51
|
Morales MG, Cabrera D, Céspedes C, Vio CP, Vazquez Y, Brandan E, Cabello-Verrugio C. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell Tissue Res 2013; 353:173-87. [DOI: 10.1007/s00441-013-1642-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023]
|
52
|
Morales MG, Vazquez Y, Acuña MJ, Rivera JC, Simon F, Salas JD, Alvarez Ruf J, Brandan E, Cabello-Verrugio C. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells. Int J Biochem Cell Biol 2012; 44:1993-2002. [PMID: 22964022 DOI: 10.1016/j.biocel.2012.07.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF-β1 expression increase mediated by Ang-II in skeletal muscle cells.
Collapse
Affiliation(s)
- María Gabriela Morales
- Centro de Regulación Celular y Patología, Centro de Regeneración y Envejecimiento, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
microRNAs (miRNAs) are noncoding RNAs that regulate gene expression in post-transcriptional fashion, and emerging studies support their importance in a multitude of physiological and pathological processes. Here, we describe the regulation and function of miR-29 in Duchenne muscular dystrophy (DMD) and its potential use as therapeutic target. Our results demonstrate that miR-29 expression is downregulated in dystrophic muscles of mdx mice, a model of DMD. Restoration of its expression by intramuscular and intravenous injection improved dystrophy pathology by both promoting regeneration and inhibiting fibrogenesis. Mechanistic studies revealed that loss of miR-29 in muscle precursor cells (myoblasts) promotes their transdifferentiation into myofibroblasts through targeting extracellular molecules including collagens and microfibrillar-associated protein 5 (Mfap5). We further demonstrated that miR-29 is under negative regulation by transforming growth factor-β (TGF-β) signaling. Together, these results not only identify TGF-β-miR-29 as a novel regulatory axis during myoblasts conversion into myofibroblasts which constitutes a novel contributing route to muscle fibrogenesis of DMD but also implicate miR-29 replacement therapy as a promising treatment approach for DMD.
Collapse
|
54
|
Kemaladewi DU, ‘t Hoen PA, ten Dijke P, van Ommen GJ, Hoogaars WM. TGF-β signaling in Duchenne muscular dystrophy. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The TGF-β protein family consists of secreted multifunctional cytokines that control diverse processes, such as cell growth and differentiation. Aberrant expression and downstream signaling of these growth factors have been associated with multiple diseases, including muscle wasting disorders, such as Duchenne muscular dystrophy. In this review we discuss recent advances in understanding the role of TGF-β family members during normal skeletal muscle biology/regeneration and their role in muscle pathology, with a special focus on Duchenne muscular dystrophy. In addition, we will highlight progress in the development of potential therapeutics for Duchenne muscular dystrophy based on intervention of TGF-β signaling.
Collapse
Affiliation(s)
- Dwi U Kemaladewi
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
- Department of Molecular & Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Peter A ‘t Hoen
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Peter ten Dijke
- Department of Molecular & Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Gert Jan van Ommen
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Willem M Hoogaars
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| |
Collapse
|
55
|
Expression of collagen VI α5 and α6 chains in human muscle and in Duchenne muscular dystrophy-related muscle fibrosis. Matrix Biol 2011; 31:187-96. [PMID: 22226732 PMCID: PMC3315014 DOI: 10.1016/j.matbio.2011.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022]
Abstract
Collagen VI is a major extracellular matrix (ECM) protein with a critical role in maintaining skeletal muscle functional integrity. Mutations in COL6A1, COL6A2 and COL6A3 genes cause Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy, and Myosclerosis. Moreover, Col6a1−/− mice and collagen VI deficient zebrafish display a myopathic phenotype. Recently, two additional collagen VI chains were identified in humans, the α5 and α6 chains, however their distribution patterns and functions in human skeletal muscle have not been thoroughly investigated yet. By means of immunofluorescence analysis, the α6 chain was detected in the endomysium and perimysium, while the α5 chain labeling was restricted to the myotendinous junctions. In normal muscle cultures, the α6 chain was present in traces in the ECM, while the α5 chain was not detected. In the absence of ascorbic acid, the α6 chain was mainly accumulated into the cytoplasm of a sub-set of desmin negative cells, likely of interstitial origin, which can be considered myofibroblasts as they expressed α-smooth muscle actin. TGF-β1 treatment, a pro-fibrotic factor which induces trans-differentiation of fibroblasts into myofibroblasts, increased the α6 chain deposition in the extracellular matrix after addition of ascorbic acid. In order to define the involvement of the α6 chain in muscle fibrosis we studied biopsies of patients affected by Duchenne Muscular Dystrophy (DMD). We found that the α6 chain was dramatically up-regulated in fibrotic areas where, in contrast, the α5 chain was undetectable. Our results show a restricted and differential distribution of the novel α6 and α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, suggesting that these new chains may play specific roles in specialized ECM structures. While the α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain appears implicated in ECM remodeling during muscle fibrosis.
Collapse
|
56
|
Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Tsuchida K, Yamamoto H, Fukada SI. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 2011; 124:3654-64. [PMID: 22045730 DOI: 10.1242/jcs.086629] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation of adipocytes and collagen type-I-producing cells (fibrosis) is observed in muscular dystrophies. The origin of these cells had been largely unknown, but recently we identified mesenchymal progenitors positive for platelet-derived growth factor receptor alpha (PDGFRα) as the origin of adipocytes in skeletal muscle. However, the origin of muscle fibrosis remains largely unknown. In this study, clonal analyses show that PDGFRα(+) cells also differentiate into collagen type-I-producing cells. In fact, PDGFRα(+) cells accumulated in fibrotic areas of the diaphragm in the mdx mouse, a model of Duchenne muscular dystrophy. Furthermore, mRNA of fibrosis markers was expressed exclusively in the PDGFRα(+) cell fraction in the mdx diaphragm. Importantly, TGF-β isoforms, known as potent profibrotic cytokines, induced expression of markers of fibrosis in PDGFRα(+) cells but not in myogenic cells. Transplantation studies revealed that fibrogenic PDGFRα(+) cells mainly derived from pre-existing PDGFRα(+) cells and that the contribution of PDGFRα(-) cells and circulating cells was limited. These results indicate that mesenchymal progenitors are the main origin of not only fat accumulation but also fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Akiyoshi Uezumi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Inhibiting TGF-β activity improves respiratory function in mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2611-21. [PMID: 21641384 DOI: 10.1016/j.ajpath.2011.02.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/26/2011] [Accepted: 02/03/2011] [Indexed: 11/23/2022]
Abstract
Respiratory function is the main cause of mortality in patients with Duchenne muscular dystrophy (DMD). Elevated levels of TGF-β play a key role in the pathophysiology of DMD. To determine whether therapeutic attenuation of TGF-β signaling improves respiratory function, mdx mice were treated from 2 weeks of age to 2 months or 9 months of age with either 1D11 (a neutralizing antibody to all three isoforms of TGF-β), losartan (an angiotensin receptor antagonist), or a combination of the two agents. Respiratory function was measured in nonanesthetized mice by plethysmography. The 9-month-old mdx mice had elevated Penh values and decreased breathing frequency, due primarily to decreased inspiratory flow rate. All treatments normalized Penh values and increased peak inspiratory flow, leading to decreased inspiration times and breathing frequency. Additionally, forelimb grip strength was improved after 1D11 treatment at both 2 and 9 months of age, whereas, losartan improved grip strength only at 2 months. Decreased serum creatine kinase levels (significant improvement for all groups), increased diaphragm muscle fiber density, and decreased hydroxyproline levels (significant improvement for 1D11 only) also suggested improved muscle function after treatment. For all endpoints, 1D11 was equivalent or superior to losartan; coadministration of the two agents was not superior to 1D11 alone. In conclusion, TGF-β antagonism may be a useful therapeutic approach for treating DMD patients.
Collapse
|
58
|
Serrano AL, Mann CJ, Vidal B, Ardite E, Perdiguero E, Muñoz-Cánoves P. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol 2011; 96:167-201. [PMID: 21621071 DOI: 10.1016/b978-0-12-385940-2.00007-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The repair of an injured tissue is a complex biological process involving the coordinated activities of tissue-resident and infiltrating cells in response to local and systemic signals. Following acute tissue injury, inflammatory cell infiltration and activation/proliferation of resident stem cells is the first line of defense to restore tissue homeostasis. However, in the setting of chronic tissue damage, such as in Duchenne Muscular Dystrophy, inflammatory infiltrates persist, the ability of stem cells (satellite cells) is blocked and fibrogenic cells are continuously activated, eventually leading to the conversion of muscle into nonfunctional fibrotic tissue. This review explores our current understanding of the cellular and molecular mechanisms underlying efficient muscle repair that are dysregulated in muscular dystrophy-associated fibrosis and in aging-related muscle dysfunction.
Collapse
Affiliation(s)
- Antonio L Serrano
- Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
59
|
Lu H, Huang D, Ransohoff RM, Zhou L. Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB J 2011; 25:3344-55. [PMID: 21697550 DOI: 10.1096/fj.10-178939] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CC chemokine ligand 2 (CCL2), a ligand of CC chemokine receptor 2 (CCR2), is essential to mount an adequate inflammatory response to repair acute skeletal muscle injury. We studied the mechanisms by which CCL2 regulates muscle inflammation and regeneration. Mobilization of monocytes/macrophages (MOs/MPs) but not lymphocytes or neutrophils was impaired from bone marrow to blood and from blood to injured muscles in Ccl2(-/-) mice. This was accompanied by poor phagocytosis, reduced up-regulation of insulin-like growth factor-1 (IGF-1), and impaired muscle regeneration. Bone marrow transfer from wild-type mice to irradiated Ccr2(-/-) but not Ccl2(-/-) mice restored muscle inflammation. Intravenously injected CCL2-deficient bone marrow monocytes could not enter wild-type injured muscles as well as wild-type bone marrow monocytes. Intravenously injected wild-type bone marrow monocytes could not enter CCL2-deficient injured muscles as well as wild-type injured muscles. CCL2 stimulated IGF-1 expression by wild-type but not CCR2-deficient intramuscular macrophages. A single intramuscular injection of IGF-1, but not PBS, markedly improved muscle regeneration in Ccl2(-/-) mice. We conclude that CCL2 is a major ligand of CCR2 to recruit MOs/MPs into injured muscles to conduct phagocytosis and produce IGF-1 for injury repair. CCL2 needs to be expressed by bone marrow cells, circulating monocytes, and injured muscle tissue cells to recruit MOs/MPs into injured muscles. CCL2/CCR2 signaling also up-regulates IGF-1 expression by intramuscular macrophages to promote acute skeletal muscle injury repair.
Collapse
Affiliation(s)
- Haiyan Lu
- Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave/S90, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
60
|
Markert CD, Ambrosio F, Call JA, Grange RW. Exercise and Duchenne muscular dystrophy: toward evidence-based exercise prescription. Muscle Nerve 2011; 43:464-78. [PMID: 21404285 DOI: 10.1002/mus.21987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To develop a rational framework for answering questions about the role of exercise in Duchenne muscular dystrophy (DMD), we focused on five pathophysiological mechanisms and offer brief hypotheses regarding how exercise may beneficially modulate pertinent cellular and molecular pathways. We aimed to provide an integrative overview of mechanisms of DMD pathology that may improve or worsen as a result of exercise. We also sought to stimulate discussion of what outcomes/dependent variables most appropriately measure these mechanisms, with the purpose of defining criteria for well-designed, controlled studies of exercise in DMD. The five mechanisms include pathways that are both intrinsic and extrinsic to the diseased muscle cells.
Collapse
Affiliation(s)
- Chad D Markert
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
61
|
Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 2011; 1:21. [PMID: 21798099 PMCID: PMC3156644 DOI: 10.1186/2044-5040-1-21] [Citation(s) in RCA: 594] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/04/2011] [Indexed: 02/06/2023] Open
Abstract
The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.
Collapse
Affiliation(s)
- Christopher J Mann
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Yacine Kharraz
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Susana Aguilar
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Patrizia Pessina
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
62
|
Kallestad KM, Hebert SL, McDonald AA, Daniel ML, Cu SR, McLoon LK. Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis. Exp Cell Res 2011; 317:873-85. [PMID: 21277300 PMCID: PMC3072110 DOI: 10.1016/j.yexcr.2011.01.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/13/2011] [Accepted: 01/15/2011] [Indexed: 11/25/2022]
Abstract
The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin(-/-) (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of mpcs, the EOMCD34 cells, that are retained in significantly higher percentages in normal, mdx and DKO mice EOM, appear to be resistant to elevated levels of oxidative stress and toxins, and actively proliferate throughout life. Current studies are focused on further defining the EOMCD34 cell subtype molecularly, with the hopes that this may shed light on a cell type with potential therapeutic use in patients with sarcopenia, cachexia, or muscular dystrophy.
Collapse
Affiliation(s)
- Kristen M Kallestad
- Departments of Ophthalmology and Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
63
|
Huang P, Cheng G, Lu H, Aronica M, Ransohoff RM, Zhou L. Impaired respiratory function in mdx and mdx/utrn(+/-) mice. Muscle Nerve 2011; 43:263-7. [PMID: 21254093 PMCID: PMC3103944 DOI: 10.1002/mus.21848] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Muscle fibrosis is a prominent pathological feature that directly causes muscle dysfunction in Duchenne muscular dystrophy (DMD). The DMD mouse models, mdx mice and mdx mice with haploinsufficiency of the utrophin gene (mdx/utrn(+/-) ), display progressive diaphragm fibrosis. We performed unrestrained whole-body plethysmography (WBP) in mdx and mdx/utrn(+/-) mice, and compared them with wild-type controls. Respiratory function gauged by respiratory frequency, tidal volume, minute volume, peak inspiratory flow, and peak expiratory flow was significantly impaired in the mdx mice. Consistent with more severe diaphragm fibrosis in the mdx/utrn(+/-) mice, respiratory impairment was worse than in mdx mice at 6 months. WBP is useful for monitoring in vivo respiratory function of mdx and mdx/utrn(+/-) mice, and it may serve as an outcome measurement for therapies that target diaphragm fibrosis. The mdx/utrn(+/-) mouse model may be better than the mdx model for testing antifibrotic therapies, especially at the severe stage.
Collapse
Affiliation(s)
- Ping Huang
- Departments of Neurology and Neurosciences, Neurological Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Georgiana Cheng
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Haiyan Lu
- Departments of Neurology and Neurosciences, Neurological Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Aronica
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Richard M. Ransohoff
- Departments of Neurology and Neurosciences, Neurological Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lan Zhou
- Departments of Neurology and Neurosciences, Neurological Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
64
|
Taniguti APT, Pertille A, Matsumura CY, Santo Neto H, Marques MJ. Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF-β1 blocker. Muscle Nerve 2011; 43:82-7. [PMID: 21108244 DOI: 10.1002/mus.21869] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fibrosis is a pathological feature observed in patients with Duchenne muscular dystrophy (DMD) and in mdx mice, the experimental model of DMD. We evaluated the effect of suramin, a transforming growth factor-beta 1 (TGF-β1) blocker, on fibrosis in mdx mice. mdx mice (6 months old) received suramin for 7 weeks. Suramin- and saline-treated (control) mdx mice performed exercise on a treadmill to worsen disease progression. Immunoblotting showed an increase of TGF-β1 in mdx diaphragm, limb, and cardiac muscles. Suramin decreased creatine kinase in mdx mice and attenuated fibrosis in all muscles studied, except for cardiac muscle. Suramin protected limb muscles against damage and reduced the exercise-induced loss of strength over time. These findings support a role for TGF-β1 in fibrinogenesis and myonecrosis during the later stages of disease in mdx mice. Suramin might be a useful therapeutic alternative for the treatment of dystrophinopathies.
Collapse
Affiliation(s)
- Ana Paula Tiemi Taniguti
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SãoPaulo 13083-970, Brazil
| | | | | | | | | |
Collapse
|
65
|
Serrano AL, Muñoz-Cánoves P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 2010; 316:3050-8. [DOI: 10.1016/j.yexcr.2010.05.035] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 05/30/2010] [Indexed: 02/06/2023]
|
66
|
Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 2010; 25:358-69. [PMID: 20889618 DOI: 10.1096/fj.10-171579] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CC chemokine receptor 2 (CCR2) is essential to acute skeletal muscle injury repair. We studied the subpopulation of inflammatory cells recruited via CCR2 signaling and their cellular functions with respect to muscle regeneration. Mobilization of monocytes/macrophages (MOs/MPs), but not lymphocytes or neutrophils, was impaired from bone marrow to blood and from blood to injured muscle in Ccr2(-/-) mice. While the Ly-6C(+) but not the Ly-6C(-) subset of MOs/MPs was significantly reduced in blood, both subsets were drastically reduced in injured muscle of Ccr2(-/-) mice. Expression of insulin-like growth factor-1 (IGF-I) was markedly up-regulated in injured muscle of wild-type but not Ccr2(-/-) mice. IGF-I was strongly expressed by macrophages within injured muscle, more prominently by the Ly-6C(-) subset. A single injection of IGF-I, but not PBS, into injured muscle to replace IGF-I remarkably improved muscle regeneration in Ccr2(-/-) mice. CCR2 was not detected in myogenic cells or capillary endothelial cells in injured muscle to suggest its direct involvement in muscle regeneration or angiogenesis. We conclude that CCR2 is essential to acute skeletal muscle injury repair primarily by recruiting Ly-6C(+) MOs/MPs. Within injured muscle, these cells conduct phagocytosis, contribute to accumulation of intramuscular Ly-6C(-) macrophages, and produce a high level of IGF-I to promote muscle regeneration.
Collapse
Affiliation(s)
- Haiyan Lu
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave./S90, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common genetic muscle disease affecting 1 in 3,500 live male births. It is an X-linked recessive disease caused by a defective dystrophin gene. The disease is characterized by progressive limb weakness, respiratory and cardiac failure, and premature death. Fibrosis is a prominent pathological feature of muscle biopsies from patients with DMD. It directly causes muscle dysfunction and contributes to the lethal DMD phenotype. Although gene therapy and cell therapy may ultimately provide a cure for DMD, currently the disease is devastating, with no effective therapies. Recent studies have demonstrated that ameliorating muscle fibrosis may represent a viable therapeutic approach for DMD. By reducing scar formation, antifibrotic therapies may not only improve muscle function but also enhance muscle regeneration and promote gene and stem cell engraftment. Antifibrotic therapy may serve as a necessary addition to gene and cell therapies to treat DMD in the future. Therefore, understanding cellular and molecular mechanisms underlying muscle fibrogenesis associated with dystrophin deficiency is key to the development of effective antifibrotic therapies for DMD.
Collapse
Affiliation(s)
- Lan Zhou
- From the Department of Neurology, Neurological Institute, and Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
68
|
TGF-beta receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation. Exp Cell Res 2010; 316:2487-503. [PMID: 20471380 DOI: 10.1016/j.yexcr.2010.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 11/22/2022]
Abstract
Skeletal muscle differentiation is strongly inhibited by transforming growth factor type beta (TGF-beta), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-beta-receptors (TGF-beta-Rs) during skeletal muscle differentiation. We found a decrease of TGF-beta signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-beta. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-beta-R type I (TGF-beta-RI) and type II (TGF-beta-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-beta-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-beta-RII lacking the cytoplasmic domain. The TGF-beta-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-beta-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-beta receptors independent of Smad proteins are essential for skeletal muscle differentiation.
Collapse
|
69
|
Evans NP, Misyak SA, Robertson JL, Bassaganya-Riera J, Grange RW. Immune-mediated mechanisms potentially regulate the disease time-course of duchenne muscular dystrophy and provide targets for therapeutic intervention. PM R 2009; 1:755-68. [PMID: 19695529 DOI: 10.1016/j.pmrj.2009.04.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 11/19/2022]
Abstract
Duchenne muscular dystrophy is a lethal muscle-wasting disease that affects boys. Mutations in the dystrophin gene result in the absence of the dystrophin glycoprotein complex (DGC) from muscle plasma membranes. In healthy muscle fibers, the DGC forms a link between the extracellular matrix and the cytoskeleton to protect against contraction-induced membrane lesions and to regulate cell signaling. The absence of the DGC results in aberrant regulation of inflammatory signaling cascades. Inflammation is a key pathological characteristic of dystrophic muscle lesion formation. However, the role and regulation of this process in the disease time-course has not been sufficiently examined. The transcription factor nuclear factor-kappaB has been shown to contribute to the disease process and is likely involved with increased inflammatory gene expression, including cytokines and chemokines, found in dystrophic muscle. These aberrant signaling processes may regulate the early time-course of inflammatory events that contribute to the onset of disease. This review critically evaluates the possibility that dystrophic muscle lesions in both patients with Duchenne muscular dystrophy and mdx mice are the result of immune-mediated mechanisms that are regulated by inflammatory signaling and also highlights new therapeutic directions.
Collapse
Affiliation(s)
- Nicholas P Evans
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0002, USA.
| | | | | | | | | |
Collapse
|
70
|
Huang P, Zhao XS, Fields M, Ransohoff RM, Zhou L. Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 2009; 23:2539-48. [PMID: 19289603 PMCID: PMC2717779 DOI: 10.1096/fj.09-129833] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/19/2009] [Indexed: 01/19/2023]
Abstract
Duchenne-Meryon muscular dystrophy (DMD) is the most common and lethal genetic muscle disease. Ameliorating muscle necrosis, inflammation, and fibrosis represents an important therapeutic approach for DMD. Imatinib, an antineoplastic agent, demonstrated antiinflammatory and antifibrotic effects in liver, kidney, lung, and skin of various animal models. This study tested antiinflammatory and antifibrotic effects of imatinib in mdx mice, a DMD mouse model. We treated mdx mice with intraperitoneal injections of imatinib at the peak of limb muscle inflammation and the onset of diaphragm fibrosis. Controls received PBS vehicle or were left untreated. Muscle necrosis, inflammation, fibrosis, and function were evaluated by measuring serum CK activity, endomysial CD45 immunoreactive inflammation area, endomysial collagen III deposition, and hind limb grip strength. Phosphorylation of the tyrosine kinase targets of imatinib was assessed by Western blot in diaphragm tissue and in primary cultures of peritoneal macrophages and skeletal muscle fibroblasts. Imatinib markedly reduced muscle necrosis, inflammation, and fibrosis, and significantly improved hind limb grip strength in mdx mice. Reduced clinical disease was accompanied by inhibition of c-abl and PDGFR phosphorylation and suppression of TNF-alpha and IL-1beta expression. Imatinib therapy for DMD may hold promise for ameliorating muscle necrosis, inflammation, and fibrosis by inhibiting c-abl and PDGFR signaling pathways and downstream inflammatory cytokine and fibrotic gene expression.
Collapse
MESH Headings
- Animals
- Base Sequence
- Benzamides
- Creatine Kinase/blood
- Diaphragm/drug effects
- Diaphragm/pathology
- Gene Expression/drug effects
- Imatinib Mesylate
- In Vitro Techniques
- Inflammation/drug therapy
- Inflammation/pathology
- Interleukin-1beta/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Necrosis
- Phosphorylation
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-abl/metabolism
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Smad2 Protein/metabolism
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Ping Huang
- Department of Neurology/Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 USA
| | | | | | | | | |
Collapse
|
71
|
Dysregulated intracellular signaling and inflammatory gene expression during initial disease onset in Duchenne muscular dystrophy. Am J Phys Med Rehabil 2009; 88:502-22. [PMID: 19454857 DOI: 10.1097/phm.0b013e3181a5a24f] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy is a debilitating genetic disorder characterized by severe muscle wasting and early death in affected boys. The primary cause of this disease is mutations in the dystrophin gene that result in the absence of the protein dystrophin and the associated dystrophin-glycoprotein complex in the plasma membrane of muscle fibers. In normal muscle, this complex forms a link between the extracellular matrix and the cytoskeleton that is thought to protect muscle fibers from contraction-induced membrane lesions and to regulate cell signaling cascades. Although the primary defect is known, the mechanisms that initiate disease onset have not been characterized. Data collected during early maturation suggest that inflammatory and immune responses are key contributors to disease pathogenesis and may be initiated by aberrant signaling in dystrophic muscle. However, detailed time course studies of the inflammatory and immune processes are incomplete and need to be characterized further to understand the disease progression. The purposes of this review are to examine the possibility that initial disease onset in dystrophin-deficient muscle results from aberrant inflammatory signaling pathways and to highlight the potential clinical relevance of targeting these pathways to treat Duchenne muscular dystrophy.
Collapse
|
72
|
Liu Y, Kudo K, Abe Y, Hu DL, Kijima H, Nakane A, Ono K. Inhibition of transforming growth factor-beta, hypoxia-inducible factor-1alpha and vascular endothelial growth factor reduced late rectal injury induced by irradiation. JOURNAL OF RADIATION RESEARCH 2009; 50:233-239. [PMID: 19346676 DOI: 10.1269/jrr.08112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tumor hypoxia and angiogenesis associated with malignant progression have been studied widely. The efficacy of angiogenesis inhibition combined with radiotherapy has been demonstrated in cancer treatment. Here, we studied the effect of hypoxia and angiogenesis inhibition on radiation-induced late rectal injury. The rectum of C57BL/6N mice was irradiated locally with a single dose of 25 Gy. Radiation-induced histological changes were examined at 90 days after irradiation by hematoxylin-eosin (H.E.) staining and azan staining. Pimonidazole was administered and its distribution was assayed by immunohistochemistry staining. Expression of transforming growth factor beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) was assessed on the fibrotic region using real-time PCR and immunohistochemistry. In addition, the effects of TGF-beta, VEGF and HIF-1alpha on radiation-induced injury were investigated by the administration of neutralizing antibody of TGF-beta, antibody of VEGF or YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole) which was developed as an agent for inhibiting HIF-1 expression after irradiation respectively. Fibrosis and uptake of pimonidazole were found 90 days after irradiation. The expression of TGF-beta1, HIF-1alpha and VEGF significantly increased with the formation of fibrosis induced by irradiation compared with unirradiated controls. In addition, treatment of neutralizing antibody of TGF-beta, antibody of VEGF or YC-1 reduced the development of radiation-induced injury. Our results suggested that radiation-induced hypoxia may play an important role in late rectal injury. Although the inhibition of HIF-1alpha and VEGF reduced the radiation induced late injury, the precise mechanism is still unclear.
Collapse
Affiliation(s)
- Yong Liu
- Departments of Radiology and Radiation Oncology, Hirosaki University, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Vidal B, Serrano AL, Tjwa M, Suelves M, Ardite E, De Mori R, Baeza-Raja B, Martínez de Lagrán M, Lafuste P, Ruiz-Bonilla V, Jardí M, Gherardi R, Christov C, Dierssen M, Carmeliet P, Degen JL, Dewerchin M, Muñoz-Cánoves P. Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway. Genes Dev 2008; 22:1747-52. [PMID: 18593877 DOI: 10.1101/gad.465908] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen-Mac-1 receptor binding, through induction of IL-1beta, drives the synthesis of transforming growth factor-beta (TGFbeta) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFbeta further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its alphavbeta3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy.
Collapse
Affiliation(s)
- Berta Vidal
- Program on Differentiation and Cancer, Center for Genomic Regulation (CRG), Pompeu Fabra University (UPF), E-08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Liu Y, Kudo K, Abe Y, Aoki M, Hu DL, Kijima H, Nakane A. Hypoxia expression in radiation-induced late rectal injury. JOURNAL OF RADIATION RESEARCH 2008; 49:261-268. [PMID: 18296870 DOI: 10.1269/jrr.07099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tumor hypoxia and angiogenesis have been studied extensively. However, the relation between normal tissue injury and hypoxia is still unclear. In this study, we investigated the effect of hypoxia on radiation-induced late rectal injury in mice. The rectum of C57BL/6N mice was irradiated locally with a single dose of 25 Gy and the following experiments were performed including hematoxylin-eosin (H. E.) staining, azan staining, real-time PCR, immunohistochemistry and immunofluorescene. Radiation-induced fibrotic changes were observed from 14 days and reached the peak 30 days after irradiation. The expression of transforming growth factor beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 increased significantly with the formation of fibrosis induced by irradiation compared with unirradiated control. In addition, the maximum expression of TGF-beta1, HIF-1alpha and VEGF was found at 14, 30 and 90 days after irradiation, respectively. The temporal changes of cytokines were consistent with the dynamic change of fibrosis. Our data suggests that late normal tissue injury involved various cytokines including hypoxia-induced angiogenic cytokines. These results may have important implications in the understanding of radiation-induced late normal tissue injury.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Baban D, Davies KE. Microarray analysis of mdx mice expressing high levels of utrophin: therapeutic implications for dystrophin deficiency. Neuromuscul Disord 2008; 18:239-47. [PMID: 18343112 DOI: 10.1016/j.nmd.2007.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/10/2007] [Accepted: 11/19/2007] [Indexed: 11/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disorder caused by dystrophin deficiency. Previous work suggested that increased expression of the dystrophin-related protein utrophin in the mdx mouse can reduce the dystrophic pathophysiology. Physiological tests showed that the transgenic mouse muscle functioned in a way similar to normal muscle. More recently, it has become possible to analyse disease pathways using microarrays, a sensitive method to evaluate the efficacy of a therapeutic approach. We thus examined the gene expression profile of mdx mouse muscle compared to wild-type mouse muscle and compared the data with that obtained from the transgenic line overexpressing utrophin. The data confirm that the expression of utrophin in the mdx mouse muscle results in a global gene expression profile more similar to that seen for the wild-type mouse. This study confirms that a strategy to up-regulate utrophin is likely to be beneficial in dystrophin deficiency.
Collapse
Affiliation(s)
- Dilair Baban
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
76
|
Zhou L, Rafael-Fortney JA, Huang P, Zhao XS, Cheng G, Zhou X, Kaminski HJ, Liu L, Ransohoff RM. Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. J Neurol Sci 2008; 264:106-11. [PMID: 17889902 PMCID: PMC2696235 DOI: 10.1016/j.jns.2007.08.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 11/30/2022]
Abstract
To address whether mdx mice with haploinsufficiency of utrophin (mdx/utrn+/-) develop more severe skeletal muscle inflammation and fibrosis than mdx mice, to represent a better model for Duchenne muscular dystrophy (DMD), we performed qualitative and quantitative analysis of skeletal muscle inflammation and fibrosis in mdx and mdx/utrn+/- littermates. Inflammation was significantly worse in mdx/utrn+/- quadriceps at age 3 and 6 months and in mdx/utrn+/- diaphragm at age 3 but not 6 months. Fibrosis was more severe in mdx/utrn+/- diaphragm at 6 months, and at this age, mild fibrosis was noted in quadriceps of mdx/utrn+/- but not mdx mice. The findings indicate that utrophin compensates, although insufficiently, for the effects of dystrophin loss with regard to inflammation and fibrosis of both quadriceps and diaphragm muscles in mdx mice. With more severe muscle dystrophy than mdx mice and a longer life span than utrophin-dystrophin-deficient (dko) mice, mdx/utrn+/- mice provide a better mouse model for testing potential therapies for muscle inflammation and fibrosis associated with DMD.
Collapse
Affiliation(s)
- Lan Zhou
- Department of Neurology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Pescatori M, Broccolini A, Minetti C, Bertini E, Bruno C, D'amico A, Bernardini C, Mirabella M, Silvestri G, Giglio V, Modoni A, Pedemonte M, Tasca G, Galluzzi G, Mercuri E, Tonali PA, Ricci E. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J 2007; 21:1210-26. [PMID: 17264171 DOI: 10.1096/fj.06-7285com] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Collapse
Affiliation(s)
- Mario Pescatori
- Institute of Neurology, Catholic University, L.go A. Gemelli 8, 0018, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Droguett R, Cabello-Verrugio C, Riquelme C, Brandan E. Extracellular proteoglycans modify TGF-β bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol 2006; 25:332-41. [PMID: 16766169 DOI: 10.1016/j.matbio.2006.04.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 12/22/2022]
Abstract
The onset and progression of skeletal muscle regeneration are controlled by a complex set of interactions between muscle precursor cells and their environment. Satellite cells constitute the main source of muscle precursor cells for growth and repair. After skeletal muscle injury, cell-derived signals induce their re-entry into the cell cycle and their migration into the damaged zone, where they proliferate and differentiate into mature myofibers. The surrounding extracellular matrix (ECM) together with inhibitory growth factors, such as transforming growth factor-beta (TGF-beta), also likely play an important role in growth control and muscle differentiation. Decorin, biglycan and betaglycan are proteoglycans that bind TGF-beta during skeletal muscle differentiation. In this paper, we show that the binding of TGF-beta to the receptors TGF-betaRI and-betaRII diminished in a satellite cell-derived cell line during differentiation, in spite of an increase expression of both receptors. In contrast, during the differentiation of decorin-null myoblasts (Dcn null), which lack decorin expression, the binding of TGF-beta to TGF-betaRI and -betaRII increased concomitantly with receptors levels. Both the addition and re-expression of decorin, in these myoblasts, diminished the binding of TGF-beta to its transducing receptors. Similar results were obtained when biglycan was added or over-expressed in Dcn null myoblasts. The binding of TGF-beta to TGF-betaRIII, alternatively known as betaglycan, was also augmented in Dcn null myoblasts and diminished by decorin, biglycan and betaglycan. These results suggest that decorin, biglycan and betaglycan compete for the binding of TGF-beta to its transducing receptors. Transfection studies with the TGF-beta-dependent promoter of the plasminogen activator inhibitor-1, coupled with luciferase, revealed that the addition of each proteoglycan diminished TGF-beta-dependent activity, for both TGF-beta1 and -beta2. The modulation of TGF-beta signaling by ECM proteoglycans diminishing the bio-availability of TGF-beta for its transducing receptors appears to be a feasible mechanism for the attenuation of this inhibitory growth factor during skeletal muscle formation.
Collapse
Affiliation(s)
- Rebeca Droguett
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|