51
|
Walker AC, Bhargava R, Dove AS, Brust AS, Owji AA, Czyż DM. Bacteria-Derived Protein Aggregates Contribute to the Disruption of Host Proteostasis. Int J Mol Sci 2022; 23:4807. [PMID: 35563197 PMCID: PMC9103901 DOI: 10.3390/ijms23094807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative protein conformational diseases are characterized by the misfolding and aggregation of metastable proteins encoded within the host genome. The host is also home to thousands of proteins encoded within exogenous genomes harbored by bacteria, fungi, and viruses. Yet, their contributions to host protein-folding homeostasis, or proteostasis, remain elusive. Recent studies, including our previous work, suggest that bacterial products contribute to the toxic aggregation of endogenous host proteins. We refer to these products as bacteria-derived protein aggregates (BDPAs). Furthermore, antibiotics were recently associated with an increased risk for neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis-possibly by virtue of altering the composition of the human gut microbiota. Other studies have shown a negative correlation between disease progression and antibiotic administration, supporting their protective effect against neurodegenerative diseases. These contradicting studies emphasize the complexity of the human gut microbiota, the gut-brain axis, and the effect of antibiotics. Here, we further our understanding of bacteria's effect on host protein folding using the model Caenorhabditis elegans. We employed genetic and chemical methods to demonstrate that the proteotoxic effect of bacteria on host protein folding correlates with the presence of BDPAs. Furthermore, the abundance and proteotoxicity of BDPAs are influenced by gentamicin, an aminoglycoside antibiotic that induces protein misfolding, and by butyrate, a short-chain fatty acid that we previously found to affect host protein aggregation and the associated toxicity. Collectively, these results increase our understanding of host-bacteria interactions in the context of protein conformational diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel M. Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (A.C.W.); (R.B.); (A.S.D.); (A.S.B.); (A.A.O.)
| |
Collapse
|
52
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
53
|
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022; 10:biomedicines10020436. [PMID: 35203645 PMCID: PMC8962300 DOI: 10.3390/biomedicines10020436] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Armin Aghazarian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Anthony Nazaryan
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
54
|
Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models. Antioxidants (Basel) 2022; 11:antiox11020211. [PMID: 35204092 PMCID: PMC8868341 DOI: 10.3390/antiox11020211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, an autochthonous variety of sweet cherry (Prunus avium L.), namely “Moretta di Vignola”, was processed to prepare extracts rich in polyphenols, which were characterized by high-performance liquid chromatography (HPLC) separation coupled to UV/DAD and ESI-MSn analysis. Then, a sweet cherry anthocyanin-rich extract (ACE) was prepared, fully characterized and tested for its activity against Parkinson’s disease (PD) in cellular (BV2 microglia and SH-SY5Y neuroblastoma) and in Drosophila melanogaster rotenone (ROT)-induced model. The extract was also evaluated for its antioxidant activity on Caenorhabditis elegans by assessing nematode resistance to thermal stress. In both cell lines, ACE reduced ROT-induced cell death and it decreased, alone, cellular reactive oxygen species (ROS) content while reinstating control-like ROS values after ROT-induced ROS rise, albeit at different concentrations of both compounds. Moreover, ACE mitigated SH-SY5Y cell cytotoxicity in a non-contact co-culture assay with cell-free supernatants from ROT-treated BV-2 cells. ACE, at 50 µg/mL, ameliorated ROT (250 μM)-provoked spontaneous (24 h duration) and induced (after 3 and 7 days) locomotor activity impairment in D. melanogaster and it also increased survival and counteracted the decrease in fly lifespan registered after exposure to the ROT. Moreover, heads from flies treated with ACE showed a non-significant decrease in ROS levels, while those exposed to ROT markedly increased ROS levels if compared to controls. ACE + ROT significantly placed the ROS content to intermediate values between those of controls and ROT alone. Finally, ACE at 25 µg/mL produced a significant increase in the survival rate of nematodes submitted to thermal stress (35 °C, 6–8 h), at the 2nd and 9th day of adulthood. All in all, ACE from Moretta cherries can be an attractive candidate to formulate a nutraceutical product to be used for the prevention of oxidative stress-induced disorders and related neurodegenerative diseases.
Collapse
|
55
|
Yemula N, Dietrich C, Dostal V, Hornberger M. Parkinson's Disease and the Gut: Symptoms, Nutrition, and Microbiota. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1491-1505. [PMID: 34250955 PMCID: PMC8609682 DOI: 10.3233/jpd-212707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, characterized by symptoms of bradykinesia, rigidity, postural instability, and tremor. Recently, there has been a growing focus on the relationship between the gut and the development of PD. Emerging to the forefront, an interesting concept has developed suggesting that the initial pathophysiological changes occur in the gastrointestinal tract before changes are seen within the brain. This review is aimed at highlighting the relationship between PD and the gastrointestinal tract, along with the supporting evidence for this. Firstly, we will focus on the gastrointestinal conditions and symptoms which commonly affects patients, including both upper and lower gastrointestinal issues. Secondly, the impact of nutrition and diet on neurological health and PD physiology, with particular emphasis on commonly consumed items including macronutrients and micronutrients. Finally, variability of the gut microbiome will also be discussed and its link with both the symptoms and signs of PD. The evidence presented in this review highly suggests that the initial pathogenesis in the gut may proceed the development of prodromal PD subtypes, and therefore building on this further could be imperative and lead to earlier diagnosis with new and improved therapeutics.
Collapse
Affiliation(s)
- Nehal Yemula
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Celina Dietrich
- Faculty of Health and Medical Sciences, University of East Anglia, Norwich, United Kingdom
| | - Vaclav Dostal
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Michael Hornberger
- Faculty of Health and Medical Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
56
|
Zhang Y, Xu S, Qian Y, He X, Mo C, Yang X, Xiao Q. Sodium butyrate attenuates rotenone-induced toxicity by activation of autophagy through epigenetically regulating PGC-1α expression in PC12 cells. Brain Res 2021; 1776:147749. [PMID: 34896331 DOI: 10.1016/j.brainres.2021.147749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Short-chain fatty acids (SCFAs) are considered the key molecular link between gut microbiota and pathogenesis of Parkinson's disease (PD). However, the role of SCFAs in PD pathogenesis is controversial. Autophagy is important for the degradation of α-synuclein, which is critical to the development of PD. However, whether SCFAs can regulate autophagy in PD remains unknown. We aimed to investigate the role of SCFAs and explore the potential mechanisms in rat dopaminergic PC12 cells treated with rotenone. Expression levels of α-synuclein, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and microtubule-associated protein 1 light chain 3 beta (LC3B)-II were detected by Western blot. Histone acetylation levels at PGC-1α promoter region were measured using chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). Among the three SCFAs, sodium butyrate (NaB) protected against rotenone-induced toxicity. NaB activated autophagy pathway and reduced rotenone-induced α-synuclein expression through the activation of autophagy. Notably, NaB activated autophagy pathway through upregulating PGC-1α expression. More importantly, NaB promoted the levels of histone 3 lysine 9 acetylation (H3K9Ac) and histone 3 lysine 27 acetylation (H3K27Ac) at PGC-1α promoter region, indicating that NaB promotes PGC-1α expression via histone acetylation modification. In conclusion, NaB can protect against rotenone-induced toxicity through activation of the autophagy pathway by upregulating PGC-1α expression via epigenetic modification.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|
57
|
Getachew B, Csoka AB, Garden AR, Copeland RL, Tizabi Y. Sodium Butyrate Protects Against Ethanol-Induced Toxicity in SH-SY5Y Cell Line. Neurotox Res 2021; 39:2186-2193. [PMID: 34554410 PMCID: PMC8459139 DOI: 10.1007/s12640-021-00418-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD), brought about by excessive alcohol use, is associated with damages to several organs including the brain. Chronic excessive use of alcohol can compromise intestinal integrity, leading to changes in gut microbiota (GM) composition known as dysbiosis. Dysbiosis, by disruption of the gut-brain axis (GBA), further exacerbates the deleterious effects of alcohol. One of the fermentation by-products of GM is butyrate (BUT), a short-chain fatty acid (SCFA) that plays an important role in maintaining homeostasis of the GBA. Alcohol metabolism results in formation of acetaldehyde, a highly reactive compound that reacts with dopamine in the brain to form toxic adducts such as salsolinol. Recent studies indicate potential neuro-protective effects of BUT against various toxicants including salsolinol. Here, we sought to investigate whether BUT can also protect against alcohol toxicity. Pretreatment of neuroblastoma-derived SH-SY5Y cells with 500 mM ethanol (ETOH) for 24 h resulted in approximately 40% reduction in cell viability, which was totally blocked by 10 µM of either BUT or AR 420,626 (AR), a selective fatty acid 3 receptor (FA3R) agonist. The neuro-protective effects of both BUT and AR were significantly (80%) attenuated by beta-hydroxy butyrate (BHB), a selective FA3R antagonist. Interestingly, combination of BUT and AR resulted in synergistic protection against ETOH, which was totally blocked by BHB. These findings suggest potential utility of butyrate and/or FA3R agonists against ETOH-induced toxicity.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Allison R Garden
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Robert L Copeland
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| |
Collapse
|
58
|
Kenna JE, Chua EG, Bakeberg M, Tay A, McGregor S, Gorecki A, Horne M, Marshall B, Mastaglia FL, Anderton RS. Changes in the Gut Microbiome and Predicted Functional Metabolic Effects in an Australian Parkinson's Disease Cohort. Front Neurosci 2021; 15:756951. [PMID: 34776854 PMCID: PMC8588830 DOI: 10.3389/fnins.2021.756951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Background: There has been increasing recognition of the importance of the gut microbiome in Parkinson's disease (PD), but the influence of geographic location has received little attention. The present study characterized the gut microbiota and associated changes in host metabolic pathways in an Australian cohort of people with PD (PwP). Methods: The study involved recruitment and assessment of 87 PwP from multiple Movement Disorders Clinics in Australia and 47 healthy controls. Illumina sequencing of the V3 and V4 regions of the 16S rRNA gene was used to distinguish inter-cohort differences in gut microbiota; KEGG analysis was subsequently performed to predict functional changes in host metabolic pathways. Results: The current findings identified significant differences in relative abundance and diversity of microbial operational taxonomic units (OTUs), and specific bacterial taxa between PwP and control groups. Alpha diversity was significantly reduced in PwP when compared to controls. Differences were found in two phyla (Synergistetes and Proteobacteria; both increased in PwP), and five genera (Colidextribacter, Intestinibacter, Kineothrix, Agathobaculum, and Roseburia; all decreased in PwP). Within the PD cohort, there was no association identified between microbial composition and gender, constipation or use of gastrointestinal medication. Furthermore, KEGG analysis identified 15 upregulated and 11 downregulated metabolic pathways which were predicted to be significantly altered in PwP. Conclusion: This study provides the first comprehensive characterization of the gut microbiome and predicted functional metabolic effects in a southern hemisphere PD population, further exploring the possible mechanisms whereby the gut microbiota may exert their influence on this disease, and providing evidence for the incorporation of such data in future individualized therapeutic strategies.
Collapse
Affiliation(s)
- Jade E Kenna
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Eng Guan Chua
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, WA, Australia
| | - Megan Bakeberg
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,School of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Alfred Tay
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, WA, Australia
| | - Sarah McGregor
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Anastazja Gorecki
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Malcolm Horne
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Barry Marshall
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia.,School of Nursing, Midwifery, Health Sciences and Physiotherapy, The University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
59
|
Wang Q, Qi Y, Shen W, Xu J, Wang L, Chen S, Hou T, Si J. The Aged Intestine: Performance and Rejuvenation. Aging Dis 2021; 12:1693-1712. [PMID: 34631215 PMCID: PMC8460310 DOI: 10.14336/ad.2021.0202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to the growing elderly population, age-related problems are gaining increasing attention from the scientific community. With senescence, the intestine undergoes a spectrum of changes and infirmities that are likely the causes of overall aging. Therefore, identification of the aged intestine and the search for novel strategies to rescue it, are required. Although progress has been made in research on some components of the aged intestine, such as intestinal stem cells, the comprehensive understanding of intestinal aging is still limited, and this restricts the in-depth search for efficient strategies. In this concise review, we discuss several aspects of intestinal aging. More emphasis is placed on the appraisal of current and potential strategies to alleviate intestinal aging, as well as future targets to rejuvenate the aged intestine.
Collapse
Affiliation(s)
- Qiwen Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yadong Qi
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Weiyi Shen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jilei Xu
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lan Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Tongyao Hou
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
60
|
|
61
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
62
|
Baert F, Matthys C, Maselyne J, Van Poucke C, Van Coillie E, Bergmans B, Vlaemynck G. Parkinson's disease patients' short chain fatty acids production capacity after in vitro fecal fiber fermentation. NPJ Parkinsons Dis 2021; 7:72. [PMID: 34389734 PMCID: PMC8363715 DOI: 10.1038/s41531-021-00215-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Animal models indicate that butyrate might reduce motor symptoms in Parkinson's disease. Some dietary fibers are butyrogenic, but in Parkinson's disease patients their butyrate stimulating capacity is unknown. Therefore, we investigated different fiber supplements' effects on short-chain fatty acid production, along with potential underlying mechanisms, in Parkinson's patients and age-matched healthy controls. Finally, it was investigated if this butyrate production could be confirmed by using fiber-rich vegetables. Different fibers (n = 40) were evaluated by in vitro fermentation experiments with fecal samples of Parkinson's patients (n = 24) and age-matched healthy volunteers (n = 39). Short-chain fatty acid production was analyzed by headspace solid-phase micro-extraction gas chromatography-mass spectrometry. Clostridium coccoides and C. leptum were quantified through 16S-rRNA gene-targeted group-specific qPCR. Factors influencing short-chain fatty acid production were investigated using linear mixed models. After fiber fermentation, butyrate concentration varied between 25.6 ± 16.5 µmol/g and 203.8 ± 91.9 µmol/g for Parkinson's patients and between 52.7 ± 13.0 µmol/g and 229.5 ± 42.8 µmol/g for controls. Inulin had the largest effect, while xanthan gum had the lowest production. Similar to fiber supplements, inulin-rich vegetables, but also fungal β-glucans, stimulated butyrate production most of all vegetable fibers. Parkinson's disease diagnosis limited short-chain fatty acid production and was negatively associated with butyrate producers. Butyrate kinetics during 48 h fermentation demonstrated a time lag effect in Parkinson's patients, especially in fructo-oligosaccharide fermentation. Butyrate production can be stimulated in Parkinson's patients, however, remains reduced compared to healthy controls. This is a first step in investigating dietary fiber's potential to increase short-chain fatty acids in Parkinson's disease.
Collapse
Affiliation(s)
- Florence Baert
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium ,grid.5596.f0000 0001 0668 7884Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, O&N I, Leuven, Belgium
| | - Christophe Matthys
- grid.5596.f0000 0001 0668 7884Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, O&N I, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Endocrinology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Jarissa Maselyne
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Christof Van Poucke
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Els Van Coillie
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Bruno Bergmans
- grid.420036.30000 0004 0626 3792Department of Neurology, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium ,Department of Neurology, University Hospitals Ghent, Ghent, Belgium
| | - Geertrui Vlaemynck
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| |
Collapse
|
63
|
Zheng SY, Li HX, Xu RC, Miao WT, Dai MY, Ding ST, Liu HD. Potential roles of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev 2021; 69:101347. [PMID: 33905953 DOI: 10.1016/j.arr.2021.101347] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease attributed to multifactorial changes. However, its pathological mechanism remains undetermined. Accumulating evidence has revealed the emerging functions of gut microbiota and microbial metabolites, which can affect both the enteric nervous system and the central nervous system via the microbiota-gut-brain axis. Accordingly, intestinal dysbiosis might be closely associated with PD. This review explores alterations to gut microbiota, correlations with clinical manifestations of PD, and briefly probes the underlying mechanisms. Next, the highly controversial roles of microbial metabolites including short-chain fatty acids (SCFAs), H2 and H2S are discussed. Finally, the pros and cons of the current treatments for PD, including those targeting microbiota, are assessed. Advancements in research techniques, further studies on levels of specific strains and longitudinal prospective clinical trials are urgently needed for the identification of early diagnostic markers and the development of novel therapeutic approaches for PD.
Collapse
|
64
|
Trichka J, Zou WQ. Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases. Pathogens 2021; 10:887. [PMID: 34358037 PMCID: PMC8308761 DOI: 10.3390/pathogens10070887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/29/2022] Open
Abstract
The process of neuroinflammation contributes to the pathogenic mechanism of many neurodegenerative diseases. The deleterious attributes of neuroinflammation involve aberrant and uncontrolled activation of glia, which can result in damage to proximal brain parenchyma. Failure to distinguish self from non-self, as well as leukocyte reaction to aggregation and accumulation of proteins in the CNS, are the primary mechanisms by which neuroinflammation is initiated. While processes local to the CNS may instigate neurodegenerative disease, the existence or dysregulation of systemic homeostasis can also serve to improve or worsen CNS pathologies, respectively. One fundamental component of systemic homeostasis is the gut microbiota, which communicates with the CNS via microbial metabolite production, the peripheral nervous system, and regulation of tryptophan metabolism. Over the past 10-15 years, research focused on the microbiota-gut-brain axis has culminated in the discovery that dysbiosis, or an imbalance between commensal and pathogenic gut bacteria, can promote CNS pathologies. Conversely, a properly regulated and well-balanced microbiome supports CNS homeostasis and reduces the incidence and extent of pathogenic neuroinflammation. This review will discuss the role of the gut microbiota in exacerbating or alleviating neuroinflammation in neurodegenerative diseases, and potential microbiota-based therapeutic approaches to reduce pathology in diseased states.
Collapse
Affiliation(s)
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA;
| |
Collapse
|
65
|
Mirzaei R, Bouzari B, Hosseini-Fard SR, Mazaheri M, Ahmadyousefi Y, Abdi M, Jalalifar S, Karimitabar Z, Teimoori A, Keyvani H, Zamani F, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139:111661. [PMID: 34243604 DOI: 10.1016/j.biopha.2021.111661] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
During the past decade, accumulating evidence from the research highlights the suggested effects of bacterial communities of the human gut microbiota and their metabolites on health and disease. In this regard, microbiota-derived metabolites and their receptors, beyond the immune system, maintain metabolism homeostasis, which is essential to maintain the host's health by balancing the utilization and intake of nutrients. It has been shown that gut bacterial dysbiosis can cause pathology and altered bacterial metabolites' formation, resulting in dysregulation of the immune system and metabolism. The short-chain fatty acids (SCFAs), such as butyrate, acetate, and succinate, are produced due to the fermentation process of bacteria in the gut. It has been noted remodeling in the gut microbiota metabolites associated with the pathophysiology of several neurological disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, stress, anxiety, depression, autism, vascular dementia, schizophrenia, stroke, and neuromyelitis optica spectrum disorders, among others. This review will discuss the current evidence from the most significant studies dealing with some SCFAs from gut microbial metabolism with selected neurological disorders.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mazaheri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimitabar
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
66
|
Novel Pharmacotherapies in Parkinson's Disease. Neurotox Res 2021; 39:1381-1390. [PMID: 34003454 PMCID: PMC8129607 DOI: 10.1007/s12640-021-00375-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD), an age-related progressive neurodegenerative condition, is associated with loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which results in motor deficits characterized by the following: akinesia, rigidity, resting tremor, and postural instability, as well as nonmotor symptoms such as emotional changes, particularly depression, cognitive impairment, gastrointestinal, and autonomic dysfunction. The most common treatment for PD is focused on dopamine (DA) replacement (e.g., levodopa = L-Dopa), which unfortunately losses its efficacy over months or years and can induce severe dyskinesia. Hence, more efficacious interventions without such adverse effects are urgently needed. In this review, following a general description of PD, potential novel therapeutic interventions for this devastating disease are examined. Specifically, the focus is on nicotine and nicotinic cholinergic system, as well as butyrate, a short chain fatty acid (SCFA), and fatty acid receptors.
Collapse
|
67
|
Singh D, Gupta S. Butyrate: A Review on Beneficial Pharmacological and Therapeutic Effect. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999201029210912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Short-chain fatty acids (SCFAs), generally acetate, propionate along with
butyrate, are aliphatic organic acids formed in the gut mucosa through bacterial fermentation of
mostly undigested nutritional carbohydrates, again to a minor degree by natural and dietary proteins,
such as mucous and shed epithelial cells.
Methods::
Many sources were used to collect information about Butyrate, such as Pub med, Google
Scholar, Pubmed, Scopus and other reliable sources.
:
Endogenous butyrate formation, absorption, and transportation by colon cells have now been well
acknowledged. Butyrate exerts its action features by way of appearing as a histone deacetylase inhibitor,
even signaling through a few protein receptors. Lately, butyrate has received special consideration
for its favorable result on intestinal equilibrium and also energy metabolism. There is a
growing interest in butyrate as its impact on epigenetic mechanisms will result in much more certain
and also efficacious healing techniques for the prevention and therapy of various diseases that
range from genetic conditions to other body disorders.
Conclusion::
With this assessment, we compile the existing information on the attributes of butyrate,
particularly its potential effects and also mechanisms involved in cancer, inflammation, diabetes
mellitus, neurological and cardiovascular disorder.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M. College of Pharmacy, (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M.M. College of Pharmacy, (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
68
|
Innos J, Hickey MA. Using Rotenone to Model Parkinson's Disease in Mice: A Review of the Role of Pharmacokinetics. Chem Res Toxicol 2021; 34:1223-1239. [PMID: 33961406 DOI: 10.1021/acs.chemrestox.0c00522] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a naturally occurring toxin that inhibits complex I of the mitochondrial electron transport chain. Several epidemiological studies have shown an increased risk of Parkinson's disease (PD) in individuals exposed chronically to rotenone, and it has received great attention for its ability to reproduce many critical features of PD in animal models. Laboratory studies of rotenone have repeatedly shown that it induces in vivo substantia nigra dopaminergic cell loss, a hallmark of PD neuropathology. Additionally, rotenone induces in vivo aggregation of α-synuclein, the major component of Lewy bodies and Lewy neurites found in the brain of PD patients and another hallmark of PD neuropathology. Some in vivo rotenone models also reproduce peripheral signs of PD, such as reduced intestinal motility and peripheral α-synuclein aggregation, both of which are thought to precede classical signs of PD in humans, such as cogwheel rigidity, bradykinesia, and resting tremor. Nevertheless, variability has been noted in cohorts of animals exposed to the same rotenone exposure regimen and also between cohorts exposed to similar doses of rotenone. Low doses, administered chronically, may reproduce PD symptoms and neuropathology more faithfully than excessively high doses, but overlap between toxicity and parkinsonian motor phenotypes makes it difficult to separate if behavior is examined in isolation. Rotenone degrades when exposed to light or water, and choice of vehicle may affect outcome. Rotenone is metabolized extensively in vivo, and choice of route of exposure influences greatly the dose used. However, male rodents may be capable of greater metabolism of rotenone, which could therefore reduce their total body exposure when compared with female rodents. The pharmacokinetics of rotenone has been studied extensively, over many decades. Here, we review these pharmacokinetics and models of PD using this important piscicide.
Collapse
Affiliation(s)
- Jürgen Innos
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| | - Miriam A Hickey
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
69
|
Korean red ginseng suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced inflammation in the substantia nigra and colon. Brain Behav Immun 2021; 94:410-423. [PMID: 33662500 DOI: 10.1016/j.bbi.2021.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease involving dopaminergic neuronal death in the substantia nigra (SN); recent studies have shown that interactions between gut and brain play a critical role in the pathogenesis of PD. In this study, the anti-inflammatory effect of Korean red ginseng (KRG) and the changes in gut microbiota were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Male nine-week-old C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Two hours after the daily MPTP injection, the mice were orally administered 100 mg/kg of KRG, which continued for 7 days beyond the MPTP injections, for a total of 12 consecutive days. Eight days after the final KRG administration, the pole and rotarod tests were performed and brain and colon samples of the mice were collected. Dopaminergic neuronal death, activation of microglia and astrocytes, α-synuclein and expressions of inflammatory cytokines and disruption of tight junction were evaluated. In addition, 16S ribosomal RNA gene sequencing of mouse fecal samples was performed to investigate microbiome changes. KRG treatment prevented MPTP-induced behavioral impairment, dopaminergic neuronal death, activation of microglia and astrocytes in the nigrostriatal pathway, disruption of tight junction and the increase in α-synuclein, interleukin-1β and tumor necrosis factor-α expression in the colon. The 16S rRNA sequencing revealed that MPTP altered the number of bacterial species and their relative abundances, which were partially suppressed by KRG treatment. Especially, KRG suppressed the abundance of the inflammation-related phylum Verrucomicrobia and genera Ruminococcus and Akkermansia (especially Akkermansia muciniphila), and elevated the abundance of Eubacterium, which produces the anti-inflammatory substances. These findings suggest that KRG prevents MPTP-induced dopaminergic neuronal death, activation of microglia and astrocytes, and accumulation of α-synuclein in the SN, and the regulation of inflammation-related factors in the colon may influence the effect.
Collapse
|
70
|
Epigenetic Modulation in Parkinson's Disease and Potential Treatment Therapies. Neurochem Res 2021; 46:1618-1626. [PMID: 33900517 DOI: 10.1007/s11064-021-03334-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer's disease, Parkinson's disease and, Huntington's disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson's Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.
Collapse
|
71
|
Hou Y, Li X, Liu C, Zhang M, Zhang X, Ge S, Zhao L. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson's disease. Exp Gerontol 2021; 150:111376. [PMID: 33905875 DOI: 10.1016/j.exger.2021.111376] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Gut microbial metabolites, SCFAs, were related with the occurrence and development of Parkinson's disease (PD). But the effects of different short-chain fatty acids (SCFAs) on PD and involving mechanisms are still undefined. In this study we evaluate the effects of three dominant SCFAs (acetate, propionate and butyrate) on motor damage, dopaminergic neuronal degeneration and underlying neuroinflammation related mechanisms in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. High (2.0 g/kg) or low doses (0.2 g/kg) of sodium acetate (NaA), sodium propionate (NaP) or sodium butyrate (NaB) were gavaged into PD mice for 6 weeks. High doses of NaA reduced the turning time of PD mice. NaB significantly reduced the turning and total time in pole test, and increased the average velocity in open field test when compared with PD mice, indicating the most effective alleviation of PD-induced motor disorder. Low and high doses of NaB significantly increased the content of tyrosine hydroxylase (TH) by 12.3% and 20.2%, while reduced α-synuclein activation by 159.4% and 132.7% in the substantia nigra pars compacta (SNpc), compared with PD groups. Butyrate reached into the midbrain SNpc and suppressed microglia over-activation. It inhibited the levels of pro-inflammatory factors (IL-6, IL-1β and TNF-α) (P < 0.01) and iNOS. Besides, butyrate inhibited the activation of NF-κB and MAPK signaling pathways in the SNpc region. Consequently, sodium butyrate could inhibit neuroinflammation and alleviate neurological damage of PD.
Collapse
Affiliation(s)
- Yichao Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingqi Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chang Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaoying Zhang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010080, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
72
|
Wang Q, Luo Y, Chaudhuri KR, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson's disease: mechanistic insights andtherapeutic options. Brain 2021; 144:2571-2593. [PMID: 33856024 DOI: 10.1093/brain/awab156] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Sven Pettersson
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore.,LKC School of Medicine, NTU, Singapore.,Sunway University, Department of Medical Sciences, Kuala Lumpur, Malaysia
| |
Collapse
|
73
|
Liang Y, Cui L, Gao J, Zhu M, Zhang Y, Zhang HL. Gut Microbial Metabolites in Parkinson's Disease: Implications of Mitochondrial Dysfunction in the Pathogenesis and Treatment. Mol Neurobiol 2021; 58:3745-3758. [PMID: 33825149 PMCID: PMC8280023 DOI: 10.1007/s12035-021-02375-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
The search for therapeutic targets for Parkinson's disease (PD) is hindered by the incomplete understanding of the pathophysiology of the disease. Mitochondrial dysfunction is an area with high potential. The neurobiological signaling connections between the gut microbiome and the central nervous system are incompletely understood. Multiple lines of evidence suggest that the gut microbiota participates in the pathogenesis of PD. Gut microbial dysbiosis may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The intervention of gut microbial metabolites via the microbiota-gut-brain axis may serve as a promising therapeutic strategy for PD. In this narrative review, we summarize the potential roles of gut microbial dysbiosis in PD, with emphasis on microbial metabolites and mitochondrial function. We then review the possible ways in which microbial metabolites affect the central nervous system, as well as the impact of microbial metabolites on mitochondrial dysfunction. We finally discuss the possibility of gut microbiota as a therapeutic target for PD.
Collapse
Affiliation(s)
- Yixuan Liang
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Ying Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
74
|
Lorente-Picón M, Laguna A. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules 2021; 11:433. [PMID: 33804226 PMCID: PMC7998286 DOI: 10.3390/biom11030433] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut-brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This review provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.
Collapse
Affiliation(s)
- Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
75
|
Mainstream psychiatry reinstates therapeutic ventures of the remote past. Drug Discov Today 2021; 26:845-851. [DOI: 10.1016/j.drudis.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/02/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
|
76
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
77
|
Li X, Fan X, Yuan X, Pang L, Hu S, Wang Y, Huang X, Song X. The Role of Butyric Acid in Treatment Response in Drug-Naïve First Episode Schizophrenia. Front Psychiatry 2021; 12:724664. [PMID: 34497548 PMCID: PMC8421030 DOI: 10.3389/fpsyt.2021.724664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Butyric acid, a major short-chain fatty acid (SCFA), has an important role in the microbiota-gut-brain axis and brain function. This study investigated the role of butyric acid in treatment response in drug-naïve first episode schizophrenia. Methods: The study recruited 56 Chinese Han schizophrenia inpatients with normal body weight and 35 healthy controls. Serum levels of butyric acid were measured using Gas Chromatography-Mass Spectrometer (GC-MS) analysis at baseline (for all participants) and 24 weeks after risperidone treatment (for patients). Clinical symptoms were measured using the Positive and Negative Syndrome Scale (PANSS) for patients at both time points. Results: At baseline, there was no significant difference in serum levels of butyric acid between patients and healthy controls (p = 0.206). However, there was a significant increase in serum levels of butyric acid in schizophrenia patients after 24-week risperidone treatment (p = 0.030). The PANSS total and subscale scores were decreased significantly after 24-week risperidone treatment (p's < 0.001). There were positive associations between baseline serum levels of butyric acid and the reduction ratio of the PANSS total and subscale scores after controlling for age, sex, education, and duration of illness (p's < 0.05). Further, there was a positive association between the increase in serum levels of butyric acid and the reduction of the PANSS positive symptoms subscale scores (r = 0.38, p = 0.019) after controlling for potential confounding factors. Conclusions: Increased serum levels of butyric acid might be associated with a favorable treatment response in drug-naïve, first episode schizophrenia. The clinical implications of our findings were discussed.
Collapse
Affiliation(s)
- Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Shaohua Hu
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Centre for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Xufeng Huang
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
78
|
Günaydin C, Çelik ZB, Bilge SS, Avci B, Kara N. SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells. Toxicol Ind Health 2020; 37:23-33. [PMID: 33300458 DOI: 10.1177/0748233720979278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rotenone is an industrial and environmental toxicant that has been strongly associated with neurodegeneration. It is clear that rotenone induces inflammatory and oxidative stress; however, information on the role of histone acetylation in neurotoxicity is limited. Epigenetic alterations, neuroinflammation, and oxidative stress play a role in the progression of neurodegeneration and can be caused by exposure to environmental chemicals, such as rotenone. Histone modifications, such as methylation and acetylation, play an important role in mediating epigenetic changes. Therefore, we here investigated the effects of histone acetylation on rotenone-induced inflammation and oxidative stress in both primary mouse microglia and hippocampal HT-22 cells using the pan-histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA). Our results showed that SAHA suppressed the inflammatory response by decreasing nuclear factor kappa B and inducible nitric oxide synthase expression. Additionally, SAHA inhibited the rotenone-induced elevation of interleukin 6 and tumor necrosis factor α levels in both cell lines. Furthermore, SAHA improved the rotenone-induced antioxidant status by mitigating the decrease in cellular glutathione levels. Additionally, SAHA prevented the rotenone-induced increase in the HDAC activity in microglial and hippocampal HT-22 cells. Together, our results showed that SAHA reduced rotenone-induced inflammatory and oxidative stress, suggesting a role for histone deacetylation in environmental-related neurotoxicity.
Collapse
Affiliation(s)
- Caner Günaydin
- Department of Pharmacology, School of Medicine, 37139Ondokuz Mayıs University, Turkey, Samsun
| | - Z Betül Çelik
- Department of Medical Biology and Genetics, School of Medicine, 37139Ondokuz Mayıs University, Samsun, Turkey
| | - S Sırrı Bilge
- Department of Pharmacology, School of Medicine, 37139Ondokuz Mayıs University, Turkey, Samsun
| | - Bahattin Avci
- Department of Biochemistry, School of Medicine, 37139Ondokuz Mayıs University, Samsun, Turkey
| | - Nurten Kara
- Department of Medical Biology and Genetics, School of Medicine, 37139Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
79
|
Nishiwaki H, Hamaguchi T, Ito M, Ishida T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson's Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder. mSystems 2020; 5:e00797-20. [PMID: 33293403 PMCID: PMC7771407 DOI: 10.1128/msystems.00797-20] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gut dysbiosis has been repeatedly reported in Parkinson's disease (PD) but only once in idiopathic rapid-eye-movement sleep behavior disorder (iRBD) from Germany. Abnormal aggregation of α-synuclein fibrils causing PD possibly starts from the intestine, although this is still currently under debate. iRBD patients frequently develop PD. Early-stage gut dysbiosis that is causally associated with PD is thus expected to be observed in iRBD. We analyzed gut microbiota in 26 iRBD patients and 137 controls by 16S rRNA sequencing (16S rRNA-seq). Our iRBD data set was meta-analyzed with the German iRBD data set and was compared with gut microbiota in 223 PD patients. Unsupervised clustering of gut microbiota by LIGER, a topic model-based tool for single-cell RNA sequencing (RNA-seq) analysis, revealed four enterotypes in controls, iRBD, and PD. Short-chain fatty acid (SCFA)-producing bacteria were conserved in an enterotype observed in controls and iRBD, whereas they were less conserved in enterotypes observed in PD. Genus Akkermansia and family Akkermansiaceae were consistently increased in both iRBD in two countries and PD in five countries. Short-chain fatty acid (SCFA)-producing bacteria were not significantly decreased in iRBD in two countries. In contrast, we previously reported that recognized or putative SCFA-producing genera Faecalibacterium, Roseburia, and Lachnospiraceae ND3007 group were consistently decreased in PD in five countries. In α-synucleinopathy, increase of mucin-layer-degrading genus Akkermansia is observed at the stage of iRBD, whereas decrease of SCFA-producing genera becomes obvious with development of PD.IMPORTANCE Twenty studies on gut microbiota in PD have been reported, whereas only one study has been reported on iRBD from Germany. iRBD has the highest likelihood ratio to develop PD. Our meta-analysis of iRBD in Japan and Germany revealed increased mucin-layer-degrading genus Akkermansia in iRBD. Genus Akkermansia may increase the intestinal permeability, as we previously observed in PD patients, and may make the intestinal neural plexus exposed to oxidative stress, which can lead to abnormal aggregation of prion-like α-synuclein fibrils in the intestine. In contrast to PD, SCFA-producing bacteria were not decreased in iRBD. As SCFA induces regulatory T (Treg) cells, a decrease of SCFA-producing bacteria may be a prerequisite for the development of PD. We propose that prebiotic and/or probiotic therapeutic strategies to increase the intestinal mucin layer and to increase intestinal SCFA potentially retard the development of iRBD and PD.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Ishida
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
80
|
An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington's disease. Neurobiol Dis 2020; 148:105199. [PMID: 33249136 DOI: 10.1016/j.nbd.2020.105199] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n = 9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome profile. RESULTS Modelled time profiles of each species, KEGG Orthologs and bacterial genes, revealed heightened volatility in the R6/1 mice, indicating potential early effects of the HD mutation in the gut. In addition to gut dysbiosis in R6/1 mice at 12 weeks of age, gut microbiome function was perturbed. In particular, the butanoate metabolism pathway was elevated, suggesting increased production of the protective SCFA, butyrate, in the gut. No significant alterations were found in the plasma butyrate and propionate levels in the R6/1 mice at 12 weeks of age. The statistical integration of the metagenomics and metabolomics unraveled several Bacteroides species that were negatively correlated with ATP and pipecolic acid in the plasma. CONCLUSIONS The present study revealed the instability of the HD gut microbiome during the pre-motor symptomatic stage of the disease which may have dire consequences on the host's health. Perturbation of the HD gut microbiome function prior to significant cognitive and motor dysfunction suggest the potential role of the gut in modulating the pathogenesis of HD, potentially via specific altered plasma metabolites which mediate gut-brain signaling.
Collapse
|
81
|
Skonieczna-Żydecka K, Jakubczyk K, Maciejewska-Markiewicz D, Janda K, Kaźmierczak-Siedlecka K, Kaczmarczyk M, Łoniewski I, Marlicz W. Gut Biofactory-Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review. Nutrients 2020; 12:E3369. [PMID: 33139656 PMCID: PMC7693392 DOI: 10.3390/nu12113369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota have gained much scientific attention recently. Apart from unravelling the taxonomic data, we should understand how the altered microbiota structure corresponds to functions of this complex ecosystem. The metabolites of intestinal microorganisms, especially bacteria, exert pleiotropic effects on the human organism and contribute to the host systemic balance. These molecules play key roles in regulating immune and metabolic processes. A subset of them affect the gut brain axis signaling and balance the mental wellbeing. Neurotransmitters, short chain fatty acids, tryptophan catabolites, bile acids and phosphatidylcholine, choline, serotonin, and L-carnitine metabolites possess high neuroactive potential. A scoping literature search in PubMed/Embase was conducted up until 20 June 2020, using three major search terms "microbiota metabolites" AND "gut brain axis" AND "mental health". This review aimed to enhance our knowledge regarding the gut microbiota functional capacity, and support current and future attempts to create new compounds for future clinical interventions.
Collapse
Affiliation(s)
- Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Karolina Jakubczyk
- Department of Surgical Oncology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Katarzyna Janda
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | | | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland
- The Centre for Digestive Diseases Endoklinika, 70-535 Szczecin, Poland
| |
Collapse
|
82
|
Lee D, Choi YH, Seo J, Kim JK, Lee SB. Discovery of new epigenomics-based biomarkers and the early diagnosis of neurodegenerative diseases. Ageing Res Rev 2020; 61:101069. [PMID: 32416267 DOI: 10.1016/j.arr.2020.101069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/02/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
Treatment options for many neurodegenerative diseases are limited due to the lack of early diagnostic procedures that allow timely delivery of therapeutic agents to affected neurons prior to cell death. While notable advances have been made in neurodegenerative disease biomarkers, whether or not the biomarkers discovered to date are useful for early diagnosis remains an open question. Additionally, the reliability of these biomarkers has been disappointing, due in part to the large dissimilarities between the tissues traditionally used to source biomarkers and primarily diseased neurons. In this article, we review the potential viability of atypical epigenetic and/or consequent transcriptional alterations (ETAs) as biomarkers of early-stage neurodegenerative disease, and present our perspectives on the discovery and practical use of such biomarkers in patient-derived neural samples using single-cell level analyses, thereby greatly enhancing the reliability of biomarker application.
Collapse
|
83
|
Getachew B, Csoka AB, Bhatti A, Copeland RL, Tizabi Y. Butyrate Protects Against Salsolinol-Induced Toxicity in SH-SY5Y Cells: Implication for Parkinson's Disease. Neurotox Res 2020; 38:596-602. [PMID: 32572814 DOI: 10.1007/s12640-020-00238-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is associated with the destruction of dopamine neurons in the substantia nigra (SN) and the formation of Lewy bodies in basal ganglia. Risk factors for PD include aging, as well as environmental and genetic factors. Recent converging reports suggest a role for the gut microbiome and epigenetic factors in the onset and/or progression of PD. Of particular relevance and potential therapeutic targets in this regard are histone deacetylases (HDACs), enzymes that are involved in chromatin remodeling. Butyrate, a short-chain fatty acid (FA) produced in the gut and presumably acting via several G protein-coupled receptors (GPCRs) including FA3 receptors (FA3Rs), is a well-known HDAC inhibitor that plays an important role in maintaining homeostasis of the gut-brain axis. Recently, its significance in regulation of some critical brain functions and usefulness in neurodegenerative diseases such as PD has been suggested. In this study we sought to determine whether butyrate may have protective effects against salsolionl (SALS)-induced toxicity in SH-SY5Y cells. SALS, an endogenous product of aldehyde and dopamine condensation, may be selectively toxic to dopaminergic neurons. SH-SY5Y cells, derived from human neuroblastoma cells, are used as a model of these neurons. Exposure of SH-SY5Y cells for 24 h to 400 μM SALS resulted in approximately 60% cell death, which was concentration-dependently prevented by butyrate. The effects of butyrate in turn were significantly attenuated by beta-hydroxy butyrate (BHB), a selective FA3R antagonist. Moreover, a selective FA3R agonist (AR 420626) also provided protective effects against SALS, which was totally blocked by BHB. These findings provide further support that butyrate or an agonist of FA3R may be of therapeutic potential in PD.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Amna Bhatti
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Robert L Copeland
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
84
|
Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Meta-Analysis of Gut Dysbiosis in Parkinson's Disease. Mov Disord 2020; 35:1626-1635. [PMID: 32557853 DOI: 10.1002/mds.28119] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PD may begin with the intestinal accumulation of α-synuclein fibrils, which can be causally associated with gut dysbiosis. The variability of gut microbiota across countries prevented us from identifying shared gut dysbiosis in PD. OBJECTIVES To identify gut dysbiosis in PD across countries. METHODS We performed 16S ribosomal RNA gene sequencing analysis of gut microbiota in 223 patients with PD and 137 controls, and meta-analyzed gut dysbiosis by combining our dataset with four previously reported data sets from the United States, Finland, Russia, and Germany. We excluded uncommon taxa from our analyses. For pathway analysis, we developed the Kyoto Encyclopedia of Genes and Genomes orthology set enrichment analysis method. RESULTS After adjusting for confounding factors (body mass index, constipation, sex, age, and catechol-O-methyl transferase inhibitor), genera Akkermansia and Catabacter, as well as families Akkermansiaceae, were increased, whereas genera Roseburia, Faecalibacterium, and Lachnospiraceae ND3007 group were decreased in PD. Catechol-O-methyl transferase inhibitor intake markedly increased family Lactobacillaceae. Inspection of these bacteria in 12 datasets that were not included in the meta-analysis revealed that increased genus Akkermansia and decreased genera Roseburia and Faecalibacterium were frequently observed across countries. Kyoto Encyclopedia of Genes and Genomes orthology set enrichment analysis revealed changes in short-chain fatty acid metabolisms in our dataset. CONCLUSIONS We report that intestinal mucin layer-degrading Akkermansia is increased and that short-chain fatty acid-producing Roseburia and Faecalibacterium are decreased in PD across countries. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Ishida
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
85
|
Sharma S, Sarathlal KC, Taliyan R. Epigenetics in Neurodegenerative Diseases: The Role of Histone Deacetylases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:11-18. [PMID: 30289079 DOI: 10.2174/1871527317666181004155136] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND & OBJECTIVE Imbalance in histone acetylation levels and consequently the dysfunction in transcription are associated with a wide variety of neurodegenerative diseases. Histone proteins acetylation and deacetylation is carried out by two opposite acting enzymes, histone acetyltransferases and histone deacetylases (HDACs), respectively. In-vitro and in-vivo animal models of neurodegenerative diseases and post mortem brains of patients have been reported overexpressed level of HDACs. In recent past numerous studies have indicated that HDAC inhibitors (HDACIs) might be a promising class of therapeutic agents for treating these devastating diseases. HDACs being a part of repressive complexes, the outcome of their inhibition has been attributed to enhanced gene expression due to heightened histone acetylation. Beneficial effects of HDACIs has been explored both in preclinical and clinical studies of these diseases. Thus, their screening as future therapeutics for neurodegenerative diseases has been widely explored. CONCLUSION In this review, we focus on the putative role of HDACs in neurodegeneration and further discuss their potential as a new therapeutic avenue for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - K C Sarathlal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
86
|
Keshavarzian A, Engen P, Bonvegna S, Cilia R. The gut microbiome in Parkinson's disease: A culprit or a bystander? PROGRESS IN BRAIN RESEARCH 2020; 252:357-450. [PMID: 32247371 DOI: 10.1016/bs.pbr.2020.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, large-scale metagenomics projects such as the Human Microbiome Project placed the gut microbiota under the spotlight of research on its role in health and in the pathogenesis several diseases, as it can be a target for novel therapeutical approaches. The emerging concept of a microbiota modulation of the gut-brain axis in the pathogenesis of neurodegenerative disorders has been explored in several studies in animal models, as well as in human subjects. Particularly, research on changes in the composition of gut microbiota as a potential trigger for alpha-synuclein (α-syn) pathology in Parkinson's disease (PD) has gained increasing interest. In the present review, we first provide the basis to the understanding of the role of gut microbiota in healthy subjects and the molecular basis of the gut-brain interaction, focusing on metabolic and neuroinflammatory factors that could trigger the alpha-synuclein conformational changes and aggregation. Then, we critically explored preclinical and clinical studies reporting on the changes in gut microbiota in PD, as compared to healthy subjects. Furthermore, we examined the relationship between the gut microbiota and PD clinical features, discussing data consistently reported across studies, as well as the potential sources of inconsistencies. As a further step toward understanding the effects of gut microbiota on PD, we discussed the relationship between dysbiosis and response to dopamine replacement therapy, focusing on Levodopa metabolism. We conclude that further studies are needed to determine whether the gut microbiota changes observed so far in PD patients is the cause or, instead, it is merely a consequence of lifestyle changes associated with the disease. Regardless, studies so far strongly suggest that changes in microbiota appears to be impactful in pathogenesis of neuroinflammation. Thus, dysbiotic microbiota in PD could influence the disease course and response to medication, especially Levodopa. Future research will assess the impact of microbiota-directed therapeutic intervention in PD patients.
Collapse
Affiliation(s)
- Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | - Phillip Engen
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | | | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
87
|
Elfil M, Kamel S, Kandil M, Koo BB, Schaefer SM. Implications of the Gut Microbiome in Parkinson's Disease. Mov Disord 2020; 35:921-933. [DOI: 10.1002/mds.28004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mohamed Elfil
- Department of NeurologyYale University New Haven Connecticut USA
| | - Serageldin Kamel
- Department of NeurologyYale University New Haven Connecticut USA
| | - Mohamed Kandil
- Department of NeurologyYale University New Haven Connecticut USA
| | - Brian B. Koo
- Department of NeurologyYale University New Haven Connecticut USA
- Center for Neuroepidemiology and Clinical Neurologic Research Yale New Haven Connecticut USA
- Department of NeurologyConnecticut Veterans Affairs Healthcare System West Haven Connecticut USA
| | - Sara M. Schaefer
- Department of NeurologyYale University New Haven Connecticut USA
| |
Collapse
|
88
|
Carrera I, Martínez O, Cacabelos R. Neuroprotection with Natural Antioxidants and Nutraceuticals in the Context of Brain Cell Degeneration: The Epigenetic Connection. Curr Top Med Chem 2020; 19:2999-3011. [PMID: 31789133 DOI: 10.2174/1568026619666191202155738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Bioactive antioxidant agents present in selected plants are known to provide the first line of biological defense against oxidative stress. In particular, soluble vitamin C, E, carotenoids and phenolic compounds have demonstrated crucial biological effects in cells against oxidative damage, preventing prevalent chronic diseases, such as diabetes, cancer and cardiovascular disease. The reported wide range of effects that included anti-aging, anti-atherosclerosis, anti-inflammatory and anticancer activity were studied against degenerative pathologies of the brain. Vitamins and different phytochemicals are important epigenetic modifiers that prevent neurodegeneration. In order to explore the potential antioxidant sources in functional foods and nutraceuticals against neurodegeneration, the present paper aims to show a comprehensive assessment of antioxidant activity at chemical and cellular levels. The effects of the different bioactive compounds available and their antioxidant activity through an epigenetic point of view are also discussed.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| | - Olaia Martínez
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| |
Collapse
|
89
|
Lama A, Pirozzi C, Avagliano C, Annunziata C, Mollica MP, Calignano A, Meli R, Mattace Raso G. Nutraceuticals: An integrative approach to starve Parkinson's disease. Brain Behav Immun Health 2020; 2:100037. [PMID: 34589828 PMCID: PMC8474522 DOI: 10.1016/j.bbih.2020.100037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/15/2023] Open
Abstract
The therapeutic approach of multifactorial complex diseases is always a challenge; Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder triggered by genetic and environmental factors, contributing to its etiology. Indeed, several pathogenic mechanisms lead to selective dopaminergic neuronal injury, including oxidative stress, mitochondrial dysfunction, alteration of endoplasmic reticulum-to-Golgi protein trafficking, excitotoxicity, and neuroinflammation. Current treatment approaches include mainly dopamine replacement therapy or optimizing dopaminergic transmission; however, these strategies that do not counteract the pathogenic mechanisms underlying PD symptoms and often are less effective over time. Recently, there has been growing interest in the therapeutic use of nutraceuticals, that could represent an integrative approach to the pharmacological standard therapy and specifically affect one or more pathogenic pathways. The intake of nutraceuticals or nutritional modifications are generally safe and can be combined with current common drug therapy in most cases to improve the patient's quality of life and/or mitigate PD symptoms. The current review focuses on several key nutritional compounds and dietary modifications that are effective on several pathogenic pathways involved in PD onset and progression, and further highlights the rationale behind their potential use for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Maria Pina Mollica
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Biology, University of Naples Federico II, Cupa Nuova Cinthia 21-Edificio 7, 80126, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
90
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
91
|
Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne) 2020; 11:25. [PMID: 32082260 PMCID: PMC7005631 DOI: 10.3389/fendo.2020.00025] [Citation(s) in RCA: 1521] [Impact Index Per Article: 304.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial body of evidence supports that the gut microbiota plays a pivotal role in the regulation of metabolic, endocrine and immune functions. In recent years, there has been growing recognition of the involvement of the gut microbiota in the modulation of multiple neurochemical pathways through the highly interconnected gut-brain axis. Although amazing scientific breakthroughs over the last few years have expanded our knowledge on the communication between microbes and their hosts, the underpinnings of microbiota-gut-brain crosstalk remain to be determined. Short-chain fatty acids (SCFAs), the main metabolites produced in the colon by bacterial fermentation of dietary fibers and resistant starch, are speculated to play a key role in neuro-immunoendocrine regulation. However, the underlying mechanisms through which SCFAs might influence brain physiology and behavior have not been fully elucidated. In this review, we outline the current knowledge about the involvement of SCFAs in microbiota-gut-brain interactions. We also highlight how the development of future treatments for central nervous system (CNS) disorders can take advantage of the intimate and mutual interactions of the gut microbiota with the brain by exploring the role of SCFAs in the regulation of neuro-immunoendocrine function.
Collapse
Affiliation(s)
- Ygor Parladore Silva
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Rudimar Luiz Frozza
| |
Collapse
|
92
|
Fernandes MF, de Oliveira S, Portovedo M, Rodrigues PB, Vinolo MAR. Effect of Short Chain Fatty Acids on Age-Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:85-105. [PMID: 32304031 DOI: 10.1007/978-3-030-42667-5_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have indicated a prominent role of intestinal microbiota in regulation of several physiological aspects of the host including development and activation of the immune system and control of metabolism. In this review, we focused our discussion on bacterial metabolites produced from dietary fiber fermentation called short-chain fatty acids, which act as a link between the microbiota and host cells. Specifically, we described how modifications in their intestinal levels are associated with development of age-related pathologies including metabolic diseases and type 2 diabetes, hypertension, cardiovascular and neurodegenerative diseases. We also highlight their impact on the development of cancer.
Collapse
Affiliation(s)
- Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana Portovedo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Patrícia Brito Rodrigues
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
93
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
94
|
Bullich C, Keshavarzian A, Garssen J, Kraneveld A, Perez-Pardo P. Gut Vibes in Parkinson's Disease: The Microbiota-Gut-Brain Axis. Mov Disord Clin Pract 2019; 6:639-651. [PMID: 31745471 DOI: 10.1002/mdc3.12840] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background The complexity of the pathogenic mechanisms underlying neurodegenerative disorders such as Parkinson's disease (PD) is attributable to multifactorial changes occurring at a molecular level, influenced by genetics and environmental interactions. However, what causes the main hallmarks of PD is not well understood. Recent data increasingly suggest that imbalances in the gut microbiome composition might trigger and/or exacerbate the progression of PD. Objective The present review aims to (1) report emerging literature showing changes in microbiota composition of PD patients compared to healthy individuals and (2) discuss how these changes may initiate and/or perpetuate PD pathology. Methods We analyzed 13 studies published from 2015 and included in this review. Altered microbial taxa were compiled in a detailed table summarizing bacterial changes in fecal/mucosal samples. The methodology was systematically reviewed across the articles and was also included in a table to facilitate comparisons between studies. Results Multiple studies found a reduction in short-chain fatty-acid-producing bacteria that can rescue neuronal damage through epigenetic mechanisms. Overall, the studies showed that changes in the gut microbiota composition might influence colonic inflammation, gut permeability, and α-synuclein aggregation, contributing to the neurogenerative process. Conclusion Further studies with larger cohorts and high-resolution sequencing methods are required to better define gut microbiota changes in PD. Furthermore, additional longitudinal studies are required to determine the causal link between these changes and PD pathogenesis as well as to study the potential of the intestinal microbiota as a biomarker.
Collapse
Affiliation(s)
- Clara Bullich
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands
| | - Ali Keshavarzian
- Department of Medicine, Division of Allergy-Immunology Rush University Medical Center Chicago Illinois USA
| | - Johan Garssen
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands.,Nutricia Reasearch Utrecht The Netherlands
| | - Aletta Kraneveld
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands.,Institute for Risk Assessment Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands
| |
Collapse
|
95
|
Scheperjans F, Derkinderen P, Borghammer P. The Gut and Parkinson's Disease: Hype or Hope? JOURNAL OF PARKINSONS DISEASE 2019; 8:S31-S39. [PMID: 30584161 PMCID: PMC6311363 DOI: 10.3233/jpd-181477] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the last two decades it has become clear that Parkinson’s disease (PD) is associated with a plethora of gastrointestinal symptoms originating from functional and structural changes in the gut and its associated neural structures. This is of particular interest not only because such symptoms have a major impact on the quality of life of PD patients, but also since accumulating evidence suggests that in at least a subgroup of patients, these disturbances precede the motor symptoms and diagnosis of PD by years and may thus give important insights into the origin and pathogenesis of the disease. In this mini-review we attempt to concisely summarize the current knowledge after two decades of research on the gut-brain axis in PD. We focus on alpha-synuclein pathology, biomarkers, and the gut microbiota and envision the development and impact of these research areas for the two decades to come.
Collapse
Affiliation(s)
- Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | | | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
96
|
K M, V C. Phytoconstituents in the Management of Pesticide Induced Parkinson’s Disease- A Review. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have suggested that environmental factors have a crucial role in triggering and/ or propagating the pathological changes in Parkinson’s disease (PD). Although many studies have been and being performed by utilizing MPTP like chemicals to study the effectiveness of new extracts and compounds in PD, a little focus was made on the role of pesticides. Since agricultural fields account for 37.7% of land area worldwide and the use of pesticides is an important risk factor in neurodegeneration, there is a crucial need to focus on the association between pesticides and PD. Benomyl, a benzimidazole fungicide is being widely used in India in cultivation of tropical crops. Studies prove the chronic exposure of benomyl leads to aldehyde dehydrogenase inhibition caused DOPAL toxicity, subsequently leading to dopamine degradation and Parkinson’s disease. Till date, there is no remedy for pesticide induced Parkinson’s disease. This review provides an insight of the pathophysiological aspects of pesticide induced Parkinson’s disease and also enlightens the importance of aldehyde dehydrogenase enzyme in neuroprotection.
Collapse
Affiliation(s)
- Manasa K
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603203
| | - Chitra V
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603203
| |
Collapse
|
97
|
Abstract
Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
Collapse
|
98
|
Cantu-Jungles TM, Rasmussen HE, Hamaker BR. Potential of Prebiotic Butyrogenic Fibers in Parkinson's Disease. Front Neurol 2019; 10:663. [PMID: 31281287 PMCID: PMC6595503 DOI: 10.3389/fneur.2019.00663] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra. Recent evidence supports the involvement of the gastrointestinal tract in PD pathogenesis, including alterations in microbiota and intestinal permeability. Apart from being the preferred energy source for colonic epithelial cells, butyrate is involved in anti-inflammatory, enteroendocrine and epigenetic mechanisms that influence colonic and systemic health, including brain function. A few studies using oral administration of sodium butyrate indicate beneficial effects in PD animal models; however, prebiotic fibers that generate butyrate locally in the gut may be more effective. The design and selection of butyrogenic prebiotic fibers would allow preclinical studies to evaluate how gut-derived butyrate could affect PD pathophysiology. This review describes potential benefits of increasing gut butyrate production in PD through a prebiotic approach. Moreover, physico-chemical features of prebiotic fibers that target butyrogenic colonic bacteria are discussed.
Collapse
Affiliation(s)
- Thaisa M Cantu-Jungles
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, United States
| | - Heather E Rasmussen
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bruce R Hamaker
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
99
|
Troisi J, Landolfi A, Vitale C, Longo K, Cozzolino A, Squillante M, Savanelli MC, Barone P, Amboni M. A metabolomic signature of treated and drug-naïve patients with Parkinson's disease: a pilot study. Metabolomics 2019; 15:90. [PMID: 31183578 DOI: 10.1007/s11306-019-1554-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION About 90% of cases of Parkinson's disease (PD) are idiopathic and attempts to understand pathogenesis typically assume a multifactorial origin. Multifactorial diseases can be studied using metabolomics, since the cellular metabolome reflects the interplay between genes and environment. OBJECTIVE The aim of our case-control study is to compare metabolomic profiles of whole blood obtained from treated PD patients, de-novo PD patients and controls, and to study the perturbations correlated with disease duration, disease stage and motor impairment. METHODS We collected blood samples from 16 drug naïve parkinsonian patients, 84 treated parkinsonian patients, and 42 age matched healthy controls. Metabolomic profiles have been obtained using gas chromatography coupled to mass spectrometry. Multivariate statistical analysis has been performed using supervised models; partial least square discriminant analysis and partial least square regression. RESULTS This approach allowed separation between discrete classes and stratification of treated patients according to continuous variables (disease duration, disease stage, motor score). Analysis of single metabolites and their related metabolic pathways revealed unexpected possible perturbations related to PD and underscored existing mechanisms that correlated with disease onset, stage, duration, motor score and pharmacological treatment. CONCLUSION Metabolomics can be useful in pathogenetic studies and biomarker discovery. The latter needs large-scale validation and comparison with other neurodegenerative conditions.
Collapse
Affiliation(s)
- Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, SA, Italy.
- Theoreo srl, Via degli Ulivi 3, 84090, Montecorvino Pugliano, SA, Italy.
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 3, 84125, Salerno, SA, Italy.
| | - Annamaria Landolfi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, SA, Italy
| | - Carmine Vitale
- Department of Motor Science and Wellness, University Parthenope, Naples, Italy
| | - Katia Longo
- Institute of Diagnosis and Care (IDC) Hermitage-Capodimonte, Naples, Italy
| | - Autilia Cozzolino
- Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Massimo Squillante
- Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Fisciano, Italy
| | | | - Paolo Barone
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, SA, Italy
- Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Marianna Amboni
- Institute of Diagnosis and Care (IDC) Hermitage-Capodimonte, Naples, Italy
- Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Fisciano, Italy
| |
Collapse
|
100
|
Deb S, Phukan BC, Mazumder MK, Dutta A, Paul R, Bhattacharya P, Sandhir R, Borah A. Garcinol, a multifaceted sword for the treatment of Parkinson's disease. Neurochem Int 2019; 128:50-57. [PMID: 30986504 DOI: 10.1016/j.neuint.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Garcinol, the principal phytoconstituent of plants belonging to the genus Garcinia, is known for its anti-oxidant as well as anti-inflammatory properties, which can be extended to its possible neuroprotective role. Recent reports disseminate the capacity of garcinol to influence neuronal growth and survival, alter the neurochemical status in brain, as well as regulate memory and cognition. The concomitant neuro-rescue property of garcinol may render it as an effective compound in Parkinson's disease (PD) therapeutics since it is capable of ameliorating the related pathophysiological changes. Emerging pieces of evidence linking histone acetylation defects to the progression of neurodegenerative diseases provide an effective basis for targeting PD. Hyperacetylation of histones has been reported in Parkinsonian brain, which demands the use of pharmacological inhibitors of histone acetyltransferases (HAT). Garcinol serves as a potent natural HAT inhibitor and has unveiled promising results in molecular interaction studies against Monoamine oxidase B (MAO-B) and Catechol-O-Methyltransferase (COMT), as well as in L-DOPA induced dyskinesia. This review highlights the prospective implications of garcinol as a novel anti-Parkinsonian agent, and establishes a bridge between histone acetylation defects and the pathological aspects of PD.
Collapse
Affiliation(s)
- Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Muhammed Khairujjaman Mazumder
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, 788723, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, 382355, Gandhinagar, Gujarat, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|