51
|
Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H. Exercise and Hippocampal Memory Systems. Trends Cogn Sci 2019; 23:318-333. [PMID: 30777641 PMCID: PMC6422697 DOI: 10.1016/j.tics.2019.01.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/17/2023]
Abstract
No medications prevent or reverse age-related cognitive decline. Physical activity (PA) enhances memory in rodents, but findings are mixed in human studies. As a result, exercise guidelines specific for brain health are absent. Here, we re-examine results from human studies, and suggest the use of more sensitive tasks to evaluate PA effects on age-related changes in the hippocampus, such as relational memory and mnemonic discrimination. We discuss recent advances from rodent and human studies into the underlying mechanisms at both the central and peripheral levels, including neurotrophins and myokines that could contribute to improved memory. Finally, we suggest guidelines for future research to help expedite well-founded PA recommendations for the public.
Collapse
Affiliation(s)
- Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Carmen Soto
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Seungwoo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Matthew Sodoma
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Henriette van Praag
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
52
|
Derafshpour L, Saboory E, Vafaei AA, Rashidy-Pour A, Roshan-Milani S, Rasmi Y, Panahi Y, Sameni H. Interactive Effects of Exercise, Sex Hormones, and Transient Congenital Hypothyroidism on Long-Term Potentiation in Hippocampal Slices of Rat Offspring. Basic Clin Neurosci 2019; 10:119-135. [PMID: 31031899 PMCID: PMC6484195 DOI: 10.32598/bcn.9.10.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/25/2017] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction: The long-term adverse effects of transient thyroid function abnormalities at birth on intellectual development are proven. The effect of exercise increases in the presence of sex hormones. The current study aimed at investigating the possibility that a combination of sex hormones and exercise has synergistic effects on neural plasticity in Transient Congenital Hypothyroidism (TCH) rats. Methods: To induce hypothyroidism in the mothers, Propylthiouracil (PTU) was added to drinking water (100 mg/L) on the 6th day of gestation and continued until the 21st Postnatal Day. From Postnatal Day (PND) 28 to 47, the female and male pups received 17β-estradiol and testosterone, respectively. The mild treadmill exercise began 30 minutes after the sex hormones or vehicle administration. On PND 48, electrophysiological experiments were performed on brain slices. Results: Increase of Long-Term Potentiation (LTP) was observed in sedentary-non-hormone female rats of TCH group, compared with that of the control. The exercise enhanced LTP in control rats, but the hormones showed no significant effect. The effect of exercise and sex hormone was not significant in the TCH group. The combination of exercise and testosterone enhanced LTP in TCH male rats, while the combination of exercise and estradiol or each of them individually did not produce such an effect on LTP in TCH female rats. Conclusion: The study findings showed an increase in excitatory transmission despite the returning of thyroid hormone levels to normal range in TCH female rats. Also a combination treatment including exercise and testosterone enhanced LTP in male rats of TCH group, which was a gender-specific event.
Collapse
Affiliation(s)
- Leila Derafshpour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Panahi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
53
|
Brown BM, Peiffer J, Rainey-Smith SR. Exploring the relationship between physical activity, beta-amyloid and tau: A narrative review. Ageing Res Rev 2019; 50:9-18. [PMID: 30615936 DOI: 10.1016/j.arr.2019.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
Abstract
Several prospective cohort studies have reported an association between higher levels of physical activity and decreased risk of cognitive decline and dementia, years later. To support physical activity as a preventative measure against dementia, including Alzheimer's disease (AD; the most common form of dementia), evidence regarding the underlying mechanisms is vital. Here, we review previous work examining the role of physical activity in modulating levels of AD pathological hallmarks, beta-amyloid (Aβ) and tau (in the brain, cerebrospinal fluid and blood). Robust evidence from transgenic animal studies suggests that physical activity (voluntary wheel running) and exercise (forced wheel running) are implicated in lowering levels of brain Aβ and tau. Nevertheless, evidence from human studies, utilising measurements from positron emission tomography and cerebrospinal fluid biomarkers, is less consistent. Rigorous randomised controlled trials utilising long exercise interventions are vital to further understand the relationship between physical activity and Alzheimer's disease.
Collapse
|
54
|
Tari AR, Norevik CS, Scrimgeour NR, Kobro-Flatmoen A, Storm-Mathisen J, Bergersen LH, Wrann CD, Selbæk G, Kivipelto M, Moreira JBN, Wisløff U. Are the neuroprotective effects of exercise training systemically mediated? Prog Cardiovasc Dis 2019; 62:94-101. [PMID: 30802460 DOI: 10.1016/j.pcad.2019.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
To date there is no cure available for dementia, and the field calls for novel therapeutic targets. A rapidly growing body of literature suggests that regular endurance training and high cardiorespiratory fitness attenuate cognitive impairment and reduce dementia risk. Such benefits have recently been linked to systemic neurotrophic factors induced by exercise. These circulating biomolecules may cross the blood-brain barrier and potentially protect against neurodegenerative disorders such as Alzheimer's disease. Identifying exercise-induced systemic neurotrophic factors with beneficial effects on the brain may lead to novel molecular targets for maintaining cognitive function and preventing neurodegeneration. Here we review the recent literature on potential systemic mediators of neuroprotection induced by exercise. We focus on the body of translational research in the field, integrating knowledge from the molecular level, animal models, clinical and epidemiological studies. Taken together, the current literature provides initial evidence that exercise-induced, blood-borne biomolecules, such as BDNF and FNDC5/irisin, may be powerful agents mediating the benefits of exercise on cognitive function and may form the basis for new therapeutic strategies to better prevent and treat dementia.
Collapse
Affiliation(s)
- Atefe R Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway; Department of Neurology, St. Olavs Hospital, Trondheim, Norway.
| | - Cecilie S Norevik
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway; Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| | - Nathan R Scrimgeour
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Norway
| | | | | | - Christiane D Wrann
- Massachusetts General Hospital and Harvard Medical School, Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States of America
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Centre for Age-related Functional Decline and Disease, Innlandet Hospital Trust, Ottestad, Norway
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden; Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Age and Epidemiology Research Unit, School of Public Health, Imperial College London, UK
| | - José Bianco N Moreira
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology, Norway
| |
Collapse
|
55
|
Motor deficits in 16-month-old male and female 3xTg-AD mice. Behav Brain Res 2019; 356:305-313. [DOI: 10.1016/j.bbr.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/22/2022]
|
56
|
Bettio L, Thacker JS, Hutton C, Christie BR. Modulation of synaptic plasticity by exercise. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:295-322. [DOI: 10.1016/bs.irn.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57
|
Shepherd A, Zhang TD, Zeleznikow-Johnston AM, Hannan AJ, Burrows EL. Transgenic Mouse Models as Tools for Understanding How Increased Cognitive and Physical Stimulation Can Improve Cognition in Alzheimer's Disease. Brain Plast 2018; 4:127-150. [PMID: 30564551 PMCID: PMC6296266 DOI: 10.3233/bpl-180076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy D Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
58
|
Kelly ÁM. Exercise-Induced Modulation of Neuroinflammation in Models of Alzheimer's Disease. Brain Plast 2018; 4:81-94. [PMID: 30564548 PMCID: PMC6296260 DOI: 10.3233/bpl-180074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), a progressive, neurodegenerative condition characterised by accumulation of toxic βeta-amyloid (Aβ) plaques, is one of the leading causes of dementia globally. The cognitive impairment that is a hallmark of AD may be caused by inflammation in the brain triggered and maintained by the presence of Aβ protein, ultimately leading to neuronal dysfunction and loss. Since there is a significant inflammatory component to AD, it is postulated that anti-inflammatory strategies may be of prophylactic or therapeutic benefit in AD. One such strategy is that of regular physical activity, which has been shown in epidemiological studies to be protective against various forms of dementia including AD. Exercise induces an anti-inflammatory environment in peripheral organs and also increases expression of anti-inflammatory molecules within the brain. Here we review the evidence, mainly from animal models of AD, supporting the hypothesis that exercise can reduce or slow the cellular and cognitive impairments associated with AD by modulating neuroinflammation.
Collapse
Affiliation(s)
- Áine M. Kelly
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
59
|
Müller S, Preische O, Sohrabi HR, Gräber S, Jucker M, Ringman JM, Martins RN, McDade E, Schofield PR, Ghetti B, Rossor M, Fox NN, Graff-Radford NR, Levin J, Danek A, Vöglein J, Salloway S, Xiong C, Benzinger T, Buckles V, Masters CL, Sperling R, Bateman RJ, Morris JC, Laske C. Relationship between physical activity, cognition, and Alzheimer pathology in autosomal dominant Alzheimer's disease. Alzheimers Dement 2018; 14:1427-1437. [PMID: 30266303 PMCID: PMC6322213 DOI: 10.1016/j.jalz.2018.06.3059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Little is known about effects of physical activity (PA) in genetically driven early-onset autosomal dominant Alzheimer's disease (AD). METHODS A total of 372 individuals participating at the Dominantly Inherited Alzheimer Network study were examined to evaluate the cross-sectional relationship of PA with cognitive performance, functional status, cognitive decline, and AD biomarkers in cerebrospinal fluid. Mutation carriers were categorized as high or low exercisers according to WHO recommendations. RESULTS Mutation carriers with high PA showed significantly better cognitive and functional performance and significantly less AD-like pathology in cerebrospinal fluid than individuals with low PA. Mutation carriers with high PA scored 3.4 points better on Mini Mental State Examination at expected symptom onset and fulfilled the diagnosis of very mild dementia 15.1 years later compared with low exercisers. DISCUSSION These results support a beneficial effect of PA on cognition and AD pathology even in individuals with genetically driven autosomal dominant AD.
Collapse
Affiliation(s)
- Stephan Müller
- Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| | - Oliver Preische
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Susanne Gräber
- Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - John M Ringman
- Memory and Aging Center, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eric McDade
- University of Pittsburgh School of Medicine, Department of Neurology, Pittsburgh, PA, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Martin Rossor
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Nick N Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Neill R Graff-Radford
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), München, Germany; Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE), München, Germany; Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), München, Germany; Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stephen Salloway
- Department of Neurology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Chengjie Xiong
- Division of Biostatistics, The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - Tammie Benzinger
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Virginia Buckles
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Randall J Bateman
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Christoph Laske
- Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
60
|
Treadmill Exercise Ameliorates Spatial Learning and Memory Deficits Through Improving the Clearance of Peripheral and Central Amyloid-Beta Levels. Neurochem Res 2018; 43:1561-1574. [DOI: 10.1007/s11064-018-2571-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
|
61
|
Abstract
Alzheimer's disease (AD) is a debilitating disease influencing a multitude of outcomes, including memory function. Recent work suggests that memory may be influenced by exercise ('memorcise'), even among those with AD. The present narrative review details (1) the underlying mechanisms of AD; (2) whether exercise has a protective effect in preventing AD; (3) the mechanisms through which exercise may help to prevent AD; (4) the mechanisms through which exercise may help attenuate the progression of AD severity among those with existing AD; (5) the effects and mechanisms through which exercise is associated with memory among those with existing AD; and (6) exercise recommendations for those with existing AD. Such an understanding will aid clinicians in their ability to use exercise as a potential behavioral strategy to help prevent and treat AD.
Collapse
Affiliation(s)
- Paul D Loprinzi
- a Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management , The University of Mississippi , University , MS , USA
| | - Emily Frith
- a Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management , The University of Mississippi , University , MS , USA
| | - Pamela Ponce
- a Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management , The University of Mississippi , University , MS , USA
| |
Collapse
|
62
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
63
|
Yuede CM, Timson BF, Hettinger JC, Yuede KM, Edwards HM, Lawson JE, Zimmerman SD, Cirrito JR. Interactions between stress and physical activity on Alzheimer's disease pathology. Neurobiol Stress 2018; 8:158-171. [PMID: 29888311 PMCID: PMC5991353 DOI: 10.1016/j.ynstr.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Physical activity and stress are both environmental modifiers of Alzheimer's disease (AD) risk. Animal studies of physical activity in AD models have largely reported positive results, however benefits are not always observed in either cognitive or pathological outcomes and inconsistencies among findings remain. Studies using forced exercise may increase stress and mitigate some of the benefit of physical activity in AD models, while voluntary exercise regimens may not achieve optimal intensity to provide robust benefit. We evaluated the findings of studies of voluntary and forced exercise regimens in AD mouse models to determine the influence of stress, or the intensity of exercise needed to outweigh the negative effects of stress on AD measures. In addition, we show that chronic physical activity in a mouse model of AD can prevent the effects of acute restraint stress on Aβ levels in the hippocampus. Stress and physical activity have many overlapping and divergent effects on the body and some of the possible mechanisms through which physical activity may protect against stress-induced risk factors for AD are discussed. While the physiological effects of acute stress and acute exercise overlap, chronic effects of physical activity appear to directly oppose the effects of chronic stress on risk factors for AD. Further study is needed to identify optimal parameters for intensity, duration and frequency of physical activity to counterbalance effects of stress on the development and progression of AD.
Collapse
Affiliation(s)
- Carla M Yuede
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Benjamin F Timson
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - Jane C Hettinger
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Kayla M Yuede
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Hannah M Edwards
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Justin E Lawson
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - Scott D Zimmerman
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - John R Cirrito
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
64
|
Zhang J, Guo Y, Wang Y, Song L, Zhang R, Du Y. Long-term treadmill exercise attenuates Aβ burdens and astrocyte activation in APP/PS1 mouse model of Alzheimer’s disease. Neurosci Lett 2018; 666:70-77. [DOI: 10.1016/j.neulet.2017.12.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/24/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
65
|
Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. EBioMedicine 2018; 28:21-30. [PMID: 29396300 PMCID: PMC5835563 DOI: 10.1016/j.ebiom.2018.01.021] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating neurological disorders, whose complex relationship is not completely understood. Cerebrovascular pathology, a key element in both conditions, could represent a mechanistic link between Aβ/tau deposition after TBI and the development of post concussive syndrome, dementia and chronic traumatic encephalopathy (CTE). In addition to debilitating acute effects, TBI-induced neurovascular injuries accelerate amyloid β (Aβ) production and perivascular accumulation, arterial stiffness, tau hyperphosphorylation and tau/Aβ-induced blood brain barrier damage, giving rise to a deleterious feed-forward loop. We postulate that TBI can initiate cerebrovascular pathology, which is causally involved in the development of multiple forms of neurodegeneration including AD-like dementias. In this review, we will explore how novel biomarkers, animal and human studies with a focus on cerebrovascular dysfunction are contributing to the understanding of the consequences of TBI on the development of AD-like pathology. Cerebrovascular dysfunction (CVD) is emerging as a key element in the development of neurodegeneration after TBI. We propose that TBI initiates CVD, accelerating Aβ/tau deposition and leading to neurodegeneration and dementias. Clarifying this connection will support the development of novel biomarkers and therapeutic approaches for both TBI and AD.
Collapse
|
66
|
Kim D, Cho J, Lee I, Jin Y, Kang H. Exercise Attenuates High-Fat Diet-induced Disease Progression in 3xTg-AD Mice. Med Sci Sports Exerc 2017; 49:676-686. [PMID: 27875496 DOI: 10.1249/mss.0000000000001166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Little is known regarding the therapeutic role of exercise against the risk of a high-fat diet (HFD) for Alzheimer's disease (AD) and AD-like cognitive deficits. This study aimed to investigate the therapeutic effect of treadmill running against HFD-induced progression in AD neuropathology and cognitive impairments in the triple-transgenic AD (3xTg-AD) mice. METHODS The 3xTg-AD mice were assigned to a chow diet (control, n = 10), an HFD (n = 10), or an HFD combined with exercise (HFD + EX, n = 10) group. Mice in the HFD were fed with a 60% fat diet for 20 wk. The HFD + EX mice were additionally subjected to treadmill running. RESULTS Compared with the control mice, the HFD mice had impaired brain insulin signaling, exacerbated AD neuropathology, defects in synaptic stability/plasticity, and apoptotic neuronal cell death in conjunction with exacerbated cognitive deficits in the affected brain regions, which were all significantly alleviated in the HFD + EX mice. CONCLUSION The current findings suggest that treadmill running protects against AD-like disease progression and cognitive deficits caused by an HFD in the 3xTg-AD mice.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Sport Science, Sungkyunkwan University, Suwon, REPUBLIC OF KOREA
| | | | | | | | | |
Collapse
|
67
|
Brown BM, Sohrabi HR, Taddei K, Gardener SL, Rainey-Smith SR, Peiffer JJ, Xiong C, Fagan AM, Benzinger T, Buckles V, Erickson KI, Clarnette R, Shah T, Masters CL, Weiner M, Cairns N, Rossor M, Graff-Radford NR, Salloway S, Vöglein J, Laske C, Noble J, Schofield PR, Bateman RJ, Morris JC, Martins RN. Habitual exercise levels are associated with cerebral amyloid load in presymptomatic autosomal dominant Alzheimer's disease. Alzheimers Dement 2017; 13:1197-1206. [PMID: 28501451 PMCID: PMC5675772 DOI: 10.1016/j.jalz.2017.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/09/2017] [Accepted: 03/18/2017] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The objective of this study was to evaluate the relationship between self-reported exercise levels and Alzheimer's disease (AD) biomarkers, in a cohort of autosomal dominant AD mutation carriers. METHODS In 139 presymptomatic mutation carriers from the Dominantly Inherited Alzheimer Network, the relationship between self-reported exercise levels and brain amyloid load, cerebrospinal fluid (CSF) Aβ42, and CSF tau levels was evaluated using linear regression. RESULTS No differences in brain amyloid load, CSF Aβ42, or CSF tau were observed between low and high exercise groups. Nevertheless, when examining only those already accumulating AD pathology (i.e., amyloid positive), low exercisers had higher mean levels of brain amyloid than high exercisers. Furthermore, the interaction between exercise and estimated years from expected symptom onset was a significant predictor of brain amyloid levels. DISCUSSION Our findings indicate a relationship exists between self-reported exercise levels and brain amyloid in autosomal dominant AD mutation carriers.
Collapse
Affiliation(s)
- Belinda M Brown
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; McCusker Alzheimer's Research Foundation, Nedlands, Western Australia, Australia.
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; McCusker Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; McCusker Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; McCusker Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; McCusker Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Jeremiah J Peiffer
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St Louis, St Louis, Missouri, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Virginia Buckles
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Roger Clarnette
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Tejal Shah
- McCusker Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Weiner
- Center for Imaging of Neurodegenerative Disease, San Francisco VA Medical Center, University of California, San Francisco, California, USA
| | - Nigel Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Martin Rossor
- Dementia Research Centre, University College London (UCL) Institute of Neurology, London, United Kingdom
| | | | - Stephen Salloway
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases, Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - James Noble
- Department of Neurology, Columbia University Medical Centre, New York, New York, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; McCusker Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| |
Collapse
|
68
|
Loos B, Klionsky DJ, Wong E. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 2017; 156:90-106. [DOI: 10.1016/j.pneurobio.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
|
69
|
MacPherson REK. Filling the void: a role for exercise-induced BDNF and brain amyloid precursor protein processing. Am J Physiol Regul Integr Comp Physiol 2017; 313:R585-R593. [PMID: 28814391 DOI: 10.1152/ajpregu.00255.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
Inactivity, obesity, and insulin resistance are significant risk factors for the development of Alzheimer's disease (AD). Several studies have demonstrated that diet-induced obesity, inactivity, and insulin resistance exacerbate the neuropathological hallmarks of AD. The aggregation of β-amyloid peptides is one of these hallmarks. β-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in amyloid precursor protein (APP) processing, leading to β-amyloid peptide formation. Understanding how BACE1 content and activity are regulated is essential for establishing therapies aimed at reducing and/or slowing the progression of AD. Exercise training has been proven to reduce the risk of AD as well as decrease β-amyloid production and BACE1 content and/or activity. However, these long-term interventions also result in improvements in adiposity, circulating metabolites, glucose tolerance, and insulin sensitivity making it difficult to determine the direct effects of exercise on brain APP processing. This review highlights this large void in our knowledge and discusses our current understanding of the direct of effect of exercise on β-amyloid production. We have concentrated on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the direct effects of exercise on reducing brain BACE1 content and activity as well as β-amyloid production. Future studies should aim to generate a greater understanding of how obesity and exercise can directly alter APP processing and AD-related pathologies. This knowledge could provide evidence-based hypotheses for designing therapies to reduce the risk of AD and dementia.
Collapse
|
70
|
Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer's disease: A sound mind in a sound body. EXCLI JOURNAL 2017; 16:959-972. [PMID: 28900376 PMCID: PMC5579405 DOI: 10.17179/excli2017-475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/17/2017] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. Since curative treatment has not been established for AD yet and due to heavy financial and psychological costs of patients' care, special attention has been paid to preventive interventions such as physical activity. Evidence shows that physical activity has protective effects on cognitive function and memory in AD patients. Several pathologic factors are involved in AD-associated cognitive impairment some of which are preventable by physical activity. Also, various experimental and clinical studies are in progress to prove exercise role in the beta-amyloid (Aβ) pathology as a most prevailing hypothesis explaining AD pathogenesis. This study aims to review the role of physical activity in Aβ-related pathophysiology in AD.
Collapse
Affiliation(s)
- Khadije Ebrahimi
- Department of Sports Science and Physical Education, Marand Branch, Islamic Azad University, Marand, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Baghaiee
- Department of Sports Science and Physical Education, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Seyed Hojjat Hosseini
- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
71
|
Bertoldi K, Cechinel LR, Schallenberger B, Meireles L, Basso C, Lovatel GA, Bernardi L, Lamers ML, Siqueira IR. Aging process alters hippocampal and cortical secretase activities of Wistar rats. Behav Brain Res 2017; 317:374-381. [DOI: 10.1016/j.bbr.2016.09.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
|
72
|
Sun LN, Li XL, Wang F, Zhang J, Wang DD, Yuan L, Wu MN, Wang ZJ, Qi JS. High-intensity treadmill running impairs cognitive behavior and hippocampal synaptic plasticity of rats via activation of inflammatory response. J Neurosci Res 2016; 95:1611-1620. [PMID: 27918079 DOI: 10.1002/jnr.23996] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 02/02/2023]
Abstract
Although appropriate exercise is beneficial for enhancing brain functions, high-intensity exercise (HIE)-induced cognitive dysfunction is causing more and more concerns nowadays. In the present study, we observed the effects of high-intensity treadmill running on the spatial learning of the adult Sprague Dawley male rats in Y-maze (n = 16 per group), and investigated its possible electrophysiological and molecular mechanisms by examining in vivo hippocampal long-term potentiation (LTP), central inflammatory responses, and JNK/p38/ERK signal pathway. The Y-maze active avoidance test showed that high-intensity treadmill running impaired spatial learning ability of rats, with increased error times and prolonged training time in recognizing safety condition. Associated with the cognitive dysfunction, the induction and maintenance of hippocampal LTP were also impaired by the HIE. Furthermore, accompanied by elevated levels of inflammatory factors IL-1β, TNF-α, and iNOS, overactivation of microglia and astrocytes was also found in the CA1 region of hippocampus in the excessive exercise group, indicating an inflammatory response induced by HIE. In addition, Western blot assay showed that the phosphorylation of JNK/p38/ERK proteins was enhanced in the exercise group. These results suggest that exercise stress-induced neuronal inflammatory responses in the hippocampus are associated with HIE-induced cognitive deficits, which may be involved in the upregulation of the JNK/p38/ERK pathway. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-Na Sun
- Department of Physiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China.,School of PE, Taiyuan University of Technology, Taiyuan, China
| | - Xiao-Long Li
- School of PE, Taiyuan University of Technology, Taiyuan, China
| | - Fei Wang
- School of PE, Taiyuan University of Technology, Taiyuan, China
| | - Jun Zhang
- Department of Physiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Dan-Dan Wang
- Department of Physiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Li Yuan
- Department of Physiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
73
|
Zhang Z, Wu H, Huang H. Epicatechin Plus Treadmill Exercise are Neuroprotective Against Moderate-stage Amyloid Precursor Protein/Presenilin 1 Mice. Pharmacogn Mag 2016; 12:S139-46. [PMID: 27279698 PMCID: PMC4883070 DOI: 10.4103/0973-1296.182174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background: Epidemiological evidence suggests that exercise and dietary polyphenols are beneficial in reducing Alzheimer's disease (AD) risk. Materials and Methods: In the present study, 8 months old amyloid precursor protein/presenilin 1 (APP/PS1) mice (a moderate pathology phase) were given the green tea catechin (-)-epicatechin delivered orally in the drinking water (50 mg/kg daily), along with treadmill exercise for 4 months, in order to investigate whether the combination can ameliorate the cognitive loss and delay the progression of AD in APP/PS1 transgenic (Tg) mice. Results: At termination, untreated-Tg mice showed elevated soluble amyloid-β (Aβ1–40) and Aβ1–42 levels and deficits in spatial learning and memory, compared with their wild-type littermates. The combined intervention protected against cognitive deficits in the Morris water maze, lowered soluble Aβ1–40 and Aβ1–42 levels in the hippocampus as well as reducing brain oxidative stress. In addition, brain-derived neurotrophic factor proteins wee elevated and Akt/GSK-3/cAMP response element-binding protein signaling was activated in the combination group. Conclusions: Dietary polyphenol plus exercise may exert beneficial effects on brain health and slow the progression of moderate- or mid-stages of AD. SUMMARY Amyloid precursor protein/presenilin 1 transgenic mice showed elevated soluble amyloid-β (Aβ1–40) and Aβ1–42 levels and deficits in spatial learning and memory, compared with their wild-type littermates Oral administration of epicatechin, combined with treadmill exercise for 4 months, could protect against cognitive deficits, and lowered soluble Aβ1–40 and Aβ1–42 levels as well as reducing brain oxidative stress Brain-derived neurotrophic factor proteins were elevated, and Akt/GSK-3/cAMP response element binding protein signaling was activated in the combination group Dietary polyphenol plus exercise might exert beneficial effects on brain health and slow the progression of moderate- or mid-stages of Alzheimer's disease.
Abbreviations used: AD: Alzheimer's disease, Tg: APP/PS1 transgenic, BDNF: Brain-derived neurotrophic factor, Aβ: Amyloid-β, APP: Amyloid precursor protein, PS1: Presenilin 1, nTg: Wild-type littermates, IACUC: Institutional Animal Care and Use Committee, GSSG: Glutathione oxidized form, GSH: Glutathione reductase, SOD: Superoxide dismutase, CAT: Catalase, LPO: Lipoperoxidation, CREB: cAMP response element binding protein.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmacy, Hainan Medical College, Haikou, China
| | - Hao Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Houcai Huang
- Key Laboratory of Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| |
Collapse
|
74
|
Ryan SM, Kelly ÁM. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer's disease. Ageing Res Rev 2016; 27:77-92. [PMID: 27039886 DOI: 10.1016/j.arr.2016.03.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
It is now well established, at least in animal models, that exercise elicits potent pro-cognitive and pro-neurogenic effects. Alzheimer's disease (AD) is one of the leading causes of dementia and represents one of the greatest burdens on healthcare systems worldwide, with no effective treatment for the disease to date. Exercise presents a promising non-pharmacological option to potentially delay the onset of or slow down the progression of AD. Exercise interventions in mouse models of AD have been explored and have been found to reduce amyloid pathology and improve cognitive function. More recent studies have expanded the research question by investigating potential pro-neurogenic and anti-inflammatory effects of exercise. In this review we summarise studies that have examined exercise-mediated effects on AD pathology, cognitive function, hippocampal neurogenesis and neuroinflammation in transgenic mouse models of AD. Furthermore, we attempt to identify the optimum exercise conditions required to elicit the greatest benefits, taking into account age and pathology of the model, as well as type and duration of exercise.
Collapse
|
75
|
Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 2016; 125:19-29. [PMID: 27021169 DOI: 10.1016/j.brainresbull.2016.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD), schizophrenia (SCH), Alzheimer's disease (AD), and Parkinson's disease (PD) are devastating neurological disorders, which increasingly contribute to global morbidity and mortality. Although the pathogenic mechanisms of these conditions are quite diverse, chronic neuroinflammation is one underlying feature shared by all these diseases. Even though the specific root causes of these diseases remain to be identified, evidence indicates that the observed neuroinflammation is initiated by unique pathological features associated with each specific disease. If the initial acute inflammation is not resolved, a chronic neuroinflammatory state develops and ultimately contributes to disease progression. Chronic neuroinflammation is characterized by adverse and non-specific activation of glial cells, which can lead to collateral damage of nearby neurons and other glia. This misdirected neuroinflammatory response is hypothesized to contribute to neuropathology in MDD, SCH, AD, and PD. Physical activity (PA), which is critical for maintenance of whole body and brain health, may also beneficially modify neuroimmune responses. Since PA has neuroimmune-modifying properties, and the common underlying feature of MDD, SCH, AD, and PD is chronic neuroinflammation, we hypothesize that PA could minimize brain diseases by modifying glia-mediated neuroinflammation. This review highlights current evidence supporting the disease-altering potential of PA and exercise through modifications of neuroimmune responses, specifically in MDD, SCH, AD and PD.
Collapse
|
76
|
Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural Plast 2016; 2016:2473081. [PMID: 26881095 PMCID: PMC4737453 DOI: 10.1155/2016/2473081] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.
Collapse
|