51
|
McCallie KR, Gaikwad NW, Castillo Cuadrado ME, Aleman M, Madigan JE, Stevenson DK, Bhutani VK. Skin-to-skin contact after birth and the natural course of neurosteroid levels in healthy term newborns. J Perinatol 2017; 37:591-595. [PMID: 28102853 PMCID: PMC5415704 DOI: 10.1038/jp.2016.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine the postnatal course of neurosteroid levels in relation to gender, mode of delivery and the extent of skin-to-skin (STS) contact during the first days of life in healthy term newborns. STUDY DESIGN Prospective observational study of 39 neonates in which parents recorded total duration of STS in the first 2 days and nine neurosteroids (dehydroepiandrosterone-sulfate, progesterone, pregnenolone, pregnenolone-sulfate, allopregnanolone, isopregnanolone, epipregnanolone, pregnanolone and pregnanolone-sulfate) were assayed from blood samples at birth and at 1-2 days of age. RESULTS All nine neurosteroid levels declined significantly during the first 2 days of life. Gender did not significantly affect the change in neurosteroid levels. The decline in neurosteroid levels was generally more pronounced in vaginal deliveries, and there was a trend toward a larger decline with more exposure to STS. CONCLUSION Ongoing studies may better characterize the role of neurosteroids and the influence of STS in more critically ill and premature neonates.
Collapse
Affiliation(s)
- K R McCallie
- Division of Neonatology, Stanford University, Palo Alto, CA, USA
| | - N W Gaikwad
- Department of Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA
| | | | - M Aleman
- Department of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - J E Madigan
- Department of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - D K Stevenson
- Division of Neonatology, Stanford University, Palo Alto, CA, USA
| | - V K Bhutani
- Division of Neonatology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
52
|
Botsakis K, Mourtzi T, Panagiotakopoulou V, Vreka M, Stathopoulos GT, Pediaditakis I, Charalampopoulos I, Gravanis A, Delis F, Antoniou K, Zisimopoulos D, Georgiou CD, Panagopoulos NT, Matsokis N, Angelatou F. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology 2017; 121:140-157. [PMID: 28461162 DOI: 10.1016/j.neuropharm.2017.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022]
Abstract
Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD.
Collapse
Affiliation(s)
- Konstantinos Botsakis
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece
| | - Theodora Mourtzi
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Vasiliki Panagiotakopoulou
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Malamati Vreka
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece
| | | | - Iosif Pediaditakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion 71110, Greece
| | | | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion 71110, Greece; Institute of Molecular Biology & Biotechnology Foundation for Research & Technology - Hellas, GR, 70013, Heraklion, Crete, Greece
| | - Foteini Delis
- Department of Pharmacology, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Katerina Antoniou
- Department of Pharmacology, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | | | | | - Nikolaos T Panagopoulos
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Nikolaos Matsokis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece.
| |
Collapse
|
53
|
Pluchino N, Russo M, Genazzani AR. The fetal brain: role of progesterone and allopregnanolone. Horm Mol Biol Clin Investig 2017; 27:29-34X. [PMID: 27442421 DOI: 10.1515/hmbci-2016-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/29/2016] [Indexed: 01/14/2023]
Abstract
Progesterone and allopregnanolone have crucial and different roles in brain development, function and recovery after injury. Pregnancy is characterized by an increased synthesis of progesterone and its neuro-active metabolites by the placenta, maternal and fetal brain. This supports the critical role of these steroids in maternal brain adaptation during pregnancy and development of the fetal brain. Moreover, allopregnanolone may play a brain-protective role during complications of pregnancy, complications of pregnancy, such as preterm delivery or intrauterine growth restriction (IUGR), by reducing the impact of hypoxia and excitotoxic brain damage or impairment myelination. Behavioral consequences of altered progesterone/allopregnanolone fetal brain programming have also been hypothesized, although further evidence is needed. New potential applications of allopregnanolone as a treatment strategy have also been proposed, addressing unmet clinical needs in perinatal care.
Collapse
|
54
|
Hough CM, Lindqvist D, Epel ES, Denis MS, Reus VI, Bersani FS, Rosser R, Mahan L, Burke HM, Wolkowitz OM, Mellon SH. Higher serum DHEA concentrations before and after SSRI treatment are associated with remission of major depression. Psychoneuroendocrinology 2017; 77:122-130. [PMID: 28038403 PMCID: PMC5336487 DOI: 10.1016/j.psyneuen.2016.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA) and its sulfated ester DHEA-sulfate (DHEA-S), (together DHEA[S]), are the most abundant adrenal steroids in humans and are found in blood and the brain, where they function as neurosteroids with direct receptor affinities. Preclinical studies suggest that DHEA(S) has antidepressant/neuroprotective properties, and exogenously administered DHEA has shown antidepressant efficacy in humans. Nonetheless, the role of endogenous DHEA(S) levels in major depressive disorder (MDD) and antidepressant outcomes remains unclear. METHODS Morning fasting serum DHEA(S) concentrations were determined in 36 healthy, unmedicated MDD adults with Hamilton Depression (HDRS) ratings ≥17, and 75 healthy controls. MDD participants then completed eight weeks of open-label SSRI treatment before DHEA(S) levels were re-sampled; those with post-treatment HDRS ratings ≤7 were classified as "Remitters." Pre- and post-treatment DHEA(S) levels of Remitters and Non-remitters were compared, controlling for age, sex, and BMI. RESULTS Pre-treatment HDRS ratings did not differ between Remitters and Non-remitters (p=0.179). Baseline DHEA levels of Remitters were significantly higher than both Non-remitters (p=0.008) and controls (p=0.004); baseline DHEA-S levels of Remitters were also higher than Non-remitters (p=0.040) but did not significantly differ from controls (p=0.096). Non-remitters did not significantly differ from controls. Post-treatment DHEA(S) levels remained higher in Remitters compared to Non-remitters (DHEA: p=0.013; DHEA-S: p=0.040). CONCLUSIONS These data suggest that higher circulating DHEA(S) levels (while unmedicated and after eight weeks of SSRI treatment) predict SSRI-associated remission in MDD. This raises the possibility that endogenous DHEA(S) abundance is a physiological adjunct to SSRI efficacy, as suggested by prior preclinical and clinical studies.
Collapse
Affiliation(s)
- Christina M Hough
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Daniel Lindqvist
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA; Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden
| | - Elissa S Epel
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Molly St Denis
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Victor I Reus
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - F Saverio Bersani
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Rebecca Rosser
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Laura Mahan
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Heather M Burke
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of OB/GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0556, USA.
| |
Collapse
|
55
|
van Rooyen D, du Toit T, Louw-du Toit R, Africander D, Swart P, Swart AC. The metabolic fate and receptor interaction of 16α-hydroxyprogesterone and its 5α-reduced metabolite, 16α-hydroxy-dihydroprogesterone. Mol Cell Endocrinol 2017; 441:86-98. [PMID: 27664517 DOI: 10.1016/j.mce.2016.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023]
Abstract
16α-hydroxyprogesterone (16OHP4) is not well characterised in terms of metabolism and receptor interaction. We therefore investigated its metabolism by adrenal CYP11B and peripheral steroidogenic enzymes, SRD5A and AKR1C2. UHPLC-MS/MS analyses identified novel steroids: the biosynthesis of 4-pregnen-11β,16α-diol-3,20-dione catalysed by CYP11B2; the 5α-reduction of the latter and 16OHP4 catalysed by SRD5A yielding 5α-pregnan-11β,16α-diol-3,20-diovne and 5α-pregnan-16α-ol-3,20-dione (16OH-DHP4); and 16OH-DHP4 converted by AKR1C2 to 5α-pregnan-3α,16α-diol-20-one. Receptor studies showed 16OHP4, 16OH-DHP4, progesterone and dihydroprogesterone (DHP4) were weak partial AR agonists; 16OHP4, 16OH-DHP4 and DHP4 exhibited weak partial agonist activity towards PR-B with DHP4 also exhibiting partial agonist activity towards PR-A. Data showed that while the 5α-reduction of P4 decreased PR activation significantly, 16OHP4 and 16OH-DHP4 exhibited comparable receptor activation. Although the clinical relevance of 16OHP4 remains unclear the elevated 16OHP4 levels characteristic of 21OHD, CAH, PCOS, prostate cancer, testicular feminization syndrome and cryptorchidism likely contribute towards these clinical conditions, inducing receptor-activated target genes.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Therina du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Renate Louw-du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Donita Africander
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Pieter Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
56
|
Phutdhawong WS, Ruensamran W, Phutdhawong W. Synthesis and preliminary evaluation of dimeric-28-homobrassinosteroids for plant growth regulators. Steroids 2016; 116:38-44. [PMID: 27567032 DOI: 10.1016/j.steroids.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/15/2016] [Accepted: 08/13/2016] [Indexed: 11/30/2022]
Abstract
Preparation of synthetic analogues of 28-homobrassinosteroids is reported. Also, the addition of the 28-homocastasterone at the C6 carbonyl group via allyl Gringard reagent followed by olefin cross metathesis resulted in dimeric analogues. Rice lamina inclination assay showed that the replacement of the C6 carbonyl group by 6α-allyl and 6β hydroxyl groups led to a decrease in bioactivity, whereas the dimeric analogues showed a reduced but significant bioactivity when compared to the 28-homocastasterone.
Collapse
Affiliation(s)
- Waya S Phutdhawong
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand
| | - Wanwikar Ruensamran
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kampang Saen Campus, Nakhon Pathom 73140, Thailand
| | - Weerachai Phutdhawong
- Bioproduct Science Program, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kampang Saen Campus, Nakhon Pathom 73140, Thailand; Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University Kampang Saen Campus, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
57
|
Arbo BD, Benetti F, Ribeiro MF. Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol 2016; 144:27-47. [DOI: 10.1016/j.pneurobio.2016.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|
58
|
Zhang H, Ma L, Yin YL, Dong LQ, Cheng GG, Ma YQ, Li YF, Xu BN. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice. Brain Res 2016; 1646:402-409. [DOI: 10.1016/j.brainres.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
59
|
Rossetti MF, Varayoud J, Lazzarino GP, Luque EH, Ramos JG. Pregnancy and lactation differentially modify the transcriptional regulation of steroidogenic enzymes through DNA methylation mechanisms in the hippocampus of aged rats. Mol Cell Endocrinol 2016; 429:73-83. [PMID: 27040308 DOI: 10.1016/j.mce.2016.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023]
Abstract
In the present study, we examined the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus of young adult (90-days-old) and middle-aged (450-days-old) nulliparous rats, and middle-aged multiparous rats subjected to three pregnancies with and without lactation. Aging decreased the mRNA levels of steroidogenic-related genes, while pregnancy and lactation significantly reduced the effect of aging, maintaining high expression levels of cytochrome P450 side-chain cleavage (P450scc), steroid 5α-reductase-1 (5αR-1), cytochrome P450arom (P450arom) and aldosterone synthase (P450(11β)-2). In addition, pregnancy and lactation diminished the methylation state of the 5αR-1 promoter and increased the transcription of brain-derived neurotrophic factor, synaptophysin and spinophilin. Pregnancy without lactation increased P450scc and 5αR-1 gene expression and decreased the methylation of their promoters. We concluded that the age-related decrease in the mRNA expression of steroidogenic enzymes is differentially attenuated by pregnancy and lactation in the rat hippocampus and that differential methylation mechanisms could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela P Lazzarino
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
60
|
Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27306650 DOI: 10.1111/jne.12402] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
When steroids, such as pregnenolone, progesterone and oestrogen, are synthesised de novo in neural tissues, they are more specifically referred to as neurosteroids. These neurosteroids bind specific receptors to promote essential brain functions. Pregnenolone supports cognition and protects mouse hippocampal cells against glutamate and amyloid peptide-induced cell death. Progesterone promotes myelination, spinogenesis, synaptogenesis, neuronal survival and dendritic growth. Allopregnanolone increases hippocampal neurogenesis, neuronal survival and cognitive functions. Oestrogens, such as oestradiol, regulate synaptic plasticity, reproductive behaviour, aggressive behaviour and learning. In addition, neurosteroids are neuroprotective in animal models of Alzheimer's disease, Parkinson's disease, brain injury and ageing. Using in situ hybridisation and/or immunohistochemistry, steroidogenic enzymes, including cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase, cytochrome P450arom, steroid 5α-reductase and 3α-hydroxysteroid dehydrogenase, have been detected in numerous brain regions, including the hippocampus, hypothalamus and cerebral cortex. In the present review, we summarise some of the studies related to the synthesis and function of oestrogens and progestagens in the central nervous system.
Collapse
Affiliation(s)
- M F Rossetti
- Departamento de Bioquímica Clínica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Salud y Ambiente del Litoral, CONICET-Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M A Holschbach
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - R Cabrera
- Instituto de Investigaciones Biomédicas, INBIOMED-IMBECU-CONICET, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
61
|
Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol. Neurochem Res 2016; 41:1700-12. [DOI: 10.1007/s11064-016-1886-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 02/28/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023]
|
62
|
Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med 2016; 22:388-96. [PMID: 26998835 PMCID: PMC4823163 DOI: 10.1038/nm.4067] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/16/2016] [Indexed: 02/08/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, impairing the reduction of 7-dehydrocholesterol to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities, and nervous system defects, though neither cellular targets nor affected signaling pathways are defined. Whether 7-dehydrocholesterol accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear. Using induced pluripotent stem cells (iPSCs) from SLOS subjects, we identified cellular defects leading to precocious neuronal specification within SLOS derived neural progenitors. We also demonstrated that 7-dehydrocholesterol accumulation, not cholesterol deficiency, is critical for SLOS-associated defects. We further identified downregulation of Wnt/β-catenin signaling as a key initiator of aberrant SLOS iPSCs differentiation through the direct inhibitory effects of 7-dehydrocholesterol on the formation of an active Wnt receptor complex. Activation of canonical Wnt signaling prevented the neural phenotypes observed in SLOS iPSCs, suggesting that Wnt signaling may be a promising therapeutic target for SLOS.
Collapse
|
63
|
Li J, Yu Y, Wang B, Wu H, Xue G, Hou Y. Selective regulation of neurosteroid biosynthesis under ketamine-induced apoptosis of cortical neurons in vitro. Mol Med Rep 2015; 13:1586-92. [PMID: 26709052 PMCID: PMC4732866 DOI: 10.3892/mmr.2015.4712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have suggested that ketamine administration can induce neuroapoptosis in primary cultured cortical neurons. Neurosteroids modulate neuronal function and serve important roles in the central nervous system, however the role of neurosteroids in neuroapoptosis induced by ketamine remains to be elucidated. The present study aimed to explore whether neurosteroidogenesis was a pivotal mechanism for neuroprotection against ketamine-induced neuroapoptosis, and whether it may be selectively regulated under ketamine-induced neuroapoptosis conditions in primary cultured cortical neurons. To study this hypothesis, the effect of ketamine exposure on neurosteroidogenesis in primary cultured cortical neurons was investigated. Cholesterol, a substrate involved in the synthesis of neurosteroids, was added to the culture medium, and neurosteroids were quantified using high-performance liquid chromatography-tandem mass spectrometry analysis. The data demonstrated that cholesterol blocked ketamine-induced neuroapoptosis by promoting the synthesis of various neurosteroids, and the pathway of neurosteroid testosterone conversion into estradiol was inhibited by ketamine exposure. These data suggest that endogenous neurosteroids biosynthesis is critical for neuroprotection against ketamine-induced neuroapoptosis and inhibiting the biosynthesis of neuroprotective-neurosteroid estradiol is of notable importance for ketamine-induced neuroapoptosis.
Collapse
Affiliation(s)
- Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yang Yu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese People's Liberation Army, Shijiazhuang, Hebei 050082, P.R. China
| | - Bei Wang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese People's Liberation Army, Shijiazhuang, Hebei 050082, P.R. China
| | - Gai Xue
- Department of Pharmacy, Bethune International Peace Hospital of Chinese People's Liberation Army, Shijiazhuang, Hebei 050082, P.R. China
| | - Yanning Hou
- Department of Pharmacy, Bethune International Peace Hospital of Chinese People's Liberation Army, Shijiazhuang, Hebei 050082, P.R. China
| |
Collapse
|
64
|
Schumacher M, Guennoun R, Mattern C, Oudinet JP, Labombarda F, De Nicola AF, Liere P. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids 2015; 103:42-57. [PMID: 26301525 DOI: 10.1016/j.steroids.2015.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined with careful sample preparation.
Collapse
Affiliation(s)
| | | | | | | | - Florencia Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
65
|
Sex hormones and oxytocin augmentation strategies in schizophrenia: A quantitative review. Schizophr Res 2015; 168:603-13. [PMID: 25914107 DOI: 10.1016/j.schres.2015.04.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/05/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Sex differences in incidence, onset and course of schizophrenia suggest sex hormones play a protective role in the pathophysiology. Such a role is also proposed for oxytocin, another important regulator of reproduction function. Evidence on the efficacy of sex hormones and oxytocin in the treatment of schizophrenia is summarized. METHODS Double-blind, placebo-controlled, randomized studies were included, examining augmentation with estrogens, selective estrogen receptor modulators (SERMs), testosterone, dehydroepiandrosterone (DHEA), pregnenolone, and oxytocin. Outcome measures were total symptom severity, positive and negative symptom subscores, and cognition. In meta-analyses, combined weighted effect sizes (Hedges' g) per hormone were calculated. RESULTS Twenty-four studies were included, examining 1149 patients. Significant effects were found for estrogen action (k=10), regarding total symptoms (Hedges' g=0.63, p=0.001), positive (Hedges' g=0.42, p<0.001), and negative symptoms (Hedges' g=0.35, p=0.001). Subgroup analyses yielded significant results for estrogens in premenopausal women (k=6) for total, positive, and negative symptoms, and for the SERM raloxifene in postmenopausal women (k=3) for total and negative, but not positive symptoms. Testosterone augmentation in males (k=1) was beneficial only for negative symptoms (Hedges' g=0.82, p=0.027). No overall effects were found for DHEA (k=4), pregnenolone (k=4), and oxytocin (k=6). Results for cognition (k=12) were too diverse for meta-analyses, and inspection of these data showed no consistent benefit. CONCLUSIONS Estrogens and SERMs could be effective augmentation strategies in the treatment of women with schizophrenia, although potential side effects, partially associated with longer duration use, should be taken into account. Future trials are needed to study long-term effects and effects on cognition.
Collapse
|
66
|
Penn AA, Gressens P, Fleiss B, Back SA, Gallo V. Controversies in preterm brain injury. Neurobiol Dis 2015; 92:90-101. [PMID: 26477300 DOI: 10.1016/j.nbd.2015.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
In this review, we highlight critical unresolved questions in the etiology and mechanisms causing preterm brain injury. Involvement of neurons, glia, endogenous factors and exogenous exposures is considered. The structural and functional correlates of interrupted development and injury in the premature brain are under active investigation, with the hope that the cellular and molecular mechanisms underlying developmental abnormalities in the human preterm brain can be understood, prevented or repaired.
Collapse
Affiliation(s)
- Anna A Penn
- Fetal Medicine Institute, Neonatology, Center for Neuroscience Research, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA.
| | - Pierre Gressens
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Bobbi Fleiss
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Stephen A Back
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
67
|
Rossetti MF, Varayoud J, Moreno-Piovano GS, Luque EH, Ramos JG. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus. Mol Cell Endocrinol 2015; 412:330-8. [PMID: 26021641 DOI: 10.1016/j.mce.2015.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Guillermo S Moreno-Piovano
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
68
|
Traish AM, Melcangi RC, Bortolato M, Garcia-Segura LM, Zitzmann M. Adverse effects of 5α-reductase inhibitors: What do we know, don't know, and need to know? Rev Endocr Metab Disord 2015; 16:177-98. [PMID: 26296373 DOI: 10.1007/s11154-015-9319-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Steroids are important physiological orchestrators of endocrine as well as peripheral and central nervous system functions. One of the key processes for regulation of these molecules lies in their enzymatic processing by a family of 5α-reductase (5α-Rs) isozymes. By catalyzing a key rate-limiting step in steroidogenesis, this family of enzymes exerts a crucial role not only in the physiological control but also in pathological events. Indeed, both 5α-R inhibition and supplementation of 5α-reduced metabolites are currently used or have been proposed as therapeutic strategies for a wide array of pathological conditions. In particular, the potent 5α-R inhibitors finasteride and dutasteride are used in the treatments of benign prostatic hyperplasia (BPH), as well as in male pattern hair loss (MPHL) known as androgenetic alopecia (AGA). Recent preclinical and clinical findings indicate that 5α-R inhibitors evoke not only beneficial, but also adverse effects. Future studies should investigate the biochemical and physiological mechanisms that underlie the persistence of the adverse sexual side effects to determine why a subset of patients is afflicted with such persistence or irreversible adverse effects. Also a better focus of clinical research is urgently needed to better define those subjects who are likely to be adversely affected by such agents. Furthermore, research on the non-sexual adverse effects such as diabetes, psychosis, depression, and cognitive function are needed to better understand the broad spectrum of the effects these drugs may elicit during their use in treatment of AGA or BPH. In this review, we will summarize the state of art on this topic, overview the key unresolved questions that have emerged on the pharmacological targeting of these enzymes and their products, and highlight the need for further studies to ascertain the severity and duration of the adverse effects of 5α-R inhibitors, as well as their biological underpinnings.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Biochemistry and Department of Urology, Boston University School of Medicine, 715 Albany Street, A502, Boston, MA, 02118, USA.
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences- Center of Excellence on Neurodegenerative Diseases, Iniversità degli Studi di Milano, Milan, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | | | - Michael Zitzmann
- Centre for Reproductive Medicine and Andrology, University Clinics Muenster, Domagkstrasse 11, D-48149, Muenster, Germany
| |
Collapse
|
69
|
MacKenzie G, Maguire J. Neurosteroids and GABAergic signaling in health and disease. Biomol Concepts 2015; 4:29-42. [PMID: 25436563 DOI: 10.1515/bmc-2012-0033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/12/2012] [Indexed: 11/15/2022] Open
Abstract
Endogenous neurosteroids such as allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are synthesized either de novo in the brain from cholesterol or are generated from the local metabolism of peripherally derived progesterone or corticosterone. Fluctuations in neurosteroid concentrations are important in the regulation of a number of physiological responses including anxiety and stress, reproductive, and sexual behaviors. These effects are mediated in part by the direct binding of neurosteroids to γ-aminobutyric acid type-A receptors (GABAARs), resulting in the potentiation of GABAAR-mediated currents. Extrasynaptic GABAARs containing the δ subunit, which contribute to the tonic conductance, are particularly sensitive to low nanomolar concentrations of neurosteroids and are likely their preferential target. Considering the large charge transfer generated by these persistently open channels, even subtle changes in neurosteroid concentrations can have a major impact on neuronal excitability. Consequently, aberrant levels of neurosteroids have been implicated in numerous disorders, including, but not limited to, anxiety, neurodegenerative diseases, alcohol abuse, epilepsy, and depression. Here we review the modulation of GABAAR by neurosteroids and the consequences for health and disease.
Collapse
|
70
|
Koss WA, Lloyd MM, Sadowski RN, Wise LM, Juraska JM. Gonadectomy before puberty increases the number of neurons and glia in the medial prefrontal cortex of female, but not male, rats. Dev Psychobiol 2015; 57:305-12. [PMID: 25782706 DOI: 10.1002/dev.21290] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/05/2015] [Indexed: 12/28/2022]
Abstract
The human prefrontal cortex, important for executive functions, loses gray matter throughout the adolescent period. In rats, our laboratory demonstrated that a loss of neurons between adolescence and adulthood partially underlies the loss of volume, and this loss is greater in females than males. Here, we examine whether being deprived of gonadal hormones before puberty through adulthood influences the number of neurons in the medial prefrontal cortex (mPFC). Prior to puberty, the testes or ovaries were removed in male and female rats. In adulthood, the number of neurons and glia in the mPFC were quantified using unbiased stereology, and the volume of the frontal white matter was measured. Prepubertal ovariectomy resulted in a higher number of neurons and glia and a larger volume of white matter compared to sham control littermates. Castrated males were not different from sham males on any measure. Thus ovarian hormones secreted after puberty influence the cellular composition of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Wendy A Koss
- Department of Psychology, University of Illinois, Champaign, 61820, IL
| | | | | | | | | |
Collapse
|
71
|
Abstract
OBJECTIVE To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric traumatic brain injury. DATA SOURCES National Library of Medicine PubMed literature review. STUDY SELECTION The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of traumatic brain injury is summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult traumatic brain injury is reviewed. DATA EXTRACTION AND DATA SYNTHESIS Progesterone is a pleiotropic agent with beneficial effects on secondary injury cascades that occur after traumatic brain injury, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after traumatic brain injury in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human phase II trials of progesterone for adult traumatic brain injury have been published, and two multicenter phase III trials are underway. CONCLUSIONS The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of traumatic brain injury. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, and statue epilepticus).
Collapse
|
72
|
Farrar D, Neill J, Scally A, Tuffnell D, Marshall K. Is objective and accurate cognitive assessment across the menstrual cycle possible? A feasibility study. SAGE Open Med 2015; 3:2050312114565198. [PMID: 26770760 PMCID: PMC4679227 DOI: 10.1177/2050312114565198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/02/2014] [Indexed: 12/03/2022] Open
Abstract
Objectives: Variation in plasma hormone levels influences the neurobiology of brain regions involved in cognition and emotion processing. Fluctuations in hormone levels across the menstrual cycle could therefore alter cognitive performance and wellbeing; reports have provided conflicting results, however. The aim of this study was to assess whether objective assessment of cognitive performance and self-reported wellbeing during the follicular and luteal phases of the menstrual cycle is feasible and investigate the possible reasons for variation in effects previously reported. Methods: The Cambridge Neuropsychological Test Automated Battery and Edinburgh Postnatal Depression Scale were used to assess the cognitive performance and wellbeing of 12 women. Data were analysed by self-reported and hormone-estimated phases of the menstrual cycle. Results: Recruitment to the study and assessment of cognition and wellbeing was without issue. Plasma hormone and peptide estimation showed substantial individual variation and suggests inaccuracy in self-reported menstrual phase estimation. Conclusion: Objective assessment of cognitive performance and self-assessed wellbeing across the menstrual cycle is feasible. Grouping data by hormonal profile rather by self-reported phase estimation may influence phase-mediated results. Future studies should use plasma hormone and peptide profiles to estimate cycle phase and group data for analyses.
Collapse
Affiliation(s)
- Diane Farrar
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK
| | - Jo Neill
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Andy Scally
- School of Allied Health Professions and Sport, Faculty of Health Studies, University of Bradford, Bradford, UK
| | - Derek Tuffnell
- Bradford Women's and Newborn Unit, Bradford Royal Infirmary, Bradford, UK
| | - Kay Marshall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
73
|
Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update 2014; 21:155-73. [PMID: 25406186 DOI: 10.1093/humupd/dmu056] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key cellular signaling pathways required for growth. In contrast, progesterone via PR activation appears to increase leiomyoma growth. The exact role of PRs in cervical cancer is unclear. PRs regulate implantation and therefore aberrant PR function may be implicated in recurrent pregnancy loss (RPL). PRs likely regulate key immunogenic factors involved in RPL. However, the exact role of PRs in the pathophysiology of RPL and the use of progesterone for therapeutic benefit remains uncertain. CONCLUSIONS PRs are key mediators of progesterone action in uterine tissues and are essential for normal uterine function. Aberrant PR function (due to abnormal expression and/or function) is a major cause of uterine pathophysiology. Further investigation of the underlying mechanisms of PR isoform action in the uterus is required, as this knowledge will afford the opportunity to create progestin/PR-based therapeutics to treat various uterine pathologies.
Collapse
Affiliation(s)
- Bansari Patel
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sonia Elguero
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suruchi Thakore
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wissam Dahoud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mohamed Bedaiwy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sam Mesiano
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
74
|
Potvin C, Rossignol O, Uppari N, Dallongeville A, Bairam A, Joseph V. Reduced hypoxic ventilatory response in newborn mice knocked-out for the progesterone receptor. Exp Physiol 2014; 99:1523-37. [DOI: 10.1113/expphysiol.2014.080986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Catherine Potvin
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| | - Orlane Rossignol
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| | | | | | - Aida Bairam
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| | - Vincent Joseph
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| |
Collapse
|
75
|
Neurosteroids Allopregnanolone Sulfate and Pregnanolone Sulfate Have Diverse Effect on the α Subunit of the Neuronal Voltage-gated Sodium Channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 Expressed in Xenopus Oocytes. Anesthesiology 2014; 121:620-31. [DOI: 10.1097/aln.0000000000000296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Background:
The neurosteroids allopregnanolone and pregnanolone are potent positive modulators of γ-aminobutyric acid type A receptors. Antinociceptive effects of allopregnanolone have attracted much attention because recent reports have indicated the potential of allopregnanolone as a therapeutic agent for refractory pain. However, the analgesic mechanisms of allopregnanolone are still unclear. Voltage-gated sodium channels (Nav) are thought to play important roles in inflammatory and neuropathic pain, but there have been few investigations on the effects of allopregnanolone on sodium channels.
Methods:
Using voltage-clamp techniques, the effects of allopregnanolone sulfate (APAS) and pregnanolone sulfate (PAS) on sodium current were examined in Xenopus oocytes expressing Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits.
Results:
APAS suppressed sodium currents of Nav1.2, Nav1.6, and Nav1.7 at a holding potential causing half-maximal current in a concentration-dependent manner, whereas it markedly enhanced sodium current of Nav1.8 at a holding potential causing maximal current. Half-maximal inhibitory concentration values for Nav1.2, Nav1.6, and Nav1.7 were 12 ± 4 (n = 6), 41 ± 2 (n = 7), and 131 ± 15 (n = 5) μmol/l (mean ± SEM), respectively. The effects of PAS were lower than those of APAS. From gating analysis, two compounds increased inactivation of all α subunits, while they showed different actions on activation of each α subunit. Moreover, two compounds showed a use-dependent block on Nav1.2, Nav1.6, and Nav1.7.
Conclusion:
APAS and PAS have diverse effects on sodium currents in oocytes expressing four α subunits. APAS inhibited the sodium currents of Nav1.2 most strongly.
Collapse
|
76
|
Mòdol L, Casas C, Llidó A, Navarro X, Pallarès M, Darbra S. Neonatal allopregnanolone or finasteride administration modifies hippocampal K(+) Cl(-) co-transporter expression during early development in male rats. J Steroid Biochem Mol Biol 2014; 143:343-7. [PMID: 24861264 DOI: 10.1016/j.jsbmb.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
The maintenance of levels of endogenous neurosteroids (NS) across early postnatal development of the brain, particularly to the hippocampus, is crucial for their maturation. Allopregnanolone (Allop) is a NS that exerts its effect mainly through the modulation of the GABAA receptor (GABAAR). During early development, GABA, acting through GABAAR, that predominantly produces depolarization shifts to hyperpolarization in mature neurons, around the second postnatal week in rats. Several factors contribute to this change including the progressive increase of the neuron-specific K(+)/Cl(-) co-transporter 2 (KCC2) (a chloride exporter) levels. Thus, we aimed to analyze whether a different profile of NS levels during development is critical and can alter this natural progression of KCC2 stages. We administrated sustained Allop (20mg/kg) or Finasteride (5α-reductase inhibitor, 50mg/kg) from the 5th postnatal day (PD5) to PD9 and assessed changes in the hippocampal expression of KCC2 at transcript and protein levels as well as its active phosphorylated state in male rats. Taken together data indicated that manipulation of NS levels during early development influence KCC2 levels and point out the importance of neonatal NS levels for the hippocampal development.
Collapse
Affiliation(s)
- Laura Mòdol
- Group of Neurosteroids and Behaviour, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Barcelona, Spain
| | - Anna Llidó
- Group of Neurosteroids and Behaviour, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Group of Neurosteroids and Behaviour, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Group of Neurosteroids and Behaviour, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
77
|
Irwin RW, Solinsky CM, Brinton RD. Frontiers in therapeutic development of allopregnanolone for Alzheimer's disease and other neurological disorders. Front Cell Neurosci 2014; 8:203. [PMID: 25126056 PMCID: PMC4115668 DOI: 10.3389/fncel.2014.00203] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 01/08/2023] Open
Abstract
Allopregnanolone (Allo), a neurosteroid, has emerged as a promising promoter of endogenous regeneration in brain. In a mouse model of Alzheimer’s disease, Allo induced neurogenesis, oligodendrogenesis, white matter generation and cholesterol homeostasis while simultaneously reducing β-amyloid and neuroinflammatory burden. Allo activates signaling pathways and gene expression required for regeneration of neural stem cells and their differentiation into neurons. In parallel, Allo activates systems to sustain cholesterol homeostasis and reduce β-amyloid generation. To advance Allo into studies for chronic human neurological conditions, we examined translational and clinical parameters: dose, regimen, route, formulation, outcome measures, and safety regulations. A treatment regimen of once per week at sub-sedative doses of Allo was optimal for regeneration and reduction in Alzheimer’s pathology. This regimen had a high safety profile following chronic exposure in aged normal and Alzheimer’s mice. Formulation of Allo for multiple routes of administration has been developed for both preclinical and clinical testing. Preclinical evidence for therapeutic efficacy of Allo spans multiple neurological diseases including Alzheimer’s, Parkinson’s, multiple sclerosis, Niemann-Pick, diabetic neuropathy, status epilepticus, and traumatic brain injury. To successfully translate Allo as a therapeutic for multiple neurological disorders, it will be necessary to tailor dose and regimen to the targeted therapeutic mechanisms and disease etiology. Treatment paradigms conducted in accelerated disease models in young animals have a low probability of successful translation to chronic diseases in adult and aged humans. Gender, genetic risks, stage and burden of disease are critical determinants of efficacy. This review focuses on recent advances in development of Allo for Alzheimer’s disease (AD) that have the potential to accelerate therapeutic translation for multiple unmet neurological needs.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Christine M Solinsky
- Clinical and Experimental Therapeutics Program, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA ; Department of Neurology, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
78
|
Traish AM, Mulgaonkar A, Giordano N. The dark side of 5α-reductase inhibitors' therapy: sexual dysfunction, high Gleason grade prostate cancer and depression. Korean J Urol 2014; 55:367-79. [PMID: 24955220 PMCID: PMC4064044 DOI: 10.4111/kju.2014.55.6.367] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/09/2014] [Indexed: 12/22/2022] Open
Abstract
With aging, abnormal benign growth of the prostate results in benign prostate hyperplasia (BPH) with concomitant lower urinary tract symptoms (LUTS). Because the prostate is an androgen target tissue, and transforms testosterone into 5α-dihydrotestosterone (5α-DHT), a potent androgen, via 5α-reductase (5α-R) activity, inhibiting this key metabolic reaction was identified as a target for drug development to treat symptoms of BPH. Two drugs, namely finasteride and dutasteride were developed as specific 5α-reductase inhibitors (5α-RIs) and were approved by the U.S. Food and Drug Administration for the treatment of BPH symptoms. These agents have proven useful in the reducing urinary retention and minimizing surgical intervention in patients with BPH symptoms and considerable literature exists describing the benefits of these agents. In this review we highlight the adverse side effects of 5α-RIs on sexual function, high grade prostate cancer incidence, central nervous system function and on depression. 5α-Rs isoforms (types 1-3) are widely distributed in many tissues including the central nervous system and inhibition of these enzymes results in blockade of synthesis of several key hormones and neuro-active steroids leading to a host of adverse effects, including loss of or reduced libido, erectile dysfunction, orgasmic dysfunction, increased high Gleason grade prostate cancer, observed heart failure and cardiovascular events in clinical trials, and depression. Considerable evidence exists from preclinical and clinical studies, which point to significant and serious adverse effects of 5α-RIs, finasteride and dutasteride, on sexual health, vascular health, psychological health and the overall quality of life. Physicians need to be aware of such potential adverse effects and communicate such information to their patients prior to commencing 5α-RIs therapy.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, MA, USA. ; Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Ashwini Mulgaonkar
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Nicholas Giordano
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
79
|
Frye CA, Koonce CJ, Walf AA. Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Front Cell Neurosci 2014; 8:106. [PMID: 24782710 PMCID: PMC3988369 DOI: 10.3389/fncel.2014.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/25/2014] [Indexed: 12/05/2022] Open
Abstract
Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e., non steroid receptor) targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA), has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g., γ-amino butyric acid-GABA, N-methyl-D-aspartate- NMDA) will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone’s actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neurodevelopmental processes, neuropsychiatric disorders, epilepsy, and aging.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Department of Biological Sciences, The University at Albany-SUNY Albany, NY, USA ; The Centers for Neuroscience, The University at Albany-SUNY Albany, NY, USA ; Life Sciences Research, The University at Albany-SUNY Albany, NY, USA ; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks Fairbanks, AK, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Alicia A Walf
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| |
Collapse
|
80
|
Kleteckova L, Tsenov G, Kubova H, Stuchlik A, Vales K. Neuroprotective effect of the 3α5β-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci Lett 2014; 564:11-5. [DOI: 10.1016/j.neulet.2014.01.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 01/17/2023]
|
81
|
Assessment of cognitive function across pregnancy using CANTAB: A longitudinal study. Brain Cogn 2014; 84:76-84. [DOI: 10.1016/j.bandc.2013.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022]
|
82
|
Irwin RW, Brinton RD. Allopregnanolone as regenerative therapeutic for Alzheimer's disease: Translational development and clinical promise. Prog Neurobiol 2014; 113:40-55. [PMID: 24044981 PMCID: PMC10124616 DOI: 10.1016/j.pneurobio.2013.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
Abstract
Herein, we review a translational development plan to advance allopregnanolone to the clinic as a regenerative therapeutic for neurodegenerative diseases, in particular Alzheimer's. Allopregnanolone, an endogenous neurosteroid that declines with age and neurodegenerative disease, was exogenously administered and assessed for safety and efficacy to promote neuro-regeneration, cognitive function and reduction of Alzheimer's pathology. Allopregnanolone-induced neurogenesis correlated with restoration of learning and memory function in a mouse model of Alzheimer's disease and was comparably efficacious in aged normal mice. Critical to success was a dosing and treatment regimen that was consistent with the temporal requirements of systems biology of regeneration in brain. A treatment regimen that adhered to regenerative requirements of brain was also efficacious in reducing Alzheimer's pathology. With an optimized dosing and treatment regimen, chronic allopregnanolone administration promoted neurogenesis, oligodendrogenesis, reduced neuroinflammation and beta-amyloid burden while increasing markers of white matter generation and cholesterol homeostasis. Allopregnanolone meets three of the four drug-like physicochemical properties described by Lipinski's rule that predict the success rate of drugs in development for clinical trials. Pharmacokinetic and pharmacodynamic outcomes, securing GMP material, development of clinically translatable formulations and acquiring regulatory approval are discussed. Investigation of allopregnanolone as a regenerative therapeutic has provided key insights into mechanistic targets for neurogenesis and disease modification, dosing requirements, optimal treatment regimen, route of administration and the appropriate formulation necessary to advance to proof of concept clinical studies to determine efficacy of allopregnanolone as a regenerative and disease modifying therapeutic for Alzheimer's disease.
Collapse
|
83
|
Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014; 113:106-36. [PMID: 24012715 DOI: 10.1016/j.pneurobio.2013.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
A successful pregnancy requires multiple adaptations in the mother's brain that serve to optimise foetal growth and development, protect the foetus from adverse prenatal programming and prevent premature delivery of the young. Pregnancy hormones induce, organise and maintain many of these adaptations. Steroid hormones play a critical role and of particular importance is the progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone is produced in increasing amounts during pregnancy both in the periphery and in the maternal and foetal brain. This review critically examines a role for allopregnanolone in both the maternal and foetal brain during pregnancy and development in protecting pregnancy and birth outcomes, with particular emphasis on its role in relation to stress exposure at this time. Late pregnancy is associated with suppressed stress responses. Thus, we begin by considering what is known about the central mechanisms in the maternal brain, induced by allopregnanolone, that protect the foetus(es) from exposure to harmful levels of maternal glucocorticoids as a result of stress during pregnancy. Next we discuss the central mechanisms that prevent premature secretion of oxytocin and consider a role for allopregnanolone in minimising the risk of preterm birth. Allopregnanolone also plays a key role in the foetal brain, where it promotes development and is neuroprotective. Hence we review the evidence about disruption to neurosteroid production in pregnancy, through prenatal stress or other insults, and the immediate and long-term adverse consequences for the offspring. Finally we address whether progesterone or allopregnanolone treatment can rescue some of these deficits in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK.
| | - John A Russell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia
| |
Collapse
|
84
|
Irwig MS. Persistent Sexual and Nonsexual Adverse Effects of Finasteride in Younger Men. Sex Med Rev 2014; 2:24-35. [DOI: 10.1002/smrj.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
85
|
Gestational methyl donor deficiency alters key proteins involved in neurosteroidogenesis in the olfactory bulbs of newborn female rats and is associated with impaired olfactory performance. Br J Nutr 2013; 111:1021-31. [DOI: 10.1017/s0007114513003553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gestational methyl donor deficiency (MDD) leads to growth retardation as well as to cognitive and motor disorders in 21-d-old rat pups. These disorders are related to impaired neurogenesis in the cerebral neurogenic areas. Olfactory bulbs (OB), the main target of neuronal progenitors originating from the subventricular zone, play a critical role during the postnatal period by allowing the pups to identify maternal odour. We hypothesised that growth retardation could result from impaired suckling due to impaired olfactory discrimination through imbalanced apoptosis/neurogenesis in the OB. Since neurosteroidogenesis modulates neurogenesis in OB, in the present study, we investigated whether altered neurosteroidogenesis could explain some these effects. Pups born to dams fed a normal diet (n 24) and a MDD diet (n 27) were subjected to olfactory tests during the lactation and weaning periods (n 24 and 20, respectively). We studied the markers of apoptosis/neurogenesis and the expression levels of the key neurosteroidogenic enzyme aromatase, the cholesterol-transfer protein StAR (steroidogenic acute regulatory protein) and the ERα oestrogen receptor and the content of oestradiol in OB. The 21-d-old MDD female pups displayed lower body weight and impaired olfactory discrimination when compared with the control pups. MDD led to greater homocysteine accumulation and more pronounced apoptosis, along with impaired cell proliferation in the OB of female pups. The expression levels of aromatase, StAR and ERα as well as the content of oestradiol were lower in the OB of the MDD female pups than in those of the control female pups. In conclusion, gestational MDD may alter olfactory discrimination performances by affecting neurogenesis, apoptosis and neurosteroidogenesis in OB in a sex-dependent manner. It may be involved in growth retardation through impaired suckling.
Collapse
|
86
|
Bu J, Zu H. Effects of pregnenolone intervention on the cholinergic system and synaptic protein 1 in aged rats. Int J Neurosci 2013; 124:117-24. [PMID: 23848990 DOI: 10.3109/00207454.2013.824437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To observe the effect of pregnenolone (PREG) intervention on the cholinergic system function and the synaptic protein 1 (SYP1) expression in different brain regions of aged rats. METHOD Twenty-four-month-old male Sprague Dawley rats intraperitoneally injected every other day for one month were divided into blank control group, solvent control group, PREG (0.5 mg/kg) intervention group and PREG (2.0 mg/kg) intervention group. The rats were sacrificed 2 d after the intervention and the corresponding regions of brain tissue were separated and cryopreserved. Western blot analysis was used to detect the expression level of choline acetyltransferase (ChAT), SYP1, serum PREG and the activity of ChAT and acetylcholinesterase (AChE) in different brain regions. In addition, the semiquantitative changes in the expression level of ChAT and SYP1 in frontal lobe and hippocampus were tested by immunohistochemistry. RESULT Western blot and immunohistochemistry analysis showed that PREG (2.0 mg/kg) administration led to a significant increase of ChAT and SYP1 expressions in frontal lobe, temporal lobe, and hippocampus regions (p < 0.05). The result of enzyme-linked immunosorbent assay showed that PREG (2.0 mg/kg) administration significantly increased ChAT activity and serum PREG levels and caused a decrease in AChE activity (p < 0.05); while PREG (0.5 mg/kg) only elevated levels of serum PREG. CONCLUSION PREG significantly improved the synaptic plasticity of memory-related brain areas of aged rats, significantly increased brain cholinergic activity and thus helps to improve learning and memory in aged rats.
Collapse
Affiliation(s)
- Jimei Bu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University , Shanghai , China
| | | |
Collapse
|
87
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
88
|
Abstract
Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumption of drug intake. The possible interactions between brain corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly suggests that all may be interlinked and that CRH in the brain and brain POMC products interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are known to affect mood profoundly and may themselves be addictive. Additionally, there is a heightened susceptibility for addicted subjects to relapse in conditions that are associated with change in HPA activity, such as in stress, or at different times of the day. Recent studies give compelling evidence that a significant part of the array of addictive symptoms is directly attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids. Additionally, sex differences in addiction may also be attributable to adrenocortical function: in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in rats, females may be more susceptible because of higher corticosterone secretion.
Collapse
|
89
|
Darbra S, Mòdol L, Llidó A, Casas C, Vallée M, Pallarès M. Neonatal allopregnanolone levels alteration: effects on behavior and role of the hippocampus. Prog Neurobiol 2013; 113:95-105. [PMID: 23958467 DOI: 10.1016/j.pneurobio.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 12/31/2022]
Abstract
Several works have pointed out the importance of the neurosteroid allopregnanolone for the maturation of the central nervous system and for adult behavior. The alteration of neonatal allopregnanolone levels in the first weeks of life alters emotional adult behavior and sensory gating processes. Without ruling out brain structures, some of these behavioral alterations seem to be related to a different functioning of the hippocampus in adult age. We focus here on the different behavioral studies that have revealed the importance of neonatal allopregnanolone levels for the adult response to novel environmental stimuli, anxiety-related behaviors and processing of sensory inputs (prepulse inhibition). An increase in neonatal physiological allopregnanolone levels decreases anxiety and increases novelty responses in adult age, thus affecting the individual response to environmental cues. These effects are also accompanied by a decrease in prepulse inhibition, indicating alterations in sensory gating that have been related to that present in disorders, such as schizophrenia. Moreover, behavioral studies have shown that some of these effects are related to a different functioning of the dorsal hippocampus, as the behavioral effects (decrease in anxiety and locomotion or increase in prepulse inhibition) of intrahippocampal allopregnanolone infusions in adult age are not present in those subjects in whom neonatal allopregnanolone levels were altered. Recent data indicated that this hippocampal involvement may be related to alterations in the expression of gamma-aminobutyric-acid receptors containing α4 and δ subunits, molecular alterations that can persist into adult age and that can, in part, explain the reported behavioral disturbances.
Collapse
Affiliation(s)
- S Darbra
- Group of Neurosteroids and Behavior, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Edifici B, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - L Mòdol
- Group of Neurosteroids and Behavior, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Edifici B, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - A Llidó
- Group of Neurosteroids and Behavior, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Edifici B, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - C Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències, Departament de Biologia Cel·lular, de Fisiologia i de Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - M Vallée
- Inserm U862, Univ Bordeaux: Physiopathologie de la plasticité neuronale, Neurocentre Magendie, Bordeaux, France
| | - M Pallarès
- Group of Neurosteroids and Behavior, Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Edifici B, Cerdanyola del Vallès 08193, Barcelona, Spain.
| |
Collapse
|
90
|
Darbra S, Modol L, Vallée M, Pallarès M. Neonatal neurosteroid levels are determinant in shaping adult prepulse inhibition response to hippocampal allopregnanolone in rats. Psychoneuroendocrinology 2013; 38:1397-406. [PMID: 23294582 DOI: 10.1016/j.psyneuen.2012.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/05/2012] [Accepted: 12/11/2012] [Indexed: 12/28/2022]
Abstract
Diverse studies indicate that the alteration of the physiological levels of neurosteroids in early neonatal phases provokes alterations in the maturation of certain cerebral structures. Allopregnanolone (ALLO) has important modulatory effects in the hippocampus during the postnatal period where the adult pattern of inhibitory transmission is being established. In order to study whether endogenous neonatal ALLO levels would be a determinant parameter involved in mediating adult hippocampal GABAA system maturation, we investigated the effects of neonatal finasteride (50mg/kg, SC) treatment and ALLO (ALLO; 20mg/kg, SC) supplementation on an animal behavioural model with relevance to neurodevelopmental disorder, such as schizophrenia. Two sets of experiments were conducted. Neonatal treatment (from postnatal day (pnd) 5 to pnd9) was performed in 23 male Wistar rats and steroid quantification was performed in hippocampal homogenates at pnd9. A second group (n=127) underwent neonatal treatment (pnd5-pnd9) and were submitted to hippocampal surgery at 80d. The behavioural response to bilateral intrahippocampal neurosteroid administration (ALLO, 0.2μg/0.5μl per side or pregnenolone sulphate 5ng/0.5μl per side) on novelty-induced exploration activity and prepulse inhibition (PPI) was assessed at 95d. Results showed that neonatal ALLO and finasteride administration decreased novelty directed exploratory behaviour and impaired the prepulse inhibition of the acoustic startle response at 95 days of age. Moreover, intrahippocampal ALLO increased head-dipping behaviour independently of the neonatal treatment, while intrahippocampal ALLO decreased PPI only in finasteride and ALLO groups. The results obtained in the present study indicate the importance of neonatal neurosteroid levels in the development of hippocampal function and their relevance in a behavioural phenotype that some have likened to that present in schizophrenia.
Collapse
Affiliation(s)
- Sònia Darbra
- Departament de Psicobiologia i Metodologia en Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Valles, Campus de Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
91
|
Irwig MS. Decreased alcohol consumption among former male users of finasteride with persistent sexual side effects: a preliminary report. Alcohol Clin Exp Res 2013; 37:1823-6. [PMID: 23763349 DOI: 10.1111/acer.12177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is a robust literature in rodents, but not in humans, on the interaction between finasteride and alcohol, particularly as it relates to neurosteroids. Finasteride has been shown to reduce alcohol intake and suppress alcohol preference in male mice. This study examines the role of finasteride in alcohol consumption in humans with male pattern hair loss. METHODS The subjects were 83 otherwise healthy men who developed persistent sexual side effects associated with finasteride, despite the cessation of this medication for at least 3 months. Information from standardized interviews was collected regarding medical histories, sexual function, and alcohol consumption before and after finasteride use. RESULTS Of the 63 men who consumed at least 1 alcoholic beverage/wk prior to starting finasteride, 41 (65%) noted a decrease in their alcohol consumption after stopping finasteride. This reduction typically began before discontinuing finasteride. Twenty men (32%) reported no change in their alcohol consumption, and 2 men (3%) reported an increase in their alcohol consumption. For the 63 consumers of alcohol, the mean number (± SE) of alcoholic beverages/wk declined from 5.2 ± 0.7 before finasteride to 2.0 ± 0.3 after finasteride (p < 0.0001). A major study limitation is the lack of a comparison group. CONCLUSIONS In former male users of finasteride who developed persistent sexual side effects, 65% noticed a decline in their alcohol consumption as compared to baseline. This finding is consistent with finasteride's ability to modulate alcohol intake in rodents. Further research is needed on the central nervous system effects of finasteride in humans.
Collapse
Affiliation(s)
- Michael S Irwig
- Center for Andrology and Division of Endocrinology, Medical Faculty Associates, The George Washington University, Washington, District of Columbia
| |
Collapse
|
92
|
Abstract
OBJECTIVE 5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. METHODS A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. RESULTS 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. CONCLUSION There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
93
|
Kelleher MA, Hirst JJ, Palliser HK. Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig. Reprod Sci 2013; 20:1365-75. [PMID: 23585339 DOI: 10.1177/1933719113485295] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preterm birth is a major cause of neurodevelopmental disorders. Allopregnanolone, a key metabolite of progesterone, has neuroprotective and developmental effects in the brain. The objectives of this study were to measure the neuroactive steroid concentrations following preterm delivery in a neonatal guinea pig model and assess the potential for postnatal progesterone replacement therapy to affect neuroactive steroid brain and plasma concentrations in preterm neonates. METHODS Preterm (62-63 days) and term (69 days) guinea pig pups were delivered by cesarean section and tissue was collected at 24 hours. Plasma progesterone, cortisol, allopregnanolone, and brain allopregnanolone concentrations were measured by immunoassay. Brain 5α-reductase (5αR) expression was determined by Western blot. Neurodevelopmental maturity of preterm neonates was assessed by immunohistochemistry staining for myelination, glial cells, and neurons. RESULTS Brain allopregnanolone concentrations were significantly reduced after birth in both preterm and term neonates. Postnatal progesterone treatment in preterm neonates increased brain and plasma allopregnanolone concentrations. Preterm neonates had reduced myelination, low birth weight, and high mortality compared to term neonates. Brain 5αR expression was also significantly reduced in neonates compared to fetal expression. CONCLUSIONS Delivery results in a loss of neuroactive steroid concentrations resulting in a premature reduction in brain allopregnanolone in preterm neonates. Postnatal progesterone therapy reestablished neuroactive steroid levels in preterm brains, a finding that has implications for postnatal growth following preterm birth that occurs at a time of neurodevelopmental immaturity.
Collapse
Affiliation(s)
- Meredith A Kelleher
- 1Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | | | | |
Collapse
|
94
|
Llidó A, Mòdol L, Darbra S, Pallarès M. Interaction between neonatal allopregnanolone administration and early maternal separation: effects on adolescent and adult behaviors in male rat. Horm Behav 2013; 63:577-85. [PMID: 23410958 DOI: 10.1016/j.yhbeh.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 02/02/2023]
Abstract
Endogenous neurosteroid level fluctuations are related to several emotional and behavioral alterations. Neurosteroids also have important roles during neurodevelopment, with there being a relationship between modification of their levels in neurodevelopmental periods and behavioral alterations in adolescence and adulthood. Early maternal separation (EMS) is a stressful event that also alters neurodevelopment and adolescent and adult behaviors. The aim of the present study is to analyze the interaction between the effects of the neonatal alteration of allopregnanolone (AlloP), neurosteroid that increase its levels after acute stress presentation, and EMS on adolescent exploration and adult anxiety and sensorimotor gating in male rats. AlloP (10 mg/kg s.c.) was administrated between postnatal day 5 (PN5) and PN9, and a single 24-hour period of EMS was carried out on PN9. Exploration was analyzed at PN40 and PN60. At adult age (PN85), anxiety was tested by means of the elevated plus-maze test (EPM), and sensorimotor gating by means of prepulse inhibition test (PPI). PPI deterioration has been considered as a reliable indicator of diseases such as schizophrenia. Results showed that the previous neonatal AlloP administration neutralized the effects of EMS in the adolescent exploration (increase of traveled distance and decrease of head-dips). In adult age, an anxiolytic-like profile was observed as a consequence of EMS. Finally, EMS and neonatal AlloP disrupted PPI. Taken together, these data show the important role that physiological neonatal AlloP levels and stressful events play in neural development, adult behavior and vulnerability to neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Anna Llidó
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
95
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|
96
|
Maingat FG, Polyak MJ, Paul AM, Vivithanaporn P, Noorbakhsh F, Ahboucha S, Baker GB, Pearson K, Power C. Neurosteroid-mediated regulation of brain innate immunity in HIV/AIDS: DHEA-S suppresses neurovirulence. FASEB J 2013; 27:725-737. [PMID: 23150523 DOI: 10.1096/fj.12-215079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurosteroids are cholesterol-derived molecules synthesized within the brain, which exert trophic and protective actions. Infection by human and feline immunodeficiency viruses (HIV and FIV, respectively) causes neuroinflammation and neurodegeneration, leading to neurological deficits. Secretion of neuroinflammatory host and viral factors by glia and infiltrating leukocytes mediates the principal neuropathogenic mechanisms during lentivirus infections, although the effect of neurosteroids on these processes is unknown. We investigated the interactions between neurosteroid-mediated effects and lentivirus infection outcomes. Analyses of HIV-infected (HIV(+)) and uninfected human brains disclosed a reduction in neurosteroid synthesis enzyme expression. Human neurons exposed to supernatants from HIV(+) macrophages exhibited suppressed enzyme expression without reduced cellular viability. HIV(+) human macrophages treated with sulfated dehydroepiandrosterone (DHEA-S) showed suppression of inflammatory gene (IL-1β, IL-6, TNF-α) expression. FIV-infected (FIV(+)) animals treated daily with 15 mg/kg body weight. DHEA-S treatment reduced inflammatory gene transcripts (IL-1β, TNF-α, CD3ε, GFAP) in brain compared to vehicle-(β-cyclodextrin)-treated FIV(+) animals similar to levels found in vehicle-treated FIV(-) animals. DHEA-S treatment also increased CD4(+) T-cell levels and prevented neurobehavioral deficits and neuronal loss among FIV(+) animals, compared to vehicle-treated FIV(+) animals. Reduced neuronal neurosteroid synthesis was evident in lentivirus infections, but treatment with DHEA-S limited neuroinflammation and prevented neurobehavioral deficits. Neurosteroid-derived therapies could be effective in the treatment of virus- or inflammation-mediated neurodegeneration.
Collapse
|
97
|
Alteration of neonatal Allopregnanolone levels affects exploration, anxiety, aversive learning and adult behavioural response to intrahippocampal neurosteroids. Behav Brain Res 2012; 241:96-104. [PMID: 23228522 DOI: 10.1016/j.bbr.2012.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
Abstract
Neurosteroids (NS) are well known to exert modulatory effects on ionotropic receptors. Recent findings indicate that NS could also act as important factors during development. In this sense, neonatal modifications of Allopregnanolone (Allop) levels during critical periods have been demonstrate to alter the morphology of the hippocampus but also other brain structures. The aim of the present work is to screen whether the alterations of Allop levels modify adult CA1 hippocampal response to NS administration. For this purpose, pups were injected with Allop (20 mg/kg s.c.), Finasteride (5α-reductase inhibitor that impedes Allop synthesis) (50 mg/kg s.c.) or Vehicle from postnatal day 5 (P5) to postnatal day 9 (P9). NS levels were tested at P5. To test the behavioural hippocampal response to NS in adulthood, animals were implanted with a bilateral cannula into the CA1 hippocampus at 80 days old and injected with Allop (0.2 μg/0.5 μl), Pregnenolone sulphate (5 ng/0.5 μl) or Vehicle in each hippocampus. After injections animals were tested in the Boisser test to assess exploratory behaviour, the elevated plus maze to assess anxiety and the passive avoidance to test aversive learning. Results indicate that alteration of neonatal Allop or pregnenolone levels (by Allop and Finasteride administration, respectively) suppressed intrahippocampal Allop anxiolytic effect in the EPM. Moreover our results also indicate that manipulation of neonatal Allop levels (Allop and Finast administration) alters exploratory and anxiety-like behaviour and impairs aversive learning in the adulthood. These data point out the role of Allop in the maturation of hippocampal function and behaviour.
Collapse
|
98
|
|
99
|
Ryzhavskii BY, Zadvornaya OV. Effect of gonadectomy on activity of neuronal 3β-hydroxysteroid dehydrogenase in some brain structures. Bull Exp Biol Med 2012; 153:784-6. [PMID: 23113285 DOI: 10.1007/s10517-012-1826-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3β-Hydroxysteroid dehydrogenase is a key enzyme in the synthesis of steroid hormones in steroid-producing organs, including the brain producing neurosteroids. 3β-Hydroxysteroid dehydrogenase activity can be a marker of steroid-producing cells. We present the results of histochemical assay of this enzyme in the neocortex, hippocampus, and cerebellar cortex of gonadectomized prepubertal rats. The positive reaction was detected in hippocampal neurons, ganglionic layer cells of the cerebellar cortex (Purkinje cells), and solitary neocortical neurons of male and female rats. Gonadectomy significantly increased enzyme activity in neocortical (layer V) and hippocampal neurons and had no effect on the intensity of the reaction in Purkinje cells.
Collapse
Affiliation(s)
- B Ya Ryzhavskii
- Department of Histology, Far-Eastern State Medical University, Ministry of Health Care and Social Development, Khabarovsk, Russia
| | | |
Collapse
|
100
|
Schonemann MD, Muench MO, Tee MK, Miller WL, Mellon SH. Expression of P450c17 in the human fetal nervous system. Endocrinology 2012; 153:2494-505. [PMID: 22434081 PMCID: PMC3339640 DOI: 10.1210/en.2011-1545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
P450c17 catalyzes steroid 17α-hydroxylase and 17,20 lyase activities. P450c17 is expressed in human fetal and postnatal adrenals and gonads and in the developing mouse nervous system, but little is known about its expression in the human nervous system. We obtained portions of 9-, 10-, and 11-wk gestation human fetuses and delineated the pattern of expression of P450c17 in their peripheral nervous systems by immunocytochemistry using the P450c17 antiserum previously used to characterize P450c17 in the mouse brain. P450c17 was readily detected in the dorsal root ganglia (DRG) and spinal cord. Neural structures were identified with antisera to the cytoskeletal protein neural cell adhesion molecule; DRG were identified with antisera to the neuronal transcription factor BRN3A and neurotrophin receptor tropomyosin-receptor-kinase B. The identification of P450c17 was confirmed using commercial antisera directed against different domains of P450c17 and by using antisera immunodepleted with authentic human P450c17. We also found expression of the P450 cholesterol side-chain cleavage enzyme (P450scc) in the spinal cord and DRG. Expression of P450scc is limited to cell bodies; unlike P450c17, we never detected P450scc in fiber tracts. Catalysis by P450c17 requires electron donation from P450 oxidoreductase (POR). Dual-label immunohistochemistry detected P450c17 and POR colocalized in DRG bundles, but some fibers containing P450c17 lacked POR. These data suggest that neurosteroids synthesized via these two enzymes may act in the developing human nervous system. The expression of P450c17 in structures lacking POR means that P450c17 may not be steroidogenic in those locations, suggesting that P450c17 may have additional functions that do not require POR.
Collapse
Affiliation(s)
- Marcus D Schonemann
- Department of Obstetrics, Gynecology, and Reproductive Science, University of California, San Francisco, 513 Parnassus Avenue, Box 0556, San Francisco, California 94143-0556, USA
| | | | | | | | | |
Collapse
|