51
|
Nikolova-Krstevski V, Wagner S, Yu ZY, Cox CD, Cvetkovska J, Hill AP, Huttner IG, Benson V, Werdich AA, MacRae C, Feneley MP, Friedrich O, Martinac B, Fatkin D. Endocardial TRPC-6 Channels Act as Atrial Mechanosensors and Load-Dependent Modulators of Endocardial/Myocardial Cross-Talk. ACTA ACUST UNITED AC 2017; 2:575-590. [PMID: 30062171 PMCID: PMC6058914 DOI: 10.1016/j.jacbts.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/05/2017] [Accepted: 05/22/2017] [Indexed: 12/01/2022]
Abstract
Mechanoelectrical feedback may increase arrhythmia susceptibility, but the molecular mechanisms are incompletely understood. This study showed that mechanical stretch altered the localization, protein levels, and function of the cation-selective transient receptor potential channel (TRPC)-6 in atrial endocardial cells in humans, pigs, and mice. In endocardial/myocardial cross-talk studies, addition of media from porcine atrial endocardium (AE) cells altered the calcium (Ca2+) transient characteristics of human-induced pluripotent stem cell-derived cardiomyocytes. These changes did not occur with media from stretched AE cells. Our data suggested that endocardial TRPC-6-dependent paracrine signaling may modulate myocardial Ca2+ homeostasis under basal conditions and protect against stretch-induced atrial arrhythmias.
Collapse
Key Words
- AE, atrial endocardium
- AF, atrial fibrillation
- APB, aminoethoxydiphenyl borate
- Ab, antibody
- CM, cardiomyocyte
- Ca2+, calcium
- Dil-Ac-LDL, dil acetylated−low-density lipoprotein
- ET, endothelin
- HUVEC, human umbilical vein endothelial cell
- OAG, 1-oleoyl-2-acetyl-sn-glycerol
- TAC, thoracic aortic constriction
- TRPC, transient receptor potential channel
- Tet, tetanus toxin
- [Ca2+]i, intracellular global Ca2+
- atrial endocardium
- endothelium
- iPS, induced pluripotent stem
- mechanical stretch
- transient receptor potential channels
Collapse
Affiliation(s)
- Vesna Nikolova-Krstevski
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Soeren Wagner
- Department of Anesthesiology, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ze Yan Yu
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Jasmina Cvetkovska
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Inken G Huttner
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Victoria Benson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andreas A Werdich
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael P Feneley
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Oliver Friedrich
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
| |
Collapse
|
52
|
Kurahara LH, Hiraishi K, Sumiyoshi M, Doi M, Hu Y, Aoyagi K, Jian Y, Inoue R. Significant contribution of TRPC6 channel-mediated Ca 2+ influx to the pathogenesis of Crohn's disease fibrotic stenosis. J Smooth Muscle Res 2017; 52:78-92. [PMID: 27818466 PMCID: PMC5321852 DOI: 10.1540/jsmr.52.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is an intractable complication of Crohn's disease (CD), and, when occurring excessively, causes severe intestinal obstruction that often necessitates surgical resection. The fibrosis is characterized by an imbalance in the turnover of extracellular matrix (ECM) components, where intestinal fibroblasts/myofibroblasts play active roles in ECM production, fibrogenesis and tissue remodeling, which eventually leads to the formation of stenotic lesions. There is however a great paucity of knowledge about how intestinal fibrosis initiates and progresses, which hampers the development of effective pharmacotherapies against CD. Recently, we explored the potential implications of transient receptor potential (TRP) channels in the pathogenesis of intestinal fibrosis, since they are known to act as cellular stress sensors/transducers affecting intracellular Ca2+ homeostasis/dynamics, and are involved in a broad spectrum of cell pathophysiology including inflammation and tissue remodeling. In this review, we will place a particular emphasis on the intestinal fibroblast/myofibroblast TRPC6 channel to discuss its modulatory effects on fibrotic responses and therapeutic potential for anti-fibrotic treatment against CD-related stenosis.
Collapse
Affiliation(s)
- Lin Hai Kurahara
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Suchyna TM. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:244-253. [PMID: 28778608 DOI: 10.1016/j.pbiomolbio.2017.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K+ selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy.
Collapse
Affiliation(s)
- Thomas M Suchyna
- University of Buffalo, Dept. of Physiology and Biophysics, Buffalo, NY, USA.
| |
Collapse
|
54
|
Sinharoy P, Bratz IN, Sinha S, Showalter LE, Andrei SR, Damron DS. TRPA1 and TRPV1 contribute to propofol-mediated antagonism of U46619-induced constriction in murine coronary arteries. PLoS One 2017; 12:e0180106. [PMID: 28644897 PMCID: PMC5482493 DOI: 10.1371/journal.pone.0180106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/09/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transient receptor potential (TRP) ion channels have emerged as key components contributing to vasoreactivity. Propofol, an anesthetic is associated with adverse side effects including hypotension and acute pain upon infusion. Our objective was to determine the extent to which TRPA1 and/or TRPV1 ion channels are involved in mediating propofol-induced vasorelaxation of mouse coronary arterioles in vitro and elucidate the potential cellular signal transduction pathway by which this occurs. METHODS Hearts were excised from anesthetized mice and coronary arterioles were dissected from control C57Bl/6J, TRPA1-/-, TRPV1-/- and double-knockout mice (TRPAV-/-). Isolated microvessels were cannulated and secured in a temperature-controlled chamber and allowed to equilibrate for 1 hr. Vasoreactivity studies were performed in microvessels pre-constricted with U46619 to assess the dose-dependent relaxation effects of propofol on coronary microvascular tone. RESULTS Propofol-induced relaxation was unaffected in vessels obtained from TRPV1-/- mice, markedly attenuated in pre-constricted vessels obtained from TRPA1-/- mice and abolished in vessels obtained from TRPAV-/- mice. Furthermore, NOS inhibition with L-NAME or endothelium denuding abolished the proporfol-induced depressor response in pre-constricted vessels obtained from all mice. In the absence of L-NAME, BKCa inhibition with penitrem A markedly attenuated propofol-mediated relaxation in vessels obtained from wild-type mice and to a lesser extent in vessels obtained from TRPV1-/-, mice with no effect in vessels obtained from TRPA1-/- or TRPAV-/- mice. CONCLUSIONS TRPA1 and TRPV1 appear to contribute to the propofol-mediated antagonism of U46619-induced constriction in murine coronary microvessels that involves activation of NOS and BKCa.
Collapse
Affiliation(s)
- Pritam Sinharoy
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Ian N. Bratz
- Department of Integrative Medical Sciences, Northeast Ohio Medical College, Rootstown, Ohio, United States of America
| | - Sayantani Sinha
- Department of Surgery, Division of Orthopedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Loral E. Showalter
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Spencer R. Andrei
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Derek S. Damron
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
55
|
Barrabés JA, Inserte J, Rodríguez-Sinovas A, Ruiz-Meana M, Garcia-Dorado D. Early regional wall distension is strongly associated with vulnerability to ventricular fibrillation but not arrhythmia triggers following coronary occlusion in vivo. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:387-393. [PMID: 28579517 DOI: 10.1016/j.pbiomolbio.2017.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
Wall stress may favor ischemic ventricular arrhythmias, yet its association with ventricular fibrillation (VF) or ventricular ectopy has been inconsistent among studies and its potential arrhythmogenicity across the cardiac cycle is unclear. In 91 open-chest pigs undergoing 40-50 min left anterior descending artery occlusion, we assessed the association between diastolic or systolic distension of the ischemic area and the incidence of ventricular premature beats (VPBs) and VF. End-diastolic segment length (EDL) and systolic bulging ([maximum systolic length-EDL] × 100/EDL) were measured by ultrasonic crystals. Fifteen minutes after occlusion, EDL increased to 112.7 ± 5.6% of baseline (P < 0.001) and systolic bulging averaged 3.4 ± 2.2%. Median VPB number was 52 (IQR, 16-110), 2 (0-7) in phase Ia and 49 (13-94) in phase Ib. VF occurred in 26 animals (28.6%), the first episode appearing 24 ± 6 min after occlusion. EDL increase was associated with subsequent VF (115.9 ± 5.7 and 111.4 ± 5.1% in animals with and without VF, P < 0.001) and with the number of VF episodes (P = 0.001) but not with VPB number, overall (r = 0.028, P = 0.801) or in phases Ia or Ib. Systolic bulging was related neither to VF occurrence (3.2 ± 2.2 and 3.5 ± 2.2%, respectively, P = 0.561) nor to VBP number (r = 0.095, P = 0.397). EDL increase predicted VF after adjusting for ischemic area size and K+ levels (odds ratio for 1% increase: 1.17, 95%CI 1.06-1.29, P = 0.001). Thus, diastolic regional ventricular distension predicts VF occurrence after coronary occlusion whereas neither diastolic nor systolic distension is associated with ventricular ectopy, which suggests that distension favors VF by acting on the arrhythmic substrate but not on arrhythmia triggers.
Collapse
Affiliation(s)
- José A Barrabés
- Hospital Universitari Vall d'Hebron & Research Institute, Universitat Autònoma de Barcelona, Barcelona, CIBER-CV, Spain.
| | - Javier Inserte
- Hospital Universitari Vall d'Hebron & Research Institute, Universitat Autònoma de Barcelona, Barcelona, CIBER-CV, Spain
| | - Antonio Rodríguez-Sinovas
- Hospital Universitari Vall d'Hebron & Research Institute, Universitat Autònoma de Barcelona, Barcelona, CIBER-CV, Spain
| | - Marisol Ruiz-Meana
- Hospital Universitari Vall d'Hebron & Research Institute, Universitat Autònoma de Barcelona, Barcelona, CIBER-CV, Spain
| | - David Garcia-Dorado
- Hospital Universitari Vall d'Hebron & Research Institute, Universitat Autònoma de Barcelona, Barcelona, CIBER-CV, Spain
| |
Collapse
|
56
|
Omari SA, Adams MJ, Geraghty DP. TRPV1 Channels in Immune Cells and Hematological Malignancies. ADVANCES IN PHARMACOLOGY 2017; 79:173-198. [DOI: 10.1016/bs.apha.2017.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
57
|
Biasiotta A, D'Arcangelo D, Passarelli F, Nicodemi EM, Facchiano A. Ion channels expression and function are strongly modified in solid tumors and vascular malformations. J Transl Med 2016; 14:285. [PMID: 27716384 PMCID: PMC5050926 DOI: 10.1186/s12967-016-1038-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Background Several cellular functions relate to ion-channels activity. Physiologically relevant chains of events leading to angiogenesis, cell cycle and different forms of cell death, require transmembrane voltage control. We hypothesized that the unordered angiogenesis occurring in solid cancers and vascular malformations might associate, at least in part, to ion-transport alteration. Methods The expression level of several ion-channels was analyzed in human solid tumor biopsies. Expression of 90 genes coding for ion-channels related proteins was investigated within the Oncomine database, in 25 independent patients-datasets referring to five histologically-different solid tumors (namely, bladder cancer, glioblastoma, melanoma, breast invasive-ductal cancer, lung carcinoma), in a total of 3673 patients (674 control-samples and 2999 cancer-samples). Furthermore, the ion-channel activity was directly assessed by measuring in vivo the electrical sympathetic skin responses (SSR) on the skin of 14 patients affected by the flat port-wine stains vascular malformation, i.e., a non-tumor vascular malformation clinical model. Results Several ion-channels showed significantly increased expression in tumors (p < 0.0005); nine genes (namely, CACNA1D, FXYD3, FXYD5, HTR3A, KCNE3, KCNE4, KCNN4, CLIC1, TRPM3) showed such significant modification in at least half of datasets investigated for each cancer type. Moreover, in vivo analyses in flat port-wine stains patients showed a significantly reduced SSR in the affected skin as compared to the contralateral healthy skin (p < 0.05), in both latency and amplitude measurements. Conclusions All together these data identify ion-channel genes showing significantly modified expression in different tumors and cancer-vessels, and indicate a relevant electrophysiological alteration in human vascular malformations. Such data suggest a possible role and a potential diagnostic application of the ion–electron transport in vascular disorders underlying tumor neo-angiogenesis and vascular malformations.
Collapse
Affiliation(s)
| | - Daniela D'Arcangelo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Francesca Passarelli
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Ezio Maria Nicodemi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
58
|
Vagal afferents, sympathetic efferents and the role of the PVN in heart failure. Auton Neurosci 2016; 199:38-47. [DOI: 10.1016/j.autneu.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 01/18/2023]
|
59
|
Chen M, Xin J, Liu B, Luo L, Li J, Yin W, Li M. Mitogen-Activated Protein Kinase and Intracellular Polyamine Signaling Is Involved in TRPV1 Activation-Induced Cardiac Hypertrophy. J Am Heart Assoc 2016; 5:JAHA.116.003718. [PMID: 27473037 PMCID: PMC5015292 DOI: 10.1161/jaha.116.003718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The transient receptor potential vanilloid type 1 (TRPV1) is expressed in the cardiovascular system, and increased TRPV1 expression has been associated with cardiac hypertrophy. Nevertheless, the role of TRPV1 in the pathogenesis of cardiac hypertrophy and the underlying molecular mechanisms remain unclear. METHODS AND RESULTS In cultured cardiomyocytes, activation of TRPV1 increased cell size and elevated expression of atrial natriuretic peptide mRNA and intracellular calcium level, which was reversed by TRPV1 antagonist capsazepine. Increased expression of phosphorylated calmodulin-dependent protein kinase IIδ and mitogen-activated protein kinases were found in TRPV1 agonist capsaicin-treated cardiomyocytes. Selective inhibitor of calmodulin-dependent protein kinase IIδ decreased phosphorylation of extracellular signal-regulated kinases and p38. Capsaicin induced an increase in expression of ornithine decarboxylase protein, which is the key enzyme in polyamine biosynthesis in cardiomyocytes. Nevertheless, there was no obvious change of ornithine decarboxylase expression in TRPV1 knockdown cells after capsaicin treatment, and specific inhibitors of calmodulin-dependent protein kinase IIδ or p38 downregulated the capsaicin-induced expression of ornithine decarboxylase. Capsazepine alleviated the increase in cross-sectional area of cardiomyocytes and the ratio of heart weight to body weight and improved cardiac function, including left ventricular internal end-diastolic and -systolic dimensions and ejection fraction and fractional shortening percentages, in mice treated with transverse aorta constriction. Capsazepine also reduced expression of ornithine decarboxylase and cardiac polyamine levels. Transverse aorta constriction induced increases in phosphorylated calmodulin-dependent protein kinase IIδ and extracellular signal-regulated kinases, and p38 and Serca2a were attenuated by capsazepine treatment. CONCLUSIONS This study revealed that the mitogen-activated protein kinase signaling pathway and intracellular polyamines are essential for TRPV1 activation-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Mai Chen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiajia Xin
- Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Baohui Liu
- Department of Cardiac Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Liyang Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jiayi Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
60
|
Abstract
Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.
Collapse
Affiliation(s)
- Rémi Peyronnet
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Jeanne M Nerbonne
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Peter Kohl
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.).
| |
Collapse
|
61
|
Zhao JF, Shyue SK, Kou YR, Lu TM, Lee TS. Transient Receptor Potential Ankyrin 1 Channel Involved in Atherosclerosis and Macrophage-Foam Cell Formation. Int J Biol Sci 2016; 12:812-23. [PMID: 27313495 PMCID: PMC4910600 DOI: 10.7150/ijbs.15229] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/08/2016] [Indexed: 12/28/2022] Open
Abstract
Transient receptor potential ankyrin 1 channel (TRPA1) plays an important role in the pathogenesis of inflammatory diseases, yet its role and the underlying mechanism in atherosclerosis remain unclear. We aimed to investigate the role of TRPA1 in atherosclerosis and foam-cell formation in vivo in mice and in vitro in mouse macrophages. Histopathology was examined by hematoxylin and eosin staining, levels of cytokines and lipid profile were evaluated by assay kits, and protein expression was determined by western blot analysis. TRPA1 expression was increased in macrophage foam cells in atherosclerotic aortas of apolipoprotein E-deficient (apoE-/-) mice. Atherosclerotic lesions, hyperlipidemia and systemic inflammation were worsened with chronic administration of the TRPA1 channel antagonist HC030031 or genetic ablation of TRPA1 (TRPA1-/-) in apoE-/- mice. Treatment with allyl isothiocyanate (AITC, a TRPA1 agonist) retarded the progression of atherosclerosis in apoE-/- mice but not apoE-/-TRPA1-/- mice. Mouse macrophages showed oxidized low-density lipoprotein (oxLDL) activated TRPA1 channels. OxLDL-induced lipid accumulation of macrophages was exacerbated by HC030031 or loss of function of TRPA1. Inhibition of TRPA1 activity did not alter oxLDL internalization but impaired cholesterol efflux by downregulating the ATP-binding cassette transporters. Furthermore, tumor necrosis factor-α-induced inflammatory response was attenuated in AITC-activated macrophages. TRPA1 may be a pivotal regulator in the pathogenesis of atherosclerosis and cholesterol metabolism of macrophage foam cells.
Collapse
Affiliation(s)
- Jin-Feng Zhao
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Song-Kun Shyue
- 2. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu Ru Kou
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Min Lu
- 3. Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 4. Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 5. Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
62
|
Andrei SR, Sinharoy P, Bratz IN, Damron DS. TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: Co-localization at z-discs, costameres and intercalated discs. Channels (Austin) 2016; 10:395-409. [PMID: 27144598 PMCID: PMC4988441 DOI: 10.1080/19336950.2016.1185579] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1−/− and TRPV1−/− mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.
Collapse
Affiliation(s)
- Spencer R Andrei
- a Department of Biological Sciences , Kent State University , Kent , OH , USA
| | - Pritam Sinharoy
- a Department of Biological Sciences , Kent State University , Kent , OH , USA
| | - Ian N Bratz
- b Department of Integrated Medical Sciences , Northeast Ohio Medical University , Rootstown , OH , USA
| | - Derek S Damron
- a Department of Biological Sciences , Kent State University , Kent , OH , USA
| |
Collapse
|
63
|
Morphological Identification of TRPC7 in Cardiomyocytes From Normal and Renovascular Hypertensive Rats [RETRACTED]. J Cardiovasc Pharmacol 2016; 67:121-8. [DOI: 10.1097/fjc.0000000000000321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
64
|
Constantine M, Liew CK, Lo V, Macmillan A, Cranfield CG, Sunde M, Whan R, Graham RM, Martinac B. Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer. Sci Rep 2016; 6:19352. [PMID: 26785754 PMCID: PMC4726259 DOI: 10.1038/srep19352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/11/2015] [Indexed: 11/24/2022] Open
Abstract
Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and electron microscopy. Our data indicate that TRPM4 is tetrameric, like other TRP channels studied to date. Furthermore, the functionality of liposome reconstituted TRPM4-eGFP was examined using electrophysiology. Single-channel recordings from TRPM4-eGFP proteoliposomes showed inhibition of the channel using Flufenamic acid, a well-established inhibitor of TRPM4, suggesting that the channels are functional upon reconstitution. Our characterisation of the oligomeric structure of TRPM4 and the ability to reconstitute functional channels in liposomes should facilitate future studies into the structure, function and pharmacology of this therapeutically relevant channel.
Collapse
Affiliation(s)
- Maryrose Constantine
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Chu Kong Liew
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
| | - Victor Lo
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006
| | - Alex Macmillan
- Biomedical Imaging Facility, Lowy Cancer Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia
| | | | - Margaret Sunde
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006
| | - Renee Whan
- Biomedical Imaging Facility, Lowy Cancer Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
65
|
|
66
|
Liu H, Yang L, Chen KH, Sun HY, Jin MW, Xiao GS, Wang Y, Li GR. SKF-96365 blocks human ether-à-go-go-related gene potassium channels stably expressed in HEK 293 cells. Pharmacol Res 2015; 104:61-9. [PMID: 26689773 DOI: 10.1016/j.phrs.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
SKF-96365 is a TRPC channel antagonist commonly used to characterize the potential functions of TRPC channels in different systems, which was recently reported to induce QTc prolongation on ECG by inhibiting TRPC channels. The present study investigates whether the blockade of cardiac repolarization currents would be involved in the increase of QTc interval. Cardiac repolarization currents were recorded in HEK 293 cells stably expressing human ether-à-go-go-related gene potassium (hERG or hKv11.1) channels, hKCNQ1/hKCNE1 channels (IKs) or hKir2.1 channels and cardiac action potentials were recorded in guinea pig ventricular myocytes using a whole-cell patch technique. The potential effect of SKF-96365 on QT interval was evaluated in ex vivo guinea pig hearts. It was found that SKF-96365 inhibited hERG current in a concentration-dependent manner (IC50, 3.4μM). The hERG mutants S631A in the pore helix and F656V of the S6 region reduced the inhibitory sensitivity with IC50s of 27.4μM and 11.0μM, suggesting a channel pore blocker. In addition, this compound inhibited IKs and hKir2.1currents with IC50s of 10.8 and 8.7μM. SKF-96365 (10μM) significantly prolonged ventricular APD90 in guinea pig ventricular myocytes and QTc interval in ex vivo guinea pig hearts. These results indicate that the TRPC channel antagonist SKF-96365 exerts blocking effects on hERG, IKs, and hKir2.1 channels. Prolongation of ventricular APD and QT interval is related to the inhibition of multiple repolarization potassium currents, especially hERG channels.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lei Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kui-Hao Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Ying Sun
- Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Man-Wen Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China.
| | - Gui-Rong Li
- Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China.
| |
Collapse
|
67
|
Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA. Functional and physiopathological implications of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1772-82. [DOI: 10.1016/j.bbamcr.2015.04.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
68
|
Kurth F, Franco-Obregón A, Casarosa M, Küster SK, Wuertz-Kozak K, Dittrich PS. Transient receptor potential vanilloid 2-mediated shear-stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB J 2015. [PMID: 26207028 DOI: 10.1096/fj.15-275396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The developmental sensitivity of skeletal muscle to mechanical forces is unparalleled in other tissues. Calcium entry via reputedly mechanosensitive transient receptor potential (TRP) channel classes has been shown to play an essential role in both the early proliferative stage and subsequent differentiation of skeletal muscle myoblasts, particularly TRP canonical (TRPC) 1 and TRP vanilloid (TRPV) 2. Here we show that C2C12 murine myoblasts respond to fluid flow-induced shear stress with increments in cytosolic calcium that are largely initiated by the mechanosensitive opening of TRPV2 channels. Response to fluid flow was augmented by growth in low extracellular serum concentration (5 vs. 20% fetal bovine serum) by greater than 9-fold and at 18 h in culture, coincident with the greatest TRPV2 channel expression under identical conditions (P < 0.02). Fluid flow responses were also enhanced by substrate functionalization with laminin, rather than with fibronectin, agreeing with previous findings that the gating of TRPV2 is facilitated by laminin. Fluid flow-induced calcium increments were blocked by ruthenium red (27%) and SKF-96365 (38%), whereas they were unaltered by 2-aminoethoxydiphenyl borate, further corroborating that TRPV2 channels play a predominant role in fluid flow mechanosensitivity over that of TRPC1 and TRP melastatin (TRPM) 7.
Collapse
Affiliation(s)
- Felix Kurth
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Alfredo Franco-Obregón
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Marco Casarosa
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Simon K Küster
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Karin Wuertz-Kozak
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Petra S Dittrich
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| |
Collapse
|
69
|
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 2015; 29:343-60. [PMID: 25180264 DOI: 10.1152/physiol.00009.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
Collapse
Affiliation(s)
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
70
|
Humphrey JD, Schwartz MA, Tellides G, Milewicz DM. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 2015; 116:1448-61. [PMID: 25858068 PMCID: PMC4420625 DOI: 10.1161/circresaha.114.304936] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thoracic aortic diseases that involve progressive enlargement, acute dissection, or rupture are influenced by the hemodynamic loads and mechanical properties of the wall. We have only limited understanding, however, of the mechanobiological processes that lead to these potentially lethal conditions. Homeostasis requires that intramural cells sense their local chemomechanical environment and establish, maintain, remodel, or repair the extracellular matrix to provide suitable compliance and yet sufficient strength. Proper sensing, in turn, necessitates both receptors that connect the extracellular matrix to intracellular actomyosin filaments and signaling molecules that transmit the related information to the nucleus. Thoracic aortic aneurysms and dissections are associated with poorly controlled hypertension and mutations in genes for extracellular matrix constituents, membrane receptors, contractile proteins, and associated signaling molecules. This grouping of factors suggests that these thoracic diseases result, in part, from dysfunctional mechanosensing and mechanoregulation of the extracellular matrix by the intramural cells, which leads to a compromised structural integrity of the wall. Thus, improved understanding of the mechanobiology of aortic cells could lead to new therapeutic strategies for thoracic aortic aneurysms and dissections.
Collapse
MESH Headings
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Aortic Dissection/therapy
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/therapy
- Aortic Rupture/genetics
- Aortic Rupture/metabolism
- Aortic Rupture/pathology
- Aortic Rupture/physiopathology
- Aortic Rupture/therapy
- Biomechanical Phenomena
- Disease Progression
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Genetic Predisposition to Disease
- Hemodynamics
- Humans
- Mechanotransduction, Cellular
- Phenotype
- Stress, Mechanical
Collapse
Affiliation(s)
- Jay D Humphrey
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - Martin A Schwartz
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - George Tellides
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - Dianna M Milewicz
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.).
| |
Collapse
|
71
|
Parpaite T, Cardouat G, Mauroux M, Gillibert-Duplantier J, Robillard P, Quignard JF, Marthan R, Savineau JP, Ducret T. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells. Pflugers Arch 2015; 468:111-130. [PMID: 25799977 DOI: 10.1007/s00424-015-1704-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Transient receptor potential (TRP) channels of the vanilloid subfamily, mainly TRPV1 and TRPV4, are expressed in pulmonary artery smooth muscle cells (PASMC) and implicated in the remodeling of pulmonary artery, a landmark of pulmonary hypertension (PH). Among a variety of PH subtypes, PH of group 3 are mostly related to a prolonged hypoxia exposure occurring in a variety of chronic lung diseases. In the present study, we thus investigated the role of hypoxia on TRPV1 and TRPV4 channels independently of the increased pulmonary arterial pressure that occurs during PH. We isolated PASMC from normoxic rat and cultured these cells under in vitro hypoxia. Using microspectrofluorimetry and the patch-clamp technique, we showed that hypoxia (1 % O2 for 48 h) significantly increased stretch- and TRPV4-induced calcium responses. qRT-PCR, Western blotting, and immunostaining experiments revealed that the expression of TRPV1 and TRPV4 was not enhanced under hypoxic conditions, but we observed a membrane translocation of TRPV1. Furthermore, hypoxia induced a reorganization of the F-actin cytoskeleton, the tubulin, and intermediate filament networks (immunostaining experiments), associated with an enhanced TRPV1- and TRPV4-induced migratory response (wound-healing assay). Finally, as assessed by immunostaining, exposure to in vitro hypoxia elicited a significant increase in NFATc4 nuclear localization. Cyclosporin A and BAPTA-AM inhibited NFATc4 translocation, indicating the activation of the Ca(2+)/calcineurin/NFAT pathway. In conclusion, these data point out the effect of hypoxia on TRPV1 and TRPV4 channels in rat PASMC, suggesting that these channels can act as direct signal transducers in the pathophysiology of PH.
Collapse
Affiliation(s)
- Thibaud Parpaite
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Guillaume Cardouat
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Marthe Mauroux
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Jennifer Gillibert-Duplantier
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Paul Robillard
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Jean-François Quignard
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Roger Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Jean-Pierre Savineau
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Thomas Ducret
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France. .,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France. .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Université de Bordeaux, 146 rue Léo-Saignat (case 13), F-33076, Bordeaux cedex, France.
| |
Collapse
|
72
|
Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 308:H157-82. [PMID: 25416190 PMCID: PMC4312948 DOI: 10.1152/ajpheart.00457.2014] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jonathan Stock
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jianyang Du
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
73
|
Bagriantsev SN, Gracheva EO, Gallagher PG. Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 2014; 289:31673-31681. [PMID: 25305018 DOI: 10.1074/jbc.r114.612697] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature.
Collapse
Affiliation(s)
- Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520; Yale Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale University School of Medicine, New Haven, Connecticut 06520
| | - Patrick G Gallagher
- Departments of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
74
|
Pedrigi RM, de Silva R, Bovens SM, Mehta VV, Petretto E, Krams R. Thin-Cap Fibroatheroma Rupture Is Associated With a Fine Interplay of Shear and Wall Stress. Arterioscler Thromb Vasc Biol 2014; 34:2224-31. [DOI: 10.1161/atvbaha.114.303426] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this review, we summarized the effect of mechanical factors (shear and wall stress) on thin-cap fibroatheroma formation and rupture. To make this review understandable for a biology-oriented audience, we start with detailed definitions of relevant mechanical metrics. We then describe how biomechanics has supported histopathologic efforts to understand the basis of plaque rupture. In addition to plaque rupture, biomechanics also contributes toward the progression of thin-cap fibroatheroma through a multitude of reported mechanobiological mechanisms. We thus propose a new mechanism whereby both shear stress and wall stress interact to create thin-cap fibroatheromas. Specifically, when regions of certain blood flow and wall mechanical stimuli coincide, they synergistically create inflammation within the cellular environment that can lead to thin-cap fibroatheroma rupture. A consequence of this postulate is that local shear stress is not sufficient to cause rupture, but it must coincide with regions of local tissue stiffening and stress concentrations that can occur during plaque progression. Because such changes to the wall mechanics occur over a micrometer scale, high spatial resolution imaging techniques will be necessary to evaluate this hypothesis and ultimately predict plaque rupture in a clinical environment.
Collapse
Affiliation(s)
- Ryan M. Pedrigi
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical Sciences Centre, Imperial College London, London, United Kingdom (E.P.)
| | - Ranil de Silva
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical Sciences Centre, Imperial College London, London, United Kingdom (E.P.)
| | - Sandra M. Bovens
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical Sciences Centre, Imperial College London, London, United Kingdom (E.P.)
| | - Vikram V. Mehta
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical Sciences Centre, Imperial College London, London, United Kingdom (E.P.)
| | - Enrico Petretto
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical Sciences Centre, Imperial College London, London, United Kingdom (E.P.)
| | - Rob Krams
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (R.M.P., S.M.B., V.V.M., R.K.); NHLI, Imperial College London and NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (R.d.S.); and MRC-Clinical Sciences Centre, Imperial College London, London, United Kingdom (E.P.)
| |
Collapse
|
75
|
Spatio-temporal expression and functional involvement of transient receptor potential vanilloid 1 in diabetic mechanical allodynia in rats. PLoS One 2014; 9:e102052. [PMID: 25020137 PMCID: PMC4096595 DOI: 10.1371/journal.pone.0102052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/14/2014] [Indexed: 11/19/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is one of the most common clinical manifestations of diabetes mellitus (DM), which is characterized by prominent mechanical allodynia (DMA). However, the molecular mechanism underlying it has not fully been elucidated. In this study, we examined the spatio-temporal expression of a major nociceptive channel protein transient receptor potential vanilloid 1 (TRPV1) and analyzed its functional involvement by intrathecal (i.t.) application of TRPV1 antagonists in streptozocin (STZ)-induced DMA rat models. Western blot and immunofluorescent staining results showed that TRPV1 protein level was significantly increased in the soma of the dorsal root ganglion (DRG) neurons on 14 days after STZ treatment (DMA 14 d), whereas those in spinal cord and skin (mainly from the central and peripheral processes of DRG neurons) had already been enhanced on DMA 7 d to peak on DMA 14 d. qRT-PCR experiments confirmed that TRPV1 mRNA level was significantly up-regulated in the DRG on DMA 7 d, indicating a preceding translation of TRPV1 protein in the soma but preferential distribution of this protein to the processes under the DMA conditions. Cell counting assay based on double immunostaining suggested that increased TRPV1-immunoreactive neurons were likely to be small-sized and CGRP-ergic. Finally, single or multiple intrathecal applications of non-specific or specific TRPV1 antagonists, ruthenium red and capsazepine, at varying doses, effectively alleviated DMA, although the effect of the former was more prominent and long-lasting. These results collectively indicate that TRPV1 expression dynamically changes during the development of DMA and this protein may play important roles in mechanical nociception in DRG neurons, presumably through facilitating the release of CGRP.
Collapse
|
76
|
Reed A, Kohl P, Peyronnet R. Molecular candidates for cardiac stretch-activated ion channels. Glob Cardiol Sci Pract 2014; 2014:9-25. [PMID: 25405172 PMCID: PMC4220428 DOI: 10.5339/gcsp.2014.19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/08/2014] [Indexed: 01/20/2023] Open
Abstract
The heart is a mechanically-active organ that dynamically senses its own mechanical environment. This environment is constantly changing, on a beat-by-beat basis, with additional modulation by respiratory activity and changes in posture or physical activity, and further overlaid with more slowly occurring physiological (e.g. pregnancy, endurance training) or pathological challenges (e.g. pressure or volume overload). Far from being a simple pump, the heart detects changes in mechanical demand and adjusts its performance accordingly, both via heart rate and stroke volume alteration. Many of the underlying regulatory processes are encoded intracardially, and are thus maintained even in heart transplant recipients. Over the last three decades, molecular substrates of cardiac mechanosensitivity have gained increasing recognition in the scientific and clinical communities. Nonetheless, the processes underlying this phenomenon are still poorly understood. Stretch-activated ion channels (SAC) have been identified as one contributor to mechanosensitive autoregulation of the heartbeat. They also appear to play important roles in the development of cardiac pathologies – most notably stretch-induced arrhythmias. As recently discovered, some established cardiac drugs act, in part at least, via mechanotransduction pathways suggesting SAC as potential therapeutic targets. Clearly, identification of the molecular substrate of cardiac SAC is of clinical importance and a number of candidate proteins have been identified. At the same time, experimental studies have revealed variable–and at times contrasting–results regarding their function. Further complication arises from the fact that many ion channels that are not classically defined as SAC, including voltage and ligand-gated ion channels, can respond to mechanical stimulation. Here, we summarise what is known about the molecular substrate of the main candidates for cardiac SAC, before identifying potential further developments in this area of translational research.
Collapse
Affiliation(s)
- Alistair Reed
- Medical Sciences Division, University of Oxford, United Kingdom
| | | | | |
Collapse
|
77
|
Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JXJ. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 2014; 307:C373-83. [PMID: 24920677 DOI: 10.1152/ajpcell.00115.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for pulmonary arterial medial hypertrophy in patients with idiopathic pulmonary arterial hypertension (IPAH). Vascular smooth muscle cells (SMC) sense the blood flow shear stress through interstitial fluid driven by pressure or direct exposure to blood flow in case of endothelial injury. Mechanical stimulus can increase [Ca(2+)]cyt. Here we report that flow shear stress raised [Ca(2+)]cyt in PASMC, while the shear stress-mediated rise in [Ca(2+)]cyt and the protein expression level of TRPM7 and TRPV4 channels were significantly greater in IPAH-PASMC than in normal PASMC. Blockade of TRPM7 by 2-APB or TRPV4 by Ruthenium red inhibited shear stress-induced rise in [Ca(2+)]cyt in normal and IPAH-PASMC, while activation of TRPM7 by bradykinin or TRPV4 by 4αPDD induced greater increase in [Ca(2+)]cyt in IPAH-PASMC than in normal PASMC. The bradykinin-mediated activation of TRPM7 also led to a greater increase in [Mg(2+)]cyt in IPAH-PASMC than in normal PASMC. Knockdown of TRPM7 and TRPV4 by siRNA significantly attenuated the shear stress-mediated [Ca(2+)]cyt increases in normal and IPAH-PASMC. In conclusion, upregulated mechanosensitive channels (e.g., TRPM7, TRPV4, TRPC6) contribute to the enhanced [Ca(2+)]cyt increase induced by shear stress in PASMC from IPAH patients. Blockade of the mechanosensitive cation channels may represent a novel therapeutic approach for relieving elevated [Ca(2+)]cyt in PASMC and thereby inhibiting sustained pulmonary vasoconstriction and pulmonary vascular remodeling in patients with IPAH.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan; and
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Ramon J Ayon
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Kimberly A Smith
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Haiyang Tang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Ayako Makino
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona;
| |
Collapse
|
78
|
Gregory NS, Sluka KA. Anatomical and physiological factors contributing to chronic muscle pain. Curr Top Behav Neurosci 2014; 20:327-48. [PMID: 24633937 PMCID: PMC4294469 DOI: 10.1007/7854_2014_294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic muscle pain remains a significant source of suffering and disability despite the adoption of pharmacologic and physical therapies. Muscle pain is mediated by free nerve endings distributed through the muscle along arteries. These nerves project to the superficial dorsal horn and are transmitted primarily through the spinothalamic tract to several cortical and subcortical structures, some of which are more active during the processing of muscle pain than other painful conditions. Mechanical forces, ischemia, and inflammation are the primary stimuli for muscle pain, which is reflected in the array of peripheral receptors contributing to muscle pain-ASIC, P2X, and TRP channels. Sensitization of peripheral receptors and of central pain processing structures are both critical for the development and maintenance of chronic muscle pain. Further, variations in peripheral receptors and central structures contribute to the significantly greater prevalence of chronic muscle pain in females.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Neuroscience Graduate Program, University of Iowa, 3144 Med Labs, Iowa City, IA, 52246, USA,
| | | |
Collapse
|
79
|
Shenton FC, Pyner S. Expression of transient receptor potential channels TRPC1 and TRPV4 in venoatrial endocardium of the rat heart. Neuroscience 2014; 267:195-204. [PMID: 24631674 DOI: 10.1016/j.neuroscience.2014.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/29/2022]
Abstract
The atrial volume receptor reflex arc serves to regulate plasma volume. Atrial volume receptors located in the endocardium of the atrial wall undergo mechanical deformation as blood is returned to the atria of the heart. The mechanosensitive channel(s) responsible for regulating plasma volume remain to be determined. Here we report that the TRP channel family members TRPC1 and TRPV4 were expressed in sensory nerve endings in the atrial endocardium. Furthermore, TRPC1 and TRPV4 were coincident with the nerve ending vesicle marker synaptophysin. Calcitonin gene-related peptide was exclusively confined to the myo- and epicardium of the atria. The small conductance Ca(2+)-activated K(+) channels (SK2 and SK4) were also present, however there was no relationship between SK and TRP channels. SK2 channels were expressed in nerves in the epicardium, while SK4 channels were in some regions of the endocardium but appeared to be present in epithelial cells rather than sensory endings. In conclusion, we have provided the first evidence for TRPC1 and TRPV4 channels as potential contributors to mechanosensation in the atrial volume receptors.
Collapse
Affiliation(s)
- F C Shenton
- School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - S Pyner
- School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
80
|
Inoue R, Asanuma K, Seki T, Nagase M, Osafune K. [New therapeutic insights for chronic kidney disease provided by podocytology]. Nihon Yakurigaku Zasshi 2014; 143:27-33. [PMID: 24420134 DOI: 10.1254/fpj.143.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
81
|
Abstract
TRPC4 proteins comprise six transmembrane domains, a putative pore-forming region, and an intracellularly located amino- and carboxy-terminus. Among eleven splice variants identified so far, TRPC4α and TRPC4β are the most abundantly expressed and functionally characterized. TRPC4 is expressed in various organs and cell types including the soma and dendrites of numerous types of neurons; the cardiovascular system including endothelial, smooth muscle, and cardiac cells; myometrial and skeletal muscle cells; kidney; and immune cells such as mast cells. Both recombinant and native TRPC4-containing channels differ tremendously in their permeability and other biophysical properties, pharmacological modulation, and mode of activation depending on the cellular environment. They vary from inwardly rectifying store-operated channels with a high Ca(2+) selectivity to non-store-operated channels predominantly carrying Na(+) and activated by Gαq- and/or Gαi-coupled receptors with a complex U-shaped current-voltage relationship. Thus, individual TRPC4-containing channels contribute to agonist-induced Ca(2+) entry directly or indirectly via depolarization and activation of voltage-gated Ca(2+) channels. The differences in channel properties may arise from variations in the composition of the channel complexes, in the specific regulatory pathways in the corresponding cell system, and/or in the expression pattern of interaction partners which comprise other TRPC proteins to form heteromultimeric channels. Additional interaction partners of TRPC4 that can mediate the activity of TRPC4-containing channels include (1) scaffolding proteins (e.g., NHERF) that may mediate interactions with signaling molecules in or in close vicinity to the plasma membrane such as Gα proteins or phospholipase C and with the cytoskeleton, (2) proteins in specific membrane microdomains (e.g., caveolin-1), or (3) proteins on cellular organelles (e.g., Stim1). The diversity of TRPC4-containing channels hampers the development of specific agonists or antagonists, but recently, ML204 was identified as a blocker of both recombinant and endogenous TRPC4-containing channels with an IC50 in the lower micromolar range that lacks activity on most voltage-gated channels and other TRPs except TRPC5 and TRPC3. Lanthanides are specific activators of heterologously expressed TRPC4- and TRPC5-containing channels but can block individual native TRPC4-containing channels. The biological relevance of TRPC4-containing channels was demonstrated by knockdown of TRPC4 expression in numerous native systems including gene expression, cell differentiation and proliferation, formation of myotubes, and axonal regeneration. Studies of TRPC4 single and TRPC compound knockout mice uncovered their role for the regulation of vascular tone, endothelial permeability, gastrointestinal contractility and motility, neurotransmitter release, and social exploratory behavior as well as for excitotoxicity and epileptogenesis. Recently, a single-nucleotide polymorphism (SNP) in the Trpc4 gene was associated with a reduced risk for experience of myocardial infarction.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | | | |
Collapse
|
82
|
G protein-coupled receptor signalling potentiates the osmo-mechanical activation of TRPC5 channels. Pflugers Arch 2013; 466:1635-46. [DOI: 10.1007/s00424-013-1392-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
83
|
Li Y, Jiang H, Ruan C, Zhong J, Gao P, Zhu D, Niu W, Guo S. The interaction of transient receptor potential melastatin 7 with macrophages promotes vascular adventitial remodeling in transverse aortic constriction rats. Hypertens Res 2013; 37:35-42. [PMID: 24026041 DOI: 10.1038/hr.2013.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 12/23/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7), a novel channel kinase, has been recently identified in the vasculature. However, its regulation and function in vascular diseases remain poorly understood. To address this lack of knowledge, we sought to examine whether TRPM7 can mediate the vascular remodeling process induced by pressure overload in the right common carotid artery proximal to the band (RCCA-B) in male Sprague-Dawley rats with transverse aortic constriction (TAC). The contribution of TRPM7 to amplified vascular remodeling after TAC was tested using morphometric and western blot analyses. Pressure overload-induced vascular wall thickening, especially in the adventitia, was readily detected in RCCA-B. The TRPM7 level was increased with a simultaneous accumulation of macrophages in the adventitia of RCCA-B, whereas the anti-inflammatory molecule annexin-1, a TRPM7 downstream target, was decreased. After the addition of the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB), significant reductions in macrophage accumulation as well as the expression of monocyte chemotactic protein-1, SM-22-α and collagen I were observed, whereas annexin-1 was rescued. Finally, in cultured vascular adventitial fibroblasts treated with macrophage-conditioned medium, there were marked increases in the expression of TRPM7 and SM-22-α with a concurrent reduction in annexin-1 expression; these effects were largely prevented by treatment with 2-APB and specific anti-TRPM7 small interfering RNA. Our findings provide the first demonstration of the potential regulatory roles of TRPM7 in the vascular inflammation, pressure overload-mediated vascular adventitial collagen accumulation and cell phenotypic transformation in TAC rats. The targeting of TRPM7 has potential therapeutic importance for vascular diseases.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Jiang
- Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengchao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiuchang Zhong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingliang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenquan Niu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Guo
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
84
|
Shi J, Birnbaumer L, Large WA, Albert AP. Myristoylated alanine-rich C kinase substrate coordinates native TRPC1 channel activation by phosphatidylinositol 4,5-bisphosphate and protein kinase C in vascular smooth muscle. FASEB J 2013; 28:244-55. [PMID: 24022404 DOI: 10.1096/fj.13-238022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Canonical transient receptor potential 1 (TRPC1) Ca(2+)-permeable cation channels contribute to vascular tone and blood vessel remodeling and represent potential therapeutic targets for cardiovascular disease. Protein kinase C (PKC) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] are obligatory for native TRPC1 channel activation in vascular smooth muscle cells (VSMCs) but how PKC and PI(4,5)P2 act together to induce channel gating remains unresolved. The present study reveals that myristoylated alanine-rich C kinase substrate (MARCKS) protein coordinates activation of TRPC1 channels by PKC and PI(4,5)P2. TRPC1 channels and MARCKS form signaling complexes with PI(4,5)P2 bound to MARCKS; in this configuration TRPC1 channels are closed. Activators of TRPC1 channels induce PKC phosphorylation of TRPC1 proteins, which causes dissociation of TRPC1 subunits from MARCKS and release of PI(4,5)P2 from MARCKS; PI(4,5)P2 subsequently binds to TRPC1 subunits to induce channel opening. Calmodulin acting at, or upstream of, MARCKS is also required for TRPC1 channel opening through a similar gating mechanism involving PKC and PI(4,5)P2. These novel findings show that MARCKS coordinates native TRPC1 channel activation in VSMCs by acting as a reversible PI(4,5)P2 buffer, which is regulated by PKC-mediated TRPC1 phosphorylation. Moreover, our data provide evidence that PI(4,5)P2 is a gating ligand of TRPC1 channels.
Collapse
Affiliation(s)
- Jian Shi
- 1Pharmacology and Cell Physiology, Division of Biomedical Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | |
Collapse
|
85
|
Calcium influx through the TRPV1 channel of endothelial cells (ECs) correlates with a stronger adhesion between monocytes and ECs. Adv Med Sci 2013. [PMID: 23183769 DOI: 10.2478/v10039-012-0044-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Atherosclerosis is thought to be initiated by the transendothelial migration of monocytes. In the early stage of this process, the adhesion of monocytes to endothelial cells is supported by an increase in the intracellular concentration of calcium ion ([Ca(2+)]i) in endothelial cells. However, the main source of Ca(2+) has been unclear. In this study, the changes in ionic transmittance and [Ca(2+)]i due to the adhesion of monocytes were continuously measured by an electrophysiological technique and fluorescent imaging. Especially, we focused on transient receptor potential vanilloid channel 1 (TRPV1) as a Ca(2+) channel that could influence the adhesion of monocytes. MATERIAL AND METHODS Whole-cell current was continuously recorded in human umbilical vein endothelial cells (HUVECs) by a patch electrode. RESULTS The adhesion of monocytes (THP-1) induced a transient inward current in HUVECs, as well as an elevation of [Ca(2+)]i. This inward element was abolished by the application of 100 nM SB366,791, a selective antagonist of TRPV1 channel. Furthermore, SB366,791 significantly decreased the number of THP-1 cells that adhered to HUVECs (control: 231 ± 38, SB366,791: 96 ± 16 cells/mm2). CONCLUSION These results suggest that an inward calcium current via the TRPV1 channels of endothelial cells correlates with a stronger adhesion between monocytes and endothelial cells.
Collapse
|
86
|
Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands. Cell Tissue Res 2013; 354:507-19. [DOI: 10.1007/s00441-013-1691-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/26/2013] [Indexed: 01/27/2023]
|
87
|
Kozhevnikova LM, Zharkikh IL, Avdonin PV. Calmodulin inhibitors suppress calcium signaling from serotonin receptors in smooth muscle cells and abolish vasoconstrictive response on intravenous introduction of serotonin. BIOL BULL+ 2013. [DOI: 10.1134/s1062359013040080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
88
|
Eijkelkamp N, Quick K, Wood JN. Transient Receptor Potential Channels and Mechanosensation. Annu Rev Neurosci 2013; 36:519-46. [DOI: 10.1146/annurev-neuro-062012-170412] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Kathryn Quick
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| |
Collapse
|
89
|
Wu Z, Yang Q, Crook RJ, O'Neil RG, Walters ET. TRPV1 channels make major contributions to behavioral hypersensitivity and spontaneous activity in nociceptors after spinal cord injury. Pain 2013; 154:2130-2141. [PMID: 23811042 DOI: 10.1016/j.pain.2013.06.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 12/27/2022]
Abstract
Chronic neuropathic pain is often a severe and inadequately treated consequence of spinal cord injury (SCI). Recent findings suggest that SCI pain is promoted by spontaneous activity (SA) generated chronically in cell bodies of primary nociceptors in dorsal root ganglia (DRG). Many nociceptors express transient receptor potential V1 (TRPV1) channels, and in a preceding study most dissociated DRG neurons exhibiting SA were excited by the TRPV1 activator, capsaicin. The present study investigated roles of TRPV1 channels in behavioral hypersensitivity and nociceptor SA after SCI. Contusive SCI at thoracic segment T10 increased expression of TRPV1 protein in lumbar DRG 1 month after injury and enhanced capsaicin-evoked ion currents and Ca2+ responses in dissociated small DRG neurons. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hind limb withdrawal responses to mechanical and thermal stimuli at a dose that did not block detection of noxious heat. Similar reversal of behavioral hypersensitivity was induced by intrathecal oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of SA in dissociated nociceptors after SCI. Prolonged application of very low concentrations of capsaicin produced nondesensitizing firing similar to SA, and this effect was enhanced by prior SCI. These results show that TRPV1 makes important contributions to pain-related hypersensitivity long after SCI, and suggest a role for TRPV1-dependent enhancement of nociceptor SA that offers a promising target for treating chronic pain after SCI.
Collapse
Affiliation(s)
- Zizhen Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
90
|
Zhang YH, Wu HJ, Che H, Sun HY, Cheng LC, Li X, Au WK, Tse HF, Li GR. Functional transient receptor potential canonical type 1 channels in human atrial myocytes. Pflugers Arch 2013; 465:1439-49. [PMID: 23686296 DOI: 10.1007/s00424-013-1291-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Transient receptor potential (TRP) channels are not well understood in human atrium, and the present study was therefore designed to investigate whether TRPC channels would mediate the nonselective cation current reported previously and are involved in the formation of store-operated Ca(2+) entry (SOCE) channels in human atrial myocytes using approaches of whole-cell patch voltage-clamp, RT-PCR, Western blotting, co-immunoprecipitation, and confocal scanning approaches, etc. We found that a nonselective cation current was recorded under K(+)-free conditions in human atrial myocytes, and the current was inhibited by the TRP channel blocker La(3+). Thapsigargin enhanced the current, and its effect was suppressed by La(3+) and prevented by pipette inclusion of anti-TRPC1 antibody. Endothlin-1 and angiotensin II enhanced the current that could be inhibited by La(3+). Gene and protein expression of TRPC1 channels were abundant in human atria. In addition, mRNA and protein of STIM1 and Orai1, components of SOCE channels, were abundantly expressed in human atria. Co-immunoprecipitation analysis demonstrated an interaction of TRPC1 with STIM1 and/or Orai1. Ca(2+) signaling mediated by SOCE channels was detected by a confocal microscopy technique. These results demonstrate the novel evidence that TRPC1 channels not only mediate the nonselective cation current, but also form SOCE channels in human atria as a component. TRPC1 channels can be activated by endothelin-1 or angiotensin II, which may be involved in the atrial electrical remodeling in patients with atrial fibrillation.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Xu T, Yue W, Li CW, Yao X, Yang M. Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells. LAB ON A CHIP 2013; 13:1060-9. [PMID: 23403699 DOI: 10.1039/c3lc40880a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A microfluidic microdevice was developed to exert mechanical stimulation on an individual suspension cell for mechanosensation research. In this microfluidic chip, an individual cell was isolated from a population of cells, and trapped in a microchannel with a compressive component made of a deflectable membrane. The mechanosensation of HL60 cells (leukemic cells) was studied using this chip, and the results showed that mechanical stimulations could trigger extracellular calcium to flow into HL60 cells through ion channels on cell membranes. The tension on individual HL60 cells exerted by the microdevice was showed large variations in the threshold of mechanosensation activation. In contrast to previous reports using patch clamp technique, there was little influence of cytoskeleton interruption on HL60 cell mechanosensation triggered by whole-cell compression. Additionally, two functional units were integrated in one chip for carrying out mechanosensation study in parallel, where HL60 cells (leukemic cells) and Jurkat cells (lymphocytes) were shown to respond to mechanical stimulation with different kinetics. The results demonstrated that the microfluidic device provides a novel approach to investigating the mechanosensation of single suspension cells in high-throughput.
Collapse
Affiliation(s)
- Tao Xu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
92
|
Takahashi K, Kakimoto Y, Toda K, Naruse K. Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 2013; 17:225-32. [PMID: 23441631 PMCID: PMC3822585 DOI: 10.1111/jcmm.12027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Mechanosensitivity is essential for heart function just as for all other cells and organs in the body, and it is involved in both normal physiology and diseases processes of the cardiovascular system. In this review, we have outlined the relationship between mechanosensitivity and heart physiology, including the Frank-Starling law of the heart and mechanoelectric feedback. We then focused on molecules involved in mechanotransduction, particularly mechanosensitive ion channels. We have also discussed the involvement of mechanosensitivity in heart diseases, such as arrhythmias, hypertrophy and ischaemic heart disease. Finally, mechanobiology in cardiogenesis is described with regard to regenerative medicine.
Collapse
Affiliation(s)
- Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | | | | | | |
Collapse
|
93
|
Lab MJ, Bhargava A, Wright PT, Gorelik J. The scanning ion conductance microscope for cellular physiology. Am J Physiol Heart Circ Physiol 2013; 304:H1-11. [DOI: 10.1152/ajpheart.00499.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The quest for nonoptical imaging methods that can surmount light diffraction limits resulted in the development of scanning probe microscopes. However, most of the existing methods are not quite suitable for studying biological samples. The scanning ion conductance microscope (SICM) bridges the gap between the resolution capabilities of atomic force microscope and scanning electron microscope and functional capabilities of conventional light microscope. A nanopipette mounted on a three-axis piezo-actuator, scans a sample of interest and ion current is measured between the pipette tip and the sample. The feedback control system always keeps a certain distance between the sample and the pipette so the pipette never touches the sample. At the same time pipette movement is recorded and this generates a three-dimensional topographical image of the sample surface. SICM represents an alternative to conventional high-resolution microscopy, especially in imaging topography of live biological samples. In addition, the nanopipette probe provides a host of added modalities, for example using the same pipette and feedback control for efficient approach and seal with the cell membrane for ion channel recording. SICM can be combined in one instrument with optical and fluorescent methods and allows drawing structure-function correlations. It can also be used for precise mechanical force measurements as well as vehicle to apply pressure with precision. This can be done on living cells and tissues for prolonged periods of time without them loosing viability. The SICM is a multifunctional instrument, and it is maturing rapidly and will open even more possibilities in the near future.
Collapse
Affiliation(s)
- Max J. Lab
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| | - Anamika Bhargava
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| | - Peter T. Wright
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| | - Julia Gorelik
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| |
Collapse
|
94
|
Suresh Babu S, Wojtowicz A, Freichel M, Birnbaumer L, Hecker M, Cattaruzza M. Mechanism of stretch-induced activation of the mechanotransducer zyxin in vascular cells. Sci Signal 2012; 5:ra91. [PMID: 23233529 DOI: 10.1126/scisignal.2003173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vascular cells respond to supraphysiological amounts of stretch with a characteristic phenotypic change that results in dysfunctional remodeling of the affected arteries. Although the pathophysiological consequences of stretch-induced signaling are well characterized, the mechanism of mechanotransduction is unclear. We focused on the mechanotransducer zyxin, which translocates to the nucleus to drive gene expression in response to stretch. In cultured human endothelial cells and perfused femoral arteries isolated from wild-type and several knockout mouse strains, we characterized a multistep signaling pathway whereby stretch led to a transient receptor potential channel 3-mediated release of the endothelial vasoconstrictor peptide endothelin-1 (ET-1). ET-1, through autocrine activation of its B-type receptor, elicited the release of pro-atrial natriuretic peptide (ANP), which caused the autocrine activation of the ANP receptor guanylyl cyclase A (GC-A). Activation of GC-A, in turn, led to protein kinase G-mediated phosphorylation of zyxin at serine 142, thereby triggering the translocation of zyxin to the nucleus, where it was required for stretch-induced gene expression. Thus, we have identified a stretch-induced signaling pathway in vascular cells that leads to the activation of zyxin, a cytoskeletal protein specifically involved in transducing mechanical stimuli.
Collapse
Affiliation(s)
- Sahana Suresh Babu
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
95
|
Horton JS, Buckley CL, Stokes AJ. Successful TRPV1 antagonist treatment for cardiac hypertrophy and heart failure in mice. Channels (Austin) 2012; 7:17-22. [PMID: 23221478 DOI: 10.4161/chan.23006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heart failure is becoming a global epidemic. It exerts a staggering toll on quality of life, and substantial medical and economic impact. In a pre-clinical model of cardiac hypertrophy and heart failure, we were able to overcome loss of heart function by administering the TRPV1 antagonist BCTC (4-(3-Chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide). The results presented here identify TRPV1 antagonists as new treatment options for cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jaime S Horton
- Laboratory of Experimental Medicine, Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | | | | |
Collapse
|
96
|
Friedrich O, Wagner S, Battle AR, Schürmann S, Martinac B. Mechano-regulation of the beating heart at the cellular level--mechanosensitive channels in normal and diseased heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:226-38. [PMID: 22959495 DOI: 10.1016/j.pbiomolbio.2012.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 01/22/2023]
Abstract
The heart as a contractile hollow organ finely tunes mechanical parameters such as stroke volume, stroke pressure and cardiac output according to filling volumes, filling pressures via intrinsic and neuronal routes. At the cellular level, cardiomyocytes in beating hearts are exposed to large mechanical stress during successive heart beats. Although the mechanisms of excitation-contraction coupling are well established in mammalian heart cells, the putative contribution of mechanosensitive channels to Ca²⁺ homeostasis, Ca²⁺ signaling and force generation has been primarily investigated in relation to heart disease states. For instance, transient receptor potential channels (TRPs) are up-regulated in animal models of congestive heart failure or hypertension models and seem to play a vital role in pathological Ca²⁺ overload to cardiomyocytes, thus aggravating the pathology of disease at the cellular level. Apart from that, the contribution of mechanosensitive channels (MsC) in the normal beating heart to the downstream force activation cascade has not been addressed. We present an overview of the current literature and concepts of mechanosensitive channel involvement in failing hearts and cardiomyopathies and novel data showing a likely contribution of Ca²⁺ influx via mechanosensitive channels in beating normal cardiomyocytes during systolic shortening.
Collapse
Affiliation(s)
- Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | | | | | | | | |
Collapse
|
97
|
Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells. Pflugers Arch 2012; 464:261-72. [PMID: 22820913 DOI: 10.1007/s00424-012-1136-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension, the main disease of the pulmonary circulation, is characterized by an increase in pulmonary vascular resistance, involving proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). However, cellular and molecular mechanisms underlying these phenomena remain to be identified. In the present study, we thus investigated in rat intrapulmonary arteries (1) the expression and the functional activity of TRPV1 and TRPV4, (2) the PASMC migration triggered by these TRPV channels, and (3) the associated reorganization of the cytoskeleton. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis demonstrated expression of TRPV1 and TRPV4 mRNA in rat intrapulmonary arteries. These results were confirmed at the protein level by western blot. Using microspectrofluorimetry (indo-1), we show that capsaicin and 4α-phorbol-12,13-didecanoate (4α-PDD), selective agonists of TRPV1 and TRPV4, respectively, increased the intracellular calcium concentration of PASMC. Furthermore, stimulation of TRPV1 and TRPV4 induced PASMC migratory responses, as assessed by two different methods (a modified Boyden chamber assay and a wound-healing migration assay). This response cannot seem to be attributed to a proliferative effect as assessed by BrdU and Wst-1 colorimetric methods. Capsaicin- and 4α-PDD-induced calcium and migratory responses were inhibited by the selective TRPV1 and TRPV4 blockers, capsazepine and HC067047, respectively. Finally, as assessed by immunostaining, these TRPV-induced migratory responses were associated with reorganization of the F-actin cytoskeleton and the tubulin and intermediate filament networks. In conclusion, these data point out, for the first time, the implication of TRPV1 and TRPV4 in rat PASMC migration, suggesting the implication of these TRPV channels in the physiopathology of pulmonary hypertension.
Collapse
|
98
|
Zhang YH, Sun HY, Chen KH, Du XL, Liu B, Cheng LC, Li X, Jin MW, Li GR. Evidence for functional expression of TRPM7 channels in human atrial myocytes. Basic Res Cardiol 2012; 107:282. [PMID: 22802050 PMCID: PMC3442166 DOI: 10.1007/s00395-012-0282-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/15/2012] [Accepted: 07/05/2012] [Indexed: 12/16/2022]
Abstract
Transient receptor potential melastatin-7 (TRPM7) channels have been recently reported in human atrial fibroblasts and are believed to mediate fibrogenesis in human atrial fibrillation. The present study investigates whether TRPM7 channels are expressed in human atrial myocytes using whole-cell patch voltage-clamp, RT-PCR and Western blotting analysis. It was found that a gradually activated TRPM7-like current was recorded with a K+- and Mg2+-free pipette solution in human atrial myocytes. The current was enhanced by removing extracellular Ca2+ and Mg2+, and the current increase could be inhibited by Ni2+ or Ba2+. The TRPM7-like current was potentiated by acidic pH and inhibited by La3+ and 2-aminoethoxydiphenyl borate. In addition, Ca2+-activated TRPM4-like current was recorded in human atrial myocytes with the addition of the Ca2+ ionophore A23187 in bath solution. RT-PCR and Western immunoblot analysis revealed that in addition to TRPM4, TRPM7 channel current, mRNA and protein expression were evident in human atrial myocytes. Interestingly, TRPM7 channel protein, but not TRPM4 channel protein, was significantly increased in human atrial specimens from the patients with atrial fibrillation. Our results demonstrate for the first time that functional TRPM7 channels are present in human atrial myocytes, and the channel expression is upregulated in the atria with atrial fibrillation.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Sukharev S, Sachs F. Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 2012; 125:3075-83. [PMID: 22797911 DOI: 10.1242/jcs.092353] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells perceive force through a variety of molecular sensors, of which the mechanosensitive ion channels are the most efficient and act the fastest. These channels apparently evolved to prevent osmotic lysis of the cell as a result of metabolite accumulation and/or external changes in osmolarity. From this simple beginning, nature developed specific mechanosensitive enzymes that allow us to hear, maintain balance, feel touch and regulate many systemic variables, such as blood pressure. For a channel to be mechanosensitive it needs to respond to mechanical stresses by changing its shape between the closed and open states. In that way, forces within the lipid bilayer or within a protein link can do work on the channel and stabilize its state. Ion channels have the highest turnover rates of all enzymes, and they can act as both sensors and effectors, providing the necessary fluxes to relieve osmotic pressure, shift the membrane potential or initiate chemical signaling. In this Commentary, we focus on the common mechanisms by which mechanical forces and the local environment can regulate membrane protein structure, and more specifically, mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
100
|
Kuipers AJ, Middelbeek J, van Leeuwen FN. Mechanoregulation of cytoskeletal dynamics by TRP channels. Eur J Cell Biol 2012; 91:834-46. [PMID: 22727433 DOI: 10.1016/j.ejcb.2012.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 01/29/2023] Open
Abstract
The ability of cells to respond to mechanical stimulation is crucial to a variety of biological processes, including cell migration, axonal outgrowth, perception of pain, cardiovascular responses and kidney physiology. The translation of mechanical cues into cellular responses, a process known as mechanotransduction, typically takes place in specialized multiprotein structures such as cilia, cell-cell or cell-matrix adhesions. Within these structures, mechanical forces such as shear stress and membrane stretch activate mechanosensitive proteins, which set off a series of events that lead to altered cell behavior. Members of the transient receptor potential (TRP) family of cation channels are emerging as important players in mechanotransductory pathways. Localized within mechanosensory structures, they are activated by mechanical stimuli and trigger fast as well as sustained cytoskeletal responses. In this review, we will provide an overview of how TRP channels affect cytoskeletal dynamics in various mechano-regulated processes.
Collapse
Affiliation(s)
- Arthur J Kuipers
- Laboratory of Pediatric Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, The Netherlands
| | | | | |
Collapse
|