51
|
Savorani F, Rasmussen MA, Mikkelsen MS, Engelsen SB. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Ismail NA, Posma JM, Frost G, Holmes E, Garcia-Perez I. The role of metabonomics as a tool for augmenting nutritional information in epidemiological studies. Electrophoresis 2013; 34:2776-86. [PMID: 23893902 DOI: 10.1002/elps.201300066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/04/2013] [Accepted: 07/12/2013] [Indexed: 11/07/2022]
Abstract
Most chronic diseases have been demonstrated to have a link to nutrition. Within food and nutritional research there is a major driver to understand the relationship between diet and disease in order to improve health of individuals. However, the lack of accurate dietary intake assessment in free-living populations, makes accurate estimation of how diet is associated with disease risk difficulty. Thus, there is a pressing need to find solutions to the inaccuracy of dietary reporting. Metabolic profiling of urine or plasma can provide an unbiased approach to characterizing dietary intake and various high-throughput analytical platforms have been used in order to implement targeted and nontargeted assays in nutritional clinical trials and nutritional epidemiology studies. This review describes first the challenges presented in interpreting the relationship between diet and health within individual and epidemiological frameworks. Second, we aim to explore how metabonomics can benefit different types of nutritional studies and discuss the critical importance of selecting appropriate analytical techniques in these studies. Third, we propose a strategy capable of providing accurate assessment of food intake within an epidemiological framework in order establish accurate associations between diet and health.
Collapse
Affiliation(s)
- Nurhafzan A Ismail
- Division of Endocrinology and Metabolism, Nutrition and Dietetic Research Group, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
53
|
Effect of trans fatty acid intake on LC-MS and NMR plasma profiles. PLoS One 2013; 8:e69589. [PMID: 23922748 PMCID: PMC3726671 DOI: 10.1371/journal.pone.0069589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The consumption of high levels of industrial trans fatty acids (TFA) has been related to cardiovascular disease, diabetes and sudden cardiac death but the causal mechanisms are not well known. In this study, NMR and LC-MS untargeted metabolomics has been used as an approach to explore the impact of TFA intake on plasma metabolites. METHODOLOGY/PRINCIPAL FINDINGS In a double-blinded randomized controlled parallel-group study, 52 overweight postmenopausal women received either partially hydrogenated soybean oil, providing 15.7 g/day of TFA (trans18:1) or control oil with mainly oleic acid for 16 weeks. Subsequent to the intervention period, the subjects participated in a 12-week dietary weight loss program. Before and after the TFA intervention and after the weight loss programme, volunteers participated in an oral glucose tolerance test. PLSDA revealed elevated lipid profiles with TFA intake. NMR indicated up-regulated LDL cholesterol levels and unsaturation. LC-MS profiles demonstrated elevated levels of specific polyunsaturated (PUFA) long-chain phosphatidylcholines (PCs) and a sphingomyelin (SM) which were confirmed with a lipidomics based method. Plasma levels of these markers of TFA intake declined to their low baseline levels after the weight loss program for the TFA group and did not fluctuate for the control group. The marker levels were unaffected by OGTT. CONCLUSIONS/SIGNIFICANCE This study demonstrates that intake of TFA affects phospholipid metabolism. The preferential integration of trans18:1 into the sn-1 position of PCs, all containing PUFA in the sn-2 position, could be explained by a general up-regulation in the formation of long-chain PUFAs after TFA intake and/or by specific mobilisation of these fats into PCs. NMR supported these findings by revealing increased unsaturation of plasma lipids in the TFA group. These specific changes in membrane lipid species may be related to the mechanisms of TFA-induced disease but need further validation as risk markers. TRIAL REGISTRATION Registered at clinicaltrials.gov as NCT00655902.
Collapse
|
54
|
Du X, Zeisel SH. Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Comput Struct Biotechnol J 2013; 4:e201301013. [PMID: 24688694 PMCID: PMC3962095 DOI: 10.5936/csbj.201301013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 12/28/2022] Open
Abstract
Mass spectrometry coupled to gas chromatography (GC-MS) has been widely applied in the field of metabolomics. Success of this application has benefited greatly from computational workflows that process the complex raw mass spectrometry data and extract the qualitative and quantitative information of metabolites. Among the computational algorithms within a workflow, deconvolution is critical since it reconstructs a pure mass spectrum for each component that the mass spectrometer observes. Based on the pure spectrum, the corresponding component can be eventually identified and quantified. Deconvolution is challenging due to the existence of co-elution. In this review, we focus on progress that has been made in the development of deconvolution algorithms and provide thoughts on future developments that will expand the application of GC-MS in metabolomics.
Collapse
Affiliation(s)
- Xiuxia Du
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
55
|
Lu N, Wei D, Chen F, Yang ST. Lipidomic profiling reveals lipid regulation in the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
56
|
Menni C, Zhai G, MacGregor A, Prehn C, Römisch-Margl W, Suhre K, Adamski J, Cassidy A, Illig T, Spector TD, Valdes AM. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics 2013; 9:506-514. [PMID: 23543136 PMCID: PMC3608890 DOI: 10.1007/s11306-012-0469-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/21/2012] [Indexed: 01/06/2023]
Abstract
Nutrition plays an important role in human metabolism and health. Metabolomics is a promising tool for clinical, genetic and nutritional studies. A key question is to what extent metabolomic profiles reflect nutritional patterns in an epidemiological setting. We assessed the relationship between metabolomic profiles and nutritional intake in women from a large cross-sectional community study. Food frequency questionnaires (FFQs) were applied to 1,003 women from the TwinsUK cohort with targeted metabolomic analyses of serum samples using the Biocrates Absolute-IDQ™ Kit p150 (163 metabolites). We analyzed seven nutritional parameters: coffee intake, garlic intake and nutritional scores derived from the FFQs summarizing fruit and vegetable intake, alcohol intake, meat intake, hypo-caloric dieting and a "traditional English" diet. We studied the correlation between metabolite levels and dietary intake patterns in the larger population and identified for each trait between 14 and 20 independent monozygotic twins pairs discordant for nutritional intake and replicated results in this set. Results from both analyses were then meta-analyzed. For the metabolites associated with nutritional patterns, we calculated heritability using structural equation modelling. 42 metabolite nutrient intake associations were statistically significant in the discovery samples (Bonferroni P < 4 × 10-5) and 11 metabolite nutrient intake associations remained significant after validation. We found the strongest associations for fruit and vegetables intake and a glycerophospholipid (Phosphatidylcholine diacyl C38:6, P = 1.39 × 10-9) and a sphingolipid (Sphingomyeline C26:1, P = 6.95 × 10-13). We also found significant associations for coffee (confirming a previous association with C10 reported in an independent study), garlic intake and hypo-caloric dieting. Using the twin study design we find that two thirds the metabolites associated with nutritional patterns have a significant genetic contribution, and the remaining third are solely environmentally determined. Our data confirm the value of metabolomic studies for nutritional epidemiologic research.
Collapse
Affiliation(s)
- Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas Hospital, London, SE17EH UK
| | - Guangju Zhai
- Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas Hospital, London, SE17EH UK
- Faculty of Medicine, Memorial University of Newfoundland, St John’s, NL Canada
| | - Alexander MacGregor
- Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas Hospital, London, SE17EH UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Cornelia Prehn
- Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Werner Römisch-Margl
- Helmholtz Zentrum München, Institute of Bioinformatics and Systems Biology, Neuherberg, Germany
| | - Karsten Suhre
- Helmholtz Zentrum München, Institute of Bioinformatics and Systems Biology, Neuherberg, Germany
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, State of Qatar
- Faculty of Biology, Ludwig-Maximilians-Universität, Großhaderner Str. 2, Planegg-Martinsried, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Aedin Cassidy
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Tim D. Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas Hospital, London, SE17EH UK
| | - Ana M. Valdes
- Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas Hospital, London, SE17EH UK
| |
Collapse
|
57
|
Catalán Ú, Rodríguez MÁ, Ras MR, Maciá A, Mallol R, Vinaixa M, Fernández-Castillejo S, Valls RM, Pedret A, Griffin JL, Salek R, Correig X, Motilva MJ, Solà R. Biomarkers of food intake and metabolite differences between plasma and red blood cell matrices; a human metabolomic profile approach. MOLECULAR BIOSYSTEMS 2013; 9:1411-22. [PMID: 23493899 DOI: 10.1039/c3mb25554a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Untargeted metabolomic analyses of plasma and red blood cells (RBCs) can provide complementary information on biomarkers of food consumption. To assess blood collection differences in biomarkers, fasting blood was drawn from 10 healthy individuals using sodium citrate and lithium heparin as anticoagulants. Plasma and RBCs were separated into aqueous and lipid fractions to be analyzed using 1D and 2D (1)H NMR spectroscopy. Fatty acids were analyzed using gas chromatography-mass spectrometry (GC-MS). Polyphenols were extracted from plasma and RBCs by micro-elution solid-phase extraction and analyzed by ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). (1)H NMR demonstrated higher aqueous metabolites such as glucose in plasma compared to RBCs, while RBCs contained higher ADP-ATP, creatine and acetone than plasma. Lipoproteins and their subclasses were higher in plasma than in RBCs. Percentages of saturated fatty acids (SFA) 16 : 0, 17 : 0, 20 : 0, 24 : 0 and polyunsaturated fatty acids (PUFA) 22 : 6 n-3 (docosahexaenoic acid) and 20 : 4 n-6 (arachidonic acid) were higher in RBCs than in plasma (p < 0.05), while SFA 14 : 0, monounsaturated fatty acids (MUFA) 14 : 1 n-5, 16 : 1 n-7, 17 : 1 n-7 and 18 : 1 n-9 and PUFA 18 : 3 n-3, 18 : 2 n-6, 18 : 3 n-6 and 20 : 3 n-6 were higher in plasma than in RBCs (p < 0.05). Polyphenols differed in plasma from those of RBCs. Biomarker concentrations were lower in sodium citrate compared to lithium heparin plasma. In conclusion, metabolomic profiles generated by NMR spectroscopy, GC-MS and UPLC-MS/MS analyses of RBCs versus plasma show complementary information on several specific molecular biomarkers that could be applied in nutritional assessment.
Collapse
Affiliation(s)
- Úrsula Catalán
- Unitat de Recerca en Lípids i Arteriosclerosi, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, IISPV, CIBERDEM, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hyötyläinen T, Bondia-Pons I, Orešič M. Lipidomics in nutrition and food research. Mol Nutr Food Res 2013; 57:1306-18. [DOI: 10.1002/mnfr.201200759] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/07/2012] [Accepted: 12/29/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Matej Orešič
- VTT Technical Research Centre of Finland; Espoo; Finland
| |
Collapse
|
59
|
Bondia-Pons I, Barri T, Hanhineva K, Juntunen K, Dragsted LO, Mykkänen H, Poutanen K. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Mol Nutr Food Res 2013; 57:412-22. [DOI: 10.1002/mnfr.201200571] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/05/2012] [Accepted: 11/18/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Isabel Bondia-Pons
- Institute of Public Health and Clinical Nutrition; Clinical Nutrition; Food and Health Research Centre; University of Eastern Finland; Kuopio Campus; Kuopio Finland
- VTT Technical Research Centre of Finland; Tietotie Espoo Finland
| | - Thaer Barri
- Institute of Human Nutrition; Exercise and Sports; Faculty of Life Sciences; University of Copenhagen; Frederiksberg; Copenhagen Denmark
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition; Clinical Nutrition; Food and Health Research Centre; University of Eastern Finland; Kuopio Campus; Kuopio Finland
| | - Katri Juntunen
- Health Care Unit; City of Kuopio Health Care Services; Suokatu Kuopio Finland
| | - Lars O. Dragsted
- Institute of Human Nutrition; Exercise and Sports; Faculty of Life Sciences; University of Copenhagen; Frederiksberg; Copenhagen Denmark
| | - Hannu Mykkänen
- Institute of Public Health and Clinical Nutrition; Clinical Nutrition; Food and Health Research Centre; University of Eastern Finland; Kuopio Campus; Kuopio Finland
| | - Kaisa Poutanen
- Institute of Public Health and Clinical Nutrition; Clinical Nutrition; Food and Health Research Centre; University of Eastern Finland; Kuopio Campus; Kuopio Finland
- VTT Technical Research Centre of Finland; Tietotie Espoo Finland
| |
Collapse
|
60
|
Hedrick VE, Dietrich AM, Estabrooks PA, Savla J, Serrano E, Davy BM. Dietary biomarkers: advances, limitations and future directions. Nutr J 2012; 11:109. [PMID: 23237668 PMCID: PMC3568000 DOI: 10.1186/1475-2891-11-109] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/12/2012] [Indexed: 01/24/2023] Open
Abstract
The subjective nature of self-reported dietary intake assessment methods presents numerous challenges to obtaining accurate dietary intake and nutritional status. This limitation can be overcome by the use of dietary biomarkers, which are able to objectively assess dietary consumption (or exposure) without the bias of self-reported dietary intake errors. The need for dietary biomarkers was addressed by the Institute of Medicine, who recognized the lack of nutritional biomarkers as a knowledge gap requiring future research. The purpose of this article is to review existing literature on currently available dietary biomarkers, including novel biomarkers of specific foods and dietary components, and assess the validity, reliability and sensitivity of the markers. This review revealed several biomarkers in need of additional validation research; research is also needed to produce sensitive, specific, cost-effective and noninvasive dietary biomarkers. The emerging field of metabolomics may help to advance the development of food/nutrient biomarkers, yet advances in food metabolome databases are needed. The availability of biomarkers that estimate intake of specific foods and dietary components could greatly enhance nutritional research targeting compliance to national recommendations as well as direct associations with disease outcomes. More research is necessary to refine existing biomarkers by accounting for confounding factors, to establish new indicators of specific food intake, and to develop techniques that are cost-effective, noninvasive, rapid and accurate measures of nutritional status.
Collapse
Affiliation(s)
- Valisa E Hedrick
- Department of Human Nutrition, Foods and Exercise, 221 Wallace Hall (0430), Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Guo Y, Wang X, Qiu L, Qin X, Liu H, Wang Y, Li F, Wang X, Chen G, Song G, Li F, Guo S, Li Z. Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clin Chim Acta 2012; 414:135-41. [DOI: 10.1016/j.cca.2012.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 12/20/2022]
|
62
|
Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, Römisch‐Margl W, Lattka E, Gieger C, Soranzo N, Heinrich J, Standl M, Thiering E, Mittelstraß K, Wichmann H, Peters A, Suhre K, Li Y, Adamski J, Spector TD, Illig T, Wang‐Sattler R. Human serum metabolic profiles are age dependent. Aging Cell 2012; 11:960-7. [PMID: 22834969 PMCID: PMC3533791 DOI: 10.1111/j.1474-9726.2012.00865.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Understanding the complexity of aging is of utmost importance. This can now be addressed by the novel and powerful approach of metabolomics. However, to date, only a few metabolic studies based on large samples are available. Here, we provide novel and specific information on age-related metabolite concentration changes in human homeostasis. We report results from two population-based studies: the KORA F4 study from Germany as a discovery cohort, with 1038 female and 1124 male participants (32–81 years), and the TwinsUK study as replication, with 724 female participants. Targeted metabolomics of fasting serum samples quantified 131 metabolites by FIA-MS/MS. Among these, 71/34 metabolites were significantly associated with age in women/men (BMI adjusted). We further identified a set of 13 independent metabolites in women (with P values ranging from 4.6 × 10−04 to 7.8 × 10−42, αcorr = 0.004). Eleven of these 13 metabolites were replicated in the TwinsUK study, including seven metabolite concentrations that increased with age (C0, C10:1, C12:1, C18:1, SM C16:1, SM C18:1, and PC aa C28:1), while histidine decreased. These results indicate that metabolic profiles are age dependent and might reflect different aging processes, such as incomplete mitochondrial fatty acid oxidation. The use of metabolomics will increase our understanding of aging networks and may lead to discoveries that help enhance healthy aging.
Collapse
Affiliation(s)
- Zhonghao Yu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Guangju Zhai
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St John’s, NL, Canada
| | - Paula Singmann
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ying He
- Shanghai Center for Bioinformation Technology, 200235 Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Tao Xu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Cornelia Prehn
- Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Werner Römisch‐Margl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eva Lattka
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Nicole Soranzo
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Wellcome Trust Sanger Institute Genome Campus, Hinxton, UK
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kirstin Mittelstraß
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heinz‐Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig‐Maximilians‐Universität, Munich, Germany
- Klinikum Grosshadern, Munich, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Environmental Health, Harvard School of Public Health Adjunct Associate Professor of Environmental Epidemiology, Boston, MA, USA
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig‐Maximilians‐Universität, 82152 Planegg‐Martinsried, Germany
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, 24144 Education City–Qatar Foundation, Doha, Qatar
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, 200235 Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jerzy Adamski
- Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Experimental Genetics, Life and Food Science Center Weihenstephan, Technische Universität München, 85354 Freising‐Weihenstephan, Germany
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, 30625 Hannover, Germany
| | - Rui Wang‐Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
63
|
Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation 2012; 126:1110-20. [PMID: 22927473 DOI: 10.1161/circulationaha.111.060368] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Svati H Shah
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Duke Independence Park Facility, 4321 Medical Park Drive, Durham, NC 27704, USA.
| | | | | |
Collapse
|
64
|
Chen J, Zhou L, Zhang X, Lu X, Cao R, Xu C, Xu G. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer. Electrophoresis 2012; 33:3361-9. [DOI: 10.1002/elps.201200140] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; P.R. China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; P.R. China
| | | | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; P.R. China
| | - Rui Cao
- Department of the Obstetrics and Gynecology Hospital of Dalian; Dalian Medical University; Dalian; P.R. China
| | | | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; P.R. China
| |
Collapse
|
65
|
Szymańska E, van Dorsten FA, Troost J, Paliukhovich I, van Velzen EJJ, Hendriks MMWB, Trautwein EA, van Duynhoven JPM, Vreeken RJ, Smilde AK. A lipidomic analysis approach to evaluate the response to cholesterol-lowering food intake. Metabolomics 2012; 8:894-906. [PMID: 23060736 PMCID: PMC3465648 DOI: 10.1007/s11306-011-0384-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022]
Abstract
Plant sterols (PS) are well known to reduce serum levels of total cholesterol and LDL-cholesterol. Lipidomics potentially provides detailed information on a wide range of individual serum lipid metabolites, which may further add to our understanding of the biological effects of PS. In this study, lipidomics analysis was applied to serum samples from a placebo-controlled, parallel human intervention study (n = 97) of 4-week consumption of two PS-enriched, yoghurt drinks differing in fat content (based on 0.1% vs. 1.5% dairy fat). A comprehensive data analysis strategy was developed and implemented to assess and compare effects of two different PS-treatments and placebo treatment. The combination of univariate and multivariate data analysis approaches allowed to show significant effects of PS intake on the serum lipidome, and helped to distinguish them from fat content and non-specific effects. The PS-enriched 0.1% dairy fat yoghurt drink had a stronger impact on the lipidome than the 1.5% dairy fat yoghurt drink, despite similar LDL-cholesterol lowering effects. The PS-enriched 0.1% dairy fat yoghurt drink reduced levels of several sphingomyelins which correlated well with the reduction in LDL-cholesterol and can be explained by co-localization of sphingomyelins and cholesterol on the surface of LDL lipoprotein. Statistically significant reductions in serum levels of two lysophosphatidylcholines (LPC(16:1), LPC(20:1)) and cholesteryl arachidonate may suggest reduced inflammation and atherogenic potential. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0384-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Szymańska
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Ferdinand A. van Dorsten
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Unilever R&D, Vlaardingen, The Netherlands
| | - Jorne Troost
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- LACDR, Leiden University, Leiden, The Netherlands
| | - Iryna Paliukhovich
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- LACDR, Leiden University, Leiden, The Netherlands
| | - Ewoud J. J. van Velzen
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Unilever R&D, Vlaardingen, The Netherlands
| | - Margriet M. W. B. Hendriks
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - John P. M. van Duynhoven
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Unilever R&D, Vlaardingen, The Netherlands
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Rob J. Vreeken
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- LACDR, Leiden University, Leiden, The Netherlands
| | - Age K. Smilde
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
66
|
Llorach R, Garcia-Aloy M, Tulipani S, Vazquez-Fresno R, Andres-Lacueva C. Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8797-8808. [PMID: 22594919 DOI: 10.1021/jf301142b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Correctly assessing the metabolic status of subjects after consumption of specific diets is an important challenge for modern nutrition. Recently, metabolomics has been proposed as a powerful tool for exploring the complex relationship between nutrition and health. Nutritional metabolomics, through investigating the role that dietary components play in the maintenance of health and development of risk disease, aims to identify new biomarkers that allow the intake of these compounds to be monitored and related to their expected biological effects. This review offers an overview of the application of nutrimetabolomic strategies in the discovery of new biomarkers in human nutritional research, suggesting three main categories: (1) assessment of nutritional and dietary interventions; (2) diet exposure and food consumption monitoring; and (3) health phenotype and metabolic impact of diet. For this purpose, several examples of these applications will be used to provide evidence and to discuss the advantages and drawbacks of these nutrimetabolomic strategies.
Collapse
Affiliation(s)
- Rafael Llorach
- Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty, University of Barcelona , Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
67
|
Hindmarsh JP, Awati A, Edwards PJ, Moughan P. NMR-based metabonomics detection of differences in the metabolism of hydrolysed versus intact protein of similar amino acid profile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2013-2016. [PMID: 22430354 DOI: 10.1002/jsfa.5636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/06/2011] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Proton nuclear magnetic resonance (NMR)-based metabonomics has only recently been applied to nutritional research. The limitation of any analytical technique is its sensitivity in detecting the smallest variation. Alterations in nutrition often produce only subtle metabolic modulations. The objective of this study was to determine if NMR-based metabonomics could detect variations in the metabolic profile of urine from pigs digesting either native casein (NC) or the same casein that had been enzymatically hydrolysed (EHC). NMR permits simultaneous detection of a large number of metabolites, thus allowing detection of unanticipated metabolic fluctuations that may otherwise have gone undetected with the use of only targeted analysis. RESULTS Partial least squares discriminant analysis identified significantly (P < 0.05) higher urinary excretions of leucine, valine, taurine and glycine by pigs on the EHC-based diet. CONCLUSION NMR-based metabonomics is a sensitive method that can uncover unanticipated metabolic changes brought about by physicochemical changes to the feedstock (i.e. hydrolysis). The data show a lower efficiency of retention by the kidney of some amino acids following ingestion of a hydrolysed protein.
Collapse
Affiliation(s)
- Jason P Hindmarsh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
68
|
Lehmann C, Sharawy N, Zhou J, Pavlovic D. Metabolomic analysis as biomarker to study steroid hormone administration in sepsis. Med Hypotheses 2012; 79:329-30. [PMID: 22658360 DOI: 10.1016/j.mehy.2012.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Sepsis is a life-threatening disease requiring rapid diagnosis and treatment. Steroid hormones (e.g., estradiol, dehydroepiandosterone) have been suggested to reduce the hyper-inflammatory response of the immune system and to improve outcome in sepsis. We hypothesize that the impact of steroid hormones on the metabolic profile (metabolomic fingerprint) can be used to study and guide steroid hormone administration in sepsis. Potential biomarker candidates are sphingomyelines and phosphatidylcholines.
Collapse
Affiliation(s)
- C Lehmann
- Klinik für Anästhesiologie und Intensivmedizin, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| | | | | | | |
Collapse
|
69
|
Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 2012; 403:1523-48. [PMID: 22576654 DOI: 10.1007/s00216-012-6039-y] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/13/2012] [Accepted: 04/10/2012] [Indexed: 01/26/2023]
Abstract
The choice of sample-preparation method is extremely important in metabolomic studies because it affects both the observed metabolite content and biological interpretation of the data. An ideal sample-preparation method for global metabolomics should (i) be as non-selective as possible to ensure adequate depth of metabolite coverage; (ii) be simple and fast to prevent metabolite loss and/or degradation during the preparation procedure and enable high-throughput; (iii) be reproducible; and (iv) incorporate a metabolism-quenching step to represent true metabolome composition at the time of sampling. Despite its importance, sample preparation is often an overlooked aspect of metabolomics, so the focus of this review is to explore the role, challenges, and trends in sample preparation specifically within the context of global metabolomics by liquid chromatography-mass spectrometry (LC-MS). This review will cover the most common methods including solvent precipitation and extraction, solid-phase extraction and ultrafiltration, and discuss how to improve analytical quality and metabolite coverage in metabolomic studies of biofluids, tissues, and mammalian cells. Recent developments in this field will also be critically examined, including in vivo methods, turbulent-flow chromatography, and dried blood spot sampling.
Collapse
|
70
|
Abstract
Genome-wide association studies (GWAS) analyze the genetic component of a phenotype or the etiology of a disease. Despite the success of many GWAS, little progress has been made in uncovering the underlying mechanisms for many diseases. The use of metabolomics as a readout of molecular phenotypes has enabled the discovery of previously undetected associations between diseases and signaling and metabolic pathways. In addition, combining GWAS and metabolomic information allows the simultaneous analysis of the genetic and environmental impacts on homeostasis. Most success has been seen in metabolic diseases such as diabetes, obesity and dyslipidemia. Recently, associations between loci such as FADS1, ELOVL2 or SLC16A9 and lipid concentrations have been explained by GWAS with metabolomics. Combining GWAS with metabolomics (mGWAS) provides the robust and quantitative information required for the development of specific diagnostics and targeted drugs. This review discusses the limitations of GWAS and presents examples of how metabolomics can overcome these limitations with the focus on metabolic diseases.
Collapse
|
71
|
Visioli F, De La Lastra CA, Andres-Lacueva C, Aviram M, Calhau C, Cassano A, D'Archivio M, Faria A, Favé G, Fogliano V, Llorach R, Vitaglione P, Zoratti M, Edeas M. Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr 2012; 51:524-46. [PMID: 21929330 DOI: 10.1080/10408391003698677] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lay press often heralds polyphenols as panacea for all sorts of diseases. The rationale is that their antioxidant activity would prevent free radical damage to macromolecules. However, basic and clinical science is showing that the reality is much more complex than this and that several issues, notably content in foodstuff, bioavailability, or in vivo antioxidant activity are yet to be resolved. We summarize the recent findings concerning the effects of polyphenols on human health, analyze the current limitations at pitfalls, and propose future directions for research.
Collapse
|
72
|
|
73
|
Lu N, Wei D, Chen F, Yang ST. Lipidomic profiling and discovery of lipid biomarkers in snow alga Chlamydomonas nivalis under salt stress. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100248] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs. Br J Nutr 2011; 106 Suppl 1:S146-9. [PMID: 22005413 DOI: 10.1017/s000711451100081x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of the present study was first to identify drivers of variance in plasma metabolite profiles of cats and dogs that may affect the interpretation of nutritional metabolomic studies. A total of fourteen cats and fourteen dogs housed in environmentally enriched accommodation were fed a single batch of diet to maintain body weight. Fasting blood samples were taken on days 14, 16 and 18 of the study. Gas chromatography-mass spectrometry (GC-MS), liquid chromatography (LC)-MS/MS and solid-phase extraction-LC-MS/MS analyses were used for metabolite profiling. Principal component (PC) analysis that indicated 31 and 27 % of the variance was explained in PC1 and PC2 for cats and dogs, respectively, with most individuals occupying a unique space. As the individual was a major driver of variance in the plasma metabolome, the second objective was to identify metabolites associated with the individual variation observed. The proportion of intra- and inter-individual variance was calculated for 109 cat and 101 dog metabolites with a low intra-individual variance (SD < 0.05). Of these, fifteen cat and six dog metabolites had inter-individual variance accounting for at least 90 % of the total variance. There were four metabolites common to both species (campesterol, DHA, a cholestenol and a sphingosine moiety). Many of the metabolites with >75 % inter-individual variance were common to both species and to similar areas of metabolism. In summary, the individual is an important driver of variance in the fasted plasma metabolome, and specific metabolites and areas of metabolism may be differentially regulated by individuals in two companion animal species.
Collapse
|
75
|
Orešič M, Hyötyläinen T, Herukka SK, Sysi-Aho M, Mattila I, Seppänan-Laakso T, Julkunen V, Gopalacharyulu PV, Hallikainen M, Koikkalainen J, Kivipelto M, Helisalmi S, Lötjönen J, Soininen H. Metabolome in progression to Alzheimer's disease. Transl Psychiatry 2011; 1:e57. [PMID: 22832349 PMCID: PMC3309497 DOI: 10.1038/tp.2011.55] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mild cognitive impairment (MCI) is considered as a transition phase between normal aging and Alzheimer's disease (AD). MCI confers an increased risk of developing AD, although the state is heterogeneous with several possible outcomes, including even improvement back to normal cognition. We sought to determine the serum metabolomic profiles associated with progression to and diagnosis of AD in a prospective study. At the baseline assessment, the subjects enrolled in the study were classified into three diagnostic groups: healthy controls (n=46), MCI (n=143) and AD (n=47). Among the MCI subjects, 52 progressed to AD in the follow-up. Comprehensive metabolomics approach was applied to analyze baseline serum samples and to associate the metabolite profiles with the diagnosis at baseline and in the follow-up. At baseline, AD patients were characterized by diminished ether phospholipids, phosphatidylcholines, sphingomyelins and sterols. A molecular signature comprising three metabolites was identified, which was predictive of progression to AD in the follow-up. The major contributor to the predictive model was 2,4-dihydroxybutanoic acid, which was upregulated in AD progressors (P=0.0048), indicating potential involvement of hypoxia in the early AD pathogenesis. This was supported by the pathway analysis of metabolomics data, which identified upregulation of pentose phosphate pathway in patients who later progressed to AD. Together, our findings primarily implicate hypoxia, oxidative stress, as well as membrane lipid remodeling in progression to AD. Establishment of pathogenic relevance of predictive biomarkers such as ours may not only facilitate early diagnosis, but may also help identify new therapeutic avenues.
Collapse
Affiliation(s)
- M Orešič
- VTT Technical Research Centre of Finland, Espoo, Finland.
| | - T Hyötyläinen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - S-K Herukka
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - M Sysi-Aho
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - I Mattila
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | - V Julkunen
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | | | - M Hallikainen
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - J Koikkalainen
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - M Kivipelto
- Aging Research Center, Karolinska Institute, Stockholm, Sweden
| | - S Helisalmi
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - J Lötjönen
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - H Soininen
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
76
|
Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Metabolic syndrome: Evidences for a personalized nutrition. Mol Nutr Food Res 2011; 56:67-76. [DOI: 10.1002/mnfr.201100531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/06/2011] [Accepted: 09/23/2011] [Indexed: 11/10/2022]
|
77
|
Bondia-Pons I, Nordlund E, Mattila I, Katina K, Aura AM, Kolehmainen M, Orešič M, Mykkänen H, Poutanen K. Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread. Nutr J 2011; 10:116. [PMID: 22011443 PMCID: PMC3214176 DOI: 10.1186/1475-2891-10-116] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The mechanism behind the lowered postprandial insulin demand observed after rye bread intake compared to wheat bread is unknown. The aim of this study was to use the metabolomics approach to identify potential metabolites related to amino acid metabolism involved in this mechanism. METHODS A sourdough fermented endosperm rye bread (RB) and a standard white wheat bread (WB) as a reference were served in random order to 16 healthy subjects. Test bread portions contained 50 g available carbohydrate. In vitro hydrolysis of starch and protein were performed for both test breads. Blood samples for measuring glucose and insulin concentrations were drawn over 4 h and gastric emptying rate (GER) was measured. Changes in the plasma metabolome were investigated by applying a comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics platform (GC × GC-TOF-MS). RESULTS Plasma insulin response to RB was lower than to WB at 30 min (P = 0.004), 45 min (P = 0.002) and 60 min (P < 0.001) after bread intake, and plasma glucose response was significantly higher at time point 90 min after RB than WB intake (P = 0.045). The starch hydrolysis rate was higher for RB than WB, contrary to the in vitro protein digestibility. There were no differences in GER between breads. From 255 metabolites identified by the metabolomics platform, 26 showed significant postprandial relative changes after 30 minutes of bread intake (p and q values < 0.05). Among them, there were changes in essential amino acids (phenylalanine, methionine, tyrosine and glutamic acid), metabolites involved in the tricarboxylic acid cycle (alpha-ketoglutaric, pyruvic acid and citric acid) and several organic acids. Interestingly, the levels of two compounds involved in the tryptophan metabolism (picolinic acid, ribitol) significantly changed depending on the different bread intake. CONCLUSIONS A single meal of a low fibre sourdough rye bread producing low postprandial insulin response brings in several changes in plasma amino acids and their metabolites and some of these might have properties beneficial for health.
Collapse
Affiliation(s)
- Isabel Bondia-Pons
- Department of Public Health and Clinical Nutrition. Clinical Nutrition, Food and Health Research Centre. University of Eastern Finland, Kuopio Campus. P.O. Box 1627, FIN-70211. Kuopio, Finland
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland. P.O.Box 1000, FI-02044. Tietotie 2, Espoo, Finland
| | - Ismo Mattila
- VTT Technical Research Centre of Finland. P.O.Box 1000, FI-02044. Tietotie 2, Espoo, Finland
| | - Kati Katina
- VTT Technical Research Centre of Finland. P.O.Box 1000, FI-02044. Tietotie 2, Espoo, Finland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland. P.O.Box 1000, FI-02044. Tietotie 2, Espoo, Finland
| | - Marjukka Kolehmainen
- Department of Public Health and Clinical Nutrition. Clinical Nutrition, Food and Health Research Centre. University of Eastern Finland, Kuopio Campus. P.O. Box 1627, FIN-70211. Kuopio, Finland
| | - Matej Orešič
- VTT Technical Research Centre of Finland. P.O.Box 1000, FI-02044. Tietotie 2, Espoo, Finland
| | - Hannu Mykkänen
- Department of Public Health and Clinical Nutrition. Clinical Nutrition, Food and Health Research Centre. University of Eastern Finland, Kuopio Campus. P.O. Box 1627, FIN-70211. Kuopio, Finland
| | - Kaisa Poutanen
- Department of Public Health and Clinical Nutrition. Clinical Nutrition, Food and Health Research Centre. University of Eastern Finland, Kuopio Campus. P.O. Box 1627, FIN-70211. Kuopio, Finland
- VTT Technical Research Centre of Finland. P.O.Box 1000, FI-02044. Tietotie 2, Espoo, Finland
| |
Collapse
|
78
|
Clugston RD, Jiang H, Lee MX, Piantedosi R, Yuen JJ, Ramakrishnan R, Lewis MJ, Gottesman ME, Huang LS, Goldberg IJ, Berk PD, Blaner WS. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study. J Lipid Res 2011; 52:2021-31. [PMID: 21856784 DOI: 10.1194/jlr.m017368] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Floegel A, Drogan D, Wang-Sattler R, Prehn C, Illig T, Adamski J, Joost HG, Boeing H, Pischon T. Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach. PLoS One 2011; 6:e21103. [PMID: 21698256 PMCID: PMC3115978 DOI: 10.1371/journal.pone.0021103] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022] Open
Abstract
Metabolomics is a promising tool for discovery of novel biomarkers of chronic disease risk in prospective epidemiologic studies. We investigated the between- and within-person variation of the concentrations of 163 serum metabolites over a period of 4 months to evaluate the metabolite reliability expressed by the intraclass-correlation coefficient (ICC: the ratio of between-person variance and total variance). The analyses were performed with the BIOCRATES AbsoluteIDQ™ targeted metabolomics technology, including acylcarnitines, amino acids, glycerophospholipids, sphingolipids and hexose in 100 healthy individuals from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study who had provided two fasting blood samples 4 months apart. Overall, serum reliability of metabolites over a 4-month period was good. The median ICC of the 163 metabolites was 0.57. The highest ICC was observed for hydroxysphingomyelin C14:1 (ICC = 0.85) and the lowest was found for acylcarnitine C3:1 (ICC = 0). Reliability was high for hexose (ICC = 0.76), sphingolipids (median ICC = 0.66; range: 0.24-0.85), amino acids (median ICC = 0.58; range: 0.41-0.72) and glycerophospholipids (median ICC = 0.58; range: 0.03-0.81). Among acylcarnitines, reliability of short and medium chain saturated compounds was good to excellent (ICC range: 0.50-0.81). Serum reliability was lower for most hydroxyacylcarnitines and monounsaturated acylcarnitines (ICC range: 0.11-0.45 and 0.00-0.63, respectively). For most of the metabolites a single measurement may be sufficient for risk assessment in epidemiologic studies with healthy subjects.
Collapse
Affiliation(s)
- Anna Floegel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lin HM, Helsby NA, Rowan DD, Ferguson LR. Using metabolomic analysis to understand inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:1021-9. [PMID: 20629098 DOI: 10.1002/ibd.21426] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) attributed to a dysregulated immune response towards intestinal microbiota. Although various susceptibility genes have been identified for CD and UC, the exact disease etiology is unclear and complicated by the influence of environmental factors. Metabolomic analysis enables high sample throughput measurements of multiple metabolites in biological samples. The use of metabolomic analysis in medical sciences has revealed metabolite perturbations associated with diseases. This article provides a summary of the current understanding of IBD, and describes potential applications and previous metabolomic analysis in IBD research to understand IBD pathogenesis and improve IBD therapy.
Collapse
Affiliation(s)
- Hui-Ming Lin
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
81
|
Orešič M, Tang J, Seppänen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lönnqvist J, Sysi-Aho M, Hyötyläinen T, Perälä J, Suvisaari J. Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 2011; 3:19. [PMID: 21429189 PMCID: PMC3092104 DOI: 10.1186/gm233] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/06/2011] [Accepted: 03/23/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Persons with schizophrenia and other psychotic disorders have a high prevalence of obesity, impaired glucose tolerance, and lipid abnormalities, particularly hypertriglyceridemia and low high-density lipoprotein. More detailed molecular information on the metabolic abnormalities may reveal clues about the pathophysiology of these changes, as well as about disease specificity. METHODS We applied comprehensive metabolomics in serum samples from a general population-based study in Finland. The study included all persons with DSM-IV primary psychotic disorder (schizophrenia, n = 45; other non-affective psychosis (ONAP), n = 57; affective psychosis, n = 37) and controls matched by age, sex, and region of residence. Two analytical platforms for metabolomics were applied to all serum samples: a global lipidomics platform based on ultra-performance liquid chromatography coupled to mass spectrometry, which covers molecular lipids such as phospholipids and neutral lipids; and a platform for small polar metabolites based on two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). RESULTS Compared with their matched controls, persons with schizophrenia had significantly higher metabolite levels in six lipid clusters containing mainly saturated triglycerides, and in two small-molecule clusters containing, among other metabolites, (1) branched chain amino acids, phenylalanine and tyrosine, and (2) proline, glutamic, lactic and pyruvic acids. Among these, serum glutamic acid was elevated in all psychoses (P = 0.0020) compared to controls, while proline upregulation (P = 0.000023) was specific to schizophrenia. After adjusting for medication and metabolic comorbidity in linear mixed models, schizophrenia remained independently associated with higher levels in seven of these eight clusters (P < 0.05 in each cluster). The metabolic abnormalities were less pronounced in persons with ONAP or affective psychosis. CONCLUSIONS Our findings suggest that specific metabolic abnormalities related to glucoregulatory processes and proline metabolism are specifically associated with schizophrenia and reflect two different disease-related pathways. Metabolomics, which is sensitive to both genetic and environmental variation, may become a powerful tool in psychiatric research to investigate disease susceptibility, clinical course, and treatment response.
Collapse
Affiliation(s)
- Matej Orešič
- VTT Technical Research Centre of Finland, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Jing Tang
- VTT Technical Research Centre of Finland, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | | | - Ismo Mattila
- VTT Technical Research Centre of Finland, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Suoma E Saarni
- National Institute for Health and Welfare, Lintulahdenkuja 4, PO Box 30, FI-00271, Helsinki, Finland
| | - Samuli I Saarni
- National Institute for Health and Welfare, Lintulahdenkuja 4, PO Box 30, FI-00271, Helsinki, Finland
- Department of Psychiatry, Helsinki University Central Hospital, Välskärinkatu 12, PO Box 590, FIN-00029 HUCH, Helsinki, Finland
| | - Jouko Lönnqvist
- National Institute for Health and Welfare, Lintulahdenkuja 4, PO Box 30, FI-00271, Helsinki, Finland
- Department of Psychiatry, Helsinki University Central Hospital, Välskärinkatu 12, PO Box 590, FIN-00029 HUCH, Helsinki, Finland
| | - Marko Sysi-Aho
- VTT Technical Research Centre of Finland, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Tuulia Hyötyläinen
- VTT Technical Research Centre of Finland, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Jonna Perälä
- National Institute for Health and Welfare, Lintulahdenkuja 4, PO Box 30, FI-00271, Helsinki, Finland
| | - Jaana Suvisaari
- National Institute for Health and Welfare, Lintulahdenkuja 4, PO Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
82
|
Halama A, Möller G, Adamski J. Metabolic signatures in apoptotic human cancer cell lines. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:325-35. [PMID: 21332381 DOI: 10.1089/omi.2010.0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer cells have several specific metabolic features, which have been explored for targeted therapies. Agents that promote apoptosis in tumors are currently considered as a powerful tool for cancer therapeutics. The present study aimed to design a fast, reliable and robust system for metabolite measurements in cells lines to observe impact of apoptosis on the metabolome. For that purpose the NBS (newborn screen) mass spectrometry-based metabolomics assay was adapted for cell culture approach. In HEK 293 and in cancer cell lines HepG2, PC3, and MCF7 we searched for metabolic biomarkers of apoptosis differing from that of necrosis. Already nontreated cell lines revealed distinct concentrations of metabolites. Several metabolites indicative for apoptotic processes in cell culture including aspartate, glutamate, methionine, alanine, glycine, propionyl carnitine (C3-carnitine), and malonyl carnitine (C3DC-carnitine) were observed. In some cell lines metabolite changes were visible as early as 4 h after apoptosis induction and preceeding the detection by caspase 3/7 assay. We demonstrated for the first time that the metabolomic signatures might be used in the tests of efficacy of agents causing apoptosis in cell culture. These signatures could be obtained in fast high-throughput screening.
Collapse
Affiliation(s)
- Anna Halama
- Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | | | | |
Collapse
|
83
|
Lankinen M, Schwab U, Seppänen-Laakso T, Mattila I, Juntunen K, Mykkänen H, Poutanen K, Gylling H, Oresic M. Metabolomic analysis of plasma metabolites that may mediate effects of rye bread on satiety and weight maintenance in postmenopausal women. J Nutr 2011; 141:31-6. [PMID: 21084654 DOI: 10.3945/jn.110.131656] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evidence of the beneficial health effects of dietary fiber and whole grain consumption is strong, but the underlying mechanisms are not completely understood. Here, we investigate how the consumption of high-fiber rye bread (RB) or white-wheat bread (WB) modifies the plasma metabolomic profiles in postmenopausal women. The study was a randomized crossover trial consisting of 8-wk intervention periods and an 8-wk washout period. The study included 39 postmenopausal women with elevated serum total cholesterol (5.0-8.5 mmol/L) and BMI 20-33 kg/m(2). During the intervention periods, the study breads contributed to least 20% of total energy intake. Two analytical platforms for metabolomics were applied. Lipidomic analysis was performed using ultra performance liquid chromatography coupled to electrospray ionization MS and the other metabolites, including sterols, organic acids, and alcohols, were analyzed by 2-dimensional GC coupled to time-of-flight MS. Altogether, 540 metabolites were profiled. Ribitol (P < 0.001), ribonic acid (P < 0.001), and indoleacetic acid (P < 0.001) increased during the RB consumption period. Ribonic acid correlated positively with tryptophan (r = 0.40; P = 0.003), which is a precursor for the biosynthesis of hunger-depressing serotonin. There were no changes in plasma lipidomic profiles during the RB or WB intervention periods. The results suggest that 8-wk consumption of high-fiber rye bread increases metabolites that might mediate positive effects of rye bread on satiety and weight maintenance.
Collapse
Affiliation(s)
- Maria Lankinen
- VTT Technical Research Centre of Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Robertson DG, Watkins PB, Reily MD. Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 2010; 120 Suppl 1:S146-70. [PMID: 21127352 DOI: 10.1093/toxsci/kfq358] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Donald G Robertson
- Applied and Investigative Metabolomics, Bristol-Myers Squibb Co., Princeton, New Jersey 08543, USA.
| | | | | |
Collapse
|
85
|
Aura AM, Mattila I, Hyötyläinen T, Gopalacharyulu P, Bounsaythip C, Orešič M, Oksman-Caldentey KM. Drug metabolome of the simvastatin formed by human intestinal microbiota in vitro. MOLECULAR BIOSYSTEMS 2010; 7:437-46. [PMID: 21060933 DOI: 10.1039/c0mb00023j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human colon contains a diverse microbial population which contributes to degradation and metabolism of food components. Drug metabolism in the colon is generally poorly understood. Metabolomics techniques and in vitro colon models are now available which afford detailed characterization of drug metabolites in the context of colon metabolism. The aim of this work was to identify novel drug metabolites of Simvastatin (SV) by using an anaerobic human in vitro colon model at body temperature coupled with systems biology platform, excluding the metabolism of the host liver and intestinal epithelia. Comprehensive two-dimensional gas chromatography with a time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the metabolomic analysis. Metabolites showing the most significant differences in the active faecal suspension were elucidated in reference with SV fragmentation and compared with controls: inactive suspension or buffer with SV, or with active suspension alone. Finally, time courses of selected metabolites were investigated. Our data suggest that SV is degraded by hydrolytic cleavage of methylbutanoic acid from the SV backbone. Metabolism involves demethylation of dimethylbutanoic acid, hydroxylation/dehydroxylation and β-oxidation resulting in the production of 2-hydroxyisovaleric acid (3-methyl-2-hydroxybutanoic acid), 3-hydroxybutanoic acid and lactic acid (2-hydroxypropanoic acid), and finally re-cyclisation of heptanoic acid (possibly de-esterified and cleaved methylpyranyl arm) to produce cyclohexanecarboxylic acid. Our study elucidates a pathway of colonic microbial metabolism of SV as well as demonstrates the applicability of the in vitro colon model and metabolomics to the discovery of novel drug metabolites from drug response profiles.
Collapse
Affiliation(s)
- Anna-Marja Aura
- VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo, FI-02044 VTT, Finland.
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Although lipids are biomolecules with seemingly simple chemical structures, the molecular composition of the cellular lipidome is complex and, currently, poorly understood. The exact mechanisms of how compositional complexity affects cell homeostasis and its regulation also remain unclear. This emerging field is developing sensitive mass spectrometry technologies for the quantitative characterization of the lipidome. Here, we argue that lipidomics will become an essential tool kit in cell and developmental biology, molecular medicine and nutrition.
Collapse
|
87
|
Mervaala E, Biala A, Merasto S, Lempiäinen J, Mattila I, Martonen E, Eriksson O, Louhelainen M, Finckenberg P, Kaheinen P, Muller DN, Luft FC, Lapatto R, Oresic M. Metabolomics in angiotensin II-induced cardiac hypertrophy. Hypertension 2010; 55:508-15. [PMID: 20065148 DOI: 10.1161/hypertensionaha.109.145490] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) induces mitochondrial dysfunction. We tested whether Ang II alters the "metabolomic" profile. We harvested hearts from 8-week-old double transgenic rats harboring human renin and angiotensinogen genes (dTGRs) and controls (Sprague-Dawley), all with or without Ang II type 1 receptor (valsartan) blockade. We used gas chromatography coupled with time-of-flight mass spectrometry to detect 247 intermediary metabolites. We used a partial least-squares discriminate analysis and identified 112 metabolites that differed significantly after corrections (false discovery rate q <0.05). We found great differences in the use of fatty acids as an energy source, namely, decreased levels of octanoic, oleic, and linoleic acids in dTGR (all P<0.01). The increase in cardiac hypoxanthine levels in dTGRs suggested an increase in purine degradation, whereas other changes supported an increased ketogenic amino acid tyrosine level, causing energy production failure. The metabolomic profile of valsartan-treated dTGRs more closely resembled Sprague-Dawley rats than untreated dTGRs. Mitochondrial respiratory chain activity of cytochrome C oxidase was decreased in dTGRs, whereas complex I and complex II were unaltered. Mitochondria from dTGR hearts showed morphological alterations suggesting increased mitochondrial fusion. Cardiac expression of the redox-sensitive and the cardioprotective metabolic sensor sirtuin 1 was increased in dTGRs. Interestingly, valsartan changed the level of 33 metabolites and induced mitochondrial biogenesis in Sprague-Dawley rats. Thus, distinct patterns of cardiac substrate use in Ang II-induced cardiac hypertrophy are associated with mitochondrial dysfunction. The finding underscores the importance of Ang II in the regulation of mitochondrial biogenesis and cardiac metabolomics, even in healthy hearts.
Collapse
Affiliation(s)
- Eero Mervaala
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|