51
|
dela Peña IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, Borlongan CV. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab 2015; 35:338-46. [PMID: 25425079 PMCID: PMC4426753 DOI: 10.1038/jcbfm.2014.208] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/15/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Treatment with tissue plasminogen activator (tPA) beyond the therapeutic time window (>4.5 hours post stroke) may produce hemorrhagic transformation (HT). Strategies that could extend the narrow time window of tPA will benefit a significant number of stroke patients. Male Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAo) and given vehicle, tPA (10 mg/kg), or tPA and granulocyte colony-stimulating factor (G-CSF, 300 μg/kg), at 6 hours after MCAo. Twenty-four hours post treatment, G-CSF+tPA-treated stroke rats displayed 25% improvement in neurological functions and 38.9% reduction of hemorrhage, with Western blots showing 1.9- and 1.2-fold increments in Ang-2 expression in the ischemic cortex and striatum, respectively, and 3-fold increase in phosphorylated endothelial nitric oxide synthase expression in the ipsilateral cortex relative to tPA-treated rats. Immunohistochemistry also showed 2- and 2.8-fold increase in von-Willebrand expression, 3.2- and 2.2-fold increased CD34+ expression, and 4- and 13-fold upregulation of VEGFR-2 expression in the ischemic cortex and striatum, respectively, in G-CSF+tPA-treated stroke rats relative to tPA-treated subjects. Altogether, these findings indicate that G-CSF attenuated delayed tPA-induced HT likely via the enhancement of angiogenesis and vasculogenesis. The use of G-CSF to protect the vasculature may improve the clinical outcome of tPA even outside the currently indicated therapeutic window for ischemic stroke.
Collapse
Affiliation(s)
- Ike C dela Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Arum Yoo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Naoki Tajiri
- 1] Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA [2] School of Physical Therapy and Rehabilitation Sciences, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Sandra A Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
52
|
Pastuszko P, Schears GJ, Greeley WJ, Kubin J, Wilson DF, Pastuszko A. Granulocyte colony stimulating factor reduces brain injury in a cardiopulmonary bypass-circulatory arrest model of ischemia in a newborn piglet. Neurochem Res 2014; 39:2085-92. [PMID: 25082120 PMCID: PMC4265391 DOI: 10.1007/s11064-014-1399-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/09/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
Abstract
Ischemic brain injury continues to be of major concern in patients undergoing cardiopulmonary bypass (CPB) surgery for congenital heart disease. Striatum and hippocampus are particularly vulnerable to injury during these processes. Our hypothesis is that the neuronal injury resulting from CPB and the associated circulatory arrest can be at least partly ameliorated by pre-treatment with granulocyte colony stimulating factor (G-CSF). Fourteen male newborn piglets were assigned to three groups: deep hypothermic circulatory arrest (DHCA), DHCA with G-CSF, and sham-operated. The first two groups were placed on CPB, cooled to 18 °C, subjected to 60 min of DHCA, re-warmed and recovered for 8-9 h. At the end of experiment, the brains were perfused, fixed and cut into 10 µm transverse sections. Apoptotic cells were visualized by in situ DNA fragmentation assay (TUNEL), with the density of injured cells expressed as a mean number ± SD per mm(2). The number of injured cells in the striatum and CA1 and CA3 regions of the hippocampus increased significantly following DHCA. In the striatum, the increase was from 0.46 ± 0.37 to 3.67 ± 1.57 (p = 0.002); in the CA1, from 0.11 ± 0.19 to 5.16 ± 1.57 (p = 0.001), and in the CA3, from 0.28 ± 0.25 to 2.98 ± 1.82 (p = 0.040). Injection of G-CSF prior to bypass significantly reduced the number of injured cells in the striatum and CA1 region, by 51 and 37 %, respectively. In the CA3 region, injured cell density did not differ between the G-CSF and control group. In a model of hypoxic brain insult associated with CPB, G-CSF significantly reduces neuronal injury in brain regions important for cognitive functions, suggesting it can significantly improve neurological outcomes from procedures requiring DHCA.
Collapse
Affiliation(s)
- Peter Pastuszko
- Section of Cardiac Surgery, The Ward Family Heart Center, Children's Mercy Hospital and Clinics, 2401 Gillham Road, Kansas City, MO, 64108, USA,
| | | | | | | | | | | |
Collapse
|
53
|
Li L, Klebe D, Doycheva D, McBride DW, Krafft PR, Flores J, Zhou C, Zhang JH, Tang J. G-CSF ameliorates neuronal apoptosis through GSK-3β inhibition in neonatal hypoxia-ischemia in rats. Exp Neurol 2014; 263:141-9. [PMID: 25448005 DOI: 10.1016/j.expneurol.2014.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/26/2014] [Accepted: 10/10/2014] [Indexed: 12/25/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF), a growth factor, has known neuroprotective effects in a variety of experimental brain injury models. Herein we show that G-CSF administration attenuates neuronal apoptosis after neonatal hypoxia-ischemia (HI) via glycogen synthase kinase-3β (GSK-3β) inhibition. Ten day old Sprague-Dawley rat pups (n=157) were subjected to unilateral carotid artery ligation followed by 2.5h of hypoxia or sham surgery. HI animals received control siRNA, GSK-3β siRNA (4 μL/pup), G-CSF (50 μg/kg), G-CSF combined with 0.1 or 0.4 nM G-CSF receptor (G-CSFR) siRNA, phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin (86 ng/pup), or DMSO (vehicle for Wortmannin). Pups were euthanized 48 h post-HI to quantify brain infarct volume. G-CSFR, activated Akt (p-Akt), activated GSK-3β (p-GSK-3β), Cleaved Caspase-3 (CC3), Bcl-2, and Bax were quantified using Western blot analysis and the localizations of each was visualized via immunofluorescence staining. Neuronal cell death was determined using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Our results showed p-GSK-3β increased after HI until its peak at 48 h post-ictus, and both GSK-3β siRNA and G-CSF administration reduced p-GSK-3β expression, as well as infarct volume. p-GSK-3β and CC3 were generally co-localized in neurons. Furthermore, G-CSF increased p-Akt expression and the Bcl-2/Bax ratio and also decreased p-GSK-3β and CC3 expression levels in the ipsilateral hemisphere, which were all reversed by G-CSFR siRNA, Wortmannin, and GSK-3β siRNA. In conclusion, G-CSF attenuated caspase activation and reduced brain injury by inhibiting GSK-3β activity after experimental HI in rat pups. This neuroprotective effect was abolished by both G-CSFR siRNA and Wortmannin.
Collapse
Affiliation(s)
- Li Li
- Department of Anatomy & Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Desislava Doycheva
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Paul R Krafft
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jerry Flores
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Changman Zhou
- Department of Anatomy & Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Departments of Anesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
54
|
Huang SP, Tsai RK. Efficacy of granulocyte-colony stimulating factor treatment in a rat model of anterior ischemic optic neuropathy. Neural Regen Res 2014; 9:1502-5. [PMID: 25317164 PMCID: PMC4192964 DOI: 10.4103/1673-5374.139472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 01/12/2023] Open
Abstract
Non-arteritic anterior ischemic optic neuropathy (NA-AION) is the most common cause of acute ischemic damage to the optic nerve (ON), and the leading cause of seriously impaired vision in people over 55 years of age. It demonstrated that subcutaneous administration of Granulocyte colony-stimulating factor (G-CSF) reduces RGC death in an ON crush model in rats, and that the neuroprotective effects may involve both anti-apoptotic and anti-inflammatory processes. Our recent work shows that the protective actions of G-CSF in rAION models may involve both anti-apoptotic and anti-inflammatory processes. However, the exact rescuing mechanisms involved in the administration of G-CSF in rAION models need further investigation. In addition, further studies on the administration of G-CSF at different time intervals after the induction of rAION may be able to illustrate whether treatment given at a later time is still neuroprotective. Further, it is unknown whether treatment using G-CSF combined with other drugs will result in a synergistic effect in a rAION model. Inflammation induced by ischemia plays an essential role on the ON head in NA-AION, which can result in disc edema and compartment changes. Therefore, it is reasonable that adding an anti-inflammatory drug may enhance the therapeutic effects of G-CSF. An ongoing goal is to evaluate the novel sites of action of both G-CSF and other anti-inflammatory drugs, and to identify the functionally protective pathways to enhance RGC survival. These investigations may open up new therapeutic avenues for the treatment of ischemic optic neuropathy.
Collapse
Affiliation(s)
- Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97002, Taiwan, China
| | - Rong-Kung Tsai
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan, China ; Institute of Medical Sciences, Tzu Chi University, Hualien 97002, Taiwan, China
| |
Collapse
|
55
|
Akdemir A, Zeybek B, Akman L, Ergenoglu AM, Yeniel AO, Erbas O, Yavasoglu A, Terek MC, Taskiran D. Granulocyte-colony stimulating factor decreases the extent of ovarian damage caused by cisplatin in an experimental rat model. J Gynecol Oncol 2014; 25:328-33. [PMID: 25142624 PMCID: PMC4195304 DOI: 10.3802/jgo.2014.25.4.328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/02/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate whether granulocyte-colony stimulating factor (G-CSF) can decrease the extent of ovarian follicle loss caused by cisplatin treatment. Methods Twenty-one adult female Sprague-Dawley rats were used. Fourteen rats were administered 2 mg/kg/day cisplatin by intraperitoneal injection twice per week for five weeks (total of 20 mg/kg). Half of the rats (n=7) were treated with 1 mL/kg/day physiological saline, and the other half (n=7) were treated with 100 µg/kg/day G-CSF. The remaining rats (n=7, control group) received no therapy. The animals were then euthanized, and both ovaries were obtained from all animals, fixed in 10% formalin, and stored at 4℃ for paraffin sectioning. Blood samples were collected by cardiac puncture and stored at -30℃ for hormone assays. Results All follicle counts (primordial, primary, secondary, and tertiary) and serum anti-Müllerian hormone levels were significantly increased in the cisplatin+G-CSF group compared to the cisplatin+physiological saline group. Conclusion G-CSF was beneficial in decreasing the severity of follicle loss in an experimental rat model of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Ali Akdemir
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Burak Zeybek
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey.
| | - Levent Akman
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Ahment Mete Ergenoglu
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Ahmet Ozgur Yeniel
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Ege University School of Medicine, Izmir, Turkey
| | - Altug Yavasoglu
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| | - Mustafa Cosan Terek
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Dilek Taskiran
- Department of Physiology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
56
|
Doycheva DM, Hadley T, Li L, Applegate RL, Zhang JH, Tang J. Anti-neutrophil antibody enhances the neuroprotective effects of G-CSF by decreasing number of neutrophils in hypoxic ischemic neonatal rat model. Neurobiol Dis 2014; 69:192-9. [PMID: 24874543 DOI: 10.1016/j.nbd.2014.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/09/2014] [Accepted: 05/17/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Neonatal hypoxia ischemia (HI) is an injury that can lead to neurological impairments such as behavioral and learning disabilities. Granulocyte-colony stimulating factor (G-CSF) has been demonstrated to be neuroprotective in ischemic stroke however it has also been shown to induce neutrophilia, ultimately exacerbating neuronal injury. Our hypothesis is that coadministration of anti-neutrophil antibody (Ab) with G-CSF will decrease blood neutrophil counts thereby reducing infarct volume and improving neurological function post HI brain injury. METHODS Rat pups were subjected to unilateral carotid artery ligation followed by 2.5h of hypoxia. Animals were randomly assigned to five groups: Sham (n=15), vehicle (HI, n=15), HI with G-CSF treatment (n=15), HI with G-CSF+Ab treatment (n=15), and HI with Ab treatment (n=15). Ab (325μg/kg) was administered intraperitoneally while G-CSF (50μg/kg) was administered subcutaneously 1h post HI followed by daily injections for 3 consecutive days. Animals were euthanized at 96h post HI for blood neutrophil counts and brain infarct volume measurements as well as at 5weeks for neurological function testing and brain weight measurements. Lung and spleen weights at both time points were further analyzed. RESULTS The G-CSF treatment group showed tendencies to reduce infarct volume and improve neurological function while significantly increasing neutrophil counts. On the other hand, the G-CSF+Ab group significantly reduced infarct volume, improved neurological function and decreased neutrophil counts. The Ab alone group showed reversal of the neuroprotective effects of the G-CSF+Ab group. No significant differences were found in peripheral organ weights between groups. CONCLUSION Our data suggest that coadministration of G-CSF with Ab not only prevented brain atrophy but also significantly improved neurological function by decreasing blood neutrophil counts. Hence the neuroprotective effects of G-CSF may be further enhanced if neutrophilia is avoided.
Collapse
Affiliation(s)
- Desislava M Doycheva
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Tiffany Hadley
- Department of Anaesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Li Li
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Richard L Applegate
- Department of Anaesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
57
|
Liu X, Zhang X, Zhang J, Kang N, Zhang N, Wang H, Xue J, Yu J, Yang Y, Cui H, Cui L, Wang L, Wang X. Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience 2014; 268:318-27. [DOI: 10.1016/j.neuroscience.2014.03.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
|
58
|
Mode of action of S-methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO) as a novel therapy for stroke in a rat model. Mol Neurobiol 2014; 50:655-72. [PMID: 24573692 DOI: 10.1007/s12035-014-8658-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
One approach for protecting neurons from excitotoxic damage in stroke is to attenuate receptor activity with specific antagonists. S-Methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO), the active metabolite of disulfiram, has been shown to be a partial antagonist of glutamate receptors and effective in reducing seizure. First, we investigated neuroprotective effect of DETC-MeSO on primary cortical neuronal culture under hypoxia/reoxygenation condition in vitro. Then, DETC-MeSO was administered subcutaneously for 4 and 8 days with the first injection occurring 1 h before or 24 h after reperfusion in the rat middle cerebral artery occlusion stroke model. Rats were subjected to the neuroscore test, and the brain was analyzed for infarct size. Monitoring neurotransmitter release was carried out by microdialysis. Heat shock proteins, key proteins involved in apoptosis and endoplasmic reticulum (ER) stress, were analyzed by immunoblotting. DETC-MeSO greatly reduced both cell death following hypoxia/reoxygenation and brain infarct size. It improved performance on the neuroscore test and attenuated proteolysis of αII-spectrin. The level of pro-apoptotic proteins declined, and anti-apoptotic and HSP27 protein expressions were markedly increased. Levels of the ER stress protein markers p-PERK, p-eIF2α, ATF4, JNK, XBP-1, GADD34, and CHOP significantly declined after DETC-MeSO administration. Microdialysis data showed that DETC-MeSO increased high potassium-induced striatal dopamine release indicating that more neurons were protected and survived under ischemic insult in the presence of DETC-MeSO. We also showed that DETC-MeSO can prevent gliosis. DETC-MeSO elicits neuroprotection through the preservation of ER resulting in reduction of apoptosis by increase of anti-apoptotic proteins and decrease of pro-apoptotic proteins.
Collapse
|
59
|
Protection of granulocyte-colony stimulating factor to hemorrhagic brain injuries and its involved mechanisms: Effects of vascular endothelial growth factor and aquaporin-4. Neuroscience 2014; 260:59-72. [DOI: 10.1016/j.neuroscience.2013.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 01/27/2023]
|
60
|
Ridwan S, Bauer H, Frauenknecht K, Hefti K, von Pein H, Sommer CJ. Distribution of the hematopoietic growth factor G-CSF and its receptor in the adult human brain with specific reference to Alzheimer's disease. J Anat 2014; 224:377-91. [PMID: 24387791 DOI: 10.1111/joa.12154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/29/2022] Open
Abstract
The granulocyte colony-stimulating factor (G-CSF), being a member of the hematopoietic growth factor family, is also critically involved in controlling proliferation and differentiation of neural stem cells. Treatment with G-CSF has been shown to result in substantial neuroprotective and neuroregenerative effects in various experimental models of acute and chronic diseases of the central nervous system. Although G-CSF has been tested in a clinical study for treatment of acute ischemic stroke, there is only fragmentary data on the distribution of this cytokine and its receptor in the human brain. Therefore, the present study was focused on the immunohistochemical analysis of the protein expression of G-CSF and its receptor (G-CSF R) in the adult human brain. Since G-CSF has been shown not only to exert neuroprotective effects in animal models of Alzheimer's disease (AD) but also to be a candidate for clinical treatment, we have also placed an emphasis on the regulation of these molecules in this neurodegenerative disease. One major finding is that both G-CSF and G-CSF R were ubiquitously but not uniformly expressed in neurons throughout the CNS. Protein expression of G-CSF and G-CSF R was not restricted to neurons but was also detectable in astrocytes, ependymal cells, and choroid plexus cells. However, the distribution of G-CSF and G-CSF R did not substantially differ between AD brains and control, even in the hippocampus, where early neurodegenerative changes typically occur.
Collapse
Affiliation(s)
- Sami Ridwan
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
61
|
Lu F, Nakamura T, Toyoshima T, Liu Y, Shinomiya A, Hirooka K, Okabe N, Miyamoto O, Tamiya T, Keep RF, Itano T. Neuroprotection of granulocyte colony-stimulating factor during the acute phase of transient forebrain ischemia in gerbils. Brain Res 2013; 1548:49-55. [PMID: 24389073 DOI: 10.1016/j.brainres.2013.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/06/2013] [Accepted: 12/08/2013] [Indexed: 11/26/2022]
Abstract
The present study investigates the potential protective effects of granulocyte colony-stimulating factor (G-CSF) and underlying mechanisms in a gerbil model of global cerebral ischemia. We examined neuronal death, inflammatory reaction and neurogenesis in hippocampus 72 h after transient forebrain ischemia and investigated functional deficits. G-CSF was administered intraperitoneally 24 h before ischemia and then daily. Treatment with G-CSF at 25-50 μg/kg significantly reduced neuronal loss in the hippocampus CA1 area but not at 10 ug/kg. G-CSF at 50 μg/kg significantly decreased the level of TNF-α, the number of Iba1 (microglia marker) positive cells and reduced locomotor activity 72 h after transient forebrain ischemia. Furthermore, the number of DCX-positive cells in the hippocampal dentate gyrus increased in with G-CSF treatment. Our findings indicate that G-CSF reduces hippocampal neuronal cell death dose-dependently and attenuates sensorimotor deficits after transient forebrain ischemia. These neuroprotective effects of G-CSF may be linked to inhibition of inflammation and possibly increased neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Feng Lu
- Department of Neurobiology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
| | - Takehiro Nakamura
- Department of Neurobiology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793, Japan; Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan.
| | - Tetsuhiko Toyoshima
- Department of Neurobiology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
| | - Yanan Liu
- Department of Neurobiology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
| | - Aya Shinomiya
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology, Kagawa University Faculty of Medicine, Miki, Japan
| | - Naohiko Okabe
- Department of Physiology, Kawasaki Medical University, Kurashiki, Japan
| | - Osamu Miyamoto
- Department of Physiology, Kawasaki Medical University, Kurashiki, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Toshifumi Itano
- Department of Neurobiology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793, Japan
| |
Collapse
|
62
|
Mao W, Yi X, Qin J, Tian M, Jin G. CXCL12 inhibits cortical neuron apoptosis by increasing the ratio of Bcl-2/Bax after traumatic brain injury. Int J Neurosci 2013; 124:281-90. [PMID: 23984821 DOI: 10.3109/00207454.2013.838236] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CXCL12 and its physiologic receptor CXCR4 are involved in controlling cell survival, proliferation and migration in adult tissues. This study aimed to investigate the effects of CXCL12 on cortical neuron apoptosis in rats after traumatic brain injury (TBI) and the potential mechanisms involved. At 3 days after TBI, in situ terminal transferase d-UTP nick-end labeling assay (TUNEL) showed that the apoptotic index (AI) deceased significantly in the CXCL12 treatment group compared with the control group (p < 0.05). Immunofluorescence double-labeled staining revealed that most of the TUNEL positive cells were NeuN positive neurons. The change trends of active caspase-3 expression were similar as those of the AI. The Bcl-2:Bax ratio was upregulated in the CXCL12 group compared with the control group. However, the effect of CXCL12 could be partially reverted by the additional use of AMD3100 (a kind of antagonist of CXCR4) (p < 0.05). Our results indicated that after TBI in rats CXCL12 combing CXCR4 receptors could inhibit the caspase-3 pathway by upregulating Bcl-2:Bax ratio, which protect neurons from apoptosis.
Collapse
Affiliation(s)
- Weifeng Mao
- 1Department of Anatomy and Cytoneurobiology, Medical College of Soochow University , People's Republic of China
| | | | | | | | | |
Collapse
|
63
|
Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res 2013; 31:167-72. [DOI: 10.1179/174313209x393582] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
64
|
Chen CH, Huang SY, Chen NF, Feng CW, Hung HC, Sung CS, Jean YH, Wen ZH, Chen WF. Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia. Neuroscience 2013; 242:39-52. [DOI: 10.1016/j.neuroscience.2013.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/30/2013] [Accepted: 02/09/2013] [Indexed: 12/20/2022]
|
65
|
Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, Utunomiya S, Nakamura H, Matsushita K, Nakashima M. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med 2013; 2:521-33. [PMID: 23761108 DOI: 10.5966/sctm.2012-0132] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications.
Collapse
Affiliation(s)
- Koichiro Iohara
- Department of Dental Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Guo X, Bu X, Li Z, Yan Z, Jiang J, Zhou Z. Comparison of autologous bone marrow mononuclear cells transplantation and mobilization by granulocyte colony-stimulating factor in experimental spinal injury. Int J Neurosci 2013; 122:723-33. [PMID: 22862301 DOI: 10.3109/00207454.2012.716109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recent studies have shown that autologous adult stem cells may be a protocol of treatment for spinal cord injury (SCI) in humans. The purpose of this study was to compare the effect of an injection of autologous bone marrow mononuclear cells (BMMCs) and bone-marrow cell mobilization induced by granulocyte colony stimulating factor (G-CSF) in rats with SCI. METHODS Adult rats were assigned into three groups: control group (SCI only), SCI + BMMCs, and SCI + G - CSF. Neurological scores and electrophysiological testing were done in all rats before SCI, and at 1, 7, 14, 28, 56 days post-SCI. Simultaneously, immunohistochemical labeling and TUNEL assay were performed at the given time. RESULTS From 1 week post-SCI onward, animals treated with BMMCs or G-CSF had higher BBB scores than control group. Motor and somatosensory evoked potentials (MEPs and SEPs, respectively) of the treated group were significantly better than those in control group at 2 weeks. After sacrifice, compared with the control, animals treated with BMMCs and G-CSF significantly increased expressions of Brdu, NSE, GFAP, Factor VIII, BDNF, and reduced expression of apoptosis cells around the lesion site. Our results indicate that administration of BMMCs and G-CSF in a SCI model achieves similarly positive effect on functional and histologic recovery. CONCLUSIONS The use of G-CSF may be a viable alternative to BMMCs for autograft in patients with SCI.
Collapse
Affiliation(s)
- Xiaohe Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
67
|
Peng BH, Borisevich V, Popov VL, Zacks MA, Estes DM, Campbell GA, Paessler S. Production of IL-8, IL-17, IFN-gamma and IP-10 in human astrocytes correlates with alphavirus attenuation. Vet Microbiol 2013; 163:223-34. [PMID: 23428380 PMCID: PMC7117234 DOI: 10.1016/j.vetmic.2012.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/06/2012] [Accepted: 11/22/2012] [Indexed: 01/30/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995 indicate that VEEV still poses a serious public health threat. Astrocytes may be target cells in human and mouse infection and they play an important role in repair through gliosis. In this study, we report that virulent VEEV efficiently infects cultured normal human astrocytes, three different murine astrocyte cell lines and astrocytes in the mouse brain. The attenuation of virus replication positively correlates with the increased levels of production of IL-8, IL-17, IFN-gamma and IP-10. In addition, VEEV infection induces release of basic fibroblast growth factor and production of potent chemokines such as RANTES and MIP-1-beta from cultured human astrocytes. This growth factor and cytokine profile modeled by astrocytes in vitro may contribute to both neuroprotection and repair and may play a role in leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Bi-Hung Peng
- Department of Pathology/Institute for Human Infections and Immunity, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol Sin 2013; 34:78-90. [PMID: 23064725 PMCID: PMC4086492 DOI: 10.1038/aps.2012.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023]
Abstract
Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.
Collapse
Affiliation(s)
- Pooya Dibajnia
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cindi M Morshead
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
69
|
Hong Y, Deng C, Zhang J, Zhu J, Li Q. Neuroprotective effect of granulocyte colony-stimulating factor in a focal cerebral ischemic rat model with hyperlipidemia. ACTA ACUST UNITED AC 2012; 32:872-878. [DOI: 10.1007/s11596-012-1050-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Indexed: 11/24/2022]
|
70
|
Keddy PGW, Dunlop K, Warford J, Samson ML, Jones QRD, Rupasinghe HPV, Robertson GS. Neuroprotective and anti-inflammatory effects of the flavonoid-enriched fraction AF4 in a mouse model of hypoxic-ischemic brain injury. PLoS One 2012; 7:e51324. [PMID: 23251498 PMCID: PMC3520852 DOI: 10.1371/journal.pone.0051324] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
We report here neuroprotective and anti-inflammatory effects of a flavonoid-enriched fraction isolated from the peel of Northern Spy apples (AF4) in a mouse of model of hypoxic-ischemic (HI) brain damage. Oral administration of AF4 (50 mg/kg, once daily for 3 days) prior to 50 min of HI completely prevented motor performance deficits assessed 14 days later that were associated with marked reductions in neuronal cell loss in the dorsal hippocampus and striatum. Pre-treatment with AF4 (5, 10, 25 or 50 mg/kg, p.o.; once daily for 3 days) produced a dose-dependent reduction in HI-induced hippocampal and striatal neuron cell loss, with 25 mg/kg being the lowest dose that achieved maximal neuroprotection. Comparison of the effects of 1, 3 or 7 doses of AF4 (25 mg/kg; p.o.) prior to HI revealed that at least 3 doses of AF4 were required before HI to reduce neuronal cell loss in both the dorsal hippocampus and striatum. Quantitative RT-PCR measurements revealed that the neuroprotective effects of AF4 (25 mg/kg; p.o.; once daily for 3 days) in the dorsal hippocampus were associated with a suppression of HI-induced increases in the expression of IL-1β, TNF-α and IL-6. AF4 pre-treatment enhanced mRNA levels for pro-survival proteins such as X-linked inhibitor of apoptosis and erythropoietin following HI in the dorsal hippocampus and striatum, respectively. Primary cultures of mouse cortical neurons incubated with AF4 (1 µg/ml), but not the same concentrations of either quercetin or quercetin-3-O-glucose or its metabolites, were resistant to cell death induced by oxygen glucose deprivation. These findings suggest that the inhibition of HI-induced brain injury produced by AF4 likely involves a transcriptional mechanism resulting from the co-operative actions of various phenolics in this fraction which not only reduce the expression of pro-inflammatory mediators but also enhance pro-survival gene signalling.
Collapse
Affiliation(s)
- Paul G. W. Keddy
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kate Dunlop
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jordan Warford
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michel L. Samson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Quinton R. D. Jones
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
71
|
Temporal alteration of serum G-CSF and VEGF levels in perinatal asphyxia treated with head cooling. Cytokine 2012; 60:812-4. [DOI: 10.1016/j.cyto.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 12/17/2022]
|
72
|
Ghorbani M, Moallem SA, Abnous K, Tabatabaee Yazdi SA, Movassaghi AR, Azizzadeh M, Mohamadpour AH. The effect of granulocyte colony-stimulating factor administration on carbon monoxide neurotoxicity in rats. Drug Chem Toxicol 2012; 36:102-8. [DOI: 10.3109/01480545.2012.737802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
73
|
Granulocyte-colony stimulating factor in combination with stem cell factor confers greater neuroprotection after hypoxic-ischemic brain damage in the neonatal rats than a solitary treatment. Transl Stroke Res 2012; 4:171-8. [PMID: 23565130 DOI: 10.1007/s12975-012-0225-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a devastating condition resulting in neuronal cell death and often culminates in neurological deficits. Granulocyte-colony stimulating factor (G-CSF) has been shown to have neuroprotective activity via inhibition of apoptosis and inflammation in various stroke models. Stem cell factor (SCF) regulates hematopoietic stem cells in the bone marrow and has been reported to have neuroprotective properties in an experimental ischemic stroke model. In this study we aim to determine the protective effects of G-CSF in combination with SCF treatment after experimental HI. Seven-day old Sprague-Dawley rats were subjected to unilateral carotid artery ligation followed by 2.5 hours of hypoxia. Animals were randomly assigned to five groups: Sham (n=8), Vehicle (n=8), HI with G-CSF treatment (n=9), HI with SCF treatment (n=9) and HI with G-CSF+SCF treatment (coadministration group; n=10). G-CSF (50 µg/kg), SCF (50 µg/kg) and G-CSF+SCF (50 µg/kg) were administered intraperitoneally 1 hour post HI followed by daily injection for 4 consecutive days (five total injections). Animals were euthanized 14 days after HI for neurological testing. Additionally assessment of brain, heart, liver, spleen and kidney atrophy was performed. Both G-CSF and G-CSF+SCF treatments improved body growth and decreased brain atrophy at 14 days post HI. No significant differences were found in the peripheral organ weights between groups. Finally, the G-CSF+SCF coadministration group showed significant improvement in neurological function. Our data suggest that administration of G-CSF in combination with SCF not only prevented brain atrophy but also significantly improved neurological function.
Collapse
|
74
|
Charles MS, Ostrowski RP, Manaenko A, Duris K, Zhang JH, Tang J. Role of the pituitary–adrenal axis in granulocyte-colony stimulating factor-induced neuroprotection against hypoxia–ischemia in neonatal rats. Neurobiol Dis 2012; 47:29-37. [PMID: 22779090 DOI: 10.1016/j.nbd.2012.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Several reports indicate that the activity of the hypothalamic–pituitary–adrenal axis (HPA) is increased after a brain insult and that its down-regulation can improve detrimental outcomes associated with ischemic brain injuries.Granulocyte-colony stimulating factor (G-CSF) is a neuroprotective drug shown in the naïve rat to regulate hormones of the HPA axis. In this study we investigate whether G-CSF confers its neuroprotective properties by influencing the HPA response after neonatal hypoxia–ischemia (HI). Following the Rice–Vannucci model, seven day old rats (P7)were subjected to unilateral carotid ligation followed by 2.5 h of hypoxia. To test our hypothesis,metyrapone was administered to inhibit the release of rodent specific glucocorticoid, corticosterone, at the adrenal level. Dexamethasone, a synthetic glucocorticoid, was administered to agonize the effects of corticosterone.Our results show that both G-CSF and metyrapone significantly reduced infarct volume while dexamethasone treatment did not reduce infarct size even when combined with G-CSF. The protective effects of G-CSF do not include blood brain barrier preservation as suggested by the brain edema results. G-CSF did not affect the pituitary released adrenocorticotropic hormone (ACTH) levels in the blood plasma at 4 h, but suppressed the increase of corticosterone in the blood. The administration of G-CSF and metyrapone increased weight gain, and significantly reduced the Bax/Bcl-2 ratio in the brain while dexamethasone reversed the effects of G-CSF. The combination of G-CSF and metyrapone significantly decreased caspase-3 protein levels in the brain, and the effect was antagonized by dexamethasone.We report that G-CSF is neuroprotective in neonatal HI by reducing infarct volume, by suppressing the HI-induced increase of the Bax/Bcl-2 ratio, and by decreasing corticosterone in the blood. Metyrapone was able to confer similar neuroprotection as G-CSF while dexamethasone reversed the effects of G-CSF. In conclusion, we show that decreasing HPA axis activity is neuroprotective after neonatal HI, which can be conferred by administering G-CSF.
Collapse
Affiliation(s)
- Mélissa S Charles
- Department of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
75
|
Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway. Neurochem Res 2012; 37:2777-86. [PMID: 22936120 DOI: 10.1007/s11064-012-0871-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/31/2012] [Accepted: 08/11/2012] [Indexed: 01/03/2023]
Abstract
Many studies have demonstrated that apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Neuroprotective effect of quercetin has been shown in a variety of brain injury models including ischemia/reperfusion. It is not clear whether BDNF-TrkB-PI3K/Akt signaling pathway mediates the neuroprotection of quercetin, though there has been some reports on the quercetin increased brain-derived neurotrophic factor (BDNF) level in brain injury models. We therefore first examined the neurological function, infarct volume and cell apoptosis in quercetin treated middle cerebral artery occlusion (MCAO) rats. Then the protein expression of BDNF, cleaved caspase-3 and p-Akt were evaluated in either the absence or presence of PI3K inhibitor (LY294002) or tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) by immunohistochemistry staining and western blotting. Quercetin significantly improved neurological function, while it decreased the infarct volume and the number of TdT mediated dUTP nick end labeling positive cells in MCAO rats. The protein expression of BDNF, TrkB and p-Akt also increased in the quercetin treated rats. However, treatment with LY294002 or K252a reversed the quercetin-induced increase of BDNF and p-Akt proteins and decrease of cleaved caspase-3 protein in focal cerebral ischemia rats. These results demonstrate that quercetin can decrease cell apoptosis in the focal cerebral ischemia rat brain and the mechanism may be related to the activation of BDNF-TrkB-PI3K/Akt signaling pathway.
Collapse
|
76
|
Wei G, Chen DF, Lai XP, Liu DH, Deng RD, Zhou JH, Zhang SX, Li YW, Li H, Zhang QD. Muscone Exerts Neuroprotection in an Experimental Model of Stroke via Inhibition of the Fas Pathway. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Identifying small molecules that are neuroprotective against stroke injury will be highly beneficial for treatment therapies. A cell viability assay and gas chromatography-mass spectrometry were used to identify active small molecules in XingNaoJing, which is a well known Chinese Medicine prescribed for the effective treatment of stroke. Studies have found that muscone is the active compound that prevents PC12 cell and cortical neuron damage following various injuries. Analysis of apoptosis indicated that muscone inhibited glutamate-induced apoptotic cell death of PC12 cells and cortical neurons. Fas and caspase-8 expression were upregulated following glutamate treatment in cortical neurons, and was markedly attenuated in the presence of muscone. Furthermore, muscone significantly reduced cerebral infarct volume, neurological dysfunction and inhibited cortical neuron apoptosis in middle cerebral artery occluded (MCAO) rats in a dose-dependent manner. Moreover, a significant decrease in Fas and caspase-8 expression in the rat cortex was observed in MCAO rats treated with muscone. Our results demonstrate that muscone may be a small active molecule with neuroprotective properties, and that inhibition of apoptosis and Fas is an important mechanism of neuroprotection by muscone. These findings suggest a potential therapeutic role for muscone in the treatment of stroke.
Collapse
Affiliation(s)
- Gang Wei
- Research & Development of New Drugs, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong-Feng Chen
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ping Lai
- Research & Development of New Drugs, Guangzhou University of Chinese Medicine, Guangzhou, China
- Mathematical Engineering Academy of Chinese Medicine of Dongguan, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Dong-Hui Liu
- Research & Development of New Drugs, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ru-Dong Deng
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Hong Zhou
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai-Xia Zhang
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Wei Li
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong-Dan Zhang
- Research & Development of New Drugs, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
77
|
Famakin B, Mou Y, Spatz M, Lawal M, Hallenbeck J. Downstream Toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia. J Neuroinflammation 2012; 9:174. [PMID: 22799573 PMCID: PMC3419098 DOI: 10.1186/1742-2094-9-174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/16/2012] [Indexed: 01/18/2023] Open
Abstract
Background Deletion of some Toll-like receptors (TLRs) affords protection against cerebral ischemia, but disruption of their known major downstream adaptors does not. To determine whether compensation in the production of downstream effectors by one pathway when the other is disrupted can explain these findings, we examined cytokine/chemokine expression and inflammatory infiltrates in wild-type (WT), MyD88−/− and TRIF-mutant mice following permanent middle cerebral artery occlusion (pMCAO). Methods Cytokine/chemokine expression was measured with a 25-plex bead array in the serum and brains of all three groups of mice at baseline (no surgery/naïve) and at 3 hours and 24 hours following pMCAO. Brain inflammatory and neutrophil infiltrates were examined 24 hours following pMCAO. Results IL-6, keratinocyte chemoattractant (KC), granulocyte colony-stimulating factor (G-CSF) and IL-10 were significantly decreased in MyD88−/− mice compared to WT mice following pMCAO. Significantly, decreased levels of the neutrophil chemoattractants KC and G-CSF corresponded with a trend toward fewer neutrophils in the brains of MyD88−/− mice. IP-10 was significantly decreased when either pathway was disrupted. MIP-1α was significantly decreased in TRIF-mutant mice, consistent with TRIF-dependent production. Finally, MyD88−/− mice showed elevations of a number of Th2 cytokines, such as IL-13, at baseline, which became significantly decreased following pMCAO. Conclusions Both MyD88 and TRIF mediate pathway-specific cytokine production following focal cerebral ischemia. Our results also suggest a compensatory Th2-type skew at baseline in MyD88−/− mice and a paradoxical switch to a Th1 phenotype following focal cerebral ischemia. Finally, the MyD88 pathway directs the expression of neutrophil chemoattractants following cerebral ischemia.
Collapse
Affiliation(s)
- Bolanle Famakin
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room 5B06, MSC 1401, Bethesda, MD 20892-1401, USA.
| | | | | | | | | |
Collapse
|
78
|
Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab 2012; 32:1317-31. [PMID: 22252239 PMCID: PMC3390814 DOI: 10.1038/jcbfm.2011.187] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent stem cell technology provides a strong therapeutic potential not only for acute ischemic stroke but also for chronic progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis with neuroregenerative neural cell replenishment and replacement. In addition to resident neural stem cell activation in the brain by neurotrophic factors, bone marrow stem cells (BMSCs) can be mobilized by granulocyte-colony stimulating factor for homing into the brain for both neurorepair and neuroregeneration in acute stroke and neurodegenerative diseases in both basic science and clinical settings. Exogenous stem cell transplantation is also emerging into a clinical scene from bench side experiments. Early clinical trials of intravenous transplantation of autologous BMSCs are showing safe and effective results in stroke patients. Further basic sciences of stem cell therapy on a neurovascular unit and neuroregeneration, and further clinical advancements on scaffold technology for supporting stem cells and stem cell tracking technology such as magnetic resonance imaging, single photon emission tomography or optical imaging with near-infrared could allow stem cell therapy to be applied in daily clinical applications in the near future.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Okayama University Medical School, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
79
|
Zhao C, Xie Z, Wang P, Wang Y, Lai C, Zhu Z, Liu Z, Cong Y, Zhao Y, Zheng C, Bi J. Granulocyte-colony stimulating factor protects memory impairment in the senescence-accelerated mouse (SAM)-P10. Neurol Res 2012; 33:354-9. [PMID: 21535933 DOI: 10.1179/016164110x12807570509970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory impairment in elderly people. At present, AD remains incurable. More and more evidences have suggested that granulocyte-colony stimulating factor (G-CSF) has important non-hematopoietic neuroprotective functions in central nervous system. The present study was designed to investigate the therapeutic potential of G-CSF in the senescence-accelerated mouse prone strain (SAM-P10) mice, a mouse model of senile dementia. METHODS Recombinant human G-CSF was administered subcutaneously in SAM-P10 mice once daily for consecutive 7 days. Morris water maze test was used to evaluate spatial memory of the mice. Immunohistochemistry analysis was done to elucidate the changes of apoptotic neurons in CA1 region of hippocampus of the mice. RESULTS In the present study, we found that administration of recombinant G-CSF significantly protected spatial memory impairment, and decreased the number of apoptotic (caspase-3-positive) and tumor necrosis factor related apoptosis-inducing ligand (TRAIL)-positive neurons in CA1 region of hippocampus of SAM-P10 mice, suggesting that G-CSF may protect spatial memory impairment through suppression of TRAIL-mediated apoptosis in neurons. CONCLUSIONS These findings highlight the therapeutic potential of G-CSF in AD.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Yang J, Li J, Lu J, Zhang Y, Zhu Z, Wan H. Synergistic protective effect of astragaloside IV-tetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:64-72. [PMID: 22207211 DOI: 10.1016/j.jep.2011.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragaloside IV and tetramethylpyrazine have been extensively used in the cardio-cerbrovascular diseases of medicine as a chief ingredient of glycoside or alkaloid formulations for the treatment of stroke and myocardial ischemia diseases. AIM OF THE STUDY To investigate the effects of astragaloside IV (ASG IV) and tetramethylpyrazine (TMPZ) on cerebral ischemia-reperfusion (IR) injury model in rat model. MATERIALS AND METHODS Rats were randomly divided into the following five groups: sham group, IR group and treatment group including ASG IV, ASG IV-TMPZ and nimodipine treatment. The therapeutic effect was evaluated by micro-positron emission tomography (Micro-PET) using (18)F-fluoro-2-deoxy-d-glucose. The neurological examination, infarct volume and the levels of oxidative stress- and cell apoptosis-related molecules were assessed. RESULTS Micro-PET imaging showed that glucose metabolism in the right hippocampus was significantly decreased in the IR group compared to the sham group (P<0.01). ASG IV and ASG IV-TMPZ treatments reversed the decreased glucose metabolism in the model group (P<0.05 and P<0.01, respectively). IR induced the increase of Caspase-3 mRNA levels, MDA content and iNOS activity, but it caused the decrease of SOD activity and Bcl-2 expression compared the sham group (P<0.01). ASG IV-TMPZ and ASG IV reversed the IR-induced changes of these parameters, i.e. the down regulation of Caspase-3 mRNA, MDA content and iNOS activity, and the up regulation of SOD activity and Bcl-2 expression (P<0.05). CONCLUSION This study showed that ASG IV-TMPZ played a pivotal synergistic protective role against focal cerebral ischemic reperfusion damage in a rat experimental model.
Collapse
Affiliation(s)
- Jiehong Yang
- Institute of Cardio-Cerbrovascular Diseases, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | | | | | | | | | | |
Collapse
|
81
|
Pastuszko P, Schears GJ, Pirzadeh A, Kubin J, Greeley WJ, Wilson DF, Pastuszko A. Effect of granulocyte-colony stimulating factor on expression of selected proteins involved in regulation of apoptosis in the brain of newborn piglets after cardiopulmonary bypass and deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2012; 143:1436-42. [PMID: 22306220 DOI: 10.1016/j.jtcvs.2012.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 09/08/2011] [Accepted: 01/04/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The study objective was to investigate the effect of granulocyte-colony stimulating factor on the expression of proteins that regulate apoptosis in newborn piglet brain after cardiopulmonary bypass and deep hypothermic circulatory arrest. METHODS The newborn piglets were assigned to 3 groups: (1) deep hypothermic circulatory arrest (30 minutes of deep hypothermic circulatory arrest, 1 hour of low-flow cardiopulmonary bypass); (2) deep hypothermic circulatory arrest with prior injection of granulocyte-colony stimulating factor (17 μg/kg 2 hours before cardiopulmonary bypass); and (3) sham-operated. After 2 hours of post-bypass recovery, the frontal cortex, striatum, and hippocampus were dissected. The expression of proteins was measured by gel electrophoresis or protein arrays. Data are presented in arbitrary units. Statistical analysis was performed using 1-way analysis of variance. RESULTS In the frontal cortex, only Fas ligand expression was significantly lower in the granulocyte-colony stimulating factor group when compared with the deep hypothermic circulatory arrest group. In the hippocampus, granulocyte-colony stimulating factor increased Bcl-2 (54.3 ± 6.4 vs 32.3 ± 2.2, P = .001) and serine/threonine-specific protein kinase (141.4 ± 19 vs 95.9 ± 21.1, P = .047) when compared with deep hypothermic circulatory arrest group. Caspase-3, Bax, Fas, Fas ligand, death receptor 6, and Janus protein tyrosine kinase 2 levels were unchanged. The Bcl-2/Bax ratio was 0.33 for deep hypothermic circulatory arrest group and 0.93 for the granulocyte-colony stimulating factor group (P = .02). In the striatum, when compared with the deep hypothermic circulatory arrest group, the granulocyte-colony stimulating factor group had higher levels of Bcl-2 (50.3 ± 7.4 vs 31.8 ± 3.8, P = .01), serine/threonine-specific protein kinase (132.7 ± 12.3 vs 14 ± 1.34, P = 2.3 × 10(6)), and Janus protein tyrosine kinase 2 (126 ± 17.4 vs 77.9 ± 13.6, P = .011), and lower levels of caspase-3 (12.8 ± 5.0 vs 32.2 ± 11.5, P = .033), Fas (390 ± 31 vs 581 ± 74, P = .038), Fas ligand (20.5 ± 11.5 vs 57.8 ± 15.6, P = .04), and death receptor 6 (57.4 ± 4.4 vs 108.8 ± 13.4, P = .007). The Bcl-2/Bax ratio was 0.25 for deep hypothermic circulatory arrest and 0.44 for the granulocyte-colony stimulating factor groups (P = .046). CONCLUSIONS In the piglet model of hypoxic brain injury, granulocyte-colony stimulating factor decreases proapoptotic signaling, particularly in the striatum.
Collapse
Affiliation(s)
- Peter Pastuszko
- Department of Surgery, University of California, San Diego, CA 92123, USA.
| | | | | | | | | | | | | |
Collapse
|
82
|
Buddhala C, Prentice H, Wu JY. Modes of Action of Taurine and Granulocyte Colony-stimulating Factor in Neuroprotection. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.jecm.2011.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
83
|
Hematopoietic Growth Factor Family for Stroke Drug Development. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
84
|
Park SH, Kim JH, Park SJ, Bae SS, Choi YW, Hong JW, Choi BT, Shin HK. Protective effect of hexane extracts of Uncaria sinensis against photothrombotic ischemic injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:774-779. [PMID: 22051882 DOI: 10.1016/j.jep.2011.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/20/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria sinensis (US) has been used in traditional Korean medicine to treat vascular disease and to relieve various neurological symptoms. AIM OF THE STUDY Scientific evidence related to the effectiveness or action mechanism of US on cerebrovascular disease has not been examined experimentally. Here, we investigated the cerebrovascular protective effect of US extracts on photothrombotic ischemic injury in mice. MATERIALS AND METHODS US hexane extracts (HEUS), ethyl acetate extracts (EAEUS) and methanol extracts (MEUS) were administered intraperitoneally 30 min before ischemic insults. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, neurological score and the activation of Akt and eNOS in ischemic brain. RESULTS HEUS more significantly reduced infarct volume and edema than did EAEUS and MEUS following photothrombotic cortical occlusion. HEUS produced decreased infarct volume and edema size, and improved neurological function in a concentration-dependent manner (10, 50, and 100 mg/kg). However, HEUS did not reduce brain infarction in eNOS KO mice, suggesting that the protective effect of HEUS is primarily endothelium-dependent. Furthermore, HEUS (10-300 μg/ml) produced a concentration-dependent relaxation in mouse aorta and rat basilar artery, which was not seen in eNOS KO mouse aorta, suggesting that HEUS cause vasodilation via an eNOS-dependent mechanism. This correlated with increased phosphorylation of Akt and eNOS in the brains of HEUS-treated mice. CONCLUSION HEUS prevent cerebral ischemic damage by regulating Akt/eNOS signaling. US, herbal medicine, may be the basis of a novel strategy for the therapy of stroke.
Collapse
Affiliation(s)
- Sun Haeng Park
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A. Growth factors in ischemic stroke. J Cell Mol Med 2011; 15:1645-87. [PMID: 20015202 PMCID: PMC4373358 DOI: 10.1111/j.1582-4934.2009.00987.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.
Collapse
Affiliation(s)
- S Lanfranconi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - F Locatelli
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - S Corti
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - L Candelise
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - G P Comi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - P L Baron
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - S Strazzer
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - N Bresolin
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - A Bersano
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
86
|
Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM. Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem 2011; 118:288-303. [PMID: 21554323 DOI: 10.1111/j.1471-4159.2011.07304.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant inherited disorder characterized by degeneration of spinocerebellar tracts and selected brainstem neurons owing to the expansion of a CAG repeat of the human TATA-binding protein (hTBP) gene. To gain insight into the pathogenesis of this hTBP mutation, we generated transgenic mice with the mutant hTBP gene driven by the Purkinje specific protein (Pcp2/L7) gene promoter. Mice with the expanded hTBP allele developed ataxia within 2-5 months. Behavioral analysis of L7-hTBP transgenic mice showed reduced fall latency in a rotarod assay. Purkinje cell degeneration was identified by immunostaining of calbindin and IP3R1. Reactive gliosis and neuroinflammation occurred in the transgenic cerebellum, accompanied by up-regulation of GFAP and Iba1. The L7-hTBP transgenic mice were thus confirmed to recapitulate the SCA17 phenotype and were used as a disease model to explore the potential of granulocyte-colony stimulating factor in SCA17 treatment. Our results suggest that granulocyte-colony stimulating factor has a neuroprotective effect in these transgenic mice, ameliorating their neurological and behavioral deficits. These data indicate that the expression of the mutant hTBP in Purkinje cells is sufficient to produce cell degeneration and an ataxia phenotype, and constitutes a good model for better analysis of the neurodegeneration in SCA17.
Collapse
Affiliation(s)
- Ya-Chin Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxid Redox Signal 2011; 14:1853-61. [PMID: 20712401 PMCID: PMC3078497 DOI: 10.1089/ars.2010.3467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/02/2010] [Accepted: 08/13/2010] [Indexed: 01/07/2023]
Abstract
Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia.
Collapse
Affiliation(s)
- Hung Wen Lin
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
88
|
Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-κB. Amino Acids 2011; 42:1735-47. [PMID: 21409386 DOI: 10.1007/s00726-011-0885-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
Taurine is reported to reduce tissue damage induced by inflammation and to protect the brain against experimental stroke. The objective of this study was to investigate whether taurine reduced ischemic brain damage through suppressing inflammation related to poly (ADP-ribose) polymerase (PARP) and nuclear factor-kappaB (NF-κB) in a rat model of stroke. Rats received 2 h ischemia by intraluminal filament and were then reperfused. Taurine (50 mg/kg) was administered intravenously 1 h after ischemia. Treatment with taurine markedly reduced neurological deficits, lessened brain swelling, attenuated cell death, and decreased the infarct volume 72 h after ischemia. Our data showed the up-regulation of PARP and NF-κB p65 in cytosolic fractions in the core and nuclear fractions in the penumbra and core, and the increases in the nuclear poly (ADP-ribose) levels and the decreases in the intracellular NAD+ levels in the penumbra and core at 22 h of reperfusion; these changes were reversed by taurine. Moreover, taurine significantly reduced the levels of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and intracellular adhesion molecule-1, lessened the activities of myeloperoxidase and attenuated the infiltration of neutrophils in the penumbra and core at 22 h of reperfusion. These data demonstrate that suppressing the inflammatory reaction related to PARP and NF-κB-driven expression of inflammatory mediators may be one mechanism of taurine against ischemic stroke.
Collapse
|
89
|
The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:718302. [PMID: 21423636 PMCID: PMC3057556 DOI: 10.1155/2011/718302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 11/18/2022]
Abstract
Dangkwisoo-San (DS) is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO) production in human brain microvascular endothelial cells (HBMECs). DS (10-300 μg/mL) produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS) inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF), although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS) inhibitor, N(5)-(1-iminoethyl)-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation.
Collapse
|
90
|
Sun M, Gu Y, Zhao Y, Xu C. Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids 2010; 40:1419-29. [PMID: 20862501 DOI: 10.1007/s00726-010-0751-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/09/2010] [Indexed: 01/20/2023]
Abstract
Taurine, an abundant amino acid in the nervous system, is reported to reduce ischemic brain injury in a dose-dependent manner. This study was designed to investigate whether taurine protected brain against experimental stroke through affecting mitochondria-mediated cell death pathway. Rats were subjected to 2-h ischemia by intraluminal filament, and then reperfused for 22 h. It was confirmed again that taurine (50 mg/kg) administered intravenously 1 h after ischemia markedly improved neurological function and decreased infarct volume at 22 h after reperfusion. In vehicle-treated rats, the levels of intracellular ATP and the levels of cytosolic and mitochondrial Bcl-xL in the penumbra and core were markedly reduced, while the levels of cytosolic Bax in the core and mitochondrial Bax in the penumbra and core were enhanced significantly. There was a decrease in cytochrome C in mitochondria and an increase in cytochrome C in the cytosol of the penumbra and core. These changes were reversed by taurine. Furthermore, taurine inhibited the activation of calpain and caspase-3, reduced the degradation of αII-spectrin, and attenuated the necrotic and apoptotic cell death in the penumbra and core. These data demonstrated that preserving the mitochondrial function and blocking the mitochondria-mediated cell death pathway may be one mechanism of taurine's action against brain ischemia.
Collapse
Affiliation(s)
- Ming Sun
- Department of Neurochemistry, Beijing Neurosurgical Institute, 6 Tiantan Xili, Chongwen District, Beijing, China
| | | | | | | |
Collapse
|
91
|
Pan C, Gupta A, Prentice H, Wu JY. Protection of taurine and granulocyte colony-stimulating factor against excitotoxicity induced by glutamate in primary cortical neurons. J Biomed Sci 2010; 17 Suppl 1:S18. [PMID: 20804592 PMCID: PMC2994407 DOI: 10.1186/1423-0127-17-s1-s18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstracts
Collapse
Affiliation(s)
- Chunliu Pan
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | |
Collapse
|
92
|
Cheng CY, Su SY, Tang NY, Ho TY, Lo WY, Hsieh CL. Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABA(B1) receptor expression in transient focal cerebral ischemia in rats. Acta Pharmacol Sin 2010; 31:889-99. [PMID: 20644551 PMCID: PMC4007809 DOI: 10.1038/aps.2010.66] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 12/20/2022]
Abstract
AIM Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) provides neuroprotection against apoptosis in a transient middle cerebral artery occlusion (MCAo) model. This study was to further investigate the anti-apoptotic effect of FA during reperfusion after cerebral ischemia. METHODS Rats were subjected to 90 min of cerebral ischemia followed by 3 or 24 h of reperfusion after which they were sacrificed. RESULTS Intravenous FA (100 mg/kg) administered immediately after middle cerebral artery occlusion (MCAo) or 2 h after reperfusion effectively abrogated the elevation of postsynaptic density-95 (PSD-95), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), nitrotyrosine, and cleaved caspase-3 levels as well as apoptosis in the ischemic cortex at 24 h of reperfusion. FA further inhibited Bax translocation, cytochrome c release, and p38 mitogen-activated protein (MAP) kinase phosphorylation. Moreover, FA enhanced the expression of gamma-aminobutyric acid type B receptor subunit 1 (GABA(B1)) in the ischemic cortex at 3 and 24 h of reperfusion. In addition, nitrotyrosine-positive cells colocalized with cleaved caspase-3-positive cells, and phospho-p38 MAP kinase-positive cells colocalized with nitrotyrosine- and Bax-positive cells, indicating a positive relationship among the expression of nitrotyrosine, phospho-p38 MAP kinase, Bax, and cleaved caspase-3. The mutually exclusive expression of GABA(B1) and nitrotyrosine revealed that there is a negative correlation between GABA(B1) and nitrotyrosine expression profiles. Additionally, pretreatment with saclofen, a GABA(B) receptor antagonist, abolished the neuroprotection of FA against nitric oxide (NO)-induced apoptosis. CONCLUSION FA significantly enhances GABA(B1) receptor expression at early reperfusion and thereby provides neuroprotection against p38 MAP kinase-mediated NO-induced apoptosis at 24 h of reperfusion.
Collapse
Affiliation(s)
- Chin-yi Cheng
- Graduate Institute of Acupuncture Science, China Medical University 40402, Taichung, Taiwan, China
- Acupuncture Research Center, China Medical University 40402, Taichung, Taiwan, China
| | - Shan-yu Su
- School of Chinese Medicine, China Medical University 40402, Taichung, Taiwan, China
- Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan, China
| | - Nou-ying Tang
- School of Chinese Medicine, China Medical University 40402, Taichung, Taiwan, China
| | - Tin-yun Ho
- School of Chinese Medicine, China Medical University 40402, Taichung, Taiwan, China
| | - Wan-yu Lo
- Graduate Institute of Integrated Medicine, China Medical University 40402, Taichung, Taiwan, China
| | - Ching-liang Hsieh
- Graduate Institute of Acupuncture Science, China Medical University 40402, Taichung, Taiwan, China
- Acupuncture Research Center, China Medical University 40402, Taichung, Taiwan, China
- Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan, China
| |
Collapse
|
93
|
Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, Niizuma K, Katsu M, Okami N, Yoshioka H, Sakata H, Goeders CE, Chan PH. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol 2010; 41:172-9. [PMID: 20157789 PMCID: PMC2877155 DOI: 10.1007/s12035-010-8102-z] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/11/2010] [Indexed: 12/11/2022]
Abstract
Effective stroke therapies require recanalization of occluded cerebral blood vessels. However, reperfusion can cause neurovascular injury, leading to cerebral edema, brain hemorrhage, and neuronal death by apoptosis/necrosis. These complications, which result from excess production of reactive oxygen species in mitochondria, significantly limit the benefits of stroke therapies. We have developed a focal stroke model using mice deficient in mitochondrial manganese-superoxide dismutase (SOD2-/+) to investigate neurovascular endothelial damage that occurs during reperfusion. Following focal stroke and reperfusion, SOD2-/+ mice had delayed blood-brain barrier breakdown, associated with activation of matrix metalloproteinase and high brain hemorrhage rates, whereas a decrease in apoptosis and hemorrhage was observed in SOD2 overexpressors. Thus, induction and activation of SOD2 is a novel strategy for neurovascular protection after ischemia/reperfusion. Our recent study identified the signal transducer and activator of transcription 3 (STAT3) as a transcription factor of the mouse SOD2 gene. During reperfusion, activation of STAT3 and its recruitment into the SOD2 gene were blocked, resulting in increased oxidative stress and neuronal apoptosis. In contrast, pharmacological activation of STAT3 induced SOD2 expression, which limits ischemic neuronal death. Our studies point to antioxidant-based neurovascular protective strategies as potential treatments to expand the therapeutic window of currently approved therapies.
Collapse
Affiliation(s)
- Joo Eun Jung
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5487, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Kollmar R, Henninger N, Urbanek C, Schwab S. G-CSF, rt-PA and combination therapy after experimental thromboembolic stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:9. [PMID: 20388227 PMCID: PMC2868804 DOI: 10.1186/2040-7378-2-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
Abstract
Background Granulocyte Colony-Stimulating Factor (G-CSF) has remarkable neuroprotective properties. Due to its proven safety profile, G-CSF is currently used in clinical stroke trials. As neuroprotectants are considered to be more effective in the early phase of cerebral ischemia and during reperfusion, G-CSF should to be tested in combination with thrombolysis. Therefore, combination therapy was investigated in an experimental model of thromboembolic stroke. Methods Male Wistar rats (n = 72) were subjected to a model of thromboembolic occlusion (TE) of the middle cerebral artery. Different groups (n = 12 each) treated by recombinant tissue-plasminogen activator (rt-PA) or/and G-CSF: group control (control), group early G-CSF (G-CSF 60 min after TE), group rt-PA (rt-PA 60 min after TE), group com (combination rt-PA/G-CSF), group delayed rt-PA (rt-PA after 180 min), group deco (G-CSF after 60 min, rt-PA after 180 min). Animals were investigated by magnetic resonance imaging (MRI) and silver infarct staining (SIS) 24 hours after TE. Results Early G-CSF or rt-PA reduced the infarct size compared to all groups (p < 0.05 to p < 0.01) with the exception of group com, (p = n.s.) as measured by T2, DWI, and SIS. Late administration of rt-PA lead to high mortality and larger infarcts compared to all other groups (p < 0.05 to p < 0.01). Pre-treatment by G-CSF (deco) reduced infarct site compared to delayed rt-PA treatment (p < 0.05). G-CSF did not significantly influence PWI when combined with rt-PA. All animals treated by rt-PA showed improved parameters in PWI indicating reperfusion. Conclusions G-CSF was neuroprotective when given early after TE. Early combination with rt-PA showed no additional benefit compared to rt-PA or G-CSF alone, but did not lead to side effects. Pretreatment by G-CSF was able to reduce deleterious effects of late rt-PA treatment.
Collapse
Affiliation(s)
- Rainer Kollmar
- Department of Neurology, University of Erlangen, Erlangen, Germany.
| | | | | | | |
Collapse
|
95
|
Strecker JK, Sevimli S, Schilling M, Klocke R, Nikol S, Schneider A, Schäbitz WR. Effects of G-CSF treatment on neutrophil mobilization and neurological outcome after transient focal ischemia. Exp Neurol 2009; 222:108-13. [PMID: 20026112 DOI: 10.1016/j.expneurol.2009.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/29/2022]
Abstract
Several recent studies demonstrated beneficial effects of G-CSF treatment (granulocyte colony-stimulating factor) in various CNS disease. Possible mechanisms underlying this activity are neuroprotection, anti-apoptosis, angiogenesis and anti-inflammation. Hence, we investigated the efficacy of G-CSF administration in experimental stroke by determining infarct volume and neurological score in wildtype, G-CSF-deficient and G-CSF-treated G-CSF-deficient mice. Besides, cerebral ischemia is followed by an upregulation of endothelial adhesion molecules which promote leukocyte recruitment to the injured area. In combination with G-CSF-induced leukocytosis, increased peripheral neutrophils could aggregate within microvasculature and additionally impair blood perfusion of the ischemic tissue. Therefore, we analyzed the neutrophil counts in both vessel and tissue compartment 2 and 5 days post-stroke by immunohistochemistry. Here we show that G-CSF deficiency leads to increased infarct volumes, whereas G-CSF substitution revokes detrimental effects by reducing lesion size and enhancing neurological outcome compared to untreated animals. Administration of G-CSF is accompanied by significant increase of circulating neutrophils 2 days post-ischemia but leukocytosis is restricted to the vessel compartment and has no deleterious effect on lesion formation and functional recovery. These observations are likely to be important for therapeutic targeting of G-CSF-mediated neuroprotection in stroke.
Collapse
Affiliation(s)
- Jan-Kolja Strecker
- Department of Neurology, University of Münster, Albert-Schweitzer Str. 33, 48129 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
96
|
Gomez-Smith M, Qin Z, Zhou X, Schock SC, Chen HH. LIM domain only 4 protein promotes granulocyte colony-stimulating factor-induced signaling in neurons. Cell Mol Life Sci 2009; 67:949-57. [PMID: 19997957 DOI: 10.1007/s00018-009-0223-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/06/2009] [Accepted: 11/23/2009] [Indexed: 11/25/2022]
Abstract
Granulocyte colony-stimulating factor (GCSF) is currently in clinical trials to treat neurodegenerative diseases and stroke. Here, we tested whether LIM domain only 4 protein (LMO4), a hypoxia-inducible gene that protects neurons from ischemic injury, could modulate the neuroprotective effect of GCSF. We showed that GCSF treatment acetylates and phosphorylates Stat3, activates expression of a Stat3-dependent anti-apoptotic gene, p27, and increases neuron survival from ischemic injury. LMO4 participates in Stat3 signaling in hepatocytes and associates with histone deacetylase 2 (HDAC2) in cancer cells. In the absence of LMO4, GCSF fails to rescue neurons from ischemic insults. In wild-type neurons, inhibition of HDAC promoted Stat3 acetylation and the antiapoptotic effect of GCSF. In LMO4 null cortical neurons, expression of wild-type but not HDAC-interaction-deficient LMO4 restored GCSF-induced Stat3 acetylation and p27 expression. Thus, our results indicate that LMO4 enhances GCSF-induced Stat3 signaling in neurons, in part by sequestering HDAC.
Collapse
|
97
|
The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci 2009; 29:11572-81. [PMID: 19759304 DOI: 10.1523/jneurosci.0453-09.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor that controls proliferation and differentiation of neural stem cells. Although recent studies have begun to explore G-CSF-related mechanisms of action in various disease models, little is known about its function in the healthy brain. In the present study, the effect of G-CSF deficiency on memory formation and motor skills was investigated. The impact of G-CSF deficiency on the structural integrity of the hippocampus was evaluated by analyzing the generation of doublecortin-expressing cells, the amount of bromodeoxyurine-labeled cells, the dendritic complexity in hippocampal neurons, the binding densities of NMDA and GABA(A) receptors and the induction of long-term potentiation (LTP). G-CSF deficiency caused a disruption in memory formation and in the development of motor skills. These impairments were associated with reduced ligand binding densities of NMDA receptors in hippocampal subfields CA3 and the dentate gyrus. The reduced excitation was potentiated by increased ligand binding densities of GABA(A) receptors resulting in a relative shift in favor of inhibition and impaired behavioral performance. These alterations were accompanied by impaired induction of LTP in the CA1 region. Moreover, G-CSF deficiency led to decreased dendritic complexity in hippocampal neurons in the dentate gyrus and the CA1 region. G-CSF deficiency also caused a reduction of neuronal precursor cells in the dentate gyrus. These findings confirm G-CSF as an essential neurotrophic factor, and point to a role in the proliferation, differentiation and functional integration of neural cells necessary for the structural and functional integrity of the hippocampal formation.
Collapse
|
98
|
Sairanen T, Szepesi R, Karjalainen-Lindsberg ML, Saksi J, Paetau A, Lindsberg PJ. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol 2009; 118:541-52. [PMID: 19529948 DOI: 10.1007/s00401-009-0559-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/07/2009] [Accepted: 06/07/2009] [Indexed: 10/20/2022]
Abstract
Apoptotic cell death contributes to neuronal loss in the penumbral region of brain infarction. Activated caspase-3 (ACA-3) cleaves proteins including poly(ADP-ribose) polymerase-1 (PARP-1) important in DNA repair, thus promoting apoptosis. Overactivation of PARP-1 depletes NAD(+) and ATP, resulting in necrosis. These cell death phenomena have been investigated mostly in experimental animals. We studied an autopsy cohort of 13 fatal ischemic stroke cases (symptoms 15 h to 18 days) and 2 controls by immunohistochemical techniques. The number of PARP-1 immunoreactive neurons was highest in the periinfarct area. Nuclear PARP-1 correlated with increasing neuronal necrosis (P = 0.013). Cytoplasmic PARP-1 correlated with TUNEL in periinfarct and core areas (P = 0.01). Cytoplasmic cleaved PARP-1 was inversely correlated with increasing necrotic damage (P = 0.001). PAR-polymers were detected in neurons confirming enzymatic activity of PARP-1. Cytoplasmic ACA-3 correlated with death receptor Fas (r (s) = 0.48; P = 0.005). In conclusion, the confirmation of the same pathways of cell death than previously described in experimental animal models encourages neuroprotective treatments acting on these mediators also in human stroke.
Collapse
|
99
|
Li JS. Effects of Naomaitong combined with mobilization of bone marrow mesenchymal stem cells on neuron apoptosis and expressions of Fas, FasL and caspase-3 proteins in rats with cerebral ischemia. JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2009; 7:860-867. [DOI: 10.3736/jcim20090912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
100
|
England TJ, Gibson CL, Bath PMW. Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: A systematic review. ACTA ACUST UNITED AC 2009; 62:71-82. [PMID: 19751764 DOI: 10.1016/j.brainresrev.2009.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 01/03/2023]
Abstract
BACKGROUND Granulocyte-colony stimulating factor (G-CSF) shows promise as a treatment for stroke. This systematic review assesses G-CSF in experimental ischaemic stroke. METHODS Relevant studies were identified with searches of Medline, Embase and PubMed. Data were extracted on stroke lesion size, neurological outcome and quality, and analysed using Cochrane Review Manager using random effects models; results are expressed as standardised mean difference (SMD) and odds ratio (OR). RESULTS Data were included from 19 publications incorporating 666 animals. G-CSF reduced lesion size significantly in transient (SMD -1.63, p<0.00001) but not permanent (SMD -1.56, p=0.11) focal models of ischaemia. Lesion size was reduced at all doses and with treatment commenced within 4 h of transient ischaemia. Neurological deficit (SMD -1.37, p=0.0004) and limb placement (SMD -1.88, p=0.003) improved with G-CSF; however, locomotor activity (> or =4 weeks post-ischaemia) was not (SMD 0.76, p=0.35). Death (OR 0.27, p<0.0001) was reduced with G-CSF. Median study quality was 4 (range 0-7/8); Egger's test suggested significant publication bias (p<0.001). CONCLUSIONS G-CSF significantly reduced lesion size in transient but not permanent models of ischaemic stroke. Motor impairment and death were also reduced. Further studies assessing dose response, administration time, length of ischaemia and long-term functional recovery are needed.
Collapse
|