Loss-of-function mutations in the contactin-associated protein-like 2 (CNTNAP2) gene are causal for neurodevelopmental disorders, including autism, schizophrenia, epilepsy, and intellectual disability. CNTNAP2 encodes CASPR2, a single-pass transmembrane protein that belongs to the neurexin family of cell adhesion molecules. These proteins have a variety of functions in developing neurons, including connecting presynaptic and postsynaptic neurons, and mediating signaling across the synapse. METHODS To study the effect of loss of CNTNAP2 function on human cerebral cortex development, and how this contributes to the pathogenesis of neurodevelopmental disorders, we generated human induced pluripotent stem cells from one neurotypical control donor null for full-length CNTNAP2, modeling cortical development from neurogenesis through to neural network formation in vitro. RESULTS CNTNAP2 is particularly highly expressed in the first two populations of early-born excitatory cortical neurons, and loss of CNTNAP2 shifted the relative proportions of these two neuronal types. Live imaging of excitatory neuronal growth showed that loss of CNTNAP2 reduced neurite branching and overall neuronal complexity. At the network level, developing cortical excitatory networks null for CNTNAP2 had complex changes in activity compared with isogenic controls: an initial period of relatively reduced activity compared with isogenic controls, followed by a lengthy period of hyperexcitability, and then a further switch to reduced activity. CONCLUSIONS Complete loss of CNTNAP2 contributes to the pathogenesis of neurodevelopmental disorders through complex changes in several aspects of human cerebral cortex excitatory neuron development that culminate in aberrant neural network formation and function.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Moritz Haneklaus
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom.
| |
Collapse
|
52
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
53
|
Birnbaum R, Kuperberg M, Brusilov M, Wolman I, Malinger G, Haratz KK. The normal 14-18 gestational weeks "parasagittal complex" view of the fetal brain. A 3D transvaginal neurosonographic study. Prenat Diagn 2023; 43:1520-1526. [PMID: 37946665 DOI: 10.1002/pd.6456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To study the early second trimester development of brain hemispheres, lateral ventricles, choroid plexus, and ganglionic eminence/basal ganglia complex (GEBG). METHODS A retrospective analysis of TVUS 3D volumes of 14-18 gestational weeks (GW) fetuses. Hemispheres were analyzed for wall thickness, choroid plexus extension, GEBG height and length, lamination pattern (intermediate zone and the subplate border, IZ-SP), ventricle height, width, and angle. Measurements were correlated with GW and assessed for symmetry and impact of probe resolution. RESULTS We included 84 fetuses (168 hemispheres). The CP location is variable at 14-16 GW, becoming consistently and symmetrically posterior at 18 GW. Hemispheric thickness, GEBG height and length grow significantly with fetal age, whereas ventricle height, width, and angle regress. The detection rate of the IZ-SP line at 14, 15, 16, 17, and 18 weeks was 0%, 24%, 78.26%, 100%, and 100%, respectively. The ratio between the upper and lower segments of the cerebral lamination grows with GW. For all brain structures, the asymmetry between sides was significant only for ventricular height. The transducer type did not have a significant effect on any outcome except for ventricle height. CONCLUSION These normal features of the parasagittal view should aid clinicians in fetal brain assessment during the early weeks of the second trimester.
Collapse
Affiliation(s)
- Roee Birnbaum
- OB-GYN Ultrasound Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Maya Kuperberg
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Merchavim Mental Health Center, Ness Ziona, Israel
| | - Michael Brusilov
- OB-GYN Ultrasound Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Igal Wolman
- OB-GYN Ultrasound Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Gustavo Malinger
- OB-GYN Ultrasound Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Karina Krajden Haratz
- OB-GYN Ultrasound Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
54
|
Alhesain M, Ronan H, LeBeau FEN, Clowry GJ. Expression of the schizophrenia associated gene FEZ1 in the early developing fetal human forebrain. Front Neurosci 2023; 17:1249973. [PMID: 37746155 PMCID: PMC10514365 DOI: 10.3389/fnins.2023.1249973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The protein fasciculation and elongation zeta-1 (FEZ1) is involved in axon outgrowth but potentially interacts with various proteins with roles ranging from intracellular transport to transcription regulation. Gene association and other studies have identified FEZ1 as being directly, or indirectly, implicated in schizophrenia susceptibility. To explore potential roles in normal early human forebrain neurodevelopment, we mapped FEZ1 expression by region and cell type. Methods All tissues were provided with maternal consent and ethical approval by the Human Developmental Biology Resource. RNAseq data were obtained from previously published sources. Thin paraffin sections from 8 to 21 post-conceptional weeks (PCW) samples were used for RNAScope in situ hybridization and immunohistochemistry against FEZ1 mRNA and protein, and other marker proteins. Results Tissue RNAseq revealed that FEZ1 is highly expressed in the human cerebral cortex between 7.5-17 PCW and single cell RNAseq at 17-18 PCW confirmed its expression in all neuroectoderm derived cells. The highest levels were found in more mature glutamatergic neurons, the lowest in GABAergic neurons and dividing progenitors. In the thalamus, single cell RNAseq similarly confirmed expression in multiple cell types. In cerebral cortex sections at 8-10 PCW, strong expression of mRNA and protein appeared confined to post-mitotic neurons, with low expression seen in progenitor zones. Protein expression was observed in some axon tracts by 16-19 PCW. However, in sub-cortical regions, FEZ1 was highly expressed in progenitor zones at early developmental stages, showing lower expression in post-mitotic cells. Discussion FEZ1 has different expression patterns and potentially diverse functions in discrete forebrain regions during prenatal human development.
Collapse
Affiliation(s)
| | | | | | - Gavin J. Clowry
- Centre for Transformative Research in Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
55
|
Wong W, Estep JA, Treptow AM, Rajabli N, Jahncke JN, Ubina T, Wright KM, Riccomagno MM. An adhesion signaling axis involving Dystroglycan, β1-Integrin, and Cas adaptor proteins regulates the establishment of the cortical glial scaffold. PLoS Biol 2023; 21:e3002212. [PMID: 37540708 PMCID: PMC10431685 DOI: 10.1371/journal.pbio.3002212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/16/2023] [Accepted: 06/23/2023] [Indexed: 08/06/2023] Open
Abstract
The mature mammalian cortex is composed of 6 architecturally and functionally distinct layers. Two key steps in the assembly of this layered structure are the initial establishment of the glial scaffold and the subsequent migration of postmitotic neurons to their final position. These processes involve the precise and timely regulation of adhesion and detachment of neural cells from their substrates. Although much is known about the roles of adhesive substrates during neuronal migration and the formation of the glial scaffold, less is understood about how these signals are interpreted and integrated within these neural cells. Here, we provide in vivo evidence that Cas proteins, a family of cytoplasmic adaptors, serve a functional and redundant role during cortical lamination. Cas triple conditional knock-out (Cas TcKO) mice display severe cortical phenotypes that feature cobblestone malformations. Molecular epistasis and genetic experiments suggest that Cas proteins act downstream of transmembrane Dystroglycan and β1-Integrin in a radial glial cell-autonomous manner. Overall, these data establish a new and essential role for Cas adaptor proteins during the formation of cortical circuits and reveal a signaling axis controlling cortical scaffold formation.
Collapse
Affiliation(s)
- Wenny Wong
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
| | - Jason A. Estep
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Alyssa M. Treptow
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Niloofar Rajabli
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Jennifer N. Jahncke
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Teresa Ubina
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
| | - Kevin M. Wright
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Martin M. Riccomagno
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| |
Collapse
|
56
|
Holst CB, Brøchner CB, Vitting‐Seerup K, Møllgård K. The HOPX and BLBP landscape and gliogenic regions in developing human brain. J Anat 2023; 243:23-38. [PMID: 36794762 PMCID: PMC10273337 DOI: 10.1111/joa.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Outer radial glial cells (oRGs) give rise to neurons and glial cells and contribute to cell migration and expansion in developing neocortex. HOPX has been described as a marker of oRGs and possible actor in glioblastomas. Recent years' evidence points to spatiotemporal differences in brain development which may have implications for the classification of cell types in the central nervous system and understanding of a range of neurological diseases. Using the Human Embryonic/Fetal Biobank, Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark, HOPX and BLBP immunoexpression was investigated in developing frontal, parietal, temporal and occipital human neocortex, other cortical areas and brain stem regions to interrogate oRG and HOPX regional heterogeneity. Furthermore, usage of high-plex spatial profiling (Nanostring GeoMx® DSP) was tested on the same material. HOPX marked oRGs in several human developing brain regions as well as cells in known gliogenic areas but did not completely overlap with BLBP or GFAP. Interestingly, limbic structures (e.g. olfactory bulb, indusium griseum, entorhinal cortex, fimbria) showed more intense HOPX immunoreactivity than adjacent neocortex and in cerebellum and brain stem, HOPX and BLBP seemed to stain different cell populations in cerebellar cortex and corpus pontobulbare. DSP screening of corresponding regions indicated differences in cell type composition, vessel density and presence of apolipoproteins within and across regions and thereby confirming the importance of acknowledging time and place in developmental neuroscience.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- DCCC Brain Tumor CenterCopenhagen University HospitalCopenhagenDenmark
| | - Christian Beltoft Brøchner
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Pathology, Center of Diagnostic InvestigationCopenhagen University HospitalCopenhagenDenmark
| | | | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
57
|
Van Essen DC. Biomechanical models and mechanisms of cellular morphogenesis and cerebral cortical expansion and folding. Semin Cell Dev Biol 2023; 140:90-104. [PMID: 35840524 PMCID: PMC9942585 DOI: 10.1016/j.semcdb.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Morphogenesis of the nervous system involves a highly complex spatio-temporal pattern of physical forces (mainly tension and pressure) acting on cells and tissues that are pliable but have an intricately organized cytoskeletal infrastructure. This review begins by covering basic principles of biomechanics and the core cytoskeletal toolkit used to regulate the shapes of cells and tissues during embryogenesis and neural development. It illustrates how the principle of 'tensegrity' provides a useful conceptual framework for understanding how cells dynamically respond to forces that are generated internally or applied externally. The latter part of the review builds on this foundation in considering the development of mammalian cerebral cortex. The main focus is on cortical expansion and folding - processes that take place over an extended period of prenatal and postnatal development. Cortical expansion and folding are likely to involve many complementary mechanisms, some related to regulating cell proliferation and migration and others related to specific types and patterns of mechanical tension and pressure. Three distinct multi-mechanism models are evaluated in relation to a set of 18 key experimental observations and findings. The Composite Tension Plus (CT+) model is introduced as an updated version of a previous multi-component Differential Expansion Sandwich Plus (DES+) model (Van Essen, 2020); the new CT+ model includes 10 distinct mechanisms and has the greatest explanatory power among published models to date. Much needs to be done in order to validate specific mechanistic components and to assess their relative importance in different species, and important directions for future research are suggested.
Collapse
|
58
|
Proshchina A, Kharlamova A, Krivova Y, Godovalova O, Otlyga D, Gulimova V, Otlyga E, Junemann O, Sonin G, Saveliev S. Neuromorphological Atlas of Human Prenatal Brain Development: White Paper. Life (Basel) 2023; 13:life13051182. [PMID: 37240827 DOI: 10.3390/life13051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent morphological data on human brain development are quite fragmentary. However, they are highly requested for a number of medical practices, educational programs, and fundamental research in the fields of embryology, cytology and histology, neurology, physiology, path anatomy, neonatology, and others. This paper provides the initial information on the new online Human Prenatal Brain Development Atlas (HBDA). The Atlas will start with forebrain annotated hemisphere maps, based on human fetal brain serial sections at the different stages of prenatal ontogenesis. Spatiotemporal changes in the regional-specific immunophenotype profiles will also be demonstrated on virtual serial sections. The HBDA can serve as a reference database for the neurological research, which provides opportunity to compare the data obtained by noninvasive techniques, such as neurosonography, X-ray computed tomography and magnetic resonance imaging, functional magnetic resonance imaging, 3D high-resolution phase-contrast computed tomography visualization techniques, as well as spatial transcriptomics data. It could also become a database for the qualitative and quantitative analysis of individual variability in the human brain. Systemized data on the mechanisms and pathways of prenatal human glio- and neurogenesis could also contribute to the search for new therapy methods for a large spectrum of neurological pathologies, including neurodegenerative and cancer diseases. The preliminary data are now accessible on the special HBDA website.
Collapse
Affiliation(s)
- Alexandra Proshchina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Anastasia Kharlamova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Yuliya Krivova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Godovalova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Dmitriy Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Victoria Gulimova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Ekaterina Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Junemann
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Gleb Sonin
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Sergey Saveliev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| |
Collapse
|
59
|
Fu S, Bury LAD, Eum J, Wynshaw-Boris A. Autism-specific PTEN p.Ile135Leu variant and an autism genetic background combine to dysregulate cortical neurogenesis. Am J Hum Genet 2023; 110:826-845. [PMID: 37098352 PMCID: PMC10183467 DOI: 10.1016/j.ajhg.2023.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Alterations in cortical neurogenesis are implicated in neurodevelopmental disorders including autism spectrum disorders (ASDs). The contribution of genetic backgrounds, in addition to ASD risk genes, on cortical neurogenesis remains understudied. Here, using isogenic induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) and cortical organoid models, we report that a heterozygous PTEN c.403A>C (p.Ile135Leu) variant found in an ASD-affected individual with macrocephaly dysregulates cortical neurogenesis in an ASD-genetic-background-dependent fashion. Transcriptome analysis at both bulk and single-cell level revealed that the PTEN c.403A>C variant and ASD genetic background affected genes involved in neurogenesis, neural development, and synapse signaling. We also found that this PTEN p.Ile135Leu variant led to overproduction of NPC subtypes as well as neuronal subtypes including both deep and upper layer neurons in its ASD background, but not when introduced into a control genetic background. These findings provide experimental evidence that both the PTEN p.Ile135Leu variant and ASD genetic background contribute to cellular features consistent with ASD associated with macrocephaly.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jaejin Eum
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
60
|
Zarzor MS, Blumcke I, Budday S. Exploring the role of the outer subventricular zone during cortical folding through a physics-based model. eLife 2023; 12:82925. [PMID: 37043266 PMCID: PMC10097417 DOI: 10.7554/elife.82925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
The human brain has a highly complex structure both on the microscopic and on the macroscopic scales. Increasing evidence has suggested the role of mechanical forces for cortical folding – a classical hallmark of the human brain. However, the link between cellular processes at the microscale and mechanical forces at the macroscale remains insufficiently understood. Recent findings suggest that an additional proliferating zone, the outer subventricular zone (OSVZ), is decisive for the particular size and complexity of the human cortex. To better understand how the OSVZ affects cortical folding, we establish a multifield computational model that couples cell proliferation in different zones and migration at the cell scale with growth and cortical folding at the organ scale by combining an advection-diffusion model with the theory of finite growth. We validate our model based on data from histologically stained sections of the human fetal brain and predict 3D pattern formation. Finally, we address open questions regarding the role of the OSVZ for the formation of cortical folds. The presented framework not only improves our understanding of human brain development, but could eventually help diagnose and treat neuronal disorders arising from disruptions in cellular development and associated malformations of cortical development.
Collapse
Affiliation(s)
| | - Ingmar Blumcke
- University Hospitals Erlangen, Institute of Neuropathology
| | - Silvia Budday
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics
| |
Collapse
|
61
|
Lü L, Yuan F, Fan H, Li Y, Liu J, Feng W, Zhang HG, Chen SY. Ethanol exposure disrupted the formation of radial glial processes and impaired the generation and migration of outer radial glial cells in forebrain organoids derived from human embryonic stem cells. Exp Neurol 2023; 362:114325. [PMID: 36669750 PMCID: PMC9992138 DOI: 10.1016/j.expneurol.2023.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Radial glial cells (RGCs) play a pivotal role in cerebral cortical development by functioning as a source of new neurons and by supporting the migration of newborn neurons. These functions are primarily dependent on the apical-basolateral structures of radial glial processes. This study aims to investigate the effects of ethanol exposure on the development of radial glial processes and the generation, migration, and transformation of outer radial glial cells (oRGCs). For this purpose, forebrain organoids were developed from human embryonic stem cells. These forebrain organoids contain abundant neural progenitor cells (SOX2+), express high levels of neural epithelial markers β-catenin and PKCλ, and dorsal forebrain marker PAX6, and display well-organized cortical architectures containing abundant apical and basal RGCs, intermediate progenitors (IPCs), and neurons. Exposure of forebrain organoids to ethanol resulted in a significant increase in apoptosis in Nestin-positive radial glial cells. Ethanol exposure also remarkably decreased the levels of radial glial process-associated proteins, including Nestin, GFAP, and Vimentin, in radial glial cells and distinctly impaired the integrity and morphologies of radial glial processes. In addition, the ethanol-induced impairment of the radial glial processes is associated with decreased migration and proliferation of radial glial cells, reduction in the generation of HOPX+ oRGCs, and the accelerated transformation of oRGCs into astrocytes. These results demonstrate that ethanol exposure can disrupt cerebral cortex development by impairing the formation of radial glial processes and the generation, migration, and transformation of oRGCs.
Collapse
Affiliation(s)
- Lanhai Lü
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA; Robley Rex Veterans Affairs Medical Center, Louisville, KY 40292, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
62
|
Wells MF, Nemesh J, Ghosh S, Mitchell JM, Salick MR, Mello CJ, Meyer D, Pietilainen O, Piccioni F, Guss EJ, Raghunathan K, Tegtmeyer M, Hawes D, Neumann A, Worringer KA, Ho D, Kommineni S, Chan K, Peterson BK, Raymond JJ, Gold JT, Siekmann MT, Zuccaro E, Nehme R, Kaykas A, Eggan K, McCarroll SA. Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages. Cell Stem Cell 2023; 30:312-332.e13. [PMID: 36796362 PMCID: PMC10581885 DOI: 10.1016/j.stem.2023.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.
Collapse
Affiliation(s)
- Michael F Wells
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jana M Mitchell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Insitro, South San Francisco, CA 94080, USA
| | | | - Curtis J Mello
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olli Pietilainen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Ellen J Guss
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kavya Raghunathan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Kathleen A Worringer
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Daniel Ho
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Sravya Kommineni
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Karrie Chan
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brant K Peterson
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Joseph J Raymond
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - John T Gold
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Biology, Davidson College, Davidson, NC 28035, USA
| | - Marco T Siekmann
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
63
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
64
|
Li J, Godoy MI, Zhang AJ, Diamante G, Ahn IS, Cebrian-Silla A, Alvarez-Buylla A, Yang X, Novitch BG, Zhang Y. Prdm16 and Vcam1 regulate the postnatal disappearance of embryonic radial glia and the ending of cortical neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528567. [PMID: 36824905 PMCID: PMC9949035 DOI: 10.1101/2023.02.14.528567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Embryonic neural stem cells (NSCs, i.e., radial glia) in the ventricular-subventricular zone (V-SVZ) generate the majority of neurons and glia in the forebrain. Postnatally, embryonic radial glia disappear and a subpopulation of radial glia transition into adult NSCs. As this transition occurs, widespread neurogenesis in brain regions such as the cerebral cortex ends. The mechanisms that regulate the postnatal disappearance of radial glia and the ending of embryonic neurogenesis remain poorly understood. Here, we show that PR domain-containing 16 (Prdm16) promotes the disappearance of radial glia and the ending of neurogenesis in the cerebral cortex. Genetic deletion of Prdm16 from NSCs leads to the persistence of radial glia in the adult V-SVZ and prolonged postnatal cortical neurogenesis. Mechanistically, Prdm16 induces the postnatal reduction in Vascular Cell Adhesion Molecule 1 (Vcam1). The postnatal disappearance of radial glia and the ending of cortical neurogenesis occur normally in Prdm16-Vcam1 double conditional knockout mice. These observations reveal novel molecular regulators of the postnatal disappearance of radial glia and the ending of embryonic neurogenesis, filling a key knowledge gap in NSC biology.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Marlesa I. Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Alice J. Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | | | - In Sook Ahn
- Department of Integrative Biology and Physiology, UCLA
| | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA
- Brain Research Institute at UCLA
- Institute for Quantitative and Computational Biosciences at UCLA
- Molecular Biology Institute at UCLA
| | - Bennett G. Novitch
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Department of Neurobiology, UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| |
Collapse
|
65
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
66
|
An NA, Zhang J, Mo F, Luan X, Tian L, Shen QS, Li X, Li C, Zhou F, Zhang B, Ji M, Qi J, Zhou WZ, Ding W, Chen JY, Yu J, Zhang L, Shu S, Hu B, Li CY. De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat Ecol Evol 2023; 7:264-278. [PMID: 36593289 PMCID: PMC9911349 DOI: 10.1038/s41559-022-01925-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/04/2022] [Indexed: 01/03/2023]
Abstract
Human de novo genes can originate from neutral long non-coding RNA (lncRNA) loci and are evolutionarily significant in general, yet how and why this all-or-nothing transition to functionality happens remains unclear. Here, in 74 human/hominoid-specific de novo genes, we identified distinctive U1 elements and RNA splice-related sequences accounting for RNA nuclear export, differentiating mRNAs from lncRNAs, and driving the origin of de novo genes from lncRNA loci. The polymorphic sites facilitating the lncRNA-mRNA conversion through regulating nuclear export are selectively constrained, maintaining a boundary that differentiates mRNAs from lncRNAs. The functional new genes actively passing through it thus showed a mode of pre-adaptive origin, in that they acquire functions along with the achievement of their coding potential. As a proof of concept, we verified the regulations of splicing and U1 recognition on the nuclear export efficiency of one of these genes, the ENSG00000205704, in human neural progenitor cells. Notably, knock-out or over-expression of this gene in human embryonic stem cells accelerates or delays the neuronal maturation of cortical organoids, respectively. The transgenic mice with ectopically expressed ENSG00000205704 showed enlarged brains with cortical expansion. We thus demonstrate the key roles of nuclear export in de novo gene origin. These newly originated genes should reflect the novel uniqueness of human brain development.
Collapse
Affiliation(s)
- Ni A An
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuke Luan
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lu Tian
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiangshang Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Fanqi Zhou
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjun Ji
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Shaokun Shu
- Peking University International Cancer Institute, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
67
|
Wang L, Heffner C, Vong KL, Barrows C, Ha YJ, Lee S, Lara-Gonzalez P, Jhamb I, Van Der Meer D, Loughnan R, Parker N, Sievert D, Mittal S, Issa MY, Andreassen OA, Dale A, Dobyns WB, Zaki MS, Murray SA, Gleeson JG. TMEM161B modulates radial glial scaffolding in neocortical development. Proc Natl Acad Sci U S A 2023; 120:e2209983120. [PMID: 36669109 PMCID: PMC9942823 DOI: 10.1073/pnas.2209983120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023] Open
Abstract
TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| | | | - Keng loi Vong
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| | - Chelsea Barrows
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| | - Yoo-Jin Ha
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Department of Biomedical Systems Informatics, Yonsei University, Seoul03722, S. Korea
| | - Sangmoon Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| | - Pablo Lara-Gonzalez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA92697
| | - Ishani Jhamb
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| | - Dennis Van Der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo0424, Norway
| | - Robert Loughnan
- The Department of Cognitive Science, University of California San Diego, La Jolla, CA92093
| | - Nadine Parker
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo0424, Norway
| | - David Sievert
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| | - Swapnil Mittal
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| | - Mahmoud Y. Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo12311, Egypt
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo0424, Norway
| | - Anders Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo0424, Norway
- The Department of Cognitive Science, University of California San Diego, La Jolla, CA92093
| | - William B. Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN55455
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo12311, Egypt
| | | | - Joseph G. Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA92123
| |
Collapse
|
68
|
Lafferty MJ, Aygün N, Patel NK, Krupa O, Liang D, Wolter JM, Geschwind DH, de la Torre-Ubieta L, Stein JL. MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size. eLife 2023; 12:e79488. [PMID: 36629315 PMCID: PMC9859047 DOI: 10.7554/elife.79488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Expression quantitative trait loci (eQTL) data have proven important for linking non-coding loci to protein-coding genes. But eQTL studies rarely measure microRNAs (miRNAs), small non-coding RNAs known to play a role in human brain development and neurogenesis. Here, we performed small-RNA sequencing across 212 mid-gestation human neocortical tissue samples, measured 907 expressed miRNAs, discovering 111 of which were novel, and identified 85 local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded one robust colocalization of miR-4707-3p expression with educational attainment and brain size phenotypes, where the miRNA expression increasing allele was associated with decreased brain size. Exogenous expression of miR-4707-3p in primary human neural progenitor cells decreased expression of predicted targets and increased cell proliferation, indicating miR-4707-3p modulates progenitor gene regulation and cell fate decisions. Integrating miRNA-eQTLs with existing GWAS yielded evidence of a miRNA that may influence human brain size and function via modulation of neocortical brain development.
Collapse
Affiliation(s)
- Michael J Lafferty
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Niyanta K Patel
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Luis de la Torre-Ubieta
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
69
|
Degl’Innocenti E, Dell’Anno MT. Human and mouse cortical astrocytes: a comparative view from development to morphological and functional characterization. Front Neuroanat 2023; 17:1130729. [PMID: 37139179 PMCID: PMC10150887 DOI: 10.3389/fnana.2023.1130729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The vision of astroglia as a bare scaffold to neuronal circuitry has been largely overturned. Astrocytes exert a neurotrophic function, but also take active part in supporting synaptic transmission and in calibrating blood circulation. Many aspects of their functioning have been unveiled from studies conducted in murine models, however evidence is showing many differences between mouse and human astrocytes starting from their development and encompassing morphological, transcriptomic and physiological variations when they achieve complete maturation. The evolutionary race toward superior cognitive abilities unique to humans has drastically impacted neocortex structure and, together with neuronal circuitry, astrocytes have also been affected with the acquisition of species-specific properties. In this review, we summarize diversities between murine and human astroglia, with a specific focus on neocortex, in a panoramic view that starts with their developmental origin to include all structural and molecular differences that mark the uniqueness of human astrocytes.
Collapse
Affiliation(s)
- Elisa Degl’Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Teresa Dell’Anno
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- *Correspondence: Maria Teresa Dell’Anno,
| |
Collapse
|
70
|
Beopoulos A, Géa M, Fasano A, Iris F. RNA epitranscriptomics dysregulation: A major determinant for significantly increased risk of ASD pathogenesis. Front Neurosci 2023; 17:1101422. [PMID: 36875672 PMCID: PMC9978375 DOI: 10.3389/fnins.2023.1101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Autism spectrum disorders (ASDs) are perhaps the most severe, intractable and challenging child psychiatric disorders. They are complex, pervasive and highly heterogeneous and depend on multifactorial neurodevelopmental conditions. Although the pathogenesis of autism remains unclear, it revolves around altered neurodevelopmental patterns and their implications for brain function, although these cannot be specifically linked to symptoms. While these affect neuronal migration and connectivity, little is known about the processes that lead to the disruption of specific laminar excitatory and inhibitory cortical circuits, a key feature of ASD. It is evident that ASD has multiple underlying causes and this multigenic condition has been considered to also dependent on epigenetic effects, although the exact nature of the factors that could be involved remains unclear. However, besides the possibility for differential epigenetic markings directly affecting the relative expression levels of individual genes or groups of genes, there are at least three mRNA epitranscriptomic mechanisms, which function cooperatively and could, in association with both genotypes and environmental conditions, alter spatiotemporal proteins expression patterns during brain development, at both quantitative and qualitative levels, in a tissue-specific, and context-dependent manner. As we have already postulated, sudden changes in environmental conditions, such as those conferred by maternal inflammation/immune activation, influence RNA epitranscriptomic mechanisms, with the combination of these processes altering fetal brain development. Herein, we explore the postulate whereby, in ASD pathogenesis, RNA epitranscriptomics might take precedence over epigenetic modifications. RNA epitranscriptomics affects real-time differential expression of receptor and channel proteins isoforms, playing a prominent role in central nervous system (CNS) development and functions, but also RNAi which, in turn, impact the spatiotemporal expression of receptors, channels and regulatory proteins irrespective of isoforms. Slight dysregulations in few early components of brain development, could, depending upon their extent, snowball into a huge variety of pathological cerebral alterations a few years after birth. This may very well explain the enormous genetic, neuropathological and symptomatic heterogeneities that are systematically associated with ASD and psychiatric disorders at large.
Collapse
Affiliation(s)
| | - Manuel Géa
- Bio-Modeling Systems, Tour CIT, Paris, France
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
71
|
Medina S, Ihrie RA, Irish JM. Learning cell identity in immunology, neuroscience, and cancer. Semin Immunopathol 2023; 45:3-16. [PMID: 36534139 PMCID: PMC9762661 DOI: 10.1007/s00281-022-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Suspension and imaging cytometry techniques that simultaneously measure hundreds of cellular features are powering a new era of cell biology and transforming our understanding of human tissues and tumors. However, a central challenge remains in learning the identities of unexpected or novel cell types. Cell identification rubrics that could assist trainees, whether human or machine, are not always rigorously defined, vary greatly by field, and differentially rely on cell intrinsic measurements, cell extrinsic tissue measurements, or external contextual information such as clinical outcomes. This challenge is especially acute in the context of tumors, where cells aberrantly express developmental programs that are normally time, location, or cell-type restricted. Well-established fields have contrasting practices for cell identity that have emerged from convention and convenience as much as design. For example, early immunology focused on identifying minimal sets of protein features that mark individual, functionally distinct cells. In neuroscience, features including morphology, development, and anatomical location were typical starting points for defining cell types. Both immunology and neuroscience now aim to link standardized measurements of protein or RNA to informative cell functions such as electrophysiology, connectivity, lineage potential, phospho-protein signaling, cell suppression, and tumor cell killing ability. The expansion of automated, machine-driven methods for learning cell identity has further created an urgent need for a harmonized framework for distinguishing cell identity across fields and technology platforms. Here, we compare practices in the fields of immunology and neuroscience, highlight concepts from each that might work well in the other, and propose ways to implement these ideas to study neural and immune cell interactions in brain tumors and associated model systems.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
72
|
Ramos SI, Mussa ZM, Falk EN, Pai B, Giotti B, Allette K, Cai P, Dekio F, Sebra R, Beaumont KG, Tsankov AM, Tsankova NM. An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics. Nat Commun 2022; 13:7671. [PMID: 36509746 PMCID: PMC9744747 DOI: 10.1038/s41467-022-34975-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Collapse
Affiliation(s)
- Susana I Ramos
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zarmeen M Mussa
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elisa N Falk
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Balagopal Pai
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fumiko Dekio
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nadejda M Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
73
|
Andrews MG, Subramanian L, Salma J, Kriegstein AR. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat Rev Neurosci 2022; 23:711-724. [PMID: 36180551 PMCID: PMC10571506 DOI: 10.1038/s41583-022-00631-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Apical-basal progenitor cell polarity establishes key features of the radial and laminar architecture of the developing human cortex. The unique diversity of cortical stem cell populations and an expansion of progenitor population size in the human cortex have been mirrored by an increase in the complexity of cellular processes that regulate stem cell morphology and behaviour, including their polarity. The study of human cells in primary tissue samples and human stem cell-derived model systems (such as cortical organoids) has provided insight into these processes, revealing that protein complexes regulate progenitor polarity by controlling cell membrane adherence within appropriate cortical niches and are themselves regulated by cytoskeletal proteins, signalling molecules and receptors, and cellular organelles. Studies exploring how cortical stem cell polarity is established and maintained are key for understanding the features of human brain development and have implications for neurological dysfunction.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Lakshmi Subramanian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmacology, Ideaya Biosciences, South San Francisco, CA, USA
| | - Jahan Salma
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
74
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
75
|
Wang T, Kim CN, Bakken TE, Gillentine MA, Henning B, Mao Y, Gilissen C, The SPARK Consortium, Nowakowski TJ, Eichler EE. Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders. Proc Natl Acad Sci U S A 2022; 119:e2203491119. [PMID: 36350923 PMCID: PMC9674258 DOI: 10.1073/pnas.2203491119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/28/2022] [Indexed: 08/15/2023] Open
Abstract
Most genetic studies consider autism spectrum disorder (ASD) and developmental disorder (DD) separately despite overwhelming comorbidity and shared genetic etiology. Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK) and 31,052 DD trios independently and also combined as broader neurodevelopmental disorders (NDDs) using three models. We identify 615 NDD candidate genes (false discovery rate [FDR] < 0.05) supported by ≥1 models, including 138 reaching Bonferroni exome-wide significance (P < 3.64e-7) in all models. The genes group into five functional networks associating with different brain developmental lineages based on single-cell nuclei transcriptomic data. We find no evidence for ASD-specific genes in contrast to 18 genes significantly enriched for DD. There are 53 genes that show mutational bias, including enrichments for missense (n = 41) or truncating (n = 12) DNVs. We also find 10 genes with evidence of male- or female-bias enrichment, including 4 X chromosome genes with significant female burden (DDX3X, MECP2, WDR45, and HDAC8). This large-scale integrative analysis identifies candidates and functional subsets of NDD genes.
Collapse
Affiliation(s)
- Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Chang N. Kim
- Department of Anatomy, University of California, San Francisco, CA 94143
| | | | - Madelyn A. Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Barbara Henning
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| |
Collapse
|
76
|
Steyert M, Nowakowski TJ. In preprints: new insights into truncated radial glia. Development 2022; 149:281774. [PMID: 36382646 DOI: 10.1242/dev.201374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
77
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
78
|
Wang Y, Chiola S, Yang G, Russell C, Armstrong CJ, Wu Y, Spampanato J, Tarboton P, Ullah HMA, Edgar NU, Chang AN, Harmin DA, Bocchi VD, Vezzoli E, Besusso D, Cui J, Cattaneo E, Kubanek J, Shcheglovitov A. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat Commun 2022; 13:5688. [PMID: 36202854 PMCID: PMC9537523 DOI: 10.1038/s41467-022-33364-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Human telencephalon is an evolutionarily advanced brain structure associated with many uniquely human behaviors and disorders. However, cell lineages and molecular pathways implicated in human telencephalic development remain largely unknown. We produce human telencephalic organoids from stem cell-derived single neural rosettes and investigate telencephalic development under normal and pathological conditions. We show that single neural rosette-derived organoids contain pallial and subpallial neural progenitors, excitatory and inhibitory neurons, as well as macroglial and periendothelial cells, and exhibit predictable organization and cytoarchitecture. We comprehensively characterize the properties of neurons in SNR-derived organoids and identify transcriptional programs associated with the specification of excitatory and inhibitory neural lineages from a common pool of NPs early in telencephalic development. We also demonstrate that neurons in organoids with a hemizygous deletion of an autism- and intellectual disability-associated gene SHANK3 exhibit intrinsic and excitatory synaptic deficits and impaired expression of several clustered protocadherins. Collectively, this study validates SNR-derived organoids as a reliable model for studying human telencephalic cortico-striatal development and identifies intrinsic, synaptic, and clustered protocadherin expression deficits in human telencephalic tissue with SHANK3 hemizygosity.
Collapse
Affiliation(s)
- Yueqi Wang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Guang Yang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Chad Russell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Yuanyuan Wu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Paisley Tarboton
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Amelia N Chang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jun Cui
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Aleksandr Shcheglovitov
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
79
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
80
|
Uzquiano A, Kedaigle AJ, Pigoni M, Paulsen B, Adiconis X, Kim K, Faits T, Nagaraja S, Antón-Bolaños N, Gerhardinger C, Tucewicz A, Murray E, Jin X, Buenrostro J, Chen F, Velasco S, Regev A, Levin JZ, Arlotta P. Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex. Cell 2022; 185:3770-3788.e27. [PMID: 36179669 PMCID: PMC9990683 DOI: 10.1016/j.cell.2022.09.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/25/2022] [Accepted: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.
Collapse
Affiliation(s)
- Ana Uzquiano
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda J Kedaigle
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Martina Pigoni
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bruna Paulsen
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kwanho Kim
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler Faits
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Surya Nagaraja
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Noelia Antón-Bolaños
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chiara Gerhardinger
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashley Tucewicz
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evan Murray
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xin Jin
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Jason Buenrostro
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Chen
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Silvia Velasco
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
81
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
82
|
Farcy S, Albert A, Gressens P, Baffet AD, El Ghouzzi V. Cortical Organoids to Model Microcephaly. Cells 2022; 11:2135. [PMID: 35883578 PMCID: PMC9320662 DOI: 10.3390/cells11142135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
How the brain develops and achieves its final size is a fascinating issue that questions cortical evolution across species and man's place in the animal kingdom. Although animal models have so far been highly valuable in understanding the key steps of cortical development, many human specificities call for appropriate models. In particular, microcephaly, a neurodevelopmental disorder that is characterized by a smaller head circumference has been challenging to model in mice, which often do not fully recapitulate the human phenotype. The relatively recent development of brain organoid technology from induced pluripotent stem cells (iPSCs) now makes it possible to model human microcephaly, both due to genetic and environmental origins, and to generate developing cortical tissue from the patients themselves. These 3D tissues rely on iPSCs differentiation into cortical progenitors that self-organize into neuroepithelial rosettes mimicking the earliest stages of human neurogenesis in vitro. Over the last ten years, numerous protocols have been developed to control the identity of the induced brain areas, the reproducibility of the experiments and the longevity of the cultures, allowing analysis of the later stages. In this review, we describe the different approaches that instruct human iPSCs to form cortical organoids, summarize the different microcephalic conditions that have so far been modeled by organoids, and discuss the relevance of this model to decipher the cellular and molecular mechanisms of primary and secondary microcephalies.
Collapse
Affiliation(s)
- Sarah Farcy
- Institut Curie, PSL Research University, CNRS UMR144, F-75005 Paris, France;
| | - Alexandra Albert
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| | - Pierre Gressens
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| | - Alexandre D. Baffet
- Institut Curie, PSL Research University, CNRS UMR144, F-75005 Paris, France;
| | - Vincent El Ghouzzi
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| |
Collapse
|
83
|
Suzuki IK. Evolutionary innovations of human cerebral cortex viewed through the lens of high-throughput sequencing. Dev Neurobiol 2022; 82:476-494. [PMID: 35765158 DOI: 10.1002/dneu.22893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Humans had acquired a tremendously enlarged cerebral cortex containing a huge quantity and variety of cells during evolution. Such evolutionary uniqueness offers a neural basis of our cognitive innovation and human-specific features of neurodevelopmental and psychiatric disorders. Since human brain is hardly examined in vivo with experimental approaches commonly applied on animal models, the recent advancement of sequencing technologies offers an indispensable viewpoint of human brain anatomy and development. This review introduces the recent findings on the unique features in the adult and the characteristic developmental processes of the human cerebral cortex, based on high throughput DNA sequencing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
84
|
Allen DE, Donohue KC, Cadwell CR, Shin D, Keefe MG, Sohal VS, Nowakowski TJ. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science 2022; 376:1441-1446. [PMID: 35587512 PMCID: PMC9233096 DOI: 10.1126/science.abm5224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Progenitors of the developing human neocortex reside in the ventricular and outer subventricular zones (VZ and OSVZ, respectively). However, whether cells derived from these niches have similar developmental fates is unknown. By performing fate mapping in primary human tissue, we demonstrate that astrocytes derived from these niches populate anatomically distinct layers. Cortical plate astrocytes emerge from VZ progenitors and proliferate locally, while putative white matter astrocytes are morphologically heterogeneous and emerge from both VZ and OSVZ progenitors. Furthermore, via single-cell sequencing of morphologically defined astrocyte subtypes using Patch-seq, we identify molecular distinctions between VZ-derived cortical plate astrocytes and OSVZ-derived white matter astrocytes that persist into adulthood. Together, our study highlights a complex role for cell lineage in the diversification of human neocortical astrocytes.
Collapse
Affiliation(s)
- Denise E Allen
- Department of Anatomy, The University of California San Francisco, San Francisco, USA,Department of Psychiatry and Behavioral Sciences, The University of California San Francisco, San Francisco, USA,Department of Neurological Surgery, The University of California San Francisco, San Francisco, USA,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, The University of California San Francisco, San Francisco, USA
| | - Kevin C Donohue
- Department of Psychiatry and Behavioral Sciences, The University of California San Francisco, San Francisco, USA,School of Medicine, The University of California San Francisco, San Francisco, USA,Center for Integrative Neuroscience, The University of California San Francisco; San Francisco, USA,Weill Institute for Neurosciences, The University of California San Francisco; San Francisco, USA,Kavli Institute for Fundamental Neuroscience, The University of California San Francisco, San Francisco, USA
| | - Cathryn R Cadwell
- Department of Pathology, The University of California San Francisco, San Francisco, USA
| | - David Shin
- Department of Anatomy, The University of California San Francisco, San Francisco, USA,Department of Psychiatry and Behavioral Sciences, The University of California San Francisco, San Francisco, USA,Department of Neurological Surgery, The University of California San Francisco, San Francisco, USA,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, The University of California San Francisco, San Francisco, USA
| | - Matthew G Keefe
- Department of Anatomy, The University of California San Francisco, San Francisco, USA,Department of Psychiatry and Behavioral Sciences, The University of California San Francisco, San Francisco, USA,Department of Neurological Surgery, The University of California San Francisco, San Francisco, USA,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, The University of California San Francisco, San Francisco, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, The University of California San Francisco, San Francisco, USA,Weill Institute for Neurosciences, The University of California San Francisco; San Francisco, USA,Kavli Institute for Fundamental Neuroscience, The University of California San Francisco, San Francisco, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, The University of California San Francisco, San Francisco, USA,Department of Psychiatry and Behavioral Sciences, The University of California San Francisco, San Francisco, USA,Department of Neurological Surgery, The University of California San Francisco, San Francisco, USA,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, The University of California San Francisco, San Francisco, USA,Weill Institute for Neurosciences, The University of California San Francisco; San Francisco, USA,Corresponding author.
| |
Collapse
|
85
|
Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022; 10:892922. [PMID: 35602606 PMCID: PMC9119302 DOI: 10.3389/fcell.2022.892922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
During development, the decision of stem and progenitor cells to switch from proliferation to differentiation is of critical importance for the overall size of an organ. Too early a switch will deplete the stem/progenitor cell pool, and too late a switch will not generate the required differentiated cell types. With a focus on the developing neocortex, a six-layered structure constituting the major part of the cerebral cortex in mammals, we discuss here the cell biological features that are crucial to ensure the appropriate proliferation vs. differentiation decision in the neural progenitor cells. In the last two decades, the neural progenitor cells giving rise to the diverse types of neurons that function in the neocortex have been intensely investigated for their role in cortical expansion and gyrification. In this review, we will first describe these different progenitor types and their diversity. We will then review the various cell biological features associated with the cell fate decisions of these progenitor cells, with emphasis on the role of the radial processes emanating from these progenitor cells. We will also discuss the species-specific differences in these cell biological features that have allowed for the evolutionary expansion of the neocortex in humans. Finally, we will discuss the emerging role of cell cycle parameters in neocortical expansion.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| |
Collapse
|
86
|
Lehman NL, Spassky N, Sak M, Webb A, Zumbar CT, Usubalieva A, Alkhateeb KJ, McElroy JP, Maclean KH, Fadda P, Liu T, Gangalapudi V, Carver J, Abdullaev Z, Timmers C, Parker JR, Pierson CR, Mobley BC, Gokden M, Hattab EM, Parrett T, Cooke RX, Lehman TD, Costinean S, Parwani A, Williams BJ, Jensen RL, Aldape K, Mistry AM. Astroblastomas exhibit radial glia stem cell lineages and differential expression of imprinted and X-inactivation escape genes. Nat Commun 2022; 13:2083. [PMID: 35440587 PMCID: PMC9018799 DOI: 10.1038/s41467-022-29302-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Astroblastomas (ABs) are rare brain tumors of unknown origin. We performed an integrative genetic and epigenetic analysis of AB-like tumors. Here, we show that tumors traceable to neural stem/progenitor cells (radial glia) that emerge during early to later brain development occur in children and young adults, respectively. Tumors with MN1-BEND2 fusion appear to present exclusively in females and exhibit overexpression of genes expressed prior to 25 post-conception weeks (pcw), including genes enriched in early ventricular zone radial glia and ependymal tumors. Other, histologically classic ABs overexpress or harbor mutations of mitogen-activated protein kinase pathway genes, outer and truncated radial glia genes, and genes expressed after 25 pcw, including neuronal and astrocyte markers. Findings support that AB-like tumors arise in the context of epigenetic and genetic changes in neural progenitors. Selective gene fusion, variable imprinting and/or chromosome X-inactivation escape resulting in biallelic overexpression may contribute to female predominance of AB molecular subtypes.
Collapse
Affiliation(s)
- Norman L Lehman
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA.
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Nathalie Spassky
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École Normale Supérieure, PSL Research University, Paris, France
| | - Müge Sak
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Cory T Zumbar
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aisulu Usubalieva
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Khaled J Alkhateeb
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Joseph P McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Paolo Fadda
- Department of Cancer Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Tom Liu
- Solid Tumor Translational Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Vineela Gangalapudi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jamie Carver
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Cynthia Timmers
- Solid Tumor Translational Science, The Ohio State University, Columbus, OH, 43210, USA
| | - John R Parker
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Murat Gokden
- Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Eyas M Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Timothy Parrett
- Department of Pathology and Anatomic Sciences, University of Missouri, Columbia, MO, 65212, USA
| | - Ralph X Cooke
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Trang D Lehman
- Department of Family and Community Medicine, Contra Costa County Health System, Martinez, CA, 94553, USA
| | - Stefan Costinean
- Department of Pathology, Banner Gateway Medical Center, MD Anderson Cancer Center, Tempe, AZ, 85284, USA
| | - Anil Parwani
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Brian J Williams
- Department of Neurosurgery, University of Louisville, Louisville, KY, 40202, USA
| | - Randy L Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
87
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
88
|
Zhu X, Guo Y, Chu C, Liu D, Duan K, Yin Y, Si C, Kang Y, Yao J, Du X, Li J, Zhao S, Ai Z, Zhu Q, Ji W, Niu Y, Li T. BRN2 as a key gene drives the early primate telencephalon development. SCIENCE ADVANCES 2022; 8:eabl7263. [PMID: 35245119 PMCID: PMC8896791 DOI: 10.1126/sciadv.abl7263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Evolutionary mutations in primate-specific genes drove primate cortex expansion. However, whether conserved genes with previously unidentified functions also play a key role in primate brain expansion remains unknown. Here, we focus on BRN2 (POU3F2), a gene encoding a neural transcription factor commonly expressed in both primates and mice. Compared to the limited effects on mouse brain development, BRN2 biallelic knockout in cynomolgus monkeys (Macaca fascicularis) is lethal before midgestation. Histology analysis and single-cell transcriptome show that BRN2 deficiency decreases RGC expansion, induces precocious differentiation, and alters the trajectory of neurogenesis in the telencephalon. BRN2, serving as an upstream factor, controls specification and differentiation of ganglionic eminences. In addition, we identified the conserved function of BRN2 in cynomolgus monkeys to human RGCs. BRN2 may function by directly regulating SOX2 and STAT3 and maintaining HOPX. Our findings reveal a previously unknown mechanism that BRN2, a conserved gene, drives early primate telencephalon development by gaining novel mechanistic functions.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Chu Chu
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dahai Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Kui Duan
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Chenyang Si
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Junjun Yao
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuewei Du
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junliang Li
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shumei Zhao
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zongyong Ai
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qingyuan Zhu
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
89
|
Ihunwo AO, Perego J, Martino G, Vicenzi E, Panina-Bordignon P. Neurogenesis and Viral Infection. Front Immunol 2022; 13:826091. [PMID: 35251006 PMCID: PMC8891128 DOI: 10.3389/fimmu.2022.826091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent stem cells that reside in the fetal and adult mammalian brain, which can self-renew and differentiate into neurons and supporting cells. Intrinsic and extrinsic cues, from cells in the local niche and from distant sites, stringently orchestrates the self-renewal and differentiation competence of NSCs. Ample evidence supports the important role of NSCs in neuroplasticity, aging, disease, and repair of the nervous system. Indeed, activation of NSCs or their transplantation into injured areas of the central nervous system can lead to regeneration in animal models. Viral invasion of NSCs can negatively affect neurogenesis and synaptogenesis, with consequent cell death, impairment of cell cycle progression, early differentiation, which cause neural progenitors depletion in the cortical layer of the brain. Herein, we will review the current understanding of Zika virus (ZIKV) infection of the fetal brain and the NSCs, which are the preferential population targeted by ZIKV. Furthermore, the potential neurotropic properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may cause direct neurological damage, will be discussed.
Collapse
Affiliation(s)
- Amadi Ogonda Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jessica Perego
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Vita-Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Vita-Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Disesases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paola Panina-Bordignon
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Vita-Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
90
|
Expression of Doublecortin, Glial Fibrillar Acidic Protein, and Vimentin in the Intact Subpallium and after Traumatic Injury to the Pallium in Juvenile Salmon, Oncorhynchus masou. Int J Mol Sci 2022; 23:ijms23031334. [PMID: 35163257 PMCID: PMC8836249 DOI: 10.3390/ijms23031334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.
Collapse
|
91
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
92
|
Long KR, Huttner WB. The Role of the Extracellular Matrix in Neural Progenitor Cell Proliferation and Cortical Folding During Human Neocortex Development. Front Cell Neurosci 2022; 15:804649. [PMID: 35140590 PMCID: PMC8818730 DOI: 10.3389/fncel.2021.804649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) has long been known to regulate many aspects of neural development in many different species. However, the role of the ECM in the development of the human neocortex is not yet fully understood. In this review we discuss the role of the ECM in human neocortex development and the different model systems that can be used to investigate this. In particular, we will focus on how the ECM regulates human neural stem and progenitor cell proliferation and differentiation, how the ECM regulates the architecture of the developing human neocortex and the effect of mutations in ECM and ECM-associated genes in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Katherine R. Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
93
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
94
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
95
|
Girodengo M, Ultanir SK, Bateman JM. Mechanistic target of rapamycin signaling in human nervous system development and disease. Front Mol Neurosci 2022; 15:1005631. [PMID: 36226315 PMCID: PMC9549271 DOI: 10.3389/fnmol.2022.1005631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates fundamental cellular processes including growth control, autophagy and metabolism. mTOR has key functions in nervous system development and mis-regulation of mTOR signaling causes aberrant neurodevelopment and neurological diseases, collectively called mTORopathies. In this mini review we discuss recent studies that have deepened our understanding of the key roles of the mTOR pathway in human nervous system development and disease. Recent advances in single-cell transcriptomics have been exploited to reveal specific roles for mTOR signaling in human cortical development that may have contributed to the evolutionary divergence from our primate ancestors. Cerebral organoid technology has been utilized to show that mTOR signaling is active in and regulates outer radial glial cells (RGCs), a population of neural stem cells that distinguish the human developing cortex. mTOR signaling has a well-established role in hamartoma syndromes such as tuberous sclerosis complex (TSC) and other mTORopathies. New ultra-sensitive techniques for identification of somatic mTOR pathway mutations have shed light on the neurodevelopmental origin and phenotypic heterogeneity seen in mTORopathy patients. These emerging studies suggest that mTOR signaling may facilitate developmental processes specific to human cortical development but also, when mis-regulated, cause cortical malformations and neurological disease.
Collapse
Affiliation(s)
- Marie Girodengo
- Kinases and Brain Development Lab, The Francis Crick Institute, London, United Kingdom.,King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| | - Joseph M Bateman
- King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|
96
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|
97
|
Pereida-Jaramillo E, Gómez-González GB, Espino-Saldaña AE, Martínez-Torres A. Calcium Signaling in the Cerebellar Radial Glia and Its Association with Morphological Changes during Zebrafish Development. Int J Mol Sci 2021; 22:ijms222413509. [PMID: 34948305 PMCID: PMC8706707 DOI: 10.3390/ijms222413509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 01/02/2023] Open
Abstract
Radial glial cells are a distinct non-neuronal cell type that, during development, span the entire width of the brain walls of the ventricular system. They play a central role in the origin and placement of neurons, since their processes form structural scaffolds that guide and facilitate neuronal migration. Furthermore, glutamatergic signaling in the radial glia of the adult cerebellum (i.e., Bergmann glia), is crucial for precise motor coordination. Radial glial cells exhibit spontaneous calcium activity and functional coupling spread calcium waves. However, the origin of calcium activity in relation to the ontogeny of cerebellar radial glia has not been widely explored, and many questions remain unanswered regarding the role of radial glia in brain development in health and disease. In this study we used a combination of whole mount immunofluorescence and calcium imaging in transgenic (gfap-GCaMP6s) zebrafish to determine how development of calcium activity is related to morphological changes of the cerebellum. We found that the morphological changes in cerebellar radial glia are quite dynamic; the cells are remarkably larger and more elaborate in their soma size, process length and numbers after 7 days post fertilization. Spontaneous calcium events were scarce during the first 3 days of development and calcium waves appeared on day 5, which is associated with the onset of more complex morphologies of radial glia. Blockage of gap junction coupling inhibited the propagation of calcium waves, but not basal local calcium activity. This work establishes crucial clues in radial glia organization, morphology and calcium signaling during development and provides insight into its role in complex behavioral paradigms.
Collapse
|
98
|
Transcriptomic Crosstalk between Gliomas and Telencephalic Neural Stem and Progenitor Cells for Defining Heterogeneity and Targeted Signaling Pathways. Int J Mol Sci 2021; 22:ijms222413211. [PMID: 34948008 PMCID: PMC8703403 DOI: 10.3390/ijms222413211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies have begun to reveal surprising levels of cell diversity in the human brain, both in adults and during development. Distinctive cellular phenotypes point to complex molecular profiles, cellular hierarchies and signaling pathways in neural stem cells, progenitor cells, neuronal and glial cells. Several recent reports have suggested that neural stem and progenitor cell types found in the developing and adult brain share several properties and phenotypes with cells from brain primary tumors, such as gliomas. This transcriptomic crosstalk may help us to better understand the cell hierarchies and signaling pathways in both gliomas and the normal brain, and, by clarifying the phenotypes of cells at the origin of the tumor, to therapeutically address their most relevant signaling pathways.
Collapse
|
99
|
Kelley KW, Pașca SP. Human brain organogenesis: Toward a cellular understanding of development and disease. Cell 2021; 185:42-61. [PMID: 34774127 DOI: 10.1016/j.cell.2021.10.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
The construction of the human nervous system is a distinctly complex although highly regulated process. Human tissue inaccessibility has impeded a molecular understanding of the developmental specializations from which our unique cognitive capacities arise. A confluence of recent technological advances in genomics and stem cell-based tissue modeling is laying the foundation for a new understanding of human neural development and dysfunction in neuropsychiatric disease. Here, we review recent progress on uncovering the cellular and molecular principles of human brain organogenesis in vivo as well as using organoids and assembloids in vitro to model features of human evolution and disease.
Collapse
Affiliation(s)
- Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA.
| |
Collapse
|
100
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|