51
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Pidoplichko VI, Rossetti K, Braga MFM. Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population. J Pharmacol Exp Ther 2018; 365:314-326. [PMID: 29467308 PMCID: PMC5878669 DOI: 10.1124/jpet.117.245969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The currently Food and Drug Administration-approved anticonvulsant for the treatment of status epilepticus (SE) induced by nerve agents is the benzodiazepine diazepam; however, diazepam does not appear to offer neuroprotective benefits. This is of particular concern with respect to the protection of children because, in the developing brain, synaptic transmission mediated via GABAA receptors, the target of diazepam, is weak. In the present study, we exposed 21-day-old male rats to 1.2 × LD50 soman and compared the antiseizure, antilethality, and neuroprotective efficacy of diazepam (10 mg/kg), LY293558 (an AMPA/GluK1 receptor antagonist; 15 mg/kg), caramiphen (CRM, an antimuscarinic with NMDA receptor-antagonistic properties; 50 mg/kg), and LY293558 (15 mg/kg) + CRM (50 mg/kg), administered 1 hour after exposure. Diazepam, LY293558, and LY293558 + CRM, but not CRM alone, terminated SE; LY293558 + CRM treatment acted significantly faster and produced a survival rate greater than 85%. Thirty days after soman exposure, neurodegeneration in limbic regions was most severe in the CRM-treated group, minimal to severe-depending on the region-in the diazepam group, absent to moderate in the LY293558-treated group, and totally absent in the LY293558 + CRM group. Amygdala and hippocampal atrophy, a severe reduction in spontaneous inhibitory activity in the basolateral amygdala, and increased anxiety-like behavior in the open-field and acoustic startle response tests were present in the diazepam and CRM groups, whereas the LY293558 and LY293558 + CRM groups did not differ from controls. The combined administration of LY293558 and CRM, by blocking mainly AMPA, GluK1, and NMDA receptors, is a very effective anticonvulsant and neuroprotective therapy against soman in young rats.
Collapse
Affiliation(s)
- James P Apland
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Volodymyr I Pidoplichko
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Katia Rossetti
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
52
|
Wyeth MS, Pelkey KA, Yuan X, Vargish G, Johnston AD, Hunt S, Fang C, Abebe D, Mahadevan V, Fisahn A, Salter MW, McInnes RR, Chittajallu R, McBain CJ. Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition. Cell Rep 2018; 20:2156-2168. [PMID: 28854365 DOI: 10.1016/j.celrep.2017.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Although Netos are considered auxiliary subunits critical for kainate receptor (KAR) function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM)-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1)-, and parvalbumin (PV)-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.
Collapse
Affiliation(s)
- Megan S Wyeth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA.
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - April D Johnston
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA; Neuronal Oscillations Laboratory, Division for Neurogeriatrics, Center for Alzheimer Research, Department NVS, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Calvin Fang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division for Neurogeriatrics, Center for Alzheimer Research, Department NVS, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, and Department of Physiology, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Roderick R McInnes
- Lady Davis Research Institute, Jewish General Hospital and Departments of Human Genetics and Biochemistry, McGill University, Montreal, QC H3T 1E2, Canada
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA.
| |
Collapse
|
53
|
Full Protection Against Soman-Induced Seizures and Brain Damage by LY293558 and Caramiphen Combination Treatment in Adult Rats. Neurotox Res 2018; 34:511-524. [PMID: 29713995 DOI: 10.1007/s12640-018-9907-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Acute exposure to nerve agents induces status epilepticus (SE), which causes brain damage or death. LY293558, an antagonist of AMPA and GluK1 kainate receptors is a very effective anticonvulsant and neuroprotectant against soman; however, some neuronal damage is still present after treatment of soman-exposed rats with LY293558. Here, we have tested whether combining LY293558 with an NMDA receptor antagonist can eliminate the residual damage. For this purpose, we chose caramiphen (CRM), an antimuscarinic compound with NMDA receptor antagonistic properties. Adult male rats were exposed to 1.2 × LD50 soman, and at 20 min after soman exposure, were injected with atropine + HI-6, or atropine + HI-6 + LY293558 (15 mg/kg), or atropine + HI-6 + LY293558 + CRM (50 mg/kg). We found that (1) the LY293558 + CRM treatment terminated SE significantly faster than LY293558 alone; (2) after cessation of the initial SE, seizures did not return in the LY293558 + CRM-treated group, during 72 h of monitoring; (3) power spectrum analysis of continuous EEG recordings for 7 days post-exposure showed increased delta and decreased gamma power that lasted beyond 24 h post-exposure only in the rats who did not receive anticonvulsant treatment; (4) spontaneous recurrent seizures appeared on day 7 only in the group that did not receive anticonvulsant treatment; (5) significant neuroprotection was achieved by LY293558 administration, while the rats who received LY293558 + CRM displayed no neurodegeneration; (6) body weight loss and recovery in the LY293558 + CRM-treated rats did not differ from those in control rats who were not exposed to soman. The data show that treatment with LY293558 + CRM provides full antiseizure and neuroprotective efficacy against soman.
Collapse
|
54
|
Abstract
There is substantial evidence indicating a role for glutamate in migraine. Levels of glutamate are higher in the brain and possibly also in the peripheral circulation in migraine patients, particularly during attacks. Altered blood levels of kynurenines, endogenous modulators of glutamate receptors, have been reported in migraine patients. Population genetic studies implicate genes that are involved with glutamate signaling in migraine, and gene mutations responsible for familial hemiplegic migraine and other familial migraine syndromes may influence glutamate signaling. Animal studies indicate that glutamate plays a key role in pain transmission, central sensitization, and cortical spreading depression. Multiple therapies that target glutamate receptors including magnesium, topiramate, memantine, and ketamine have been reported to have efficacy in the treatment of migraine, although with the exception of topiramate, the evidence for the efficacy of these therapies is not strong. Also, because all of these therapies have other mechanisms of action, it is not possible to conclude that the efficacy of these drugs is entirely due to their effects on glutamate receptors. Further studies are needed to more clearly delineate the possible roles of glutamate and its specific receptor subtypes in migraine and to identify new ways of targeting glutamate for migraine therapy.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), 635 Charles Young Drive, Los Angeles, CA 90095 USA
| |
Collapse
|
55
|
Brogi S, Brindisi M, Butini S, Kshirsagar GU, Maramai S, Chemi G, Gemma S, Campiani G, Novellino E, Fiorenzani P, Pinassi J, Aloisi AM, Gynther M, Venskutonytė R, Han L, Frydenvang K, Kastrup JS, Pickering DS. ( S)-2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)propanoic Acid (AMPA) and Kainate Receptor Ligands: Further Exploration of Bioisosteric Replacements and Structural and Biological Investigation. J Med Chem 2018; 61:2124-2130. [PMID: 29451794 DOI: 10.1021/acs.jmedchem.8b00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Starting from 1-4 and 7 structural templates, analogues based on bioisosteric replacements (5a-c vs 1, 2 and 6 vs 7) were synthesized for completing the SAR analysis. Interesting binding properties at GluA2, GluK1, and GluK3 receptors were discovered. The requirements for GluK3 interaction were elucidated by determining the X-ray structures of the GluK3-LBD with 2 and 5c and by computational studies. Antinociceptive potential was demonstrated for GluK1 partial agonist 3 and antagonist 7 (2 mg/kg ip).
Collapse
Affiliation(s)
- Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Margherita Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Giridhar U Kshirsagar
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, (DoE 2018-2022) NatSynDrugs , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Ettore Novellino
- Department of Pharmacy , University of Napoli Federico II , Via D. Montesano 49 , 80131 Napoli , Italy
| | - Paolo Fiorenzani
- Department of Medicine, Surgery and Neuroscience , University of Siena , Viale M. Bracci 16 , 53100 Siena , Italy
| | - Jessica Pinassi
- Department of Medicine, Surgery and Neuroscience , University of Siena , Viale M. Bracci 16 , 53100 Siena , Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience , University of Siena , Viale M. Bracci 16 , 53100 Siena , Italy
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , 70211 Kuopio , Finland
| | - Raminta Venskutonytė
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , DK-2100 Copenhagen , Denmark
| | - Liwei Han
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , DK-2100 Copenhagen , Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , DK-2100 Copenhagen , Denmark
| | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , DK-2100 Copenhagen , Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , DK-2100 Copenhagen , Denmark
| |
Collapse
|
56
|
Kainate receptor mediated presynaptic LTP in agranular insular cortex contributes to fear and anxiety in mice. Neuropharmacology 2018; 128:388-400. [DOI: 10.1016/j.neuropharm.2017.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 11/23/2022]
|
57
|
Mayor D, Tymianski M. Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 2017; 134:178-188. [PMID: 29203179 DOI: 10.1016/j.neuropharm.2017.11.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023]
Abstract
Under physiological conditions, neurotransmitters shape neuronal networks and control several cellular and synaptic functions. In the mammalian central nervous system (CNS), excitatory and inhibitory neurotransmission are mediated in large part by glutamate and gamma-aminobutyric acid (GABA), which are excitatory and inhibitory neurotransmitters, respectively. Glutamate and GABA also play crucial roles in neurological disorders such as cerebral ischemia. Glutamate in particular causes excitotoxicity, known as one of the hallmark mechanisms in the pathophysiology of cerebral ischemic injury for more than thirty years. Excitotoxicity occurs due to excessive glutamate release leading to overactivation of postsynaptic glutamate receptors, which evokes a downstream cascade that eventually leads to neuronal dysfunction and degeneration. Also, a reduction in GABA receptor response after ischemia impedes these inhibitory effectors from attenuating excitotoxicity and thereby further enabling the excitotoxic insult. This review focuses on the mechanisms by which glutamate and GABA mediate excitotoxicity and ischemic injury. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Diana Mayor
- Division of Fundamental Neurobiology, Krembil Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Michael Tymianski
- Division of Fundamental Neurobiology, Krembil Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Neurosurgery, University of Toronto, Toronto, Ontario, M5G 1LG, Canada.
| |
Collapse
|
58
|
Calderari S, Ria M, Gérard C, Nogueira TC, Villate O, Collins SC, Neil H, Gervasi N, Hue C, Suarez-Zamorano N, Prado C, Cnop M, Bihoreau MT, Kaisaki PJ, Cazier JB, Julier C, Lathrop M, Werner M, Eizirik DL, Gauguier D. Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics 2017; 110:98-111. [PMID: 28911974 DOI: 10.1016/j.ygeno.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023]
Abstract
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans‑nosology pathways in diabetes and its co-morbidities.
Collapse
Affiliation(s)
- Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Massimiliano Ria
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christelle Gérard
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stephan C Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Neil
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | | | - Christophe Hue
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Nicolas Suarez-Zamorano
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Cécilia Prado
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie-Thérèse Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Cécile Julier
- INSERM UMR-S 958, Faculté de Médecine Paris Diderot, University Paris 7 Denis-Diderot, Paris, Sorbonne Paris Cité, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| | - Michel Werner
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Gauguier
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France; The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
59
|
Takahata K, Kimura Y, Seki C, Tokunaga M, Ichise M, Kawamura K, Ono M, Kitamura S, Kubota M, Moriguchi S, Ishii T, Takado Y, Niwa F, Endo H, Nagashima T, Ikoma Y, Zhang MR, Suhara T, Higuchi M. A human PET study of [ 11C]HMS011, a potential radioligand for AMPA receptors. EJNMMI Res 2017; 7:63. [PMID: 28815446 PMCID: PMC5559406 DOI: 10.1186/s13550-017-0313-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/08/2017] [Indexed: 11/12/2022] Open
Abstract
Background α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor is a primary mediator of fast glutamatergic excitatory signaling in the brain and has been implicated in diverse neuropsychiatric diseases. We recently developed a novel positron emission tomography (PET) ligand, 2-(1-(3-([11C]methylamino)phenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl) benzonitrile ([11C]HMS011). This compound is a radiolabelled derivative of perampanel, an antiepileptic drug acting on AMPA receptors, and was demonstrated to have promising in vivo properties in the rat and monkey brains. In the current study, we performed a human PET study using [11C]HMS011 to evaluate its safety and kinetics. Four healthy male subjects underwent a 120-min PET scan after injection of [11C]HMS011. Arterial blood sampling and metabolite analysis were performed to obtain parent input functions for three of the subjects using high-performance liquid chromatography. Regional distribution volumes (VTs) were calculated based on kinetic models with and without considering radiometabolite in the brain. The binding was also quantified using a reference tissue model with white matter as reference. Results Brain uptake of [11C]HMS011 was observed quickly after the injection, followed by a rapid clearance. Three hydrophilic and one lipophilic radiometabolites appeared in the plasma, with notable individual variability. The kinetics in the brain with apparent radioactivity retention suggested that the lipophilic radiometabolite could enter the brain. A dual-input graphical model, an analytical model designed in consideration of a radiometabolite entering the brain, well described the kinetics of [11C]HMS011. A reference tissue model showed small radioligand binding potential (BP*ND) values in the cortical regions (BP*ND = 0–0.15). These data suggested specific binding component of [11C]HMS011 in the brain. Conclusions Kinetic analyses support some specific binding of [11C]HMS011 in the human cortex. However, this ligand may not be suitable for practical AMPA receptor PET imaging due to the small dynamic range and metabolite in the brain. Electronic supplementary material The online version of this article (doi:10.1186/s13550-017-0313-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keisuke Takahata
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yasuyuki Kimura
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan. .,Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, 474-8511, Aichi, Japan.
| | - Chie Seki
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Masaki Tokunaga
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Masanori Ichise
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Kazunori Kawamura
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Soichiro Kitamura
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Manabu Kubota
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Sho Moriguchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan.,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, M5T 1R8, ON, Canada
| | - Tatsuya Ishii
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Fumitoshi Niwa
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji Agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Kyoto, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Tomohisa Nagashima
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Yoko Ikoma
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Chiba, Japan
| |
Collapse
|
60
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Prager EM, Olsen CH, Braga MFM. Susceptibility to Soman Toxicity and Efficacy of LY293558 Against Soman-Induced Seizures and Neuropathology in 10-Month-Old Male Rats. Neurotox Res 2017; 32:694-706. [PMID: 28776308 DOI: 10.1007/s12640-017-9789-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
Abstract
Acute nerve agent exposure causes prolonged status epilepticus (SE), leading to death or long-term brain damage. We have previously demonstrated that LY293558, an AMPA/GluK1 kainate receptor antagonist, terminates SE induced by the nerve agent soman and protects from long-term brain damage, in immature rats and young-adult rats, even if administered with a relatively long latency from the time of exposure. However, susceptibility to the lethal consequences of SE increases with age, and mortality by SE induced by soman is substantially greater in older animals. Therefore, in the present study, we compared the susceptibility to soman toxicity of 10-month-old male rats with that of young-adult male rats (42 to 50 days old) and examined the protective efficacy of LY293558 in the older group. A lower percentage of the 10-month-old rats developed SE after injection of 1.2 × LD50 soman, compared to the young adults, the latency to seizure onset was longer in the older rats, and seizure intensity did not differ between the two age groups. However, mortality rate in the older rats who developed SE was higher than in the young adults. Acetylcholinesterase activity in the amygdala, hippocampus, and piriform cortex did not differ between the two age groups. Administration of LY293558 at 20 or 60 min post-exposure suppressed SE, increased 24-h survival rate, decreased the long-term risk of death, reduced neuronal degeneration in the amygdala, hippocampus, piriform, and entorhinal cortices, and facilitated recovery from body weight loss. Thus, LY293558 is an effective countermeasure against soman toxicity also in older animals.
Collapse
Affiliation(s)
- James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, MD, 21010, USA
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,John Wiley and Sons, Inc., 111 River Street, Hoboken, NJ, 07030, USA
| | - Cara H Olsen
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
61
|
Ren D, Bi Y, Xu F, Niu W, Zhang R, Hu J, Guo Z, Wu X, Cao Y, Huang X, Yang F, Wang L, Li W, Xu Y, He L, Yu T, He G, Li X. Common variants in GRIK4 and major depressive disorder: An association study in the Chinese Han population. Neurosci Lett 2017; 653:239-243. [PMID: 28583584 DOI: 10.1016/j.neulet.2017.05.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
Abstract
Major depressive disorder (MDD) is a common and complex mental disorder. Recent studies found that genetic variants located in GRIK4, which encoded glutamate ionotropic receptor kainate type subunit 4, was associated with the MDD. In this study, we intended to investigate whether GRIK4 gene was associated with MDD. So five single nucleotide polymorphisms (SNPs) were selected and genotyped (rs79526501, rs11218016, rs4582985, rs6589847, rs56275759) in 568 MDD patients and 846 healthy controls from Chinese Han population. The results showed that rs56275759 demonstrated statistically significant differences between MDD patients and control subjects both in allelic frequencies (p value=0.011) and genotypic frequencies (p value=0.029). Rs4582985 was excluded from the further analysis for its deviation from the Hardy-Weinberg equilibrium. Strong linkage disequilibrium (LD) was found among rs11218016, rs6589847 and rs56275759, and this block was significantly associated with MDD. In summary, our results firstly indicated that rs56275759 of GRIK4 gene might be associated with MDD in Chinese Han population.
Collapse
Affiliation(s)
- Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Fei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Rui Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Jiaxin Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yanfei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xiaoye Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China.
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China.
| |
Collapse
|
62
|
NETO1 Guides Development of Glutamatergic Connectivity in the Hippocampus by Regulating Axonal Kainate Receptors. eNeuro 2017; 4:eN-NWR-0048-17. [PMID: 28680963 PMCID: PMC5494894 DOI: 10.1523/eneuro.0048-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Kainate-type glutamate receptors (KARs) are highly expressed in the developing brain, where they are tonically activated to modulate synaptic transmission, network excitability and synaptogenesis. NETO proteins are auxiliary subunits that regulate biophysical properties of KARs; however, their functions in the immature brain are not known. Here, we show that NETO1 guides the development of the rodent hippocampal CA3-CA1 circuitry via regulating axonal KARs. NETO deficiency reduced axonal targeting of most KAR subunits in hippocampal neurons in a subtype independent manner. As an interesting exception, axonal delivery of GluK1c was strongly and selectively impaired in the Neto1−/−, but not Neto2−/−, neurons. Correspondingly, the presynaptic GluK1 KAR activity that tonically inhibits glutamate release at immature CA3-CA1 synapses was completely lost in the absence of NETO1 but not NETO2. The deficit in axonal KARs at Neto1−/− neurons resulted in impaired synaptogenesis and perturbed synchronization of CA3 and CA1 neuronal populations during development in vitro. Both these Neto1−/− phenotypes were fully rescued by overexpression of GluK1c, emphasizing the role of NETO1/KAR complex in development of efferent connectivity. Together, our data uncover a novel role for NETO1 in regulation of axonal KARs and identify its physiological significance in development of the CA3-CA1 circuit.
Collapse
|
63
|
Jiao L, Li Y, Zhang Y, Liu J, Xie J, Zhang K, Zhou A. Degradation Kinetics of 6‴-p-Coumaroylspinosin and Identification of Its Metabolites by Rat Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4449-4455. [PMID: 28513155 DOI: 10.1021/acs.jafc.7b01486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
6‴-p-Coumaroylspinosin (P-CS), a bioactive flavonoid, is typically extracted from Semen Ziziphi Spinosae (SZS). In this study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to determine P-CS for investigating the degradation characteristics of P-CS incubated with rat feces. The results showed that P-CS degraded rapidly and the degradation speeds varied depending upon the P-CS concentrations (3, 15, and 30 μg/mL). The degradation of P-CS processes follow first-order kinetics. On the basis of the mass spectrometry (MS) spectrum mode of the product ions, two main metabolites of P-CS were identified. Swertisin was the main metabolite at 3 and 15 μg/mL, while spinosin was produced when the P-CS concentration was 30 μg/mL. Spinosin and swertisin could improve mRNA transcription levels of glutamate receptor K1, K2, and K3 (GluK1, GluK2, and GluK3) subunits in rat hippocampal neurons. In addition, they showed an obvious synergistic effect in this respect. Collectively, the results can be used to explain the metabolic and pharmacological mechanisms of P-CS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aimin Zhou
- Department of Chemistry, Cleveland State University , Cleveland, Ohio 44115, United States
| |
Collapse
|
64
|
Larsen AP, Fièvre S, Frydenvang K, Francotte P, Pirotte B, Kastrup JS, Mulle C. Identification and Structure-Function Study of Positive Allosteric Modulators of Kainate Receptors. Mol Pharmacol 2017; 91:576-585. [PMID: 28360094 DOI: 10.1124/mol.116.107599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/28/2017] [Indexed: 02/14/2025] Open
Abstract
Kainate receptors (KARs) consist of a class of ionotropic glutamate receptors, which exert diverse pre- and postsynaptic functions through complex signaling regulating the activity of neural circuits. Whereas numerous small-molecule positive allosteric modulators of the ligand-binding domain of (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid (AMPA) receptors have been reported, no such ligands are available for KARs. In this study, we investigated the ability of three benzothiadiazine-based modulators to potentiate glutamate-evoked currents at recombinantly expressed KARs. 4-cyclopropyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM344) potentiated glutamate-evoked currents of GluK2a 21-fold at the highest concentration tested (200 μM), with an EC50 of 79 μM. BPAM344 markedly decreased desensitization kinetics (from 5.5 to 775 ms), whereas it only had a minor effect on deactivation kinetics. 4-cyclopropyl-7-hydroxy-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM521) potentiated the recorded peak current amplitude of GluK2a 12-fold at a concentration of 300 μM with an EC50 value of 159 μM, whereas no potentiation of the glutamate-evoked response was observed for 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM121) at the highest concentration of modulator tested (300 μM). BPAM344 (100 μM) also potentiated the peak current amplitude of KAR subunits GluK3a (59-fold), GluK2a (15-fold), GluK1b (5-fold), as well as the AMPA receptor subunit GluA1i (5-fold). X-ray structures of the three modulators in the GluK1 ligand-binding domain were determined, locating two modulator-binding sites at the GluK1 dimer interface. In conclusion, this study may enable the design of new positive allosteric modulators selective for KARs, which will be of great interest for further investigation of the function of KARs in vivo and may prove useful for pharmacologically controlling the activity of neuronal networks.
Collapse
Affiliation(s)
- Anja Probst Larsen
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)
| | - Sabine Fièvre
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)
| | - Karla Frydenvang
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)
| | - Pierre Francotte
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)
| | - Bernard Pirotte
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)
| | - Jette Sandholm Kastrup
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)
| | - Christophe Mulle
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)
| |
Collapse
|
65
|
Tobi D. Dynamical differences of hemoglobin and the ionotropic glutamate receptor in different states revealed by a new dynamics alignment method. Proteins 2017; 85:1507-1517. [PMID: 28459140 DOI: 10.1002/prot.25311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 12/26/2022]
Abstract
A new algorithm for comparison of protein dynamics is presented. Compared protein structures are superposed and their modes of motions are calculated using the anisotropic network model. The obtained modes are aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. Dynamical comparison of hemoglobin in the T and R2 states reveals that the dynamics of the allosteric effector 2,3-bisphosphoglycerate binding site is different in the two states. These differences can contribute to the selectivity of the effector to the T state. Similar comparison of the ionotropic glutamate receptor in the kainate+(R,R)-2b and ZK bound states reveals that the kainate+(R,R)-2b bound states slow modes describe upward motions of ligand binding domain and the transmembrane domain regions. Such motions may lead to the opening of the receptor. The upper lobes of the LBDs of the ZK bound state have a smaller interface with the amino terminal domains above them and have a better ability to move together. The present study exemplifies the use of dynamics comparison as a tool to study protein function. Proteins 2017; 85:1507-1517. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dror Tobi
- Department of Computer Sciences, Ariel University, Ariel, 40700, Israel.,Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
66
|
Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors. J Biol Chem 2017; 292:7338-7347. [PMID: 28325839 PMCID: PMC5418036 DOI: 10.1074/jbc.m116.774752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
AMPA and kainate receptors, along with NMDA receptors, represent different subtypes of glutamate ion channels. AMPA and kainate receptors share a high degree of sequence and structural similarities, and excessive activity of these receptors has been implicated in neurological diseases such as epilepsy. Therefore, blocking detrimental activity of both receptor types could be therapeutically beneficial. Here, we report the use of an in vitro evolution approach involving systematic evolution of ligands by exponential enrichment with a single AMPA receptor target (i.e. GluA1/2R) to isolate RNA aptamers that can potentially inhibit both AMPA and kainate receptors. A full-length or 101-nucleotide (nt) aptamer selectively inhibited GluA1/2R with a KI of ∼5 μm, along with GluA1 and GluA2 AMPA receptor subunits. Of note, its shorter version (55 nt) inhibited both AMPA and kainate receptors. In particular, this shorter aptamer blocked equally potently the activity of both the GluK1 and GluK2 kainate receptors. Using homologous binding and whole-cell recording assays, we found that an RNA aptamer most likely binds to the receptor's regulatory site and inhibits it noncompetitively. Our results suggest the potential of using a single receptor target to develop RNA aptamers with dual activity for effectively blocking both AMPA and kainate receptors.
Collapse
Affiliation(s)
- William J Jaremko
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Wei Wen
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Andrew Wu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
67
|
Roscales S, Plumet J. Ring Rearrangement Metathesis in 7-Oxabicyclo[2.2.1]heptene (7-Oxanorbornene) Derivatives. Some Applications in Natural Product Chemistry. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metathesis reactions is firmly established as a valuable synthetic tool in organic chemistry, clearly comparable with the venerable Diels-Alder and Wittig reactions and, more recently, with the metal-catalyzed cross-coupling reactions. Metathesis reactions can be considered as a fascinating synthetic methodology, allowing different variants regarding substrate (alkene and alkyne metathesis) and type of metathetical reactions. On the other hand, tandem metathesis reactions such Ring Rearrangement Metathesis (RRM) and the coupling of metathesis reaction with other reactions of alkenes such as Diels-Alder or Heck reactions, makes metathesis one of the most powerful and reliable synthetic procedure.In particular, Ring-Rearrangement Metathesis (RRM) refers to the combination of several metathesis transformations into a domino process such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) and ROM-cross metathesis (CM) in a one-pot operation. RRM delivers complex frameworks that are difficult to assemble by conventional methods constitutingan atom economic process. RRM is applicable to mono- and polycyclic systems of varying ring sizes such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, pyran systems, bicyclo[2.2.1]heptene derivatives, bicyclo[2.2.2]octene derivatives, bicyclo[3.2.1]octene derivatives and bicyclo[3.2.1]octene derivatives.In this review our attention has focused on the RRM reactions in 7-oxabicyclo[2.2.1]heptene derivatives and on their application in the synthesis of natural products or significant subunits of them.
Collapse
Affiliation(s)
- Silvia Roscales
- Technological Institute Pet, 10 Manuel Bartolomé Cossio St, 28040 Madrid, Spain
| | - Joaquín Plumet
- Complutense University, Faculty of Chemistry, Organic Chemistry Department, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
68
|
Haumann I, Junghans D, Anstötz M, Frotscher M. Presynaptic localization of GluK5 in rod photoreceptors suggests a novel function of high affinity glutamate receptors in the mammalian retina. PLoS One 2017; 12:e0172967. [PMID: 28235022 PMCID: PMC5325551 DOI: 10.1371/journal.pone.0172967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/13/2017] [Indexed: 01/04/2023] Open
Abstract
Kainate receptors mediate glutamatergic signaling through both pre- and presynaptic receptors. Here, we studied the expression of the high affinity kainate receptor GluK5 in the mouse retina. Double-immunofluoresence labeling and electron microscopic analysis revealed a presynaptic localization of GluK5 in the outer plexiform layer. Unexpectedly, we found GluK5 almost exclusively localized to the presynaptic ribbon of photoreceptor terminals. Moreover, in GluK5-deficient mutant mice the structural integrity of synaptic ribbons was severely altered pointing to a novel function of GluK5 in organizing synaptic ribbons in the presynaptic terminals of rod photoreceptors.
Collapse
Affiliation(s)
- Iris Haumann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (MF); (IH)
| | - Dirk Junghans
- Institute of Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (MF); (IH)
| |
Collapse
|
69
|
Sheng N, Shi YS, Nicoll RA. Amino-terminal domains of kainate receptors determine the differential dependence on Neto auxiliary subunits for trafficking. Proc Natl Acad Sci U S A 2017; 114:1159-1164. [PMID: 28100490 PMCID: PMC5293104 DOI: 10.1073/pnas.1619253114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kainate receptor (KAR), a subtype of glutamate receptor, mediates excitatory synaptic responses at a subset of glutamatergic synapses. However, the molecular mechanisms underlying the trafficking of its different subunits are poorly understood. Here we use the CA1 hippocampal pyramidal cell, which lacks KAR-mediated synaptic currents, as a null background to determine the minimal requirements for the extrasynaptic and synaptic expression of the GluK2 subunit. We find that the GluK2 receptor itself, in contrast to GluK1, traffics to the neuronal surface and synapse efficiently and the auxiliary subunits Neto1 and Neto2 caused no further enhancement of these two trafficking processes. However, the regulation of GluK2 biophysical properties by Neto proteins is the same as that of GluK1. We further determine that it is the amino-terminal domains (ATDs) of GluK1 and GluK2 that control the strikingly different trafficking properties between these two receptors. Moreover, the ATDs are critical for synaptic expression of heteromeric receptors at mossy fiber-CA3 synapses and also mediate the differential dependence on Neto proteins for surface and synaptic trafficking of GluK1 and GluK2. These results highlight the fundamental differences between the two major KAR subunits and their interplay with Neto auxiliary proteins.
Collapse
Affiliation(s)
- Nengyin Sheng
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - Yun Stone Shi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
- Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, People's Republic of China
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143;
- Department of Physiology, University of California, San Francisco, CA 94143
| |
Collapse
|
70
|
Zhuo M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain. Neuropharmacology 2017; 112:228-234. [DOI: 10.1016/j.neuropharm.2016.08.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
|
71
|
Szymańska E, Chałupnik P, Szczepańska K, Cuñado Moral AM, Pickering DS, Nielsen B, Johansen TN, Kieć-Kononowicz K. Design, synthesis and structure-activity relationships of novel phenylalanine-based amino acids as kainate receptors ligands. Bioorg Med Chem Lett 2016; 26:5568-5572. [PMID: 27765511 DOI: 10.1016/j.bmcl.2016.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
A new series of carboxyaryl-substituted phenylalanines was designed, synthesized and pharmacologically characterized in vitro at native rat ionotropic glutamate receptors as well as at cloned homomeric kainate receptors GluK1-GluK3. Among them, six compounds bound to GluK1 receptor subtypes with reasonable affinity (Ki values in the range of 4.9-7.5μM). A structure-activity relationship (SAR) for the obtained series, focused mainly on the pharmacological effect of structural modifications in the 4- and 5-position of the phenylalanine ring, was established. To illustrate the results, molecular docking of the synthesized series to the X-ray structure of GluK1 ligand binding core was performed. The influence of individual substituents at the phenylalanine ring for both the affinity and selectivity at AMPA, GluK1 and GluK3 receptors was analyzed, giving directions for future studies.
Collapse
Affiliation(s)
- Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Paulina Chałupnik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Ana Maria Cuñado Moral
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark
| | - Tommy N Johansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| |
Collapse
|
72
|
Barber DM, Liu SA, Gottschling K, Sumser M, Hollmann M, Trauner D. Optical control of AMPA receptors using a photoswitchable quinoxaline-2,3-dione antagonist. Chem Sci 2016; 8:611-615. [PMID: 28451208 PMCID: PMC5358534 DOI: 10.1039/c6sc01621a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/01/2016] [Indexed: 02/02/2023] Open
Abstract
We have developed the first photoswitchable AMPA receptor antagonist, termed ShuBQX-3. It permits the precise optical control of AMPA receptors and exhibits a remarkable red-shifting of its photoswitching properties when bound to the receptor.
AMPA receptors respond to the neurotransmitter glutamate and play a critical role in excitatory neurotransmission. They have been implicated in several psychiatric disorders and have rich pharmacology. Antagonists of AMPA receptors have been explored as drugs and one has even reached the clinic. We now introduce a freely diffusible photoswitchable antagonist that is selective for AMPA receptors and endows them with light-sensitivity. Our photoswitch, ShuBQX-3, is active in its dark-adapted trans-isoform but is significantly less active as its cis-isoform. ShuBQX-3 exhibits a remarkable red-shifting of its photoswitching properties through interactions with the AMPA receptor ligand binding site. Since it can be used to control action potential firing with light, it could emerge as a powerful tool for studying synaptic transmission with high spatial and temporal precision.
Collapse
Affiliation(s)
- David M Barber
- Department of Chemistry and Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany .
| | - Shu-An Liu
- Department of Chemistry and Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany .
| | - Kevin Gottschling
- Department of Biochemistry I - Receptor Biochemistry , Ruhr-Universität-Bochum , Bochum 44780 , Germany
| | - Martin Sumser
- Department of Chemistry and Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany .
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry , Ruhr-Universität-Bochum , Bochum 44780 , Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany .
| |
Collapse
|
73
|
Møllerud S, Kastrup JS, Pickering DS. A pharmacological profile of the high-affinity GluK5 kainate receptor. Eur J Pharmacol 2016; 788:315-320. [PMID: 27373850 DOI: 10.1016/j.ejphar.2016.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.
Collapse
Key Words
- AMPA, PubChem CID: 1221
- ATPA, PubChem CID: 2253
- Affinity
- CNQX, PubChem CID: 3721046
- Domoic acid, PubChem CID: 5282253
- Glycosylation
- Ionotropic glutamate receptor
- Kainic acid, PubChem CID: 10255
- Kinetics
- L-Glutamic acid, PubChem CID: 33032
- Quisqualic acid, PubChem CID: 40539
- Radioligand binding
- SYM2081, PubChem CID: 21117106
- Sf9
- UBP310, PubChem CID: 6420160
- Willardiine, PubChem CID: 440053
Collapse
Affiliation(s)
- Stine Møllerud
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Jette Sandholm Kastrup
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Darryl S Pickering
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
74
|
Abstract
The anterior cingulate cortex (ACC) is activated in both acute and chronic pain. In this Review, we discuss increasing evidence from rodent studies that ACC activation contributes to chronic pain states and describe several forms of synaptic plasticity that may underlie this effect. In particular, one form of long-term potentiation (LTP) in the ACC, which is triggered by the activation of NMDA receptors and expressed by an increase in AMPA-receptor function, sustains the affective component of the pain state. Another form of LTP in the ACC, which is triggered by the activation of kainate receptors and expressed by an increase in glutamate release, may contribute to pain-related anxiety.
Collapse
|
75
|
Vieira AC, Cifuentes JM, Bermúdez R, Ferreiro SF, Castro AR, Botana LM. Heart Alterations after Domoic Acid Administration in Rats. Toxins (Basel) 2016; 8:E68. [PMID: 26978401 PMCID: PMC4810213 DOI: 10.3390/toxins8030068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. In the present study we have addressed the long-term toxicological effects (30 days) of DA intraperitoneal administration in rats. Different histological techniques were employed in order to study DA toxicity in heart, an organ which has not been thoroughly studied after DA intoxication to date. The presence of DA was detected by immunohistochemical assays, and cellular alterations were observed both by optical and transmission electron microscopy. Although histological staining methods did not provide any observable tissue damage, transmission electron microscopy showed several injuries: a moderate lysis of myofibrils and loss of mitochondrial conformation. This is the first time the association between heart damage and the presence of the toxin has been observed.
Collapse
Affiliation(s)
- Andres C Vieira
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - José Manuel Cifuentes
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Roberto Bermúdez
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Sara F Ferreiro
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Albina Román Castro
- Rede de Infraestruturas de Apoio á Investigación e ao Desenvolvemento Tecnolóxico (RIADT) Lugo, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
76
|
Sakha P, Vesikansa A, Orav E, Heikkinen J, Kukko-Lukjanov TK, Shintyapina A, Franssila S, Jokinen V, Huttunen HJ, Lauri SE. Axonal Kainate Receptors Modulate the Strength of Efferent Connectivity by Regulating Presynaptic Differentiation. Front Cell Neurosci 2016; 10:3. [PMID: 26834558 PMCID: PMC4720004 DOI: 10.3389/fncel.2016.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/04/2016] [Indexed: 11/13/2022] Open
Abstract
Kainate type of glutamate receptors (KARs) are highly expressed during early brain development and may influence refinement of the circuitry, via modulating synaptic transmission and plasticity. KARs are also localized to axons, however, their exact roles in regulating presynaptic processes remain controversial. Here, we have used a microfluidic chamber system allowing specific manipulation of KARs in presynaptic neurons to study their functions in synaptic development and function in vitro. Silencing expression of endogenous KARs resulted in lower density of synaptophysin immunopositive puncta in microfluidically isolated axons. Various recombinant KAR subunits and pharmacological compounds were used to dissect the mechanisms behind this effect. The calcium permeable (Q) variants of the low-affinity (GluK1–3) subunits robustly increased synaptophysin puncta in axons in a manner that was dependent on receptor activity and PKA and PKC dependent signaling. Further, an associated increase in the mean active zone length was observed in electron micrographs. Selective presynaptic expression of these subunits resulted in higher success rate of evoked EPSCs consistent with higher probability of glutamate release. In contrast, the calcium-impermeable (R) variant of GluK1 or the high-affinity subunits (GluK4,5) had no effect on synaptic density or transmission efficacy. These data suggest that calcium permeable axonal KARs promote efferent connectivity by increasing the density of functional presynaptic release sites.
Collapse
Affiliation(s)
- Prasanna Sakha
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Aino Vesikansa
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Ester Orav
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Joonas Heikkinen
- Departments of Materials Science and Engineering, Aalto University Espoo, Finland
| | - Tiina-Kaisa Kukko-Lukjanov
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Veterinary Biosciences, University of HelsinkiHelsinki, Finland
| | - Alexandra Shintyapina
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Sami Franssila
- Departments of Materials Science and Engineering, Aalto University Espoo, Finland
| | - Ville Jokinen
- Departments of Materials Science and Engineering, Aalto University Espoo, Finland
| | | | - Sari E Lauri
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
77
|
Abstract
Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Yıldırım Beyazıt University Medical School, Cankaya, Ankara, Turkey
| |
Collapse
|
78
|
Sheng N, Shi YS, Lomash RM, Roche KW, Nicoll RA. Neto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1. eLife 2015; 4. [PMID: 26720915 PMCID: PMC4749551 DOI: 10.7554/elife.11682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/21/2015] [Indexed: 02/02/2023] Open
Abstract
Kainate receptors (KARs) are a subfamily of glutamate receptors mediating excitatory synaptic transmission and Neto proteins are recently identified auxiliary subunits for KARs. However, the roles of Neto proteins in the synaptic trafficking of KAR GluK1 are poorly understood. Here, using the hippocampal CA1 pyramidal neuron as a null background system we find that surface expression of GluK1 receptor itself is very limited and is not targeted to excitatory synapses. Both Neto1 and Neto2 profoundly increase GluK1 surface expression and also drive GluK1 to synapses. However, the regulation GluK1 synaptic targeting by Neto proteins is independent of their role in promoting surface trafficking. Interestingly, GluK1 is excluded from synapses expressing AMPA receptors and is selectively incorporated into silent synapses. Neto2, but not Neto1, slows GluK1 deactivation, whereas Neto1 speeds GluK1 desensitization and Neto2 slows desensitization. These results establish critical roles for Neto auxiliary subunits controlling KARs properties and synaptic incorporation. DOI:http://dx.doi.org/10.7554/eLife.11682.001 Information is transmitted in the brain by cells called neurons. To communicate with neighboring cells, neurons release chemicals called neurotransmitters across a structure called a synapse that forms a junction between the cells. The neurotransmitters bind to receptors on the surface of the receiving neuron, and depending on the type of neurotransmitter released, make that neuron either more or less likely to signal to its neighbors. Excitatory neurotransmitters make neurons more likely to signal, and glutamate is the most common excitatory neurotransmitter in the brain. There are several different types of receptor that can bind to glutamate, one of which – the kainate receptor – is found at relatively few synapses. These synapses include some in the hippocampus, a region of the brain that is important for memory. Researchers have recently identified two auxiliary proteins, called Neto1 and Neto2, that interact with kainate receptors and appear to affect how strongly the kainate receptors respond when glutamate binds to them. However, the effect of the Neto proteins on one particular subunit of the kainate receptors – called GluK1 – had not been investigated in depth. CA1 pyramidal neurons are a group of neurons in the hippocampus that are able to produce kainate receptors, but these receptors are not found in CA1 pyramidal neuron synapses. Sheng et al. have now studied CA1 pyramidal neurons from rats, and found that these cells produce a limited amount of GluK1 on their surfaces. However, when GluK1 is expressed together with Neto1 or Neto2, GluK1 receptors appear on the cell surface. Through an independent mechanism Neto proteins also promote the targeting of surface GluK1 to the synapse. Unexpectedly, GluK1 was excluded from synapses that contain another type of glutamate receptor called AMPA receptors. By measuring the effect of Neto1 and Neto2 on the behavior of GluK1, Sheng et al. found that these proteins modified how the receptor responded to prolonged exposure to glutamate. Specifically, Neto1 increased how quickly GluK1 became desensitized to glutamate, while Neto2 decreased the rate of desensitization. This study demonstrates that Neto proteins play critical roles in controlling the location and biophysical properties of kainate receptors. It will be of interest to see how the present findings apply to other excitatory synapses in the brain. DOI:http://dx.doi.org/10.7554/eLife.11682.002
Collapse
Affiliation(s)
- Nengyin Sheng
- Deparment of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Yun S Shi
- Deparment of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,The Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing, China
| | - Richa Madan Lomash
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Roger A Nicoll
- Deparment of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
79
|
Tobi D. Dynamics and allostery of the ionotropic glutamate receptors and the ligand binding domain. Proteins 2015; 84:267-77. [PMID: 26677170 DOI: 10.1002/prot.24977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
The dynamics of the ligand-binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper- and lower- lobes. For the intact glutamate receptor the analysis show that the clamshell-like movement of the LBD upper and lower lobes is coupled to the bending of the trans-membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics.
Collapse
Affiliation(s)
- Dror Tobi
- Department of Computer Sciences and Mathematics, Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
80
|
Keller B, García-Sevilla JA. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:54-62. [PMID: 26044520 DOI: 10.1016/j.pnpbp.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 12/29/2022]
Abstract
Kainic acid (KA)-induced brain neuronal cell death (especially in the hippocampus) was shown to be mainly mediated by the intrinsic (mitochondrial) apoptotic pathway. This study investigated the regulation of the extrinsic apoptotic pathway mediated by Fas ligand/Fas receptor and components of the indispensable death-inducing signaling complex (DISC) in the hippocampus (marked changes) and cerebral cortex (modest changes) of KA-treated mice. KA (45mg/kg) induced a severe behavioral syndrome with recurrent motor seizures (scores; maximal at 60-90min; minimal at 72h) with activation of hippocampal pro-apoptotic JNK (+2.5 fold) and increased GFAP (+57%) and nuclear PARP-1 fragmentation (+114%) 72h post-treatment (delayed neurotoxicity). In the extrinsic apoptotic pathway (hippocampus), KA (72h) reduced Fas ligand (-92%) and Fas receptor aggregates (-24%). KA (72h) also altered the contents of major DISC components: decreased FADD adaptor (-44%), reduced activation of initiator caspase-8 (-47%) and increased survival FLIP-S (+220%). Notably, KA (72h) upregulated the content of anti-apoptotic p-Ser191 FADD (+41%) and consequently the expression of p-FADD/FADD ratio (+1.9-fold), a neuroplastic index. Moreover, the p-FADD dependent transcription factor NF-κB was also increased (+61%) in the hippocampus after KA (72h). The convergent adaptation of the extrinsic apoptotic machinery 72h after KA in mice (with otherwise normal gross behavior) is a novel finding which suggests the induction of survival mechanisms to partly counteract the delayed neuronal death in the hippocampus.
Collapse
Affiliation(s)
- Benjamin Keller
- Laboratori de Neurofarmacologia, IUNICS-IdISPa, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), Spain
| | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, IUNICS-IdISPa, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), Spain.
| |
Collapse
|
81
|
Andreou AP, Holland PR, Lasalandra MP, Goadsby PJ. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain 2015; 156:439-450. [PMID: 25679470 DOI: 10.1097/01.j.pain.0000460325.25762.c0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Migraine is a common and disabling neurologic disorder, with important psychiatric comorbidities. Its pathophysiology involves activation of neurons in the trigeminocervical complex (TCC). Kainate receptors carrying the glutamate receptor subunit 5 (GluK1) are present in key brain areas involved in migraine pathophysiology. To study the influence of kainate receptors on trigeminovascular neurotransmission, we determined the presence of GluK1 receptors within the trigeminal ganglion and TCC with immunohistochemistry. We performed in vivo electrophysiologic recordings from TCC neurons and investigated whether local or systemic application of GluK1 receptor antagonists modulated trigeminovascular transmission. Microiontophoretic application of a selective GluK1 receptor antagonist, but not of a nonspecific ionotropic glutamate receptor antagonist, markedly attenuated cell firing in a subpopulation of neurons activated in response to dural stimulation, consistent with selective inhibition of postsynaptic GluK1 receptor-evoked firing seen in all recorded neurons. In contrast, trigeminovascular activation was significantly facilitated in a different neuronal population. The clinically active kainate receptor antagonist LY466195 attenuated trigeminovascular activation in all neurons. In addition, LY466195 demonstrated an N-methyl-d-aspartate receptor-mediated effect. This study demonstrates a differential role of GluK1 receptors in the TCC, antagonism of which can inhibit trigeminovascular activation through postsynaptic mechanisms. Furthermore, the data suggest a novel, possibly presynaptic, modulatory role of trigeminocervical kainate receptors in vivo. Differential activation of kainate receptors suggests unique roles for this receptor in pro- and antinociceptive mechanisms in migraine pathophysiology.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Group, Department of Neurology, University of California, San Francisco, CA, USA Headache Research-Section of Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK, Headache Group, Basic and Clinical Neurosciences, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
82
|
Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry 2015; 20:1057-68. [PMID: 26169973 DOI: 10.1038/mp.2015.91] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Accumulating data indicate that the glutamate system is disrupted in major depressive disorder (MDD), and recent clinical research suggests that ketamine, an antagonist of the N-methyl-d-aspartate (NMDA) glutamate receptor (GluR), has rapid antidepressant efficacy. Here we report findings from gene expression studies of a large cohort of postmortem subjects, including subjects with MDD and controls. Our data reveal higher expression levels of the majority of glutamatergic genes tested in the dorsolateral prefrontal cortex (DLPFC) in MDD (F21,59=2.32, P=0.006). Posthoc data indicate that these gene expression differences occurred mostly in the female subjects. Higher expression levels of GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, GRM4, GRM5 and GRM7 were detected in the female patients with MDD. In contrast, GRM5 expression was lower in male MDD patients relative to male controls. When MDD suicides were compared with MDD non-suicides, GRIN2B, GRIK3 and GRM2 were expressed at higher levels in the suicides. Higher expression levels were detected for several additional genes, but these were not statistically significant after correction for multiple comparisons. In summary, our analyses indicate a generalized disruption of the regulation of the GluRs in the DLPFC of females with MDD, with more specific GluR alterations in the suicides and in the male groups. These data reveal further evidence that, in addition to the NMDA receptor, the AMPA, kainate and the metabotropic GluRs may be targets for the development of rapidly acting antidepressant drugs.
Collapse
|
83
|
Krogsgaard-Larsen N, Storgaard M, Møller C, Demmer CS, Hansen J, Han L, Monrad RN, Nielsen B, Tapken D, Pickering DS, Kastrup JS, Frydenvang K, Bunch L. Structure–Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00750] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Niels Krogsgaard-Larsen
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Morten Storgaard
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Charlotte Møller
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Charles S. Demmer
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Jeanette Hansen
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Liwei Han
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Rune N. Monrad
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Birgitte Nielsen
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Daniel Tapken
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Darryl S. Pickering
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Jette S. Kastrup
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Karla Frydenvang
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Lennart Bunch
- Chemical Neuroscience Group, ‡Biostructural Research
Group, §Medicinal
Chemistry Group, ∥Molecular, Cellular Pharmacology Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
84
|
Koukouli F, Maskos U. The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system. Biochem Pharmacol 2015. [PMID: 26206184 DOI: 10.1016/j.bcp.2015.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) play an important role in a variety of modulatory and regulatory processes including neurotransmitter release and synaptic transmission in various brain regions of the central nervous system (CNS). Glutamate is the principal excitatory neurotransmitter in the brain and the glutamatergic system participates in the pathophysiology of several neuropsychiatric disorders. Underpinning the importance of nAChRs, many studies demonstrated that nAChRs containing the α7 subunit facilitate glutamate release. Here, we review the currently available body of experimental evidence pertaining to α7 subunit containing nAChRs in their contribution to the modulation of glutamatergic neurotransmission, and we highlight the role of α7 in synaptic plasticity, the morphological and functional maturation of the glutamatergic system and therefore its important contribution in the modulation of neural circuits of the CNS.
Collapse
Affiliation(s)
- Fani Koukouli
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France.
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France.
| |
Collapse
|
85
|
Demmer CS, Møller C, Brown PMGE, Han L, Pickering DS, Nielsen B, Bowie D, Frydenvang K, Kastrup JS, Bunch L. Binding mode of an α-amino acid-linked quinoxaline-2,3-dione analogue at glutamate receptor subtype GluK1. ACS Chem Neurosci 2015; 6:845-54. [PMID: 25856736 DOI: 10.1021/acschemneuro.5b00038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two α-amino acid-functionalized quinoxalines, 1a (CNG-10301) and 1b (CNG-10300), of a quinoxaline moiety coupled to an amino acid moiety were designed, synthesized, and characterized pharmacologically. While 1a displayed low affinity at native AMPA, KA, and NMDA receptors, and at homomeric GluK1,3 receptors, the affinity for GluK2 was in the midmicromolar range (Ki = 136 μM), 1b displayed low to midmicromolar range binding affinity at all the iGluRs (Ki = 9-126 μM). In functional experiments (outside-out patches excised from transfected HEK293T cells), 100 μM 1a partially blocked GluK1 (33% peak response), while GluK2 was unaffected (96% peak response). Furthermore, 1a was shown not to be an agonist at GluK1 and GluK2 at 100 μM. On the other hand, 100 μM 1b fully antagonized GluK1 (8% peak response) but only partially blocked GluK2 (33% peak response). An X-ray structure at 2.3 Å resolution of 1b in the GluK1-LBD (ligand-binding domain) disclosed an unexpected binding mode compared to the predictions made during the design phase; the quinoxaline moiety remains to act as an amino acid bioisostere, but the amino acid moiety is oriented into a new area within the GluK1 receptor. The structure of the GluK1-LBD with 1b showed a large variation in domain openings of the three molecules from 25° to 49°, demonstrating that the GluK1-LBD is capable of undergoing major domain movements.
Collapse
|
86
|
Schiavini P, Dawe GB, Bowie D, Moitessier N. Discovery of novel small-molecule antagonists for GluK2. Bioorg Med Chem Lett 2015; 25:2416-20. [PMID: 25913117 DOI: 10.1016/j.bmcl.2015.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/27/2022]
Abstract
KA receptors have shown to be potential therapeutic targets in CNS diseases such as schizophrenia, depression, neuropathic pain and epilepsy. Through the use of our docking tool Fitted, we investigated the relationship between ligand activity towards GluK2 and the conformational state induced at the receptor level. By focusing our rational design on the interaction between the ligand and a tyrosine residue in the binding site, we synthesized a series of molecules based on a glutamate scaffold, and carried out electrophysiological recordings. The observed ability of some of these molecules to inhibit receptor activation shows the potential of our design for the development of effective antagonists with a molecular size comparable to that of the endogenous neurotransmitter L-glutamate.
Collapse
Affiliation(s)
- Paolo Schiavini
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - G Brent Dawe
- Integrated Program in Neuroscience, McGill University, Canada; Department of Pharmacology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| | - Derek Bowie
- Department of Pharmacology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| |
Collapse
|
87
|
Jiang L, Kang D, Kang J. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors. Neuroscience 2015; 298:448-54. [PMID: 25934031 DOI: 10.1016/j.neuroscience.2015.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Presynaptic kainate-type glutamate ionotropic receptors (KARs) that mediate either the depression or the facilitation of GABA release have been intensively studied. Little attention has been given to the modulation of GABAA receptors (GABAARs) by postsynaptic KARs. Recent studies suggest that two GABAAR populations, synaptic (sGABAAR) and extrasynaptic (eGABAAR) GABAARs, mediate phasic and tonic forms of inhibition, respectively. Tonic inhibition plays an important role in the excitability of neuronal circuits and the occurrence of epileptic seizures. For this study, we are the first to report that the activation of postsynaptic KARs by the KAR agonist, Kainic acid (KA, 5 μM), enhanced tonic inhibition by potentiating eGABAARs. KA enhanced THIP-induced eGABAAR currents and prolonged the rise and decay time of muscimol-induced sGABAAR/eGABAAR currents, but also depressed the amplitude of evoked inhibitory postsynaptic currents (IPSCs), unitary IPSCs (uIPSCs), and muscimol-induced sGABAAR/eGABAAR currents. The PKC inhibitor, staurosporine (1 μM), in the patch pipette solution fully blocked the KA-induced potentiation of tonic inhibition, suggesting the involvement of an intracellular PKC pathway. Our study suggests that the activation of postsynaptic KARs potentiates eGABAARs but depresses sGABAARs. By activating postsynaptic KARs, synaptically released glutamate depresses phasic inhibition to facilitate neuronal plasticity, but potentiates tonic inhibition to protect neurons from over-excitation.
Collapse
Affiliation(s)
- L Jiang
- Department of Neurobiology and Behavior/Center for Nervous Systems Disorders Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - D Kang
- Park Ridge High School, 2 Park Avenue, Park Ridge, NJ 07656, USA
| | - J Kang
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
88
|
Wallis JL, Irvine MW, Jane DE, Lodge D, Collingridge GL, Bortolotto ZA. An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo. Hippocampus 2015; 25:1407-17. [PMID: 25821051 PMCID: PMC4707721 DOI: 10.1002/hipo.22460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 12/31/2022]
Abstract
The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either GluK1-selective KAR antagonists or group I mGluR antagonists. However, LTP was inhibited when the group I mGluRs and the GluK1-KARs were simultaneously inhibited. Either mGlu1 or mGlu5 receptor activation is sufficient to induce this form of LTP as selective inhibition of either subtype alone, together with the inhibition of KARs, did not inhibit MF-LTP. These data suggest that mGlu1 receptors, mGlu5 receptors, and GluK1-KARs are all engaged during high-frequency stimulation, and that the activation of any one of these receptors alone is sufficient for the induction of MF-LTP in vivo.
Collapse
Affiliation(s)
- James L Wallis
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Mark W Irvine
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - David Lodge
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
89
|
Dong XH, Zhen XC. Glial pathology in bipolar disorder: potential therapeutic implications. CNS Neurosci Ther 2015; 21:393-7. [PMID: 25753128 DOI: 10.1111/cns.12390] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BD) is a chronic and severe mental disorder with recurrent episodes of mania and depression. In addition to neuronal alterations, accumulating evidences have revealed the importance of glial system in pathophysiology and phenotype of the illness. Postmortem studies have repeatedly demonstrated the alterations in glial cells and its functions in patients with BD. The activated microglia and inflammatory cytokines are proposed to be the potential biomarkers that may help to predict disease exacerbation in BD. On the other hand, anti-BD drugs have been shown to produce profound effects on glial activity, which not only contributes to the therapeutic efficacy, but may also provide a potential target for the drug development of BD. We will focus on the recent development of glial abnormalities and potential therapeutic benefits targeted to glial modulation in BD.
Collapse
Affiliation(s)
- Xiao-Hua Dong
- Jiangsu Key Laboratory for Translational Research for Neuropsycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmacy, Hebei North University, Zhangjiakou, Hebei, China
| | | |
Collapse
|
90
|
Abstract
Decades of experimental work have established an imbalance of excitation and inhibition as the leading mechanism of the transition from normal brain function to seizure. In epilepsy, these transitions are rare and abrupt. Transition processes incorporating positive feedback, such as activity-dependent disinhibition, could provide these uncommon timing features. A rapidly expanding array of genetic etiologies will help delineate the molecular mechanism(s). This delineation will entail quite a bit of cell biology. The genes discovered so far are more remarkable for their diversity than their similarities.
Collapse
|
91
|
Miller SL, Aroniadou-Anderjaska V, Figueiredo TH, Prager EM, Almeida-Suhett CP, Apland JP, Braga MFM. A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists. Toxicol Appl Pharmacol 2015; 284:204-16. [PMID: 25689173 DOI: 10.1016/j.taap.2015.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/30/2015] [Accepted: 02/07/2015] [Indexed: 12/27/2022]
Abstract
Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD50 of 62μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS) at 2mg/kg, administered 20 min after soman exposure (1.2×LD50), terminated seizures. ATS at 0.5mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1h post-exposure, prevents brain pathology and behavioral deficits.
Collapse
Affiliation(s)
- Steven L Miller
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Eric M Prager
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Camila P Almeida-Suhett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - James P Apland
- Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
92
|
Prager EM, Figueiredo TH, Long RP, Aroniadou-Anderjaska V, Apland JP, Braga MFM. LY293558 prevents soman-induced pathophysiological alterations in the basolateral amygdala and the development of anxiety. Neuropharmacology 2015; 89:11-8. [PMID: 25204221 PMCID: PMC4250288 DOI: 10.1016/j.neuropharm.2014.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022]
Abstract
Exposure to nerve agents can cause brain damage due to prolonged seizure activity, producing long-term behavioral deficits. We have previously shown that LY293558, a GluK1/AMPA receptor antagonist, is a very effective anticonvulsant and neuroprotectant against nerve agent exposure. In the present study, we examined whether the protection against nerve agent-induced seizures and neuropathology conferred by LY293558 translates into protection against pathophysiological alterations in the basolateral amygdala (BLA) and the development of anxiety, which is the most prevalent behavioral deficit resulting from exposure. LY293558 (15 mg/kg) was administered to rats, along with atropine and HI-6, at 20 min after exposure to soman (1.2 × LD50). At 24 h, 7 days, and 30 days after exposure, soman-exposed rats who did not receive LY293558 had reduced but prolonged evoked field potentials in the BLA, as well as increased paired-pulse ratio, suggesting neuronal damage and impaired synaptic inhibition; rats who received LY293558 did not differ from controls in these parameters. Long-term potentiation of synaptic transmission was impaired at 7 days after exposure in the soman-exposed rats who did not receive anticonvulsant treatment, but not in the LY293558-treated rats. Anxiety-like behavior assessed by the open field and acoustic startle response tests was increased in the soman-exposed rats at 30 and 90 days after exposure, while rats treated with LY293558 did not differ from controls. Along with our previous findings, the present data demonstrate the remarkable efficacy of LY293558 in counteracting nerve agent-induced seizures, neuropathology, pathophysiological alterations in the BLA, and anxiety-related behavioral deficits.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Robert P Long
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - James P Apland
- Neurotoxicology Branch, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
93
|
Repeated application of 4-aminopyridine provoke an increase in entorhinal cortex excitability and rearrange AMPA and kainate receptors. Neurotox Res 2015; 27:441-52. [PMID: 25576253 DOI: 10.1007/s12640-014-9515-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 02/03/2023]
Abstract
Entorhinal cortex is a highly epilepsy-prone brain region. Effects of repetitive seizures on ionotropic glutamate receptors (iGluRs) were investigated in rat entorhinal cortex slices. Seizures were induced by daily administration of 4-aminopyridine (4-AP). Electrophysiological, pharmacological and histological investigations were carried out to determine changes in synaptic efficacy and in sensitivity of iGluRs due to recurring seizures. Repeated 4-AP-induced seizures increased the amplitude of evoked synaptic field responses in rat entorhinal cortical slices. While vulnerability to inhibition of AMPA receptors by the specific antagonist GYKI 52466 was slightly reduced, responsiveness to NMDA receptor antagonist APV remained unaffected. Testing of bivalent cation permeability of iGluRs revealed reduced Ca(2+)-influx through non-NMDA receptors. According to the semi-quantitative histoblot analysis GluA1-4, GluA1, GluA2, GluK5, GluN1 and GluN2A subunit protein expression differently altered. While there was a marked decrease in the level of GluA1-4, GluA2 and GluK5 receptor subunits, GluA1 and GluN2A protein levels moderately increased. The results indicate that brief convulsions, repeated daily for 10 days can increase overall entorhinal cortex excitability despite a reduction in AMPA/kainate receptor activity, probably through the alteration of local network susceptibility.
Collapse
|
94
|
Koga K, Descalzi G, Chen T, Ko HG, Lu J, Li S, Son J, Kim T, Kwak C, Huganir RL, Zhao MG, Kaang BK, Collingridge GL, Zhuo M. Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron 2014; 85:377-89. [PMID: 25556835 DOI: 10.1016/j.neuron.2014.12.021] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
Abstract
Chronic pain can lead to anxiety and anxiety can enhance the sensation of pain. Unfortunately, little is known about the synaptic mechanisms that mediate these re-enforcing interactions. Here we characterized two forms of long-term potentiation (LTP) in the anterior cingulate cortex (ACC); a presynaptic form (pre-LTP) that requires kainate receptors and a postsynaptic form (post-LTP) that requires N-methyl-D-aspartate receptors. Pre-LTP also involves adenylyl cyclase and protein kinase A and is expressed via a mechanism involving hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Interestingly, chronic pain and anxiety both result in selective occlusion of pre-LTP. Significantly, microinjection of the HCN blocker ZD7288 into the ACC in vivo produces both anxiolytic and analgesic effects. Our results provide a mechanism by which two forms of LTP in the ACC may converge to mediate the interaction between anxiety and chronic pain.
Collapse
Affiliation(s)
- Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giannina Descalzi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyoung-Gon Ko
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - Jinshan Lu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shermaine Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Junehee Son
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - TaeHyun Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - Chuljung Kwak
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
95
|
Crépel V, Mulle C. Physiopathology of kainate receptors in epilepsy. Curr Opin Pharmacol 2014; 20:83-8. [PMID: 25506747 DOI: 10.1016/j.coph.2014.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Kainate receptors (KARs) are tetrameric ionotropic glutamate receptors composed of the combinations of five subunits GluK1-GluK5. KARs are structurally related to AMPA receptors but they serve quite distinct functions by regulating the activity of synaptic circuits at presynaptic and postsynaptic sites, through either ionotropic or metabotropic actions. Although kainate is a potent neurotoxin known to induce acute seizures through activation of KARs, the actual role of KARs in the clinically-relevant chronic phase of temporal lobe epilepsy (TLE) has long been elusive. Recent evidences have described pathophysiological mechanisms of heteromeric GluK2/GluK5 KARs in generating recurrent seizures in chronic epilepsy. The role of the other major subunit GluK1 in epileptogenic activity is still a matter of debate. This review will present the current knowledge on the subtype-specific pharmacology of KARs and highlight recent results linking KARs to epileptic conditions.
Collapse
Affiliation(s)
- Valérie Crépel
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
96
|
Vielma AH, Agurto A, Valdés J, Palacios AG, Schmachtenberg O. Nitric oxide modulates the temporal properties of the glutamate response in type 4 OFF bipolar cells. PLoS One 2014; 9:e114330. [PMID: 25463389 PMCID: PMC4252109 DOI: 10.1371/journal.pone.0114330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO) is involved in retinal signal processing, but its cellular actions are only partly understood. An established source of retinal NO are NOACs, a group of nNOS-expressing amacrine cells which signal onto bipolar, other amacrine and ganglion cells in the inner plexiform layer. Here, we report that NO regulates glutamate responses in morphologically and electrophysiologically identified type 4 OFF cone bipolar cells through activation of the soluble guanylyl cyclase-cGMP-PKG pathway. The glutamate response of these cells consists of two components, a fast phasic current sensitive to kainate receptor agonists, and a secondary component with slow kinetics, inhibited by AMPA receptor antagonists. NO shortened the duration of the AMPA receptor-dependent component of the glutamate response, while the kainate receptor-dependent component remained unchanged. Application of 8-Br-cGMP mimicked this effect, while inhibition of soluble guanylate cyclase or protein kinase G prevented it, supporting a mechanism involving a cGMP signaling pathway. Notably, perfusion with a NOS-inhibitor prolonged the duration of the glutamate response, while the NO precursor L-arginine shortened it, in agreement with a modulation by endogenous NO. Furthermore, NO accelerated the response recovery during repeated stimulation of type 4 cone bipolar cells, suggesting that the temporal response properties of this OFF bipolar cell type are regulated by NO. These results reveal a novel cellular mechanism of NO signaling in the retina, and represent the first functional evidence of NO modulating OFF cone bipolar cells.
Collapse
Affiliation(s)
- Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail:
| | - Adolfo Agurto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Joaquín Valdés
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Adrián G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
97
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Rossetti F, Miller SL, Braga MFM. The limitations of diazepam as a treatment for nerve agent-induced seizures and neuropathology in rats: comparison with UBP302. J Pharmacol Exp Ther 2014; 351:359-72. [PMID: 25157087 PMCID: PMC4201270 DOI: 10.1124/jpet.114.217299] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022] Open
Abstract
Exposure to nerve agents induces prolonged status epilepticus (SE), causing brain damage or death. Diazepam (DZP) is the current US Food and Drug Administration-approved drug for the cessation of nerve agent-induced SE. Here, we compared the efficacy of DZP with that of UBP302 [(S)-3-(2-carboxybenzyl)willardiine; an antagonist of the kainate receptors that contain the GluK1 subunit] against seizures, neuropathology, and behavioral deficits induced by soman in rats. DZP, administered 1 hour or 2 hours postexposure, terminated the SE, but seizures returned; thus, the total duration of SE within 24 hours after soman exposure was similar to (DZP at 1 hour) or longer than (DZP at 2 hours) that in the soman-exposed rats that did not receive the anticonvulsant. Compared with DZP, UBP302 stopped SE with a slower time course, but dramatically reduced the total duration of SE within 24 hours. Neuropathology and behavior were assessed in the groups that received anticonvulsant treatment 1 hour after exposure. UBP302, but not DZP, reduced neuronal degeneration in a number of brain regions, as well as neuronal loss in the basolateral amygdala and the CA1 hippocampal area, and prevented interneuronal loss in the basolateral amygdala. Anxiety-like behavior was assessed in the open field and by the acoustic startle response 30 days after soman exposure. The results showed that anxiety-like behavior was increased in the DZP-treated group and in the group that did not receive anticonvulsant treatment, but not in the UBP302-treated group. The results argue against the use of DZP for the treatment of nerve agent-induced seizures and brain damage and suggest that targeting GluK1-containing receptors is a more effective approach.
Collapse
Affiliation(s)
- James P Apland
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Franco Rossetti
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Steven L Miller
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Neurotoxicology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Department of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., F.R., S.L.M., M.F.M.B.) and Department of Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
98
|
Fisher MT, Fisher JL. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors. Neuroscience 2014; 278:70-80. [PMID: 25139762 PMCID: PMC4172534 DOI: 10.1016/j.neuroscience.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023]
Abstract
The tetrameric kainate receptors can be assembled from a combination of five different subunit subtypes. While GluK1-3 subunits can form homomeric receptors, GluK4 and GluK5 require a heteromeric partner to assemble, traffic to the membrane surface, and produce a functional channel. Previous studies have shown that incorporation of a GluK4 or GluK5 subunit changes both receptor pharmacology and channel kinetics. We directly compared the functional characteristics of recombinant receptors containing either GluK4 or GluK5 in combination with the GluK1 or GluK2 subunit. In addition, we took advantage of mutations within the agonist binding sites of GluK1, GluK2, or GluK5 to isolate the response of the wild-type partner within the heteromeric receptor. Our results suggest that GluK1 and GluK2 differ primarily in their pharmacological properties, but that GluK4 and GluK5 have distinct functional characteristics. In particular, while binding of agonist to only the GluK5 subunit appears to activate the channel to a non-desensitizing state, binding to GluK4 does produce some desensitization. This suggests that GluK4 and GluK5 differ fundamentally in their contribution to receptor desensitization. In addition, mutation of the agonist binding site of GluK5 results in a heteromeric receptor with a glutamate sensitivity similar to homomeric GluK1 or GluK2 receptors, but which requires higher agonist concentrations to produce desensitization. This suggests that onset of desensitization in heteromeric receptors is determined more by the number of subunits bound to agonist than by the identity of those subunits. The distinct, concentration-dependent properties observed with heteromeric receptors in response to glutamate or kainate are consistent with a model in which either subunit can activate the channel, but in which occupancy of both subunits within a dimer is needed to allow desensitization of GluK2/K5 receptors.
Collapse
Affiliation(s)
- M T Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - J L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
99
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels. Br J Pharmacol 2014; 170:1582-606. [PMID: 24528238 PMCID: PMC3892288 DOI: 10.1111/bph.12446] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ligand-gated ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Fisher JL. The neurotoxin domoate causes long-lasting inhibition of the kainate receptor GluK5 subunit. Neuropharmacology 2014; 85:9-17. [PMID: 24859608 PMCID: PMC4107164 DOI: 10.1016/j.neuropharm.2014.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 02/04/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are responsible for fast excitatory neurotransmission in the mammalian brain, and are critical regulators of neuronal activity and synaptic plasticity. The three main types of iGluRs (AMPA, NMDA, and kainate receptors) are composed of distinct subunit populations. The tetrameric kainate receptors can be assembled from a combination of five different types of subunits (GluK1-GluK5). GluK1-3 subunits are able to produce functional homomeric receptors, while GluK4-5 are obligate heteromers, and must assemble with a GluK1-3 subunit. The neurotoxin domoate is widely used as an agonist at kainate-type receptors because it produces a less desensitizing response compared to glutamate. We have identified an additional, subunit-dependent action of domoate at recombinant kainate receptors. When applied to heteromeric GluK2/K5 receptors, domoate generates a small, long-lasting, tonic current. In addition, brief exposure to domoate inhibits the GluK5 subunit, preventing its activation by other agonists for several minutes. These characteristics are not associated with the GluK1, K2, or K4 subunits and can be prevented by a mutation in GluK5 that reduces agonist binding affinity. The results also show that the domoate-bound, GluK2/K5 heteromeric receptors can be fully activated by agonists acting through the GluK2 subunit, suggesting that the subunits within the tetramer can function independently to open the ion channel, and that the domoate-bound state is not a desensitized or blocked conformation. This study describes new properties associated with domoate action at kainate receptors, and further characterizes the distinct roles played by different subunits in heteromeric receptors.
Collapse
Affiliation(s)
- Janet L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|