51
|
Kruglova NN, Titova GE, Seldimirova OA, Zinatullina AE. Cytophysiological Features of the Cereal-Based Experimental System “Embryo In Vivo–Callus In Vitro”. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Mosher RA. Small RNAs on the move in male germ cells. Science 2021; 373:26-27. [PMID: 34210866 DOI: 10.1126/science.abj5020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA.
| |
Collapse
|
53
|
Song J, Xie X, Chen C, Shu J, Thapa RK, Nguyen V, Bian S, Kohalmi SE, Marsolais F, Zou J, Cui Y. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nat Commun 2021; 12:3963. [PMID: 34172749 PMCID: PMC8233312 DOI: 10.1038/s41467-021-24234-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
The endosperm provides nutrients and growth regulators to the embryo during seed development. LEAFY COTYLEDON1 (LEC1) has long been known to be essential for embryo maturation. LEC1 is expressed in both the embryo and the endosperm; however, the functional relevance of the endosperm-expressed LEC1 for seed development is unclear. Here, we provide genetic and transgenic evidence demonstrating that endosperm-expressed LEC1 is necessary and sufficient for embryo maturation. We show that endosperm-synthesized LEC1 is capable of orchestrating full seed maturation in the absence of embryo-expressed LEC1. Inversely, without LEC1 expression in the endosperm, embryo development arrests even in the presence of functional LEC1 alleles in the embryo. We further reveal that LEC1 expression in the endosperm begins at the zygote stage and the LEC1 protein is then trafficked to the embryo to activate processes of seed maturation. Our findings thus establish a key role for endosperm in regulating embryo development.
Collapse
Affiliation(s)
- Jingpu Song
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada. .,Department of Biology, Western University, London, ON, Canada.
| | - Xin Xie
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Chen Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Shu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Raj K Thapa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Vi Nguyen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Shaomin Bian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,College of Plant Science, Jilin University, Changchun, China
| | | | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada.
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Department of Biology, Western University, London, ON, Canada.
| |
Collapse
|
54
|
Zou W, Li G, Jian L, Qian J, Liu Y, Zhao J. Arabidopsis SMC6A and SMC6B have redundant function in seed and gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4871-4887. [PMID: 33909904 DOI: 10.1093/jxb/erab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/25/2021] [Indexed: 05/21/2023]
Abstract
Reproductive development is a crucial process during plant growth. The structural maintenance of chromosome (SMC) 5/6 complex has been studied in various species. However, there are few studies on the biological function of SMC6 in plant development, especially during reproduction. In this study, knocking out of both AtSMC6A and AtSMC6B led to severe defects in Arabidopsis seed development, and expression of AtSMC6A or AtSMC6B could completely restore seed abortion in the smc6a-/-smc6b-/-double mutant. Knocking down AtSMC6A in the smc6b-/- mutant led to defects in female and male development and decreased fertility. The double mutation also resulted in loss of cell viability, and caused embryo and endosperm cell death through vacuolar cell death and necrosis. Furthermore, the expression of genes involved in embryo patterning, endosperm cellularisation, DNA damage repair, cell cycle regulation, and DNA replication were significantly changed in the albino seeds of the double mutant. Moreover, we found that the SMC5/6 complex may participate in the SOG1 (SUPPRESSOR OF GAMMA RESPONSE1)-dependent DNA damage repair pathway. These findings suggest that both AtSMC6A and AtSMC6B are functionally redundant and play important roles in seed and gametophyte development through maintaining chromosome stability in Arabidopsis.
Collapse
Affiliation(s)
- Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
55
|
Fichtner F, Lunn JE. The Role of Trehalose 6-Phosphate (Tre6P) in Plant Metabolism and Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:737-760. [PMID: 33428475 DOI: 10.1146/annurev-arplant-050718-095929] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Trehalose 6-phosphate (Tre6P) has a dual function as a signal and homeostatic regulator of sucrose levels in plants. In source leaves, Tre6P regulates the production of sucrose to balance supply with demand for sucrose from growing sink organs. As a signal of sucrose availability, Tre6P influences developmental decisions that will affect future demand for sucrose, such as flowering, embryogenesis, and shoot branching, and links the growth of sink organs to sucrose supply. This involves complex interactions with SUCROSE-NON-FERMENTING1-RELATED KINASE1 that are not yet fully understood. Tre6P synthase, the enzyme that makes Tre6P, plays a key role in the nexus between sucrose and Tre6P, operating in the phloem-loading zone of leaves and potentially generating systemic signals for source-sink coordination. Many plants have large and diverse families of Tre6P phosphatase enzymes that dephosphorylate Tre6P, some of which have noncatalytic functions in plant development.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia;
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
56
|
Xiong H, Wang W, Sun MX. Endosperm development is an autonomously programmed process independent of embryogenesis. THE PLANT CELL 2021; 33:1151-1160. [PMID: 33793916 DOI: 10.1093/plcell/koab007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The seeds of flowering plants contain three genetically distinct structures: the embryo, endosperm, and seed coat. The embryo and endosperm need to interact and exchange signals to ensure coordinated growth. Accumulating evidence has confirmed that embryo growth is supported by the nourishing endosperm and regulated by signals originating from the endosperm. Available data also support that endosperm development requires communication with the embryo. Here, using single-fertilization mutants, Arabidopsis thaliana dmp8 dmp9 and gex2, we demonstrate that in the absence of a zygote and embryo, endosperm initiation, syncytium formation, free nuclear cellularization, and endosperm degeneration occur as in the wild type in terms of the cytological process and time course. Although rapid embryo expansion accelerates endosperm breakdown, our findings strongly suggest that endosperm development is an autonomously organized process, independent of egg cell fertilization and embryo-endosperm communication. This work confirms both the altruistic and self-directed nature of the endosperm during coordinated embryo-endosperm development. Our findings provide insights into the intricate interaction between the two fertilization products and will help to distinguish the physiological roles of the signaling between endosperm and embryo. These findings also open new avenues in agro-biotechnology for crop improvement.
Collapse
Affiliation(s)
- Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
57
|
Chakraborty T, Kendall T, Grover JW, Mosher RA. Embryo CHH hypermethylation is mediated by RdDM and is autonomously directed in Brassica rapa. Genome Biol 2021; 22:140. [PMID: 33957938 PMCID: PMC8101221 DOI: 10.1186/s13059-021-02358-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA-directed DNA methylation (RdDM) initiates cytosine methylation in all contexts and maintains asymmetric CHH methylation. Mature plant embryos show one of the highest levels of CHH methylation, and it has been suggested that RdDM is responsible for this hypermethylation. Because loss of RdDM in Brassica rapa causes seed abortion, embryo methylation might play a role in seed development. RdDM is required in the maternal sporophyte, suggesting that small RNAs from the maternal sporophyte might translocate to the developing embryo, triggering DNA methylation that prevents seed abortion. This raises the question of whether embryo hypermethylation is autonomously regulated by the embryo itself or influenced by the maternal sporophyte. RESULTS Here, we demonstrate that B. rapa embryos are hypermethylated in both euchromatin and heterochromatin and that this process requires RdDM. Contrary to the current models, B. rapa embryo hypermethylation is not correlated with demethylation of the endosperm. We also show that maternal somatic RdDM is not sufficient for global embryo hypermethylation, and we find no compelling evidence for maternal somatic influence over embryo methylation at any locus. Decoupling of maternal and zygotic RdDM leads to successful seed development despite the loss of embryo CHH hypermethylation. CONCLUSIONS We conclude that embryo CHH hypermethylation is conserved, autonomously controlled, and not required for embryo development. Furthermore, maternal somatic RdDM, while required for seed development, does not directly influence embryo methylation patterns.
Collapse
Affiliation(s)
- Tania Chakraborty
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721 USA
| | - Timmy Kendall
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721 USA
| | - Jeffrey W. Grover
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721 USA
| | - Rebecca A. Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
58
|
Köhler C, Dziasek K, Del Toro-De León G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200118. [PMID: 33866810 DOI: 10.1098/rstb.2020.0118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Katarzyna Dziasek
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
59
|
Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima ST, Furuumi H, Nonomura KI, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. THE PLANT CELL 2021; 33:85-103. [PMID: 33751094 PMCID: PMC8136911 DOI: 10.1093/plcell/koaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/29/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Kunisada
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Nishino
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Saku T Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masaki Endo
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Taiji Kawakatsu
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| |
Collapse
|
60
|
Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol 2021; 22:66. [PMID: 33608047 PMCID: PMC7893963 DOI: 10.1186/s13059-021-02288-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
The broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.
Collapse
Affiliation(s)
- Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liang Fang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongdong Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
61
|
Meeus S, Šemberová K, De Storme N, Geelen D, Vallejo-Marín M. Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers. PLANT COMMUNICATIONS 2020; 1:100093. [PMID: 33367262 PMCID: PMC7747968 DOI: 10.1016/j.xplc.2020.100093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 05/15/2023]
Abstract
Hybridization is a creative evolutionary force, increasing genomic diversity and facilitating adaptation and even speciation. Hybrids often face significant challenges to establishment, including reduced fertility that arises from genomic incompatibilities between their parents. Whole-genome duplication in hybrids (allopolyploidy) can restore fertility, cause immediate phenotypic changes, and generate reproductive isolation. Yet the survival of polyploid lineages is uncertain, and few studies have compared the performance of recently formed allopolyploids and their parents under field conditions. Here, we use natural and synthetically produced hybrid and polyploid monkeyflowers (Mimulus spp.) to study how polyploidy contributes to the fertility, reproductive isolation, phenotype, and performance of hybrids in the field. We find that polyploidization restores fertility and that allopolyploids are reproductively isolated from their parents. The phenotype of allopolyploids displays the classic gigas effect of whole-genome duplication, in which plants have larger organs and are slower to flower. Field experiments indicate that survival of synthetic hybrids before and after polyploidization is intermediate between that of the parents, whereas natural hybrids have higher survival than all other taxa. We conclude that hybridization and polyploidy can act as sources of genomic novelty, but adaptive evolution is key in mediating the establishment of young allopolyploid lineages.
Collapse
Affiliation(s)
- Sofie Meeus
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| | - Kristýna Šemberová
- Department of Botany, Charles University, 128 43 Prague 2, Czech Republic
| | - Nico De Storme
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
62
|
Tian R, Paul P, Joshi S, Perry SE. Genetic activity during early plant embryogenesis. Biochem J 2020; 477:3743-3767. [PMID: 33045058 PMCID: PMC7557148 DOI: 10.1042/bcj20190161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| |
Collapse
|
63
|
Karikari B, Wang Z, Zhou Y, Yan W, Feng J, Zhao T. Identification of quantitative trait nucleotides and candidate genes for soybean seed weight by multiple models of genome-wide association study. BMC PLANT BIOLOGY 2020; 20:404. [PMID: 32873245 PMCID: PMC7466808 DOI: 10.1186/s12870-020-02604-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/16/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Seed weight is a complex yield-related trait with a lot of quantitative trait loci (QTL) reported through linkage mapping studies. Integration of QTL from linkage mapping into breeding program is challenging due to numerous limitations, therefore, Genome-wide association study (GWAS) provides more precise location of QTL due to higher resolution and diverse genetic diversity in un-related individuals. RESULTS The present study utilized 573 breeding lines population with 61,166 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and candidate genes for seed weight in Chinese summer-sowing soybean. GWAS was conducted with two single-locus models (SLMs) and six multi-locus models (MLMs). Thirty-nine SNPs were detected by the two SLMs while 209 SNPs were detected by the six MLMs. In all, two hundred and thirty-one QTNs were found to be associated with seed weight in YHSBLP with various effects. Out of these, seventy SNPs were concurrently detected by both SLMs and MLMs on 8 chromosomes. Ninety-four QTNs co-localized with previously reported QTL/QTN by linkage/association mapping studies. A total of 36 candidate genes were predicted. Out of these candidate genes, four hub genes (Glyma06g44510, Glyma08g06420, Glyma12g33280 and Glyma19g28070) were identified by the integration of co-expression network. Among them, three were relatively expressed higher in the high HSW genotypes at R5 stage compared with low HSW genotypes except Glyma12g33280. Our results show that using more models especially MLMs are effective to find important QTNs, and the identified HSW QTNs/genes could be utilized in molecular breeding work for soybean seed weight and yield. CONCLUSION Application of two single-locus plus six multi-locus models of GWAS identified 231 QTNs. Four hub genes (Glyma06g44510, Glyma08g06420, Glyma12g33280 & Glyma19g28070) detected via integration of co-expression network among the predicted candidate genes.
Collapse
Affiliation(s)
- Benjamin Karikari
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zili Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yilan Zhou
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenliang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianying Feng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
64
|
Kozieradzka-Kiszkurno M, Majcher D, Brzezicka E, Rojek J, Wróbel-Marek J, Kurczyńska E. Development of Embryo Suspensors for Five Genera of Crassulaceae with Special Emphasis on Plasmodesmata Distribution and Ultrastructure. PLANTS 2020; 9:plants9030320. [PMID: 32138356 PMCID: PMC7154837 DOI: 10.3390/plants9030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 01/22/2023]
Abstract
The suspensor in the majority of angiosperms is an evolutionally conserved embryonic structure functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth factors flux. This is the first study serving the purpose of investigating the correlation between suspensor types and plasmodesmata (PD), by the ultrastructure of this organ in respect of its full development. The special attention is paid to PD in representatives of Crassulaceae genera: Sedum, Aeonium, Monanthes, Aichryson and Echeveria. The contribution of the suspensor in transporting nutrients to the embryo was confirmed by the basal cell structure of the suspensor which produced, on the micropylar side of all genera investigated, a branched haustorium protruding into the surrounding ovular tissue and with wall ingrowths typically associated with cell transfer. The cytoplasm of the basal cell was rich in endoplasmic reticulum, mitochondria, dictyosomes, specialized plastids, microtubules, microbodies and lipid droplets. The basal cell sustained a symplasmic connection with endosperm and neighboring suspensor cells. Our results indicated the dependence of PD ultrastructure on the type of suspensor development: (i) simple PD are assigned to an uniseriate filamentous suspensor and (ii) PD with an electron-dense material are formed in a multiseriate suspensor. The occurrence of only one or both types of PD seems to be specific for the species but not for the genus. Indeed, in the two tested species of Sedum (with the distinct uniseriate/multiseriate suspensors), a diversity in the structure of PD depends on the developmental pattern of the suspensor. In all other genera (with the multiseriate type of development of the suspensor), the one type of electron-dense PD was observed.
Collapse
Affiliation(s)
- Małgorzata Kozieradzka-Kiszkurno
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
- Correspondence: ; Tel.: +48-58-5236078
| | - Daria Majcher
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
| | - Emilia Brzezicka
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
| | - Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland; (J.W.-M.); (E.K.)
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland; (J.W.-M.); (E.K.)
| |
Collapse
|
65
|
Ingram GC. Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm zygotic embryogenesis. F1000Res 2020; 9. [PMID: 32055398 PMCID: PMC6961419 DOI: 10.12688/f1000research.21527.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
The zygotic embryos of angiosperms develop buried deep within seeds and surrounded by two main extra-embryonic tissues: the maternally derived seed coat tissues and the zygotic endosperm. Generally, these tissues are considered to play an important role in nurturing the developing embryo by acting as conduits for maternally derived nutrients. They are also critical for key seed traits (dormancy establishment and control, longevity, and physical resistance) and thus for seed and seedling survival. However, recent studies have highlighted the fact that extra-embryonic tissues in the seed also physically and metabolically limit embryonic development and that unique mechanisms may have evolved to overcome specific developmental and genetic constraints associated with the seed habit in angiosperms. The aim of this review is to illustrate how these studies have begun to reveal the highly complex physical and physiological relationship between extra-embryonic tissues and the developing embryo. Where possible I focus on Arabidopsis because of space constraints, but other systems will be cited where relevant.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| |
Collapse
|
66
|
An L, Tao Y, Chen H, He M, Xiao F, Li G, Ding Y, Liu Z. Embryo-Endosperm Interaction and Its Agronomic Relevance to Rice Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:587641. [PMID: 33424883 PMCID: PMC7793959 DOI: 10.3389/fpls.2020.587641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 05/07/2023]
Abstract
Embryo-endosperm interaction is the dominant process controlling grain filling, thus being crucial for yield and quality formation of the three most important cereals worldwide, rice, wheat, and maize. Fundamental science of functional genomics has uncovered several key genetic programs for embryo and endosperm development, but the interaction or communication between the two tissues is largely elusive. Further, the significance of this interaction for grain filling remains open. This review starts with the morphological and developmental aspects of rice grain, providing a spatial and temporal context. Then, it offers a comprehensive and integrative view of this intercompartmental interaction, focusing on (i) apoplastic nutrient flow from endosperm to the developing embryo, (ii) dependence of embryo development on endosperm, (iii) regulation of endosperm development by embryo, and (iv) bidirectional dialogues between embryo and endosperm. From perspective of embryo-endosperm interaction, the mechanisms underlying the complex quality traits are explored, with grain chalkiness as an example. The review ends with three open questions with scientific and agronomic importance that should be addressed in the future. Notably, current knowledge and future prospects of this hot research topic are reviewed from a viewpoint of crop physiology, which should be helpful for bridging the knowledge gap between the fundamental plant sciences and the practical technologies.
Collapse
Affiliation(s)
- Lu An
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yang Tao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Mingjie He
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhenghui Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Zhenghui Liu,
| |
Collapse
|
67
|
Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J, Figueiredo DD, Köhler C. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife 2019; 8:50541. [PMID: 31789592 PMCID: PMC6914339 DOI: 10.7554/elife.50541] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/30/2019] [Indexed: 12/31/2022] Open
Abstract
MADS-box transcription factors (TFs) are ubiquitous in eukaryotic organisms and play major roles during plant development. Nevertheless, their function in seed development remains largely unknown. Here, we show that the imprinted Arabidopsis thaliana MADS-box TF PHERES1 (PHE1) is a master regulator of paternally expressed imprinted genes, as well as of non-imprinted key regulators of endosperm development. PHE1 binding sites show distinct epigenetic modifications on maternal and paternal alleles, correlating with parental-specific transcriptional activity. Importantly, we show that the CArG-box-like DNA-binding motifs that are bound by PHE1 have been distributed by RC/Helitron transposable elements. Our data provide an example of the molecular domestication of these elements which, by distributing PHE1 binding sites throughout the genome, have facilitated the recruitment of crucial endosperm regulators into a single transcriptional network.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yichun Qiu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
68
|
Haploid Induction and Genome Instability. Trends Genet 2019; 35:791-803. [DOI: 10.1016/j.tig.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022]
|
69
|
López-Coria M, Sánchez-Sánchez T, Martínez-Marcelo VH, Aguilera-Alvarado GP, Flores-Barrera M, King-Díaz B, Sánchez-Nieto S. SWEET Transporters for the Nourishment of Embryonic Tissues during Maize Germination. Genes (Basel) 2019; 10:genes10100780. [PMID: 31591342 PMCID: PMC6826359 DOI: 10.3390/genes10100780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/24/2023] Open
Abstract
In maize seed germination, the endosperm and the scutellum nourish the embryo axis. Here, we examined the mRNA relative amount of the SWEET protein family, which could be involved in sugar transport during germination since high [14-C]-glucose and mainly [14-C]-sucrose diffusional uptake were found in embryo tissues. We identified high levels of transcripts for SWEETs in the three phases of the germination process: ZmSWEET4c, ZmSWEET6b, ZmSWEET11, ZmSWEET13a, ZmSWEET13b, ZmSWEET14b and ZmSWEET15a, except at 0 h of imbibition where the abundance of each ZmSWEET was low. Despite the major sucrose (Suc) biosynthesis capacity of the scutellum and the high level of transcripts of the Suc symporter SUT1, Suc was not found to be accumulated; furthermore, in the embryo axis, Suc did not decrease but hexoses increased, suggesting an efficient Suc efflux from the scutellum to nourish the embryo axis. The influx of Glc into the scutellum could be mediated by SWEET4c to take up the large amount of transported sugars due to the late hydrolysis of starch. In addition, sugars regulated the mRNA amount of SWEETs at the embryo axis. These results suggest an important role for SWEETs in transporting Suc and hexoses between the scutellum and the embryo axis, and differences in SWEET transcripts between both tissues might occur because of the different sugar requirements and metabolism.
Collapse
|
70
|
Milutinovic M, Lindsey BE, Wijeratne A, Hernandez JM, Grotewold N, Fernández V, Grotewold E, Brkljacic J. Arabidopsis EMSY-like (EML) histone readers are necessary for post-fertilization seed development, but prevent fertilization-independent seed formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:99-109. [PMID: 31203898 DOI: 10.1016/j.plantsci.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Seed development is a complex regulatory process that includes a transition from gametophytic to sporophytic program. The synchronized development of different seed compartments (seed coat, endosperm and embryo) depends on a balance in parental genome contributions. In the most severe cases, the disruption of the balance leads to seed abortion. This represents one of the main obstacles for the engineering of asexual reproduction through seeds (apomixis), and for generating new interspecies hybrids. The repression of auxin synthesis by the Polycomb Repressive Complex 2 (PRC2) is a major mechanism contributing to sensing genome balance. However, current efforts focusing on decreasing PRC2 or elevating auxin levels have not yet resulted in the production of apomictic seed. Here, we show that EMSY-Like Tudor/Agenet H3K36me3 histone readers EML1 and EML3 are necessary for early stages of seed development to proceed at a normal rate in Arabidopsis. We further demonstrate that both EML1 and EML3 are required to prevent the initiation of seed development in the absence of fertilization. Based on the whole genome expression analysis, we identify auxin transport and signaling genes as the most enriched downstream targets of EML1 and EML3. We hypothesize that EML1 and EML3 function to repress and soften paternal gene expression by fine-tuning auxin responses. Discovery of this pathway may contribute to the engineering of apomixis and interspecies hybrids.
Collapse
Affiliation(s)
- Milica Milutinovic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Benson E Lindsey
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Asela Wijeratne
- Department of Molecular Genetics, Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - J Marcela Hernandez
- Department of Molecular Genetics, Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Nikolas Grotewold
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Virginia Fernández
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Erich Grotewold
- Department of Molecular Genetics, Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
71
|
O'Neill JP, Colon KT, Jenik PD. The onset of embryo maturation in Arabidopsis is determined by its developmental stage and does not depend on endosperm cellularization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:286-301. [PMID: 30900325 PMCID: PMC6635039 DOI: 10.1111/tpj.14324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 05/06/2023]
Abstract
Seeds are dormant and desiccated structures, filled with storage products to be used after germination. These properties are determined by the maturation program, which starts, in Arabidopsis thaliana, mid-embryogenesis, at about the same time and developmental stage in all the seeds in a fruit. The two factors, chronological and developmental time, are closely entangled during seed development, so their relative contribution to the transition to maturation is not well understood. It is also unclear whether that transition is determined autonomously by each seed or whether it depends on signals from the fruit. The onset of maturation follows the cellularization of the endosperm, and it has been proposed that there exists a causal relationship between both processes. We explored all these issues by analyzing markers for maturation in Arabidopsis mutant seeds that develop at a slower pace, or where endosperm cellularization happens too early, too late, or not at all. Our data show that the developmental stage of the embryo is the key determinant of the initiation of maturation, and that each seed makes that transition autonomously. We also found that, in contrast with previous models, endosperm cellularization is not required for the onset of maturation, suggesting that this transition is independent of the hexose/sucrose ratio in the seed. Our observations indicate that the mechanisms that control endosperm cellularization, embryo growth, and embryo maturation act independently of each other.
Collapse
Affiliation(s)
- John P O'Neill
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| | - Kristen T Colon
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| | - Pablo D Jenik
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| |
Collapse
|
72
|
Lei M, Li ZY, Wang JB, Fu YL, Xu L. Ectopic expression of the Aechmea fasciata APETALA2 gene AfAP2-2 reduces seed size and delays flowering in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:642-650. [PMID: 31048121 DOI: 10.1016/j.plaphy.2019.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/18/2019] [Accepted: 03/23/2019] [Indexed: 05/07/2023]
Abstract
The Bromeliaceae family, which is distributed pantropically, is one of the most morphologically diverse families. Except for the edible pineapple (Ananas comosus), the vast majority of bromeliads cultivated worldwide are appreciated mainly for their ornamental value. As subtropical and tropical flowering plants, these bromeliads, among with Aechmea fasciata, have significant economic importance. However, the molecular mechanism of flowering in bromeliads remains unrevealed. In this study, an APETALA2 (AP2) homologue, AfAP2-2, which belongs to the AP2/ethylene response element binding protein (AP2/EREBP) transcription factor superfamily, was identified in A. fasciata. AfAP2-2 contains two conserved AP2 domains and is a nuclear-localized transactivator. The expression level of AfAP2-2 was predominantly higher in vegetative organs of the reproductive phase than in those of the vegetative phase. Ectopic expression of AfAP2-2 in Arabidopsis specifically delayed flowering in short-day (SD) conditions. Furthermore, the size and weight of seeds of AfAP2-2-overexpressing Arabidopsis plants were significantly reduced compared to those of the wild type (WT). Our findings suggest that AfAP2-2 might be a negative regulator of flowering and seed size and weight. These results may help facilitate the molecular breeding of bromeliads.
Collapse
Affiliation(s)
- Ming Lei
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, 530023, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Zhi-Ying Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Jia-Bin Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Yun-Liu Fu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Li Xu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| |
Collapse
|
73
|
Kushwaha SK, Grimberg Å, Carlsson AS, Hofvander P. Charting oat (Avena sativa) embryo and endosperm transcription factor expression reveals differential expression of potential importance for seed development. Mol Genet Genomics 2019; 294:1183-1197. [PMID: 31073872 DOI: 10.1007/s00438-019-01571-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Uniquely, oat, among cereals, accumulates an appreciable amount of oil in the endosperm together with starch. Oat is also recognized for its soluble fibers in the form of β-glucans. Despite high and increasing interest in oat yield and quality, the genetic and molecular understanding of oat grain development is still very limited. Transcription factors (TFs) are important regulatory components for plant development, product quality and yield. This study aimed to develop a workflow to determine seed tissue specificity of transcripts encoding transcription factors to reveal differential expression of potential importance for storage compound deposition and quality characters in oat. We created a workflow through the de novo assembly of sequenced seed endosperm and embryo, and publicly available oat seed RNAseq dataset, later followed by TF identification. RNAseq data were assembled into 33,878 transcripts with approximately 90% completeness. A total of 3875 putative TF encoding transcripts were identified from the oat hybrid assemblies. Members of the B3, bHLH, bZIP, C3H, ERF, NAC, MYB and WRKY families were the most abundant TF transcripts. A total of 514 transcripts which were differentially expressed between embryo and endosperm were identified with a threshold of 16-fold expression difference. Among those, 36 TF transcript homologs, belonging to 7 TF families, could be identified through similarity search in wheat embryo and endosperm EST libraries of NCBI Unigene database, and almost all the closest homologs were specifically expressed in seed when explored in WheatExp database. We verified our findings by cloning, sequencing and finally confirming differential expression of two TF encoding transcripts in oat seed embryo and endosperm. The developed workflow for identifying tissue-specific transcription factors allows further functional characterization of specific genes to increase our understanding of grain filling and quality.
Collapse
Affiliation(s)
- Sandeep Kumar Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
74
|
Wang R, Gangola MP, Irvine C, Gaur PM, Båga M, Chibbar RN. Co-localization of genomic regions associated with seed morphology and composition in a desi chickpea (Cicer arietinum L.) population varying in seed protein concentration. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1263-1281. [PMID: 30661107 DOI: 10.1007/s00122-019-03277-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Major QTL on LG 1 and 3 control seed filling and seed coat development, thereby affecting seed shape, size, color, composition and weight, key determinants of crop yield and quality. A chickpea (Cicer arietinum L.) population consisting of 189 recombinant inbred lines (RILs) derived from a cross between medium-protein ICC 995 and high-protein ICC 5912 genotypes of the desi market class was analyzed for seed properties. Seed from the parental lines and RILs was produced in four different environments for determination of seed shape (SS), 100-seed weight (100-SW), protein (PRO) and starch (STA) concentration. Polymorphic genetic markers for the population were identified by Genotyping by Sequencing and assembled into a 522.5 cM genetic map. Phenotype data from the different growth environments were analyzed by QTL mapping done by single and multi-environment analyses and in addition, single marker association mapping. The analyses identified in total 11 QTL, of which the most significant (P < 0.05) loci were located on LG 1 (q-1.1), LG 2 (q-2.1), LG 3 (q-3.2, q-3.3), LG 4 (q-4.2), and LG 5 (q-5.1). STA was mostly affected by q-1.1, which explained 19.0% of the phenotypic variance for the trait. The largest QTL effects were demonstrated by q-3.2 that explained 52.5% of the phenotypic variances for 100-SW, 44.3% for PRO, and 14.6% for SS. This locus was also highly associated with flower color (COL; 95.2% explained) and showed q-3.2 alleles from the ICC 5912 parent conferred the blue flower color and production of small, round seeds with relatively high protein concentration. Genes affecting seed filling at q-1.1 and seed coat development at q-3.2, respectively, were considered to underlie differences in seed composition and morphology in the RIL population.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Manu P Gangola
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Craig Irvine
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502 324, India
| | - Monica Båga
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
75
|
Borg M, Buendía D, Berger F. A simple and robust protocol for immunostaining Arabidopsis pollen nuclei. PLANT REPRODUCTION 2019; 32:39-43. [PMID: 30671645 DOI: 10.1007/s00497-018-00360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Pollen represents the male sexual lineage in flowering plants. At maturity, pollen grains are composed of a companion vegetative cell with embedded sperm. During pollen development, these two cell types acquire vastly differing cell fates. Underlying this differential fate acquisition is dramatic reconfiguration of pollen chromatin that is highly evident at a cytological level. The precise link between histone mark deposition and fate acquisition remains largely unexplored, which in part has been hindered by the difficulty in working with pollen in model plant species like Arabidopsis. Here, we describe a simple and robust protocol to isolate Arabidopsis pollen nuclei and immunostain for histone marks. Plant growth aside, the protocol can be performed over 2 days with few Arabidopsis plants, thus allowing multiple genotypes to be analysed in parallel. We also describe a method to de-mask epitopes through antigen retrieval, which vastly improves the signal for antibodies that target heterochromatic histone marks.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Daniel Buendía
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
76
|
Hu Y, Zou W, Wang Z, Zhang Y, Hu Y, Qian J, Wu X, Ren Y, Zhao J. Translocase of the Outer Mitochondrial Membrane 40 Is Required for Mitochondrial Biogenesis and Embryo Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:389. [PMID: 31001303 PMCID: PMC6455079 DOI: 10.3389/fpls.2019.00389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 05/08/2023]
Abstract
In eukaryotes, mitochondrion is an essential organelle which is surrounded by a double membrane system, including the outer membrane, intermembrane space and the inner membrane. The translocase of the outer mitochondrial membrane (TOM) complex has attracted enormous interest for its role in importing the preprotein from the cytoplasm into the mitochondrion. However, little is understood about the potential biological function of the TOM complex in Arabidopsis. The aim of the present study was to investigate how AtTOM40, a gene encoding the core subunit of the TOM complex, works in Arabidopsis. As a result, we found that lack of AtTOM40 disturbed embryo development and its pattern formation after the globular embryo stage, and finally caused albino ovules and seed abortion at the ratio of a quarter in the homozygous tom40 plants. Further investigation demonstrated that AtTOM40 is wildly expressed in different tissues, especially in cotyledons primordium during Arabidopsis embryogenesis. Moreover, we confirmed that the encoded protein AtTOM40 is localized in mitochondrion, and the observation of the ultrastructure revealed that mitochondrion biogenesis was impaired in tom40-1 embryo cells. Quantitative real-time PCR was utilized to determine the expression of genes encoding outer mitochondrial membrane proteins in the homozygous tom40-1 mutant embryos, including the genes known to be involved in import, assembly and transport of mitochondrial proteins, and the results demonstrated that most of the gene expressions were abnormal. Similarly, the expression of genes relevant to embryo development and pattern formation, such as SAM (shoot apical meristem), cotyledon, vascular primordium and hypophysis, was also affected in homozygous tom40-1 mutant embryos. Taken together, we draw the conclusion that the AtTOM40 gene is essential for the normal structure of the mitochondrion, and participates in early embryo development and pattern formation through maintaining the biogenesis of mitochondria. The findings of this study may provide new insight into the biological function of the TOM40 subunit in higher plants.
Collapse
|
77
|
Baroux C, Grossniklaus U. Seeds-An evolutionary innovation underlying reproductive success in flowering plants. Curr Top Dev Biol 2018; 131:605-642. [PMID: 30612632 DOI: 10.1016/bs.ctdb.2018.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
"Seeds nourish, seeds unite, seeds endure, seeds defend, seeds travel," explains the science writer Thor Hanson in his book The Triumph of Seeds (2015). The seed is an ultimate product of land plant evolution. The nursing and protective organization of the seed enable a unique parental care of the progeny that has fueled seed plant radiation. Seeds promote dispersal and optimize offspring production and thus reproductive fitness through biological adaptations that integrate environmental and developmental cues. The composite structure of seeds, uniting tissues that originate from three distinct organisms, enables the partitioning of tasks during development, maturation, and storage, while a sophisticated interplay between the compartments allows the fine-tuning of embryonic growth, as well as seed maturation, dormancy, and germination. In this review, we will highlight peculiarities in the development and evolution of the different seed compartments and focus on the molecular mechanisms underlying the interactions between them.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
78
|
Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nat Commun 2018; 9:5011. [PMID: 30479343 PMCID: PMC6258693 DOI: 10.1038/s41467-018-07429-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Sperm entry triggers central cell division during seed development, but what factors besides the genome are inherited from sperm, and the mechanism by which paternal factors regulate early division events, are not understood. Here we show that sperm-transmitted miR159 promotes endosperm nuclear division by repressing central cell-transmitted miR159 targets. Disruption of paternal miR159 causes approximately half of the seeds to abort as a result of defective endosperm nuclear divisions. In wild-type plants, MYB33 and MYB65, two miR159 targets, are highly expressed in the central cell before fertilization, but both are rapidly abolished after fertilization. In contrast, loss of paternal miR159 leads to retention of MYB33 and MYB65 in the central cell after fertilization. Furthermore, ectopic expression of a miR159-resistant version of MYB33 (mMYB33) in the endosperm significantly inhibits initiation of endosperm nuclear division. Collectively, these results show that paternal miR159 inhibits its maternal targets to promote endosperm nuclear division, thus uncovering a previously unknown paternal effect on seed development. Seed development in plants is triggered by entry of sperm to the ovule. Here, Zhao et al. uncover miR159 as a paternal-trigger of seed development that is transmitted to the central cell where it represses expression of maternal targets to promote nuclear division in the endosperm.
Collapse
|
79
|
Chen H, Li S, Li L, Wu W, Ke X, Zou W, Zhao J. Nα-Acetyltransferases 10 and 15 are Required for the Correct Initiation of Endosperm Cellularization in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:2113-2128. [PMID: 30020502 DOI: 10.1093/pcp/pcy135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
The endosperm and embryo originate from the fertilized central cell and egg cell through a programmed series of cell division and differentiation events. Characterization of more vital genes involved in endosperm and embryo development can help us to understand the regulatory mechanism in more depth. In this study, we found that loss of NAA10 and NAA15, the catalytic and auxiliary subunits of Arabidopsis thaliana N-terminal acetyltransferase A (AtNatA), respectively, led to severely delayed and incomplete endosperm cellularization, accompanied by disordered cell division in the early embryo. Studies on the marker genes/lines of the endosperm (AGL62-GFP, pDD19::GFP, pDD22::NLS-GFP and N9185) and embryo (STM, FIL, SCR and WOX5) in naa10/naa15 mutants showed that expression patterns of these markers were significantly affected, which were tightly associated with the defective feature of endosperm cellularization and embryo cell differentiation. Subsequently, embryonic complementation rescued the abortive embryos, but failed to initiate endosperm cellularization properly, further confirming the essential role of AtNatA in both endosperm and embryo development. Moreover, repression of AGL62 in naa10 and naa15 restored the endosperm cellularization, suggesting that NAA10/NAA15 functions in initiation of endosperm cellularization by inhibiting the expression of AGL62 in Arabidopsis. Therefore, NAA10 and NAA15 could be considered as crucial factors involved in promoting endosperm cellularization in Arabidopsis.
Collapse
Affiliation(s)
- Hongyu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuqin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiying Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolong Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
80
|
Sechet J, Marion-Poll A, North HM. Emerging Functions for Cell Wall Polysaccharides Accumulated during Eudicot Seed Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E81. [PMID: 30274256 PMCID: PMC6313846 DOI: 10.3390/plants7040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023]
Abstract
The formation of seeds is a reproductive strategy in higher plants that enables the dispersal of offspring through time and space. Eudicot seeds comprise three main components, the embryo, the endosperm and the seed coat, where the coordinated development of each is important for the correct formation of the mature seed. In addition, the seed coat protects the quiescent progeny and can provide transport mechanisms. A key underlying process in the production of seed tissues is the formation of an extracellular matrix termed the cell wall, which is well known for its essential function in cytokinesis, directional growth and morphogenesis. The cell wall is composed of a macromolecular network of polymers where the major component is polysaccharides. The attributes of polysaccharides differ with their composition and charge, which enables dynamic remodeling of the mechanical and physical properties of the matrix by adjusting their production, modification or turnover. Accordingly, the importance of specific polysaccharides or modifications is increasingly being associated with specialized functions within seed tissues, often through the spatio-temporal accumulation or remodeling of particular polymers. Here, we review the evolution and accumulation of polysaccharides during eudicot seed development, what is known of their impact on wall architecture and the diverse roles associated with these in different seed tissues.
Collapse
Affiliation(s)
- Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
81
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
82
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
83
|
Zhao Y, Takahashi S, Li Y, Hien KTT, Matsubara A, Mizutani G, Nakamura Y. Ungerminated Rice Grains Observed by Femtosecond Pulse Laser Second-Harmonic Generation Microscopy. J Phys Chem B 2018; 122:7855-7861. [PMID: 30040415 DOI: 10.1021/acs.jpcb.8b04610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a demonstration that second-order nonlinear optical microscopy is a powerful tool for rice grain science, we observed second-harmonic generation (SHG) images of amylose-free glutinous rice and amylose-containing nonglutinous rice grains. The images obtained from SHG microscopy and photographs of the iodine-stained starch granules indicate that the distribution of starch types in the embryo-facing endosperm region (EFR) depends on the type of rice and suggests that glucose, maltose, or both are localized on the testa side of the embryo. In the testa side of the embryo, crystallized glucose or maltose are judged to be detected by SHG. These monosaccharides and disaccharides play an important role, as they trigger energy in the initial stage of germination. These results confirm SHG microscopy is a good method to monitor the distribution of such sugars and amylopectin in the embryo and its neighboring regions of rice grains.
Collapse
Affiliation(s)
- Yue Zhao
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Shogo Takahashi
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Yanrong Li
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Khuat Thi Thu Hien
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Akira Matsubara
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Goro Mizutani
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences , Akita Prefectural University , 241-438 Kaidobata-Nishi Nakano Shimoshinjo , Akita City , Akita 010-0195 , Japan
| |
Collapse
|
84
|
Mimura M, Kudo T, Wu S, McCarty DR, Suzuki M. Autonomous and non-autonomous functions of the maize Shohai1 gene, encoding a RWP-RK putative transcription factor, in regulation of embryo and endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:892-908. [PMID: 29901832 DOI: 10.1111/tpj.13996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 05/26/2023]
Abstract
In plants, establishment of the basic body plan during embryogenesis involves complex processes of axis formation, cell fate specification and organ differentiation. While molecular mechanisms of embryogenesis have been well studied in the eudicot Arabidopsis, only a small number of genes regulating embryogenesis has been identified in grass species. Here, we show that a RKD-type RWP-RK transcription factor encoded by Shohai1 (Shai1) is indispensable for embryo and endosperm development in maize. Loss of Shai1 function causes variable morphological defects in the embryo including small scutellum, shoot axis bifurcation and arrest during early organogenesis. Analysis of molecular markers in mutant embryos reveals disturbed patterning of gene expression and altered polar auxin transport. In contrast with typical embryo-defective (emb) mutants that expose a vacant embryo pocket in the endosperm, the endosperm of shai1 kernels conforms to the varied size and shape of the embryo. Furthermore, genetic analysis confirms that Shai1 is required for autonomous formation of the embryo pocket in endosperm of emb mutants. Analyses of genetic mosaic kernels generated by B-A translocation revealed that expression of Shai1 in the endosperm could partially rescue a shai1 mutant embryo and suggested that Shai1 is involved in non-cell autonomous signaling from endosperm that supports normal embryo growth. Taken together, we propose that the Shai1 gene functions in regulating embryonic patterning during grass embryogenesis partly by endosperm-to-embryo interaction.
Collapse
Affiliation(s)
- Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Toru Kudo
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
85
|
Zhang M, Lv R, Yang W, Fu T, Liu B. Imprinted gene expression in maize starchy endosperm and aleurone tissues of reciprocal F1 hybrids at a defined developmental stage. Genes Genomics 2018; 40:99-107. [PMID: 29892900 DOI: 10.1007/s13258-017-0613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Imprinted gene expression in flowering plants predominantly occurs in the triploid endosperm of developing seed. However, endosperm is composed of distinct tissue types. For example, the maize (Zea mays) endosperm is constituted by two major tissues, starchy endosperm and aleurone. Previous studies in imprinted gene expression have generally assumed that the different tissues constituting endosperm would behavior the same, and hence have not examined them separately. Here, to examine parental-specific expression of imprinted genes in different parts of the seed, eight previously reported maize protein-coding imprinted genes were selected, and analyzed by cleaved amplified polymorphic sequence (CAPS) coupled with Sanger sequencing for transcripts from the various seed tissues collected at 18 days after pollination (DAP). The studied tissues included seed coat, embryo, starchy endosperm and aleurone, which were collected from a pair of reciprocal F1 hybrids produced by crossing inbred lines B73 and Mo17. Six of these eight analyzed imprinted genes showed the same imprinted expression pattern between the starchy endosperm and aleurone, but two showed imprinted expression only in the starchy endosperm. Comparison of the expression pattern of 20 selected imprinted genes in multiple seed tissues and vegetative tissues indicated that the majority (~ 75%) of these imprinted genes exhibited seed-specific or endosperm-specific expression. Our results also uncovered that imprinted genes have a high propensity to be alternatively spliced via intron retention in the developing embryo compared with the other tissues.
Collapse
Affiliation(s)
- Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Wei Yang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
86
|
Abstract
This review by Figueiredo and Köhler describes the molecular mechanisms driving seed development. They review the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development. The evolution of seeds defines a remarkable landmark in the history of land plants. A developing seed contains three genetically distinct structures: the embryo, the nourishing tissue, and the seed coat. While fertilization is necessary to initiate seed development in most plant species, apomicts have evolved mechanisms allowing seed formation independently of fertilization. Despite their socio–economical relevance, the molecular mechanisms driving seed development have only recently begun to be understood. Here we review the current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
87
|
Qian J, Chen Y, Hu Y, Deng Y, Liu Y, Li G, Zou W, Zhao J. Arabidopsis replication factor C4 is critical for DNA replication during the mitotic cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:288-303. [PMID: 29406597 DOI: 10.1111/tpj.13855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 06/07/2023]
Abstract
Replication factor C (RFC) is a conserved eukaryotic complex consisting of RFC1/2/3/4/5. It plays important roles in DNA replication and the cell cycle in yeast and fruit fly. However, it is not very clear how RFC subunits function in higher plants, except for the Arabidopsis (At) subunits AtRFC1 and AtRFC3. In this study, we investigated the functions of AtRFC4 and found that loss of function of AtRFC4 led to an early sporophyte lethality that initiated as early as the elongated zygote stage, all defective embryos arrested at the two- to four-cell embryo proper stage, and the endosperm possessed six to eight free nuclei. Complementation of rfc4-1/+ with AtRFC4 expression driven through the embryo-specific DD45pro and ABI3pro or the endosperm-specific FIS2pro could not completely restore the defective embryo or endosperm, whereas a combination of these three promoters in rfc4-1/+ enabled the aborted ovules to develop into viable seeds. This suggests that AtRFC4 functions simultaneously in endosperm and embryo and that the proliferation of endosperm is critical for embryo maturation. Assays of DNA content in rfc4-1/+ verified that DNA replication was disrupted in endosperm and embryo, resulting in blocked mitosis. Moreover, we observed a decreased proportion of late S-phase and M-phase cells in the rfc4-1/-FIS2;DD45;ABI3pro::AtRFC4 seedlings, suggesting that incomplete DNA replication triggered cell cycle arrest in cells of the root apical meristem. Therefore, we conclude that AtRFC4 is a crucial gene for DNA replication.
Collapse
Affiliation(s)
- Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yueyue Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
88
|
Povilus RA, Diggle PK, Friedman WE. Evidence for parent-of-origin effects and interparental conflict in seeds of an ancient flowering plant lineage. Proc Biol Sci 2018; 285:20172491. [PMID: 29436495 PMCID: PMC5829200 DOI: 10.1098/rspb.2017.2491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/19/2018] [Indexed: 01/09/2023] Open
Abstract
Theoretical and empirical studies have long connected the evolutionary innovation of endosperm, a genetically biparental product of a double fertilization process unique to flowering plants (angiosperms), to conflicting parental interests over offspring provisioning. Yet, none of these studies examined interparental conflict in representatives of any of the most ancient angiosperm lineages. We performed reciprocal interploidy crosses in the water lily Nymphaea thermarum, a member of one of the most ancient angiosperm lineages, Nymphaeales. We find that an excess of paternal genomes is associated with an increase in endosperm growth. By contrast, maternal ploidy negatively influences development or growth of all seed components, regardless of paternal genome dosage. Most relevant to the conflict over distribution of maternal resources, however, is that growth of the perisperm (seed storage tissue derived from the maternal sporophyte, found in all Nymphaeales) is unaffected by paternal genome dosage-ensuring maternal control of maternal resources. We conclude that the evolutionary transfer of embryo-nourishing function from a genetically biparental endosperm to a genetically maternal perisperm can be viewed as an effective maternal strategy to recapture control of resource distribution among progeny, and thus that interparental conflict has influenced the evolution of seed development in this ancient angiosperm lineage.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| |
Collapse
|
89
|
Zhang J, Wu Z, Hu F, Liu L, Huang X, Zhao J, Wang H. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. HORTICULTURE RESEARCH 2018; 5:39. [PMID: 30083354 PMCID: PMC6068106 DOI: 10.1038/s41438-018-0042-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 05/08/2023]
Abstract
Cell wall invertase (CWIN) are known to play important roles in seed development. However, most reports to date have focused on a single gene family member, and have mainly investigated CWIN functions during the filling stage of seed development. In this study, we found significant lower levels of CWIN protein and activity associated with seed abortion in the Litchi chinensis cultivar "Nuomici." We identified five litchi CWIN genes and observed that the expression of LcCWIN5 was limited to the flower tissues and decreased sharply with fruit development. Silencing of LcCWIN5 expression before 28 DAA (cell division stage) resulted in perturbed liquid endosperm development, smaller seeds, and higher seed abortion rate, while silencing after 28 DAA (filling stage) had no effect on seed development. In contrast, LcCWIN2 was mostly expressed in the funicle and seed coat, and increased with fruit development. Decreased LcCWIN2 expression and CWIN activity during early seed filling coincided with smaller seeds in the cultivar "Feizixiao." Silencing of LcCWIN2 caused a reduction in the seed size without inducing seed abortion. We propose that CWIN activity in seed maternal tissues during cell division stage is likely due to LcCWIN5 expression, which regulates early seed development. On the other hand, CWIN activity during the filling stage is due to the expression of LcCWIN2, which may promote carbon import by creating a sucrose gradient. Comparable LcCWIN5 expression, but much lower CWIN activity, detected in the funicle of "Nuomici" is consistent with post-translational regulation.
Collapse
Affiliation(s)
- Jieqiong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Present Address: Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Zichen Wu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Fuchu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key laboratory of tropical fruit tree biology of Hainan Province, Hainan Academy of Agricultural Science, Haikou, 571100 China
| | - Lian Liu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuming Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huicong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Department of Life Sciences and Technology, Yangtze Normal University, Chongqing, China
| |
Collapse
|
90
|
Gao J, Wang T, Liu M, Liu J, Zhang Z. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation. PLoS One 2017; 12:e0189672. [PMID: 29261741 PMCID: PMC5738128 DOI: 10.1371/journal.pone.0189672] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/29/2017] [Indexed: 12/30/2022] Open
Abstract
Buckwheat is an important minor crop with pharmaceutical functions due to rutin enrichment in the seed. Seeds of common buckwheat cultivars (Fagopyrum esculentum, Fes) usually have much lower rutin content than tartary buckwheat (F. tartaricum, Ft). We previously found a wild species of common buckwheat (F. esculentum ssp. ancestrale, Fea), with seeds that are high in rutin, similar to Ft. In the present study, we investigated the mechanism by which rutin production varies among different buckwheat cultivars, Fea, a Ft variety (Xide) and a Fes variety (No.2 Pingqiao) using RNA sequencing of filling stage seeds. Sequencing data generated approximately 43.78-Gb of clean bases, all these data were pooled together and assembled 180,568 transcripts, and 109,952 unigenes. We established seed gene expression profiles of each buckwheat sample and assessed genes involved in flavonoid biosynthesis, storage proteins production, CYP450 family, starch and sucrose metabolism, and transcription factors. Differentially expressed genes between Fea and Fes were further analyzed due to their close relationship than with Ft. Expression levels of flavonoid biosynthesis gene FLS1 (Flavonol synthase 1) were similar in Fea and Ft, and much higher than in Fes, which was validated by qRT-PCR. This suggests that FLS1 transcript levels may be associated with rutin accumulation in filling stage seeds of buckwheat species. Further, we explored transcription factors by iTAK, and multiple gene families were identified as being involved in the coordinate regulation of metabolism and development. Our extensive transcriptomic data sets provide a complete description of metabolically related genes that are differentially expressed in filling stage buckwheat seeds and suggests that FLS1 is a key controller of rutin synthesis in buckwheat species. FLS1 can effectively convert dihydroflavonoids into flavonol products. These findings provide a basis for further studies of flavonoid biosynthesis in buckwheat breeding to help accelerate flavonoid metabolic engineering that would increase rutin content in cultivars of common buckwheat.
Collapse
Affiliation(s)
- Jia Gao
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingting Wang
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minxuan Liu
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Liu
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongwen Zhang
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- China Office of Biodiversity International, Beijing, China
- * E-mail: ,
| |
Collapse
|
91
|
Fort A, Tuteja R, Braud M, McKeown PC, Spillane C. Parental-genome dosage effects on the transcriptome of F1 hybrid triploid embryos of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1044-1058. [PMID: 29024088 DOI: 10.1111/tpj.13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 05/27/2023]
Abstract
Genomic imprinting in the seed endosperm could be due to unequal parental-genome contribution effects in triploid endosperm tissue that trigger parent-of-origin specific activation and/or silencing of loci prone to genomic imprinting. To determine whether genomic imprinting is triggered by unequal parental-genome contribution effects, we generated a whole-genome transcriptome dataset of F1 hybrid triploid embryos (as mimics of F1 hybrid triploid endosperm). For the vast majority of genes, the parental contributions to their expression levels in the F1 triploid hybrid embryos follow a biallelic and linear expression pattern. While allele-specific expression (ASE) bias was detected, such effects were predominantly parent-of-origin independent. We demonstrate that genomic imprinting is largely absent from F1 triploid embryos, strongly suggesting that neither triploidy nor unequal parental-genome contribution are key triggers of genomic imprinting in plants. However, extensive parental-genome dosage effects on gene expression were observed between the reciprocal F1 hybrid embryos, particularly for genes involved in defence response and nutrient reservoir activity, potentially leading to the seed size differences between reciprocal triploids. We further determined that unequal parental-genome contribution in F1 triploids can lead to overexpression effects that are parent-of-origin dependent, and which are not observed in diploid or tetraploid embryos in which the parental-genome dosage is balanced. Overall, our study demonstrates that neither triploidy nor unequal parental-genome contribution is sufficient to trigger imprinting in plant tissues, suggesting that genomic imprinting is an intrinsic and unique feature of the triploid seed endosperm.
Collapse
Affiliation(s)
- Antoine Fort
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Reetu Tuteja
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Martin Braud
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| |
Collapse
|
92
|
Zhu M, Zhang M, Xing L, Li W, Jiang H, Wang L, Xu M. Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development. Genes (Basel) 2017; 8:genes8100274. [PMID: 29039813 PMCID: PMC5664124 DOI: 10.3390/genes8100274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of maize plant. However, few focused on seed development of maize. Here, we identified 753 lncRNA candidates in maize genome from six seed samples. Similar to the mRNAs, lncRNAs showed tissue developmental stage specific and differential expression, indicating their putative role in seed development. Increasing evidence shows that crosstalk among RNAs mediated by shared microRNAs (miRNAs) represents a novel layer of gene regulation, which plays important roles in plant development. Functional roles and regulatory mechanisms of lncRNAs as competing endogenous RNAs (ceRNA) in plants, particularly in maize seed development, are unclear. We combined analyses of consistently altered 17 lncRNAs, 840 mRNAs and known miRNA to genome-wide investigate potential lncRNA-mediated ceRNA based on “ceRNA hypothesis”. The results uncovered seven novel lncRNAs as potential functional ceRNAs. Functional analyses based on their competitive coding-gene partners by Gene Ontology (GO) and KEGG biological pathway demonstrated that combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in maize seed. These findings provided a useful platform for uncovering novel mechanisms of maize seed development and may provide opportunities for the functional characterization of individual lncRNA in future studies.
Collapse
Affiliation(s)
- Ming Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230000, China.
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Min Zhang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lijuan Xing
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wenzong Li
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230000, China.
| | - Lei Wang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Miaoyun Xu
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
93
|
Bouyer D, Kramdi A, Kassam M, Heese M, Schnittger A, Roudier F, Colot V. DNA methylation dynamics during early plant life. Genome Biol 2017; 18:179. [PMID: 28942733 PMCID: PMC5611644 DOI: 10.1186/s13059-017-1313-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022] Open
Abstract
Background Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Results Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10–20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Conclusion Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1313-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Bouyer
- Institut de Biologie Moléculaire des Plantes du CNRS - UPR2357, Université de Strasbourg, Strasbourg, France. .,Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, F-75230, Paris, France.
| | - Amira Kramdi
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, F-75230, Paris, France
| | - Mohamed Kassam
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, F-75230, Paris, France.,Present address: Nestlé Institute of Health Sciences, Functional Genomics, Lausanne, Switzerland
| | - Maren Heese
- Institut de Biologie Moléculaire des Plantes du CNRS - UPR2357, Université de Strasbourg, Strasbourg, France.,Department of Developmental Biology, University of Hamburg, Biozentrum Klein Flottbek, Hamburg, Germany
| | - Arp Schnittger
- Institut de Biologie Moléculaire des Plantes du CNRS - UPR2357, Université de Strasbourg, Strasbourg, France.,Department of Developmental Biology, University of Hamburg, Biozentrum Klein Flottbek, Hamburg, Germany
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, F-75230, Paris, France.,Present address: Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, F-75230, Paris, France
| |
Collapse
|
94
|
Zhou H, Zhao J, Cai J, Patil SB. UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. PLANT MOLECULAR BIOLOGY 2017; 94:565-576. [PMID: 28695315 DOI: 10.1007/s11103-017-0633-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 05/08/2023]
Abstract
UBIQUITIN-SPECIFIC PROTEASES play important roles in plant development and stress responses. Protein ubiquitination and deubiquitination are reversible processes, which can modulate the stability, activity as well as subcellular localization of the substrate proteins. UBIQUITIN-SPECIFIC PROTEASE (UBP) protein family participates in protein deubiquitination. Members of UBP family are involved in a variety of physiological processes in plants, as evidenced by their functional characterization in model plant Arabidopsis and other plants. UBPs are conserved in plants and distinct UBPs function in different regulatory processes, although functional redundancies exist between some members. Here we briefly reviewed recent advances in understanding the biological functions of UBP protein family in Arabidopsis, particularly the molecular mechanisms by which UBPs regulate plant development and stress responses. We believe that elucidation of UBPs function and regulation in Arabidopsis will provide new insights about protein deubiquitination and might shed light on the understanding of the mechanistic roles of UBPs in general, which will definitely contribute to crop improvement in agriculture.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingqing Cai
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
95
|
Abstract
The maize endosperm consists of three major compartmentalized cell types: the starchy endosperm (SE), the basal endosperm transfer cell layer (BETL), and the aleurone cell layer (AL). Differential genetic programs are activated in each cell type to construct functionally and structurally distinct cells. To compare gene expression patterns involved in maize endosperm cell differentiation, we isolated transcripts from cryo-dissected endosperm specimens enriched with BETL, AL, or SE at 8, 12, and 16 days after pollination (DAP). We performed transcriptome profiling of coding and long noncoding transcripts in the three cell types during differentiation and identified clusters of the transcripts exhibiting spatio-temporal specificities. Our analysis uncovered that the BETL at 12 DAP undergoes the most dynamic transcriptional regulation for both coding and long noncoding transcripts. In addition, our transcriptome analysis revealed spatio-temporal regulatory networks of transcription factors, imprinted genes, and loci marked with histone H3 trimethylated at lysine 27. Our study suggests that various regulatory mechanisms contribute to the genetic networks specific to the functions and structures of the cell types of the endosperm.
Collapse
|
96
|
Gupta M, Bhaskar PB, Sriram S, Wang PH. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. PLANT CELL REPORTS 2017; 36:637-652. [PMID: 27796489 DOI: 10.1007/s00299-016-2064-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/11/2016] [Indexed: 05/23/2023]
Abstract
Oilseed crops, especially soybean (Glycine max) and canola/rapeseed (Brassica napus), produce seeds that are rich in both proteins and oils and that are major sources of energy and nutrition worldwide. Most of the nutritional content in the seed is accumulated in the embryo during the seed filling stages of seed development. Understanding the metabolic pathways that are active during seed filling and how they are regulated are essential prerequisites to crop improvement. In this review, we summarize various omics studies of soybean and canola/rapeseed during seed filling, with emphasis on oil and protein traits, to gain a systems-level understanding of seed development. Currently, most (80-85%) of the soybean and rapeseed reference genomes have been sequenced (950 and 850 megabases, respectively). Parallel to these efforts, extensive omics datasets from different seed filling stages have become available. Transcriptome and proteome studies have detected preponderance of starch metabolism and glycolysis enzymes to be the possible cause of higher oil in B. napus compared to other crops. Small RNAome studies performed during the seed filling stages have revealed miRNA-mediated regulation of transcription factors, with the suggestion that this interaction could be responsible for transitioning the seeds from embryogenesis to maturation. In addition, progress made in dissecting the regulation of de novo fatty acid synthesis and protein storage pathways is described. Advances in high-throughput omics and comprehensive tissue-specific analyses make this an exciting time to attempt knowledge-driven investigation of complex regulatory pathways.
Collapse
Affiliation(s)
- Manju Gupta
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Pudota B Bhaskar
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | | | - Po-Hao Wang
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| |
Collapse
|
97
|
Henderson ST, Johnson SD, Eichmann J, Koltunow AMG. Genetic analyses of the inheritance and expressivity of autonomous endosperm formation in Hieracium with different modes of embryo sac and seed formation. ANNALS OF BOTANY 2017; 119:1001-1010. [PMID: 28130222 PMCID: PMC5604576 DOI: 10.1093/aob/mcw262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/18/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Apomixis, or asexual seed formation, in polyploid Hieracium subgenus Pilosella species results in clonal progeny with a maternal genotype. An aposporous embryo sac forms mitotically from a somatic cell, without prior meiosis, while embryo and endosperm formation is fertilization independent (autonomous). The latter two developmental components are tightly linked in Hieracium . Recently, two plants, AutE196 and AutE24, were identified from two different crosses. Both form embryo sacs via the sexual route by undergoing meiosis, and embryo development requires fertilization; however, 18 % of embryo sacs can undergo autonomous endosperm (AutE) formation. This study investigated the qualitative and quantitative inheritance of the AutE trait and factors influencing phenotype expressivity. An additional focus was to identify the linkage group bearing the AutE locus in AutE196. METHODS Crosses and cytology were used to examine the inheritance of AutE from AutE24 and AutE196, and to reintroduce apomictic components into AutE plants, thereby changing the ploidy of developing embryo sacs and increasing the dosage of AutE loci. Markers from a Hieracium apomict linkage map were examined within a backcrossed AutE196 mapping population to identify the linkage group containing the AutE196 locus. KEY RESULTS Qualitative autonomous endosperm in the AutE24 line was conferred by a single dominant locus, and the trait was transmitted through male and female gametes in AutE196 and AutE24. Expressivity of the trait did not significantly increase when AutE loci from AutE196 and AutE24 were both present in the progeny, within embryo sacs formed via apospory, or sexually derived embryo sacs with increased ploidy. It remains unclear if these are identical loci. CONCLUSIONS The qualitative trait of autonomous endosperm formation is conferred by single dominant loci in AutE196 and AutE24. High expressivity of autonomous endosperm formation observed in apomicts requires additional genetic factors. Potential candidates may be signals arising from fertilization-independent embryo formation.
Collapse
|
98
|
Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc Natl Acad Sci U S A 2017; 114:E1027-E1035. [PMID: 28115687 DOI: 10.1073/pnas.1615123114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the biological species concept, two species are considered distinct if reproductive barriers prevent gene flow between them. In Central Europe, the diploid species Arabidopsis lyrata and Arabidopsis arenosa are genetically isolated, thus fitting this concept as "good species." Nonetheless, interspecific gene flow involving their tetraploid forms has been described. The reasons for this ploidy-dependent reproductive isolation remain unknown. Here, we show that hybridization between diploid A. lyrata and A. arenosa causes mainly inviable seed formation, revealing a strong postzygotic reproductive barrier separating these two species. Although viability of hybrid seeds was impaired in both directions of hybridization, the cause for seed arrest differed. Hybridization of A. lyrata seed parents with A. arenosa pollen donors resulted in failure of endosperm cellularization, whereas the endosperm of reciprocal hybrids cellularized precociously. Endosperm cellularization failure in both hybridization directions is likely causal for the embryo arrest. Importantly, natural tetraploid A. lyrata was able to form viable hybrid seeds with diploid and tetraploid A. arenosa, associated with the reestablishment of normal endosperm cellularization. Conversely, the defects of hybrid seeds between tetraploid A. arenosa and diploid A. lyrata were aggravated. According to these results, we hypothesize that a tetraploidization event in A. lyrata allowed the production of viable hybrid seeds with A. arenosa, enabling gene flow between the two species.
Collapse
|
99
|
Galland M, He D, Lounifi I, Arc E, Clément G, Balzergue S, Huguet S, Cueff G, Godin B, Collet B, Granier F, Morin H, Tran J, Valot B, Rajjou L. An Integrated "Multi-Omics" Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. FRONTIERS IN PLANT SCIENCE 2017; 8:1984. [PMID: 29213276 PMCID: PMC5702907 DOI: 10.3389/fpls.2017.01984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive "multi-omics" dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered "multi-omics" study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.
Collapse
Affiliation(s)
- Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Dongli He
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Imen Lounifi
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Erwann Arc
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Gilles Clément
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Sandrine Balzergue
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Stéphanie Huguet
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Boris Collet
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Fabienne Granier
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Halima Morin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Joseph Tran
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Benoit Valot
- GQE-Le Moulon, Génétique Quantitative et Evolution (INRA Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay), PAPPSO-Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Saclay Plant Sciences (SPS), Gif-sur-Yvette, France
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
- *Correspondence: Loïc Rajjou
| |
Collapse
|
100
|
Ni Y, Aghamirzaie D, Elmarakeby H, Collakova E, Li S, Grene R, Heath LS. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1936. [PMID: 28066488 PMCID: PMC5179539 DOI: 10.3389/fpls.2016.01936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/06/2016] [Indexed: 05/29/2023]
Abstract
Gene regulatory networks (GRNs) provide a representation of relationships between regulators and their target genes. Several methods for GRN inference, both unsupervised and supervised, have been developed to date. Because regulatory relationships consistently reprogram in diverse tissues or under different conditions, GRNs inferred without specific biological contexts are of limited applicability. In this report, a machine learning approach is presented to predict GRNs specific to developing Arabidopsis thaliana embryos. We developed the Beacon GRN inference tool to predict GRNs occurring during seed development in Arabidopsis based on a support vector machine (SVM) model. We developed both global and local inference models and compared their performance, demonstrating that local models are generally superior for our application. Using both the expression levels of the genes expressed in developing embryos and prior known regulatory relationships, GRNs were predicted for specific embryonic developmental stages. The targets that are strongly positively correlated with their regulators are mostly expressed at the beginning of seed development. Potential direct targets were identified based on a match between the promoter regions of these inferred targets and the cis elements recognized by specific regulators. Our analysis also provides evidence for previously unknown inhibitory effects of three positive regulators of gene expression. The Beacon GRN inference tool provides a valuable model system for context-specific GRN inference and is freely available at https://github.com/BeaconProjectAtVirginiaTech/beacon_network_inference.git.
Collapse
Affiliation(s)
- Ying Ni
- Department of Computer Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Haitham Elmarakeby
- Department of Computer Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|