51
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
52
|
Kurihara M, Komatsu H, Sengoku R, Shibukawa M, Morimoto S, Matsubara T, Arakawa A, Orita M, Ishibashi K, Mitsutake A, Shibata S, Ishiura H, Adachi K, Ohse K, Hatano K, Ihara R, Higashihara M, Nishina Y, Tokumaru AM, Ishii K, Saito Y, Murayama S, Kanemaru K, Iwata A. CSF P-Tau181 and Other Biomarkers in Patients With Neuronal Intranuclear Inclusion Disease. Neurology 2023; 100:e1009-e1019. [PMID: 36517236 PMCID: PMC9990848 DOI: 10.1212/wnl.0000000000201647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES CSF tau phosphorylated at threonine 181 (p-tau181) is a widely used biomarker for Alzheimer disease (AD) and has recently been regarded to reflect β-amyloid and/or p-tau deposition in the AD brain. Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by intranuclear inclusions in neurons, glial cells, and other somatic cells. Symptoms include dementia, neuropathy, and others. CSF biomarkers were not reported. The objective of this study was to investigate whether CSF biomarkers including p-tau181 are altered in patients with NIID. METHODS This was a retrospective observational study. CSF concentrations of p-tau181, total tau, amyloid-beta 1-42 (Aβ42), monoamine metabolites homovanillic acid (HVA), and 5-hydroxyindole acetic acid (5-HIAA) were compared between 12 patients with NIID, 120 patients with Alzheimer clinical syndrome biologically confirmed based on CSF biomarker profiles, and patients clinically diagnosed with other neurocognitive disorders (dementia with Lewy bodies [DLB], 24; frontotemporal dementia [FTD], 13; progressive supranuclear palsy [PSP], 21; and corticobasal syndrome [CBS], 13). Amyloid PET using Pittsburgh compound B (PiB) was performed in 6 patients with NIID. RESULTS The mean age of patients with NIID, AD, DLB, FTD, PSP, and CBS was 71.3, 74.6, 76.8, 70.2, 75.5, and 71.9 years, respectively. CSF p-tau181 was significantly higher in NIID (72.7 ± 24.8 pg/mL) compared with DLB, PSP, and CBS and was comparable between NIID and AD. CSF p-tau181 was above the cutoff value (50.0 pg/mL) in 11 of 12 patients with NIID (91.7%). Within these patients, only 2 patients showed decreased CSF Aβ42, and these patients showed negative or mild local accumulation in PiB PET, respectively. PiB PET scans were negative in the remaining 4 patients tested. The proportion of patients with increased CSF p-tau181 and normal Aβ42 (A-T+) was significantly higher in NIID (75%) compared with DLB, PSP, and CBS (4.2%, 4.8%, and 7.7%, respectively). CSF HVA and 5-HIAA concentrations were significantly higher in patients with NIID compared with disease controls. DISCUSSION CSF p-tau181 was increased in patients with NIID without amyloid accumulation. Although the deposition of p-tau has not been reported in NIID brains, the molecular mechanism of tau phosphorylation or secretion of p-tau may be altered in NIID.
Collapse
Affiliation(s)
- Masanori Kurihara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Hiroki Komatsu
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Renpei Sengoku
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Mari Shibukawa
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Satoru Morimoto
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Tomoyasu Matsubara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Akira Arakawa
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Makoto Orita
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kenji Ishibashi
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Akihiko Mitsutake
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Shota Shibata
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Hiroyuki Ishiura
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kaori Adachi
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kensuke Ohse
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Keiko Hatano
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Ryoko Ihara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Mana Higashihara
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Yasushi Nishina
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Aya Midori Tokumaru
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kenji Ishii
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Yuko Saito
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Shigeo Murayama
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Kazutomi Kanemaru
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan
| | - Atsushi Iwata
- From the Department of Neurology (M.K., H.K., R.S., M.S., S.Morimoto., T.M., A.A., K.H., R.I., M.H., Y.N., S.Murayama., K.K., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Neuropathology (the Brain Bank for Aging Research) (R.S., T.M., A.A., M.O., Y.S., S. Murayama), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Department of Neurology (R.S.), The Jikei University School of Medicine, Tokyo; Department of Neurology (M.S.), Toho University Faculty of Medicine, Tokyo; Department of Physiology (S. Morimoto), Keio University School of Medicine, Tokyo; Research Team for Neuroimaging (K. Ishibashi, K. Ishii), Tokyo Metropolitan Institute of Gerontology; Department of Neurology (A.M., S.S., H.I.), Graduate School of Medicine, The University of Tokyo; Research Initiative Center (K.A.), Organization for Research Initiative and Promotion, Tottori University, Yonago; Integrated Research Initiative for Living Well with Dementia (K.O., A.I.), Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology; Department of Diagnostic Radiology (A.M.T.), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Brain Bank for Neurodevelopmental (S. Murayama), Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan.
| |
Collapse
|
53
|
Furuta M, Sato M, Kasahara H, Tsukagoshi S, Hirayanagi K, Fujita Y, Takai E, Aihara Y, Okamoto K, Ikeda Y. Clinical, radiological, and molecular analyses of neuronal intranuclear inclusion disease with polyglycine inclusions. J Neurol Sci 2023; 448:120618. [PMID: 37001413 DOI: 10.1016/j.jns.2023.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a clinically complex neurological disorder that appears sporadically or autosomally. Expansions of intronic GGC trinucleotide repeats in the NOTCH2 N-terminal-like C (NOTCH2NLC) gene cause NIID. In this study, to clarify the clinical characteristics useful for the differential diagnosis of NIID, clinical data of neurological examination, neuroimaging, and nerve conduction studies of six NIID patients diagnosed by pathological or genetic investigations were analyzed. Clinically useful characteristics for diagnosing NIID include general hyporeflexia, episodic disturbance of consciousness, sensory disturbance, miosis, and dementia. Furthermore, neuroimaging findings, such as leukoencephalopathy in T2-weighted magnetic resonance imaging and a linear high intensity of subcortical U-fibers in diffusion-weighted imaging (DWI), as well as decreased motor nerve conduction velocity, are especially important biomarkers for NIID. However, it is necessary to remember that these features may not always be present, as shown in one of the cases who did not have a DWI abnormality in this study. This study also investigated whether expanded GGC repeats were translated into polyglycine. Immunohistochemical analysis using a custom antibody raised against putative C-terminal polypeptides followed by polyglycine of uN2CpolyG revealed that polyglycines were localized in the intranuclear inclusions in skin biopsy specimens from all six patients, suggesting its involvement in the pathogenesis of NIID.
Collapse
|
54
|
Current advances in neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:1881-1889. [PMID: 36795299 DOI: 10.1007/s10072-023-06677-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare but probably underdiagnosed neurodegenerative disorder due to pathogenic GGC expansions in the NOTCH2NLC gene. In this review, we summarize recent developments in the inheritance features, pathogenesis, and histopathologic and radiologic features of NIID that subvert the previous perceptions of NIID. GGC repeat sizes determine the age of onset and clinical phenotypes of NIID patients. Anticipation may be absent in NIID but paternal bias is observed in NIID pedigrees. Eosinophilic intranuclear inclusions in skin tissues once considered pathological hallmarks of NIID can also present in other GGC repeat diseases. Diffusion-weighted imaging (DWI) hyperintensity along the corticomedullary junction once considered the imaging hallmark of NIID can frequently be absent in muscle weakness and parkinsonism phenotype of NIID. Besides, DWI abnormalities can appear years after the onset of predominant symptoms and may even disappear completely with disease progression. Moreover, continuous reports of NOTCH2NLC GGC expansions in patients with other neurodegenerative diseases lead to the proposal of a new concept of NOTCH2NLC-related GGC repeat expansion disorders (NRED). However, by reviewing the previous literature, we point out the limitations of these studies and provide evidence that these patients are actually suffering from neurodegenerative phenotypes of NIID.
Collapse
|
55
|
Reyes CJF, Asano K. Between Order and Chaos: Understanding the Mechanism and Pathology of RAN Translation. Biol Pharm Bull 2023; 46:139-146. [PMID: 36724941 DOI: 10.1248/bpb.b22-00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Repeat-associated non-AUG (RAN) translation is a pathogenic mechanism in which repetitive sequences are translated into aggregation-prone proteins from multiple reading frames, even without a canonical AUG start codon. Since its discovery in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), RAN translation is now known to occur in the context of 12 disease-linked repeat expansions. This review discusses recent advances in understanding the regulatory mechanisms controlling RAN translation and its contribution to the pathophysiology of repeat expansion diseases. We discuss the key findings in the context of Fragile X Tremor Ataxia Syndrome (FXTAS), a neurodegenerative disorder caused by a CGG repeat expansion in the 5' untranslated region of FMR1.
Collapse
Affiliation(s)
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University.,Laboratory of Translational Control Study, Graduate School of Integrated Sciences for Life, Hiroshima University.,Hiroshima Research Center for Healthy Aging, Hiroshima University
| |
Collapse
|
56
|
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci 2023; 24:2976. [PMID: 36769304 PMCID: PMC9917990 DOI: 10.3390/ijms24032976] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5' untranslated region (5'UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5'UTR. One of the consequences of 5'UTRs extension may be head-to-head gene overlap. This review describes elements in 5'UTR of protein-coding transcripts and the functional significance of protein-coding genes 5' overlap with implications for transcription, translation, and disease.
Collapse
Affiliation(s)
| | | | - Izabela Makałowska
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznań, Uniwersytetu Ponańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
57
|
Hong D, Wang H, Zhu M, Peng Y, Huang P, Zheng Y, Yu M, Meng L, Li F, Yu J, Zhou M, Deng J, Wang Z, Yuan Y. Subclinical peripheral neuropathy is common in neuronal intranuclear inclusion disease with dominant encephalopathy. Eur J Neurol 2023; 30:527-537. [PMID: 36263606 DOI: 10.1111/ene.15606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Neuronal intranuclear inclusion disease (NIID) is associated with CGG repeat expansion in the NOTCH2NLC gene. Although pure or dominant peripheral neuropathy has been described as a subtype of NIID in a few patients, most NIID patients predominantly show involvements of the central nervous system (CNS). It is necessary to further explore whether these patients have subclinical peripheral neuropathy. METHODS Twenty-eight NIID patients, clinically characterized by CNS-dominant involvements, were recruited from two tertiary hospitals. Standard nerve conduction studies were performed in all patients. Skin and sural nerve biopsies were performed in 28 and 15 patients, respectively. Repeat-primed polymerase chain reaction and amplicon length polymerase chain reaction were used to screen the CGG repeat expansion in NOTCH2NLC. RESULTS All 28 patients can be diagnosed with NIID based on skin pathological and genetic changes. All patients predominantly showed CNS symptoms mainly characterized by episodic encephalopathy and cognitive impairments, but no clinical symptoms of peripheral neuropathy could be observed initially. Electrophysiological abnormalities were found in 96.4% (27/28) of these patients, indicating that subclinical peripheral neuropathy is common in NIID patients with CNS-dominant type. Electrophysiological and neuropathological studies revealed that demyelinating degeneration was the main pathological pattern in these patients, although mild axonal degeneration was also observed in some patients. No significant association between CGG repeat size and the change of nerve conduction velocity was found in these patients. CONCLUSIONS This study demonstrated that most patients with CNS-dominant NIID had subclinical peripheral neuropathy. Electrophysiological examination should be the routinely diagnostic workflow for every NIID patient.
Collapse
Affiliation(s)
- Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Min Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yilei Zheng
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Meihong Zhou
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
58
|
Depienne C, van den Maagdenberg AMJM, Kühnel T, Ishiura H, Corbett MA, Tsuji S. Insights into familial adult myoclonus epilepsy pathogenesis: How the same repeat expansion in six unrelated genes may lead to cortical excitability. Epilepsia 2023. [PMID: 36622139 DOI: 10.1111/epi.17504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) results from the same pathogenic TTTTA/TTTCA pentanucleotide repeat expansion in six distinct genes encoding proteins with different subcellular localizations and very different functions, which poses the issue of what causes the neurobiological disturbances that lead to the clinical phenotype. Postmortem and electrophysiological studies have pointed to cortical hyperexcitability as well as dysfunction and neurodegeneration of both the cortex and cerebellum of FAME subjects. FAME expansions, contrary to the same expansion in DAB1 causing spinocerebellar ataxia type 37, seem to have no or limited impact on their recipient gene expression, which suggests a pathophysiological mechanism independent of the gene and its function. Current hypotheses include toxicity of the RNA molecules carrying UUUCA repeats, or toxicity of polypeptides encoded by the repeats, a mechanism known as repeat-associated non-AUG translation. The analysis of postmortem brains of FAME1 expansion (in SAMD12) carriers has revealed the presence of RNA foci that could be formed by the aggregation of RNA molecules with abnormal UUUCA repeats, but evidence is still lacking for other FAME subtypes. Even when the expansion is located in a gene ubiquitously expressed, expression of repeats remains undetectable in peripheral tissues (blood, skin). Therefore, the development of appropriate cellular models (induced pluripotent stem cell-derived neurons) or the study of affected tissues in patients is required to elucidate how FAME repeat expansions located in unrelated genes lead to disease.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hiroyuki Ishiura
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mark A Corbett
- Robinson Research Institute, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Shoji Tsuji
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
59
|
Liu Q, Peng X, Shen M, Qian Q, Xing J, Li C, Gregory R. Ribo-uORF: a comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling. Nucleic Acids Res 2023; 51:D248-D261. [PMID: 36440758 PMCID: PMC9825487 DOI: 10.1093/nar/gkac1094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Upstream open reading frames (uORFs) are typically defined as translation sites located within the 5' untranslated region upstream of the main protein coding sequence (CDS) of messenger RNAs (mRNAs). Although uORFs are prevalent in eukaryotic mRNAs and modulate the translation of downstream CDSs, a comprehensive resource for uORFs is currently lacking. We developed Ribo-uORF (http://rnainformatics.org.cn/RiboUORF) to serve as a comprehensive functional resource for uORF analysis based on ribosome profiling (Ribo-seq) data. Ribo-uORF currently supports six species: human, mouse, rat, zebrafish, fruit fly, and worm. Ribo-uORF includes 501 554 actively translated uORFs and 107 914 upstream translation initiation sites (uTIS), which were identified from 1495 Ribo-seq and 77 quantitative translation initiation sequencing (QTI-seq) datasets, respectively. We also developed mRNAbrowse to visualize items such as uORFs, cis-regulatory elements, genetic variations, eQTLs, GWAS-based associations, RNA modifications, and RNA editing. Ribo-uORF provides a very intuitive web interface for conveniently browsing, searching, and visualizing uORF data. Finally, uORFscan and UTR5var were developed in Ribo-uORF to precisely identify uORFs and analyze the influence of genetic mutations on uORFs using user-uploaded datasets. Ribo-uORF should greatly facilitate studies of uORFs and their roles in mRNA translation and posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Xin Peng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Mengyuan Shen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Qian Qian
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Junlian Xing
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
60
|
Wan M, He J, Huo J, Sun C, Fu Y, Fan D. Intermediate-Length GGC Repeat Expansion in NOTCH2NLC Was Identified in Chinese Patients with Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:brainsci13010085. [PMID: 36672065 PMCID: PMC9856391 DOI: 10.3390/brainsci13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
GGC repeat expansions in the 5' untranslated region (5'UTR) of the Notch Homolog 2 N-terminal-like C gene (NOTCH2NLC) have been reported to be the genetic cause of neuronal intranuclear inclusion disease (NIID). However, whether they exist in other neurodegenerative disorders remains unclear. To determine whether there is a medium-length amplification of NOTCH2NLC in patients with amyotrophic lateral sclerosis (ALS), we screened 476 ALS patients and 210 healthy controls for the presence of a GGC repeat expansion in NOTCH2NLC by using repeat-primed polymerase chain reaction (RP-PCR) and fragment analysis. The repeat number in ALS patients was 16.11 ± 5.7 (range 7-46), whereas the repeat number in control subjects was 16.19 ± 3.79 (range 10-29). An intermediate-length GGC repeat expansion was observed in two ALS patients (numbers of repeats: 45, 46; normal repeat number ≤ 40) but not in the control group. The results suggested that the intermediate NOTCH2NLC GGC repeat expansion was associated with Chinese ALS patients, and further functional studies for intermediate-length variation are required to identify the mechanism.
Collapse
Affiliation(s)
- Mengxia Wan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Junyan Huo
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Can Sun
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
- Correspondence: (Y.F.); (D.F.)
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
- Correspondence: (Y.F.); (D.F.)
| |
Collapse
|
61
|
Zhao B, Yang M, Wang Z, Yang Q, Zhang Y, Qi X, Pan S, Yu Y. Clinical characteristics of two patients with neuronal intranuclear inclusion disease and literature review. Front Neurosci 2022; 16:1056261. [PMID: 36545534 PMCID: PMC9762495 DOI: 10.3389/fnins.2022.1056261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a rare chronic progressive neurodegenerative disease, with complex and diverse clinical manifestations and pathological eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous systems and visceral organs. Improvements in diagnostic methods such as skin biopsy and gene testing are helpful in revealing the clinical and genetic characters of NIID. Materials and methods We presented two cases of NIID diagnosed by using NOTCH2NLC gene testing and skin biopsy. Diffusion weighted imaging (DWI) showed high linear intensity in corticomedullary junction. We also reviewed all the published NIID cases with positive NOTCH2NLC GGC repeat expansion and skin biopsy results in PubMed. Results Patient 1 was a 63-year-old male who carried 148 GGC repeats and presented with progressive tremor and limb weakness. Patient 2 was a 62-year-old woman who carried 131 GGC repeats and presented with tremors, memory loss and headaches. The most common clinical manifestation of 63 NIID patients in this study was cognitive impairment, followed by tremors. In our study, almost all the patients were from East Asia, the male to female ratio was 1:1.26, with an age of onset of 54.12 ± 14.12 years, and an age of diagnosis of 60.03 ± 12.21 years. Symmetrical high signal intensity at the corticomedullary junction on DWI were revealed in 80.96% of the patients. For the GGC repeat numbers, the majority of GGC repeats were in the 80-119 intervals, with few GGC repeats above 160. The number of GGC repetitions was significantly higher in patients presented with muscle weakness than in other clinical manifestations. Conclusion NIID is a neurodegenerative disease caused by aberrant polyglycine (polyG) protein aggregation. NIID mostly occurs in the elderly population in East Asia, with cognitive dysfunction as the most common symptom. Staging NIID based on clinical presentation is inappropriate because most patients with NIID have overlapping symptoms. In our study, there was no significant correlation between the number of GGC repeats and different phenotypes except for muscle weakness. Abnormal trinucleotides repeat and PolyG protein aggregation maybe common pathogenic mechanism in neurodegenerative diseases and cerebrovascular diseases, which needs to be confirmed by more studies.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Miao Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiwei Wang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiqiong Yang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yimo Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaokun Qi
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuyi Pan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yingxin Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yingxin Yu,
| |
Collapse
|
62
|
Gao X, Shao ZD, Zhu L. Typical imaging manifestation of neuronal intranuclear inclusion disease in a man with unsteady gait: A case report. World J Clin Cases 2022; 10:12388-12394. [PMID: 36483830 PMCID: PMC9724510 DOI: 10.12998/wjcc.v10.i33.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is a rare neurological degenerative disorder with diverse manifestations and inadequate awareness. Only a few cases of NIID have been reported, and typical imaging findings can provide certain clues for the diagnosis of the disease. Furthermore, skin biopsy and genetic testing are important to confirm the diagnosis.
CASE SUMMARY An 84-year-old man presented to the Neurology Department of our hospital complaining of a progressive course of cognitive impairment and unsteady gait for 2 years. The symptoms gradually progressed and affected his daily life. The patient was initially diagnosed with Parkinson’s disease and vascular dementia. The patient did not respond to conventional treatment, such as dopasehydrazine. Therefore, magnetic resonance imaging (MRI) was performed. Based on the imaging findings, we suspected an NIID diagnosis. During the 3-year follow-up in our hospital, his clinical symptoms gradually progressed, and imaging findings became more significant. A high signal intensity along the corticomedullary junction persisted on MRI. Gene testing and skin biopsy were recommended in our hospital; however, the patient refused these procedures. NIID was also considered when he went to a superior hospital in Shanghai. The patient eventually agreed to undergo gene testing. This revealed abnormal GGC repeat expansions in the NOTCH2NLC gene.
CONCLUSION The clinical manifestations of NIID are diverse. Patients with clinical manifestations similar to Parkinson’s disease and dementia may have NIID.
Collapse
Affiliation(s)
- Xue Gao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Zhi-Ding Shao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Lei Zhu
- Department of Neurology, Huainan First People’s Hospital Affiliated to Auhui University of Science and Technology, Huainan 232000, Anhui Province, China
| |
Collapse
|
63
|
Liu Q, Zhang K, Kang Y, Li Y, Deng P, Li Y, Tian Y, Sun Q, Tang Y, Xu K, Zhou Y, Wang JL, Guo J, Li JD, Xia K, Meng Q, Allen EG, Wen Z, Li Z, Jiang H, Shen L, Duan R, Yao B, Tang B, Jin P, Pan Y. Expression of expanded GGC repeats within NOTCH2NLC causes behavioral deficits and neurodegeneration in a mouse model of neuronal intranuclear inclusion disease. SCIENCE ADVANCES 2022; 8:eadd6391. [PMID: 36417528 PMCID: PMC9683706 DOI: 10.1126/sciadv.add6391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/04/2022] [Indexed: 05/06/2023]
Abstract
GGC repeat expansions within NOTCH2NLC have been identified as the genetic cause of neuronal intranuclear inclusion disease (NIID). To understand the molecular pathogenesis of NIID, here, we established both a transgenic mouse model and a human neural progenitor cells (hNPCs) model. Expression of the NOTCH2NLC with expanded GGC repeats produced widespread intranuclear and perinuclear polyglycine (polyG), polyalanine (polyA), and polyarginine (polyR) inclusions, leading to behavioral deficits and severe neurodegeneration, which faithfully mimicked the clinical and pathological features associated with NIID. Furthermore, conserved alternative splicing events were identified between the NIID mouse and hNPC models, among which was the enrichment of the binding motifs of hnRNPM, an RNA binding protein known as alternative splicing regulator. Expanded NOTCH2NLC-polyG and NOTCH2NLC-polyA could interact with and sequester hnRNPM, while overexpression of hnRNPM could ameliorate the cellular toxicity. These results together suggested that dysfunction of hnRNPM could play an important role in the molecular pathogenesis of NIID.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Penghui Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yun Tian
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Keqin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia-Da Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, Hunan 410008, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qingtuan Meng
- Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Emily G. Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
64
|
CGG repeat expansion in NOTCH2NLC causes mitochondrial dysfunction and progressive neurodegeneration in Drosophila model. Proc Natl Acad Sci U S A 2022; 119:e2208649119. [PMID: 36191230 PMCID: PMC9565157 DOI: 10.1073/pnas.2208649119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW Oculopharyngodistal myopathy (OPDM) is a rare adolescent or adult-onset neuromuscular disease that is characterized by progressive ocular, facial, pharyngeal and distal limb muscle weakness. The rimmed vacuoles and intranuclear inclusions in myofibers constitute the pathological hallmark of OPDM. In this review, the latest findings related to the genetic, molecular and clinical features of OPDM, as well as the diagnosis and management are summarized. RECENT FINDINGS Four gene mutations, CGG repeats in the 5'-untranslated region of LRP12 , GIPC1 , NOTCH2NLC and RILPL1 have been reported to be disease-causing genes in OPDM, namely OPDM1, OPDM2, OPDM3 and OPDM4, accordingly. So far, limited studies have suggested that CGG repeat expansion within the pathogenic range may play a key role in the pathogenesis of OPDM with the gain-of-function mechanism at the RNA and/or protein level, while repeat expansion over a threshold limit may cause hypermethylation, leading to the transcriptional silencing of the CGG repeats in the expanded allele, which results in the existence of mild phenotype or asymptomatic carriers. SUMMARY Novel gene mutations, possible molecular mechanisms and the clinical features related to different causative genes are discussed in this review. More studies on the exact pathogenic mechanism are needed.
Collapse
Affiliation(s)
- Jiaxi Yu
- Department of Neurology, Peking University First Hospital
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
66
|
Liu Y, Li H, Liu X, Wang B, Yang H, Wan B, Sun M, Xu X. Clinical and mechanism advances of neuronal intranuclear inclusion disease. Front Aging Neurosci 2022; 14:934725. [PMID: 36177481 PMCID: PMC9513122 DOI: 10.3389/fnagi.2022.934725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the high clinical heterogeneity of neuronal intranuclear inclusion disease (NIID), it is easy to misdiagnose this condition and is considered to be a rare progressive neurodegenerative disease. More evidence demonstrates that NIID involves not only the central nervous system but also multiple systems of the body and shows a variety of symptoms, which makes a clinical diagnosis of NIID more difficult. This review summarizes the clinical symptoms in different systems and demonstrates that NIID is a multiple-system intranuclear inclusion disease. In addition, the core triad symptoms in the central nervous system, such as dementia, parkinsonism, and psychiatric symptoms, are proposed as an important clue for the clinical diagnosis of NIID. Recent studies have demonstrated that expanded GGC repeats in the 5′-untranslated region of the NOTCH2NLC gene are the cause of NIID. The genetic advances and possible underlying mechanisms of NIID (expanded GGC repeat-induced DNA damage, RNA toxicity, and polyglycine-NOTCH2NLC protein toxicity) are briefly summarized in this review. Interestingly, inflammatory cell infiltration and inflammation were observed in the affected tissues of patients with NIID. As a downstream pathological process of NIID, inflammation could be a therapeutic target for NIID.
Collapse
Affiliation(s)
- Yueqi Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xuan Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, China
- Bo Wan,
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Miao Sun,
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Xingshun Xu,
| |
Collapse
|
67
|
Wu W, Yu J, Qian X, Wang X, Xu Y, Wang Z, Deng J. Intermediate-length CGG repeat expansion in NOTCH2NLC is associated with pathologically confirmed Alzheimer's disease. Neurobiol Aging 2022; 120:189-195. [DOI: 10.1016/j.neurobiolaging.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
|
68
|
Fujita M, Ueno T, Miki Y, Arai A, Kurotaki H, Wakabayashi K, Tomiyama M. Case report: Adult-onset neuronal intranuclear inclusion disease with an amyotrophic lateral sclerosis phenotype. Front Neurosci 2022; 16:960680. [PMID: 36033605 PMCID: PMC9399610 DOI: 10.3389/fnins.2022.960680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the differential diagnoses of diseases that occur in adulthood and lead to progressive generalized muscle weakness. Neuronal intranuclear inclusion disease (NIID) is a disease in which histopathologically eosinophilic nuclear inclusion bodies are found in various systems. Both familial and sporadic forms of the disease have been reported. Most cases of sporadic NIID are of the dementia type, in which the main symptom is dementia at the first onset. Familial NIID is more diverse, with the main dominant symptoms being muscle weakness (NIID-M), dementia (NIID-D), and parkinsonism (NIID-P). Furthermore, recently, a GGC-repeat expansion in the Notch 2 N-terminal like C (NOTCH2NLC) gene, which produces a toxic polyglycine-containing protein (uN2CpolyG) in patients with NIID, has been associated with the pathogenesis of ALS. These results suggest that sporadic NIIDs may have more diverse forms. To date, no autopsy cases of NIID patients with an ALS phenotype have been reported. Here, we describe the first autopsy case report of a patient with sporadic NIID who had been clinically diagnosed with ALS. A 65-year-old Japanese man with no family history of neuromuscular disease developed progressive muscle atrophy and weakness in all limbs. The patient was diagnosed with ALS (El Escoriral diagnostic criteria: probable ALS, laboratory-supported ALS). He had no cognitive dysfunction or neuropathies suggestive of NIID. He required respiratory assistance 48 months after onset. He died of pneumonia at the age of 79 years. Postmortem examinations revealed neuronal loss in the spinal anterior horns and motor cortex. In these affected regions, eosinophilic, round neuronal intranuclear inclusions were evident, which were immunopositive for ubiquitin, p62, and uN2CpolyG. No Bunina bodies or TDP-43-positive inclusions were observed in the brain or spinal cord. Our findings suggest that a small proportion of patients with NIID can manifest a clinical phenotype of ALS. Although skin biopsy is commonly used for the clinical diagnosis of NIID, it may also be useful to identify cases of NIID masquerading as ALS.
Collapse
Affiliation(s)
- Masako Fujita
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
- *Correspondence: Masako Fujita
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akira Arai
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Hidekachi Kurotaki
- Department of Pathology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
69
|
Cao Y, Tian W, Wu J, Song X, Cao L, Luan X. DNA hypermethylation of NOTCH2NLC in neuronal intranuclear inclusion disease: a case-control study. J Neurol 2022; 269:6049-6057. [PMID: 35857137 DOI: 10.1007/s00415-022-11272-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND GGC repeat expansions in NOTCH2NLC gene have been recently proposed to cause neuronal intranuclear inclusion disease (NIID) via prevailing gain-of-function mechanism (protein and RNA toxicity). Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of repeat-mediated disorders. METHODS In this study, using MethylTarget sequencing, we performed a quantitative analysis of the methylation status of 68 CpG sites located around the NOTCH2NLC promoter in 25 NIID patients and 25 age- and gender-matched healthy controls. We further explored the correlation of DNA methylation (DNAm) status with disease features and performed receiver operating characteristic (ROC) analysis. RESULTS DNAm levels of GGC repeats and adjacent CpG islands were higher in the NIID patients than in controls, independent of gender and family history. DNAm levels at 4 CpG sites (CpG_207, CpG_421, GpG_473 and CpG_523) were negatively correlated with age at onset, and DNAm levels at 7 CpG sites (CpG_25, CpG_298, CpG_336, CpG_374, CpG_411, CpG_421 and CpG_473) were positively correlated with GGC repeats. NIID patients had concomitant system symptoms besides nervous system symptoms, and negative correlations between NOTCH2NLC DNAm levels and the number of multi-systemic involvement were observed in the study. The area under the ROC curve at NOTCH2NLC DNAm level reached to 0.733 for the best cutoff point of 0.012. CONCLUSIONS Our findings suggested the aberrant DNAm status of the NOTCH2NLC promoter in NIID, and we explored the link between DNAm levels and disease features quantitatively for the first time, which may help to further explore pathogenic mechanism.
Collapse
Affiliation(s)
- Yuwen Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingying Wu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xingwang Song
- Institute of Neuroscience and Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Xinghua Luan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
70
|
Ji G, Zhao Y, Zhang J, Dong H, Wu H, Chen X, Qi X, Tian Y, Shen L, Yang G, Song X. NOTCH2NLC-related oculopharyngodistal myopathy type 3 complicated with focal segmental glomerular sclerosis: a case report. BMC Neurol 2022; 22:243. [PMID: 35788208 PMCID: PMC9251914 DOI: 10.1186/s12883-022-02766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Background Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by progressive ocular, facial, pharyngeal, and distal limb muscle involvement. Recent research showed that GGC repeat expansions in the NOTCH2NLC gene were observed in a proportion of OPDM patients, and these patients were designated as having OPDM type 3 (OPDM3). Heterogeneous neuromuscular manifestations have been described previously in studies of OPDM3; however, kidney involvement in this disease has rarely been reported. Case presentation Here, we report the case of a 22-year-old Chinese patient with typical manifestations of OPDM complicated with focal segmental glomerular sclerosis (FSGS). This patient with sporadic FSGS exhibited distal motor neuropathy and rimmed vacuolar myopathy in clinical and pathological examinations. An expansion of 122 CGG repeats located in the 5’ untranslated region (UTR) of the NOTCH2NLC gene was identified as the causative mutation in this patient. The clinical and histopathological findings fully met the criteria for the diagnosis of OPDM3. In addition, intranuclear inclusions were detected in the renal tubule epithelial cells of this patient, indicating that the kidney may also be impaired in NOTCH2NLC-related GGC repeat expansion disorders (NREDs). Conclusions Our case report demonstrated the clinicopathological cooccurrence of sporadic FSGS and OPDM3 in a patient, which highlighted that the kidney may show inclusion depositions in OPDM3, thus expanding the clinical spectrum of NREDs.
Collapse
Affiliation(s)
- Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xian Chen
- Department of Nephropathy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoming Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
71
|
Zeng YH, Yang K, Du GQ, Chen YK, Cao CY, Qiu YS, He J, Lv HD, Qu QQ, Chen JN, Xu GR, Chen L, Zheng FZ, Zhao M, Lin MT, Chen WJ, Hu J, Wang ZQ, Wang N. GGC repeat expansion of RILPL1 is associated with oculopharyngodistal myopathy. Ann Neurol 2022; 92:512-526. [PMID: 35700120 DOI: 10.1002/ana.26436] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by progressive ptosis, dysarthria, ophthalmoplegia, and distal muscle weakness. Recent studies revealed GGC repeat expansions in 5'-UTR of LRP12, GIPC1, and NOTCH2NLC are associated with OPDM. Despite these advances, around 30% of OPDM patients remain genetically undiagnosed. Herein, we aim to investigate genetic basis for undiagnosed OPDM patients in two unrelated Chinese Han families. METHODS Parametric linkage analysis was performed. Long-read sequencing followed by repeat-primed polymerase chain reaction (RP-PCR) and amplicon length polymerase chain reaction (AL-PCR) were used to determine the genetic cause. Targeted methylation sequencing was implemented to detect epigenetic changes. The possible pathogenesis mechanism was investigated by qPCR, immunoblotting, RNA FISH, and immunofluorescence staining of muscle biopsy samples. RESULTS The disease locus was mapped to 12q24.3. Subsequently, GGC repeat expansion in the promoter region of RILPL1 was identified in six OPDM patients from two families, findings consistent with a founder effect, designated as OPDM type 4 (OPDM4). Targeted methylation sequencing revealed hypermethylation at RILPL1 locus in unaffected individuals with ultralong expansion. Analysis of muscle samples showed no significant differences in RILPL1 mRNA or RILPL1 protein levels between patients and controls. Public CAGE-seq data indicated that alternative TSSs exist upstream of the RefSeq-annotated RILPL1 TSS. Strand-specific RNAseq data revealed bidirectional transcription from the RILPL1 locus. Finally, FISH/IF indicated that both sense and antisense transcripts formed RNA foci and were co-localized with hnRNPA2B1 and p62 in the intranuclear inclusions of OPDM4 patients. INTERPRETATION Our findings implicate abnormal GGC repeat expansions in the promoter region of RILPL1 as a novel genetic cause for OPDM, and suggest a methylation mechanism and a potential RNA toxicity mechanism are involved in OPDM4 pathogenesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Kang Yang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Gan-Qin Du
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Yi-Kun Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yan Cao
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Hai-Dong Lv
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, 454150, China
| | - Qian-Qian Qu
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, 454150, China
| | - Jian-Nan Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Guo-Rong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Miao Zhao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
72
|
Machine learning predicts translation initiation sites in neurologic diseases with nucleotide repeat expansions. PLoS One 2022; 17:e0256411. [PMID: 35648796 PMCID: PMC9159584 DOI: 10.1371/journal.pone.0256411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
A number of neurologic diseases associated with expanded nucleotide repeats, including an inherited form of amyotrophic lateral sclerosis, have an unconventional form of translation called repeat-associated non-AUG (RAN) translation. It has been speculated that the repeat regions in the RNA fold into secondary structures in a length-dependent manner, promoting RAN translation. Repeat protein products are translated, accumulate, and may contribute to disease pathogenesis. Nucleotides that flank the repeat region, especially ones closest to the initiation site, are believed to enhance translation initiation. A machine learning model has been published to help identify ATG and near-cognate translation initiation sites; however, this model has diminished predictive power due to its extensive feature selection and limited training data. Here, we overcome this limitation and increase prediction accuracy by the following: a) capture the effect of nucleotides most critical for translation initiation via feature reduction, b) implement an alternative machine learning algorithm better suited for limited data, c) build comprehensive and balanced training data (via sampling without replacement) that includes previously unavailable sequences, and d) split ATG and near-cognate translation initiation codon data to train two separate models. We also design a supplementary scoring system to provide an additional prognostic assessment of model predictions. The resultant models have high performance, with ~85-88% accuracy, exceeding that of the previously published model by >18%. The models presented here are used to identify translation initiation sites in genes associated with a number of neurologic repeat expansion disorders. The results confirm a number of sites of translation initiation upstream of the expanded repeats that have been found experimentally, and predict sites that are not yet established.
Collapse
|
73
|
Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, Hong D. The polyG diseases: a new disease entity. Acta Neuropathol Commun 2022; 10:79. [PMID: 35642014 PMCID: PMC9153130 DOI: 10.1186/s40478-022-01383-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Recently, inspired by the similar clinical and pathological features shared with fragile X-associated tremor/ataxia syndrome (FXTAS), abnormal expansion of CGG repeats in the 5' untranslated region has been found in neuronal intranuclear inclusion disease (NIID), oculopharyngeal myopathy with leukoencephalopathy (OPML), and oculopharyngodistal myopathy (OPDMs). Although the upstream open reading frame has not been elucidated in OPML and OPDMs, polyglycine (polyG) translated by expanded CGG repeats is reported to be as a primary pathogenesis in FXTAS and NIID. Collectively, these findings indicate a new disease entity, the polyG diseases. In this review, we state the common clinical manifestations, pathological features, mechanisms, and potential therapies in these diseases, and provide preliminary opinions about future research in polyG diseases.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China. .,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
74
|
Miki Y, Kamata K, Goto S, Sakuraba H, Mori F, Yamagata K, Kijima H, Fukuda S, Wakabayashi K. The clinical and neuropathological picture of adult neuronal intranuclear inclusion disease with no radiological abnormality. Neuropathology 2022; 42:204-211. [PMID: 35274390 DOI: 10.1111/neup.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
In typical adult neuronal intranuclear inclusion disease (NIID) with predilection for the basal ganglia or cerebral cortex, not only neurons but also glial cells harbor intranuclear inclusions. In addition, these inclusions are present in the peripheral autonomic nervous system, visceral organs and skin. In NIID cases with an expansion of GGC repeats in the 5'-untranslated region (5'-UTR) of the Notch 2 N-terminal like C (NOTCH2NLC) gene, these repeats are located in an upstream open reading frame (uN2C) and result in the production of a polyglycine-containing protein called uN2CpolyG. Typically, patients with adult NIID show high-intensity signals at the corticomedullary junction on diffusion-weighted brain magnetic resonance imaging. We report a case of adult NIID in a 78-year-old Japanese male, who suffered from mild, non-progressive tremor during life but showed no radiographic abnormalities suggestive of adult NIID. Pathologically, ubiquitin-, p62- and uN2CpolyG-positive neuronal intranuclear inclusions were particularly frequent in the hippocampal formation, but were also seen in the enteric plexuses, kidney and cardiac muscles. By contrast, glial intranuclear inclusions were barely evident in the affected regions. The present case also had an immunohistochemical profile differing from that of typical adult NIID. The findings in this case suggest that adult NIID can show clinical, radiographic and pathological heterogeneity.
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kosuke Kamata
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shintaro Goto
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazufumi Yamagata
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
75
|
Park H, Yamanaka T, Toyama Y, Fujita A, Doi H, Nirasawa T, Murayama S, Matsumoto N, Shimogori T, Ikegawa M, Haltia MJ, Nukina N. Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions. Acta Neuropathol Commun 2022; 10:28. [PMID: 35246273 PMCID: PMC8895595 DOI: 10.1186/s40478-022-01333-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder, characterized by the presence of eosinophilic inclusions (NIIs) within nuclei of central and peripheral nervous system cells. This study aims to identify the components of NIIs, which have been difficult to analyze directly due to their insolubility. In order to establish a method to directly identify the components of NIIs, we first analyzed the huntingtin inclusion-rich fraction obtained from the brains of Huntington disease model mice. Although the sequence with expanded polyglutamine could not be identified by liquid-chromatography mass spectrometry, amino acid analysis revealed that glutamine of the huntingtin inclusion-rich fraction increased significantly. This is compatible with the calculated amino acid content of the transgene product. Therefore, we applied this method to analyze the NIIs of diseased human brains, which may have proteins with compositionally biased regions, and identified a serine-rich protein called hornerin. Since the analyzed NII-rich fraction was also serine-rich, we suggested hornerin as a major component of the NIIs. A specific distribution of hornerin in NIID was also investigated by Matrix-assisted laser desorption/ionization imaging mass spectrometry and immunofluorescence. Finally, we confirmed a variant of hornerin by whole-exome sequencing and DNA sequencing. This study suggests that hornerin may be related to the pathological process of this NIID, and the direct analysis of NIIs, especially by amino acid analysis using the NII-rich fractions, would contribute to a deeper understanding of the disease pathogenesis.
Collapse
Affiliation(s)
- Hongsun Park
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yumiko Toyama
- Department of Life and Medical Systems, Doshisha University, Kyoto, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Shigeo Murayama
- The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Masaya Ikegawa
- Department of Life and Medical Systems, Doshisha University, Kyoto, Japan
| | - Matti J Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
76
|
Yu J, Shan J, Yu M, Di L, Xie Z, Zhang W, Lv H, Meng L, Zheng Y, Zhao Y, Gang Q, Guo X, Wang Y, Xi J, Zhu W, Da Y, Hong D, Yuan Y, Yan C, Wang Z, Deng J. The CGG repeat expansion in RILPL1 is associated with oculopharyngodistal myopathy type 4. Am J Hum Genet 2022; 109:533-541. [PMID: 35148830 DOI: 10.1016/j.ajhg.2022.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies indicate that CGG repeat expansions in LRP12, GIPC1, and NOTCH2NLC are associated with oculopharyngodistal myopathy (OPDM) types 1, 2, and 3, respectively. However, some clinicopathologically confirmed OPDM cases continue to have unknown genetic causes. Here, through a combination of long-read whole-genome sequencing (LRS), repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis PCR (AL-PCR), we found that a CGG repeat expansion in the 5' UTR of RILPL1 is associated with familial and simplex OPDM type 4 (OPDM4). The number of repeats ranged from 139 to 197. Methylation analysis indicates that the methylation levels in RILPL1 were unaltered in OPDM4 individuals. Analyses of muscle biopsies suggested that the expanded CGG repeat might be translated into a toxic poly-glycine protein that co-localizes with p62 in intranuclear inclusions. Moreover, analyses suggest that the toxic RNA gain-of-function effects also contributed to the pathogenesis of this disease. Intriguingly, all four types of OPDM have been found to be associated with the CGG repeat expansions located in 5' UTRs. This finding suggests that a common pathogenic mechanism, driven by the CGG repeat expansion, might underlie all cases of OPDM.
Collapse
|
77
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
78
|
Fan Y, Shen S, Yang J, Yao D, Li M, Mao C, Wang Y, Hao X, Ma D, Li J, Shi J, Guo M, Li S, Yuan Y, Liu F, Yang Z, Zhang S, Hu Z, Fan L, Liu H, Zhang C, Wang Y, Wang Q, Zheng H, He Y, Song B, Xu Y, Shi C. GIPC1
CGG
repeat expansion is associated with movement disorders. Ann Neurol 2022; 91:704-715. [PMID: 35152460 DOI: 10.1002/ana.26325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Si Shen
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jing Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dabao Yao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Chengyuan Mao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yunchao Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Xiaoyan Hao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dongrui Ma
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jiadi Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Jingjing Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengnan Guo
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuangjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yanpeng Yuan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Fen Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhihua Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuo Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhengwei Hu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Liyuan Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Han Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Chan Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yanlin Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Qingzhi Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Hong Zheng
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Ying He
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Bo Song
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yuming Xu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Changhe Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| |
Collapse
|
79
|
Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 2022; 18:145-157. [PMID: 35022573 DOI: 10.1038/s41582-021-00612-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Non-coding CGG repeat expansions cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. The underlying genetic causes of several of these diseases have been identified only in the past 2-3 years. These expansion disorders have substantial overlapping clinical, neuroimaging and histopathological features. The shared features suggest common mechanisms that could have implications for the development of therapies for this group of diseases - similar therapeutic strategies or drugs may be effective for various neurodegenerative disorders induced by non-coding CGG expansions. In this Review, we provide an overview of clinical and pathological features of these CGG repeat expansion diseases and consider the likely pathological mechanisms, including RNA toxicity, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment. We then discuss future research needed to improve the identification and diagnosis of CGG repeat expansion diseases, to improve modelling of these diseases and to understand their pathogenesis. We also consider possible therapeutic strategies. Finally, we propose that CGG repeat expansion diseases may represent manifestations of a single underlying neuromyodegenerative syndrome in which different organs are affected to different extents depending on the gene location of the repeat expansion.
Collapse
|
80
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
81
|
Ogasawara M, Eura N, Nagaoka U, Sato T, Arahata H, Hayashi T, Okamoto T, Takahashi Y, Mori‐Yoshimura M, Oya Y, Nakamura A, Shimazaki R, Sano T, Kumutpongpanich T, Minami N, Hayashi S, Noguchi S, Iida A, Takao M, Nishino I. Intranuclear inclusions in skin biopsies are not limited to neuronal intranuclear inclusion disease but can also be seen in oculopharyngodistal myopathy. Neuropathol Appl Neurobiol 2021; 48:e12787. [DOI: 10.1111/nan.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Masashi Ogasawara
- Department of Neuromuscular Research National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) Kodaira Japan
- Medical Genome Center NCNP Kodaira Japan
| | - Nobuyuki Eura
- Department of Neuromuscular Research National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) Kodaira Japan
- Medical Genome Center NCNP Kodaira Japan
- Department of Neurology Nara Medical University Nara Japan
| | - Utako Nagaoka
- Department of Neurology Tokyo Metropolitan Neurological Hospital Tokyo Japan
| | - Tatsuro Sato
- Department of Neurology Hakodate Medical Association Hospital Hakodate Japan
| | - Hajime Arahata
- Department of Neurology National Hospital Organization Omuta National Hospital Omuta Japan
| | | | - Tomoko Okamoto
- Department of Neurology National Center Hospital, NCNP Tokyo Japan
| | - Yuji Takahashi
- Department of Neurology National Center Hospital, NCNP Tokyo Japan
| | | | - Yasushi Oya
- Department of Neurology National Center Hospital, NCNP Tokyo Japan
| | - Akinori Nakamura
- Department of Clinical Research National Hospital Organization Matsumoto Medical Center Matsumoto Japan
| | - Rui Shimazaki
- Department of Neurology Tokyo Metropolitan Neurological Hospital Tokyo Japan
| | - Terunori Sano
- Department of Laboratory Medicine NCNP Kodaira Japan
| | - Theerawat Kumutpongpanich
- Department of Neuromuscular Research National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) Kodaira Japan
| | - Narihiro Minami
- Department of Neuromuscular Research National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) Kodaira Japan
- Medical Genome Center NCNP Kodaira Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) Kodaira Japan
- Medical Genome Center NCNP Kodaira Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) Kodaira Japan
- Medical Genome Center NCNP Kodaira Japan
| | | | - Masaki Takao
- Department of Laboratory Medicine NCNP Kodaira Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) Kodaira Japan
- Medical Genome Center NCNP Kodaira Japan
| |
Collapse
|
82
|
The molecular pathogenesis of repeat expansion diseases. Biochem Soc Trans 2021; 50:119-134. [PMID: 34940797 DOI: 10.1042/bst20200143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Expanded short tandem repeats in the genome cause various monogenic diseases, particularly neurological disorders. Since the discovery of a CGG repeat expansion in the FMR1 gene in 1991, more than 40 repeat expansion diseases have been identified to date. In the coding repeat expansion diseases, in which the expanded repeat sequence is located in the coding regions of genes, the toxicity of repeat polypeptides, particularly misfolding and aggregation of proteins containing an expanded polyglutamine tract, have been the focus of investigation. On the other hand, in the non-coding repeat expansion diseases, in which the expanded repeat sequence is located in introns or untranslated regions, the toxicity of repeat RNAs has been the focus of investigation. Recently, these repeat RNAs were demonstrated to be translated into repeat polypeptides by the novel mechanism of repeat-associated non-AUG translation, which has extended the research direction of the pathological mechanisms of this disease entity to include polypeptide toxicity. Thus, a common pathogenesis has been suggested for both coding and non-coding repeat expansion diseases. In this review, we briefly outline the major pathogenic mechanisms of repeat expansion diseases, including a loss-of-function mechanism caused by repeat expansion, repeat RNA toxicity caused by RNA foci formation and protein sequestration, and toxicity by repeat polypeptides. We also discuss perturbation of the physiological liquid-liquid phase separation state caused by these repeat RNAs and repeat polypeptides, as well as potential therapeutic approaches against repeat expansion diseases.
Collapse
|
83
|
Guo S, Nguyen L, Ranum LPW. RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Curr Opin Neurobiol 2021; 72:160-170. [PMID: 34953315 DOI: 10.1016/j.conb.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA.
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA; Genetics Institute, University of Florida, USA; McKnight Brain Institute, University of Florida, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, USA.
| |
Collapse
|
84
|
Zhong S, Lian Y, Luo W, Luo R, Wu X, Ji J, Ji Y, Ding J, Wang X. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol 2021; 142:1003-1023. [PMID: 34694469 DOI: 10.1007/s00401-021-02375-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is neurodegenerative disease characterized by widespread inclusions. Despite the identification of GGC repeat expansion in 5'UTR of NOTCH2NLC gene in adult-onset NIIDs, its pathogenic mechanism remains unclear. Gain-of-function poly-amino-acid proteins generated by unconventional translation have been revealed in nucleotide repeat expansion disorders, inspiring us to explore the possibility of unconventional translation in NIID. Here we demonstrated that NOTCH2NLC 5'UTR triggers the translation of a polyglycine (polyG)-containing protein, N2NLCpolyG. N2NLCpolyG accumulates in p62-positive inclusions in cultured cells, mouse models, and NIID patient tissues with NOTCH2NLC GGC expansion. Translation of N2NLCpolyG is initiated by an upstream open reading frame (uORF) embedding the GGC repeats. N2NLCpolyG tends to aggregate with the increase of GGC repeat units, and displays phase separation properties. N2NLCpolyG aggregation impairs nuclear lamina and nucleocytoplasmic transport but does not necessarily cause acute death on neuronal cells. Our study suggests a similarity of pathogenic mechanisms between NIID and another GGC-repeat disease, fragile X-associated tremor ataxia syndrome. These findings expand our knowledge of protein gain-of-function in NIID, and further highlight evidence for a novel spectrum of diseases caused by aberrant polyG protein aggregation, namely the polyG diseases.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenyi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
85
|
Fukuda H, Yamaguchi D, Nyquist K, Yabuki Y, Miyatake S, Uchiyama Y, Hamanaka K, Saida K, Koshimizu E, Tsuchida N, Fujita A, Mitsuhashi S, Ohbo K, Satake Y, Sone J, Doi H, Morihara K, Okamoto T, Takahashi Y, Wenger AM, Shioda N, Tanaka F, Matsumoto N, Mizuguchi T. Father-to-offspring transmission of extremely long NOTCH2NLC repeat expansions with contractions: genetic and epigenetic profiling with long-read sequencing. Clin Epigenetics 2021; 13:204. [PMID: 34774111 PMCID: PMC8590777 DOI: 10.1186/s13148-021-01192-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background GGC repeat expansions in NOTCH2NLC are associated with neuronal intranuclear inclusion disease. Very recently, asymptomatic carriers with NOTCH2NLC repeat expansions were reported. In these asymptomatic individuals, the CpG island in NOTCH2NLC is hypermethylated, suggesting that two factors repeat length and DNA methylation status should be considered to evaluate pathogenicity. Long-read sequencing can be used to simultaneously profile genomic and epigenomic alterations. We analyzed four sporadic cases with NOTCH2NLC repeat expansion and their phenotypically normal parents. The native genomic DNA that retains base modification was sequenced on a per-trio basis using both PacBio and Oxford Nanopore long-read sequencing technologies. A custom workflow was developed to evaluate DNA modifications. With these two technologies combined, long-range DNA methylation information was integrated with complete repeat DNA sequences to investigate the genetic origins of expanded GGC repeats in these sporadic cases. Results In all four families, asymptomatic fathers had longer expansions (median: 522, 390, 528 and 650 repeats) compared with their affected offspring (median: 93, 117, 162 and 140 repeats, respectively). These expansions are much longer than the disease-causing range previously reported (in general, 41–300 repeats). Repeat lengths were extremely variable in the father, suggesting somatic mosaicism. Instability is more frequent in alleles with uninterrupted pure GGCs. Single molecule epigenetic analysis revealed complex DNA methylation patterns and epigenetic heterogeneity. We identified an aberrant gain-of-methylation region (2.2 kb in size beyond the CpG island and GGC repeats) in asymptomatic fathers. This methylated region was unmethylated in the normal allele with bilateral transitional zones with both methylated and unmethylated CpG dinucleotides, which may be protected from methylation to ensure NOTCH2NLC expression. Conclusions We clearly demonstrate that the four sporadic NOTCH2NLC-related cases are derived from the paternal GGC repeat contraction associated with demethylation. The entire genetic and epigenetic landscape of the NOTCH2NLC region was uncovered using the custom workflow of long-read sequence data, demonstrating the utility of this method for revealing epigenetic/mutational changes in repetitive elements, which are difficult to characterize by conventional short-read/bisulfite sequencing methods. Our approach should be useful for biomedical research, aiding the discovery of DNA methylation abnormalities through the entire genome. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01192-5.
Collapse
Affiliation(s)
- Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Medical Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Satake
- Department of Neurology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Morihara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
86
|
Huang XR, Tang BS, Jin P, Guo JF. The Phenotypes and Mechanisms of NOTCH2NLC-Related GGC Repeat Expansion Disorders: a Comprehensive Review. Mol Neurobiol 2021; 59:523-534. [PMID: 34718964 DOI: 10.1007/s12035-021-02616-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/24/2021] [Indexed: 01/11/2023]
Abstract
The human-specific gene NOTCH2NLC is primarily expressed in radial glial cells and plays an important role in neuronal differentiation and cortical neurogenesis. Increasing studies were conducted to verify the relationship between NOTCH2NLC gene and many neurological diseases, such as neuronal intranuclear inclusion disease, essential tremor, multiple system atrophy, Parkinson's disease, Alzheimer's disease, and even oculopharyngodistal myopathy. Thus, we support the concept, NOTCH2NLC-related GGC repeat expansion disorders (NRED), to summarize all diseases with the GGC repeat expansion in the 5'UTR of NOTCH2NLC gene, regardless of their various clinical phenotypes. Here, we discuss the reported cases to analyze the clinical features of NOTCH2NLC-related GGC repeat expansion disorders, including dementia, parkinsonism, peripheral neuropathy and myopathy, leukoencephalopathy, and essential tremor. In addition, we outline radiological and pathological manifestations of NOTCH2NLC-related GGC repeat expansion disorders, and then present possible mechanisms, such as toxic polyG protein, toxic repeat RNA, the GGC repeat size, and the size and types of trinucleotide interruption. Therefore, this review provides a systematic description of NOTCH2NLC-related GGC repeat expansion disorders and emphasizes the significance for understanding this type of repeat expansion disease.
Collapse
Affiliation(s)
- Xiu-Rong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
| |
Collapse
|
87
|
Fan Y, Xu Y, Shi C. NOTCH2NLC-related disorders: the widening spectrum and genotype-phenotype correlation. J Med Genet 2021; 59:1-9. [PMID: 34675123 DOI: 10.1136/jmedgenet-2021-107883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
GGC repeat expansion in the 5' untranslated region of NOTCH2NLC is the most common causative factor in neuronal intranuclear inclusion disease (NIID) in Asians. Such expanded GGC repeats have been identified in patients with leukoencephalopathy, essential tremor (ET), multiple system atrophy, Parkinson's disease (PD), amyotrophic lateral sclerosis and oculopharyngodistal myopathy (OPDM). Herein, we review the recently reported NOTCH2NLC-related disorders and potential disease-causing mechanisms. We found that visual abnormalities may be NOTCH2NLC-specific and should be investigated in other patients with NOTCH2NLC mutations. NOTCH2NLC GGC repeat expansion was rarely identified in patients of European ancestry, whereas the actual prevalence of the expansion in European patients may be potentially higher than reported, and the CGG repeats in LRP12/GIPC1 are suggested to be screened in European patients with NIID. The repeat size and interruptions in NOTCH2NLC GGC expansion confer pleiotropic effects on clinical phenotype, a pure and stable ET phenotype may be an early symptom of NIID, and GGC repeats in NOTCH2NLC possibly give rise to ET. An association may also exist between intermediate-length NOTCH2NLC GGC repeat expansion and patients affected by PD and ET. NOTCH2NLC-OPDM highly resembles NOTCH2NLC-NIID, the two disorders may be the variations of a single neurodegenerative disease, and there may be a disease-causing upper limit in size of GGC repeats in NOTCH2NLC, repeats over which may be non-pathogenic. The haploinsufficiency of NOTCH2NLC may not be primarily involved in NOTCH2NLC-related disorders and a toxic gain-of-function mechanism possibly drives the pathogenesis of neurodegeneration in patients with NOTCH2NLC-associated disorders.
Collapse
Affiliation(s)
- Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China .,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
88
|
Natural selection at the RASGEF1C (GGC) repeat in human and divergent genotypes in late-onset neurocognitive disorder. Sci Rep 2021; 11:19235. [PMID: 34584172 PMCID: PMC8479062 DOI: 10.1038/s41598-021-98725-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Expression dysregulation of the neuron-specific gene, RASGEF1C (RasGEF Domain Family Member 1C), occurs in late-onset neurocognitive disorders (NCDs), such as Alzheimer's disease. This gene contains a (GGC)13, spanning its core promoter and 5' untranslated region (RASGEF1C-201 ENST00000361132.9). Here we sequenced the (GGC)-repeat in a sample of human subjects (N = 269), consisting of late-onset NCDs (N = 115) and controls (N = 154). We also studied the status of this STR across various primate and non-primate species based on Ensembl 103. The 6-repeat allele was the predominant allele in the controls (frequency = 0.85) and NCD patients (frequency = 0.78). The NCD genotype compartment consisted of an excess of genotypes that lacked the 6-repeat (divergent genotypes) (Mid-P exact = 0.004). A number of those genotypes were not detected in the control group (Mid-P exact = 0.007). The RASGEF1C (GGC)-repeat expanded beyond 2-repeats specifically in primates, and was at maximum length in human. We conclude that there is natural selection for the 6-repeat allele of the RASGEF1C (GGC)-repeat in human, and significant divergence from that allele in late-onset NCDs. STR alleles that are predominantly abundant and genotypes that deviate from those alleles are underappreciated features, which may have deep evolutionary and pathological consequences.
Collapse
|
89
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
90
|
Wang H, Yu J, Yu M, Deng J, Zhang W, Lv H, Liu J, Shi X, Liang W, Jia Z, Hong D, Meng L, Wang Z, Yuan Y. GGC Repeat Expansion in the NOTCH2NLC Gene Is Associated With a Phenotype of Predominant Motor-Sensory and Autonomic Neuropathy. Front Genet 2021; 12:694790. [PMID: 34306035 PMCID: PMC8293674 DOI: 10.3389/fgene.2021.694790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
There is still a considerable proportion of patients with inherited peripheral neuropathy (IPN) whose pathogenic genes are unknown. This study was intended to investigate whether the GGC repeat expansion in the NOTCH2NLC is presented in some patients with IPN. A total of 142 unrelated mainland Chinese patients with highly suspected diagnosis of IPN without any known causative gene were recruited. Repeat-primed polymerase chain reaction (RP-PCR) was performed to screen GGC repeat expansion in NOTCH2NLC, followed by fluorescence amplicon length analysis-PCR (AL-PCR) to determine the GGC repeat size. Detailed clinical data as well as nerve, muscle, and skin biopsy were reviewed and analyzed in the NOTCH2NLC-related IPN patients. In total, five of the 142 patients (3.52%) were found to have pathogenic GGC expansion in NOTCH2NLC, with repeat size ranging from 126 to 206 repeats. All the NOTCH2NLC-related IPN patients presented with adult-onset motor-sensory and autonomic neuropathy that predominantly affected the motor component of peripheral nerves. While tremor and irritating dry cough were noted in four-fifths of the patients, no other signs of the central nervous system were presented. Electrophysiological studies revealed both demyelinating and axonal changes of polyneuropathy that were more severe in lower limbs and asymmetrically in upper limbs. Sural nerve pathology was characterized by multiple fibers with thin myelination, indicating a predominant demyelinating process. Muscle pathology was consistent with neuropathic changes. P62-positive intranuclear inclusions were observed in nerve, skin, and muscle tissues. Our study has demonstrated that GGC expansion in NOTCH2NLC is associated with IPN presenting as predominant motor-sensory and autonomic neuropathy, which expands the phenotype of the NOTCH2NLC-related repeat expansion spectrum. Screening of GGC repeat expansions in the NOTCH2NLC should be considered in patients presenting with peripheral neuropathy with tremor and irritating dry cough.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xin Shi
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Liang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhirong Jia
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
91
|
Abstract
In this issue of Neuron, Boivin et al. (2021) show that a polyglycine-expanded protein, uN2CpolyG, is translated from an expansion of GGC repeats in the 5' UTR of the NOTCH2NLC (Notch homolog 2 N-terminal-like C) gene, defining a new pathological mechanism for neuronal intranuclear inclusion diseases (NIID).
Collapse
Affiliation(s)
- Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|