51
|
Lai YH, Liu WL, Lee TY, Kuo CW, Liu YR, Huang CY, Chen YH, Chen IL, Wu SH, Wang SC, Lee PY, Liu CC, Lo J, Chang YC, Kuo HF, Hsieh CC, Li CY, Liu PL. Magnolol regulates miR-200c-3p to inhibit epithelial-mesenchymal transition and retinoblastoma progression by modulating the ZEB1/E-cadherin axis in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154597. [PMID: 36603340 DOI: 10.1016/j.phymed.2022.154597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Retinoblastoma, the most common pediatric intraocular malignancy, can develop during embryogenesis, with most children being diagnosed at 3-4 years of age. Multimodal therapies are typically associated with high levels of cytotoxicity and side effects. Therefore, the development of novel treatments with minimal side effects is crucial. Magnolol has a significant anti-tumor effect on various cancers. However, its antitumor effect on retinoblastoma remains unclear. PURPOSE The study aimed to determine the effects of magnolol on the regulation of EMT, migration, invasion, and cancer progression in retinoblastoma and the modulation of miR-200c-3p expression and the Wnt/ zinc finger E-box binding homeobox 1 (ZEB1)/E-cadherin axis in vivo and in vitro. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to evaluate magnolol-induced cell toxicity in the Y79 retinoblastoma cell line. Flow cytometry and immunostaining assays were performed to investigate the magnolol-regulated mitochondrial membrane potential and the intracellular and mitochondrial reactive oxygen species levels in Y79 retinoblastoma cells. Orthotopic and subcutaneous xenograft experiments were performed in eight-week-old male null mice to study retinoblastoma progression and metastasis. In situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to evaluate the level of the anti-cancer miRNA miR-200c-3p. The mRNA and protein levels of E-cadherin, β-catenin, α-smooth muscle actin (α-SMA), fibronectin-1, and ZEB1 were analyzed using RT-qPCR, immunoblot, immunocytochemistry, and immunohistochemistry assays in vitro and in vivo. RESULTS Magnolol increased E-cadherin levels and reduced the activation of the EMT signaling pathway, EMT, tumor growth, metastasis, and cancer progression in the Y79 retinoblastoma cell line as well as in the orthotopic and subcutaneous xenograft animal models. Furthermore, magnolol increased the expression of miR-200c-3p. Our results demonstrate that miRNA-200c-3p inhibits EMT progression through the Wnt16/β-catenin/ZEB1/E-cadherin axis, and the ZEB1 silencing response shows that miR-200c-3p regulates ZEB1-mediated EMT in retinoblastoma. CONCLUSION Magnolol has an antitumor effect by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma. The anti-tumor effect of magnolol by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma has been elucidated for the first time.
Collapse
Affiliation(s)
- Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Tsung-Ying Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Wen Kuo
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chi-Yuan Huang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - I-Ling Chen
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Hui Wu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsuan-Fu Kuo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chong-Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
52
|
Tellería F, Mansilla S, Méndez D, Sepúlveda M, Araya-Maturana R, Castro L, Trostchansky A, Fuentes E. The Use of Triphenyl Phosphonium Cation Enhances the Mitochondrial Antiplatelet Effect of the Compound Magnolol. Pharmaceuticals (Basel) 2023; 16:210. [PMID: 37259359 PMCID: PMC9958981 DOI: 10.3390/ph16020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 08/31/2023] Open
Abstract
Although platelets are anucleated cells, they have fully functional mitochondria, and currently, it is known that several processes that occur in the platelet require the action of mitochondria. There are plenty of mitochondrial-targeted compounds described in the literature related to cancer, however, only a small number of studies have approached their interaction with platelet mitochondria and/or their effects on platelet activity. Recent studies have shown that magnolia extract and mitochondria-targeted magnolol can inhibit mitochondrial respiration and cell proliferation in melanoma and oral cancer cells, respectively, and they can also induce ROS and mitophagy. In this study, the effect of triphenylphosphonium cation, linked by alkyl chains of different lengths, to the organic compound magnolol on human-washed platelets was evaluated. We demonstrated that the addition of triphenylphosphonium by a four-carbon linker to magnolol (MGN4) considerably enhanced the Magnolol antiplatelet effect by a 3-fold decrease in the IC50. Additionally, platelets exposed to MGN4 5 µM showed several differences from the control including increased basal respiration, collagen-induced respiration, ATP-independent respiration, and reduced ATP-dependent respiration and non-mitochondrial respiration.
Collapse
Affiliation(s)
- Francisca Tellería
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego Méndez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Magdalena Sepúlveda
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Fuentes
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
53
|
Pandey P, Kumarihamy M, Chaturvedi K, Ibrahim MAM, Lambert JA, Godfrey M, Doerksen RJ, Muhammad I. In Vitro and In Silico Studies of Neolignans from Magnolia grandiflora L. Seeds against Human Cannabinoids and Opioid Receptors. Molecules 2023; 28:molecules28031253. [PMID: 36770918 PMCID: PMC9920749 DOI: 10.3390/molecules28031253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
Magnolia grandiflora L. (Magnoliaceae) is a plant of considerable medicinal significance; its flowers and seeds have been used in various traditional remedies. Radioligand binding assays of n-hexane seeds extract showed displacement of radioligand for cannabinoid (CB1 and CB2) and opioid δ (delta), κ (kappa), and µ (mu) receptors. Bioactivity-guided fractionation afforded 4-O-methylhonokiol (1), magnolol (2), and honokiol (3), which showed higher binding to cannabinoid rather than opioid receptors in radioligand binding assays. Compounds 1-3, together with the dihydro analog of 2 (4), displayed selective affinity towards CB2R (Ki values of 0.29, 1.4, 1.94, and 0.99 μM, respectively), compared to CB1R (Ki 3.85, 17.82, 14.55, and 19.08 μM, respectively). An equal mixture of 2 and 3 (1:1 ratio) showed additive displacement activity towards the tested receptors compared to either 2 or 3 alone, which in turn provides an explanation for the strong displacement activity of the n-hexane extract. Due to the unavailability of an NMR or X-ray crystal structure of bound neolignans with the CB1 and CB2 receptors, a docking study was performed to predict ligand-protein interactions at a molecular level and to delineate structure-activity relationships (SAR) of the neolignan analogs with the CB1 and CB2 receptors. The putative binding modes of neolignans 1-3 and previously reported related analogs (4, 4a, 5, 5a, 6, 6a, and 6b) into the active site of the CB1 and CB2 receptors were assessed for the first time via molecular docking and binding free-energy (∆G) calculations. The docking and ∆G results revealed the importance of a hydroxyl moiety in the molecules that forms strong H-bonding with Ser383 and Ser285 within CB1R and CB2R, respectively. The impact of a shift from a hydroxyl to the methoxy group on experimental binding affinity to CB1R versus CB2R was explained through ∆G data and the orientation of the alkyl chain within the CB1R. This comprehensive SAR, influenced by the computational study and the observed in vitro displacement binding affinities, has indicated the potential of magnolia neolignans for developing new CB agonists for potential use as analgesics, anti-inflammatory agents, or anxiolytics.
Collapse
Affiliation(s)
- Pankaj Pandey
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Correspondence: (P.P.); (I.M.); Tel.: +1-(662)-915-1005 (P.P.); +1-(662)-915-1051 (I.M.)
| | - Mallika Kumarihamy
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Krishna Chaturvedi
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS 38677, USA
| | - Mohamed A. M. Ibrahim
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Janet A. Lambert
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Murrell Godfrey
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS 38677, USA
| | - Robert J. Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Ilias Muhammad
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Correspondence: (P.P.); (I.M.); Tel.: +1-(662)-915-1005 (P.P.); +1-(662)-915-1051 (I.M.)
| |
Collapse
|
54
|
Cardullo N, Monti F, Muccilli V, Amorati R, Baschieri A. Reaction with ROO• and HOO• Radicals of Honokiol-Related Neolignan Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020735. [PMID: 36677790 PMCID: PMC9867055 DOI: 10.3390/molecules28020735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose extracts have been employed in oriental medicine to treat several disorders, showing a variety of biological properties, including antitumor activity, potentially related to radical scavenging. Six bisphenol neolignans with structural motifs related to the natural bioactive honokiol were synthesized. Their chain-breaking antioxidant activity was evaluated in the presence of peroxyl (ROO•) and hydroperoxyl (HOO•) radicals by both experimental and computational methods. Depending on the number and position of the hydroxyl and alkyl groups present on the molecules, these derivatives are more or less effective than the reference natural compound. The rate constant of the reaction with ROO• radicals for compound 7 is two orders of magnitude greater than that of honokiol. Moreover, for compounds displaying quinonic oxidized forms, we demonstrate that the addition of 1,4 cyclohexadiene, able to generate HOO• radicals, restores their antioxidant activity, because of the reducing capability of the HOO• radicals. The antioxidant activity of the oxidized compounds in combination with 1,4-cyclohexadiene is, in some cases, greater than that found for the starting compounds towards the peroxyl radicals. This synergy can be applied to maximize the performances of these new bisphenol neolignans.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Riccardo Amorati
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
- Correspondence: (R.A.); (A.B.)
| | - Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy
- Correspondence: (R.A.); (A.B.)
| |
Collapse
|
55
|
Wu F, Wei Q, Yang M, Deng R, Liu S. Analysis of chemical components in two tree species of magnoliaceae, Magnolia sumatrana var. glauca (Blume) Figlar & Noot and Magnolia hypolampra (Dandy) Figlar. Nat Prod Res 2023; 37:328-332. [PMID: 34328033 DOI: 10.1080/14786419.2021.1958216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The essential oils from roots, branches, leaves and bark of Magnolia sumatrana var. glauca (Blume) Figlar & Noot and Magnolia hypolampra (Dandy) Figlar were extracted by ultrasonic-assisted extraction and the chemicals were determined by gas chromatography-mass spectroscopy (GC-MS). The major constitutes of M. sumatrana var. glauca were trans-cinnamaldehyde (27.55%), caryophyllene (1.20-10.14%), (+)-bulnesol (9.70%), α-caryophyllene (2.35-6.35%), α-eudesmol (1.08-6.17%). M. hypolampra was characterized by the presence of safrole (0.18-35.01%), (+) cycloisosativene (18.70%), oxirane, hexadecyl- (0.72-12.79%), β-cubebene (1.53-8.90%), (Z)-14-tricosenyl formate (8.65%). This is the first study of the composition of essential oils from the roots, branches and bark of M. sumatrana var. glauca and the roots of M. hypolampra, and some compounds were being described for the first time. Combined with present results and literatures, phytochemicals may be affected by multi-factors such as organs, growing location, and extraction methods, providing more approaches for further exploration of the non-wood resources of forestry species.
Collapse
Affiliation(s)
- Fanglan Wu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Qiusi Wei
- State-ownYachang Forest Farm of Guangxi Zhuang Autonomous Region, Baise, Guangxi, PR China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Rongyan Deng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Shinan Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| |
Collapse
|
56
|
Wang L, Zong S, Wang H, Wu C, Wu G, Li F, Yu G, Li D, Zhu M. Dothideomins A-D, Antibacterial Polycyclic Bisanthraquinones from the Endophytic Fungus Dothideomycetes sp. BMC-101. JOURNAL OF NATURAL PRODUCTS 2022; 85:2789-2795. [PMID: 36480660 DOI: 10.1021/acs.jnatprod.2c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Four new bisanthraquinones, dothideomins A-D (1-4), were identified from Dothideomycetes sp. BMC-101, an endophytic fungus isolated from Magnolia grandiflora L. leaves. Their chemical structures were established by NMR analysis, single-crystal X-ray crystallography, and ECD analysis. Dothideomins A-D (1-4) were characterized by an unusual 6/6/6/5/6/3/6/6 octocyclic scaffold (1 and 2) and a 6/6/6/5/6/6/6 heptacyclic scaffold (3 and 4), respectively. All compounds, especially 1 and 3, exhibited potent antibacterial activity with MIC values ranging from 0.4 to 0.8 μg/mL.
Collapse
Affiliation(s)
- Lusheng Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Shikun Zong
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Haotian Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Chengzhu Wu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Feng Li
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Meilin Zhu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, People's Republic of China
| |
Collapse
|
57
|
Orphan Nuclear Receptor Nur77 Mediates the Lethal Endoplasmic Reticulum Stress and Therapeutic Efficacy of Cryptomeridiol in Hepatocellular Carcinoma. Cells 2022; 11:cells11233870. [PMID: 36497127 PMCID: PMC9737475 DOI: 10.3390/cells11233870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) commonly possesses chronical elevation of IRE1α-ASK1 signaling. Orphan nuclear receptor Nur77, a promising therapeutic target in various cancer types, is frequently silenced in HCC. In this study, we show that cryptomeridiol (Bkh126), a naturally occurring sesquiterpenoid derivative isolated from traditional Chinese medicine Magnolia officinalis, has therapeutic efficacy in HCC by aggravating the pre-activated UPR and activating the silenced Nur77. Mechanistically, Nur77 is induced to sense IRE1α-ASK1-JNK signaling and translocate to the mitochondria, which leads to the loss of mitochondrial membrane potential (Δψm). The Bkh126-induced aggravation of ER stress and mitochondrial dysfunction result in increased cytotoxic product of reactive oxygen species (ROS). The in vivo anti-HCC activity of Bkh126 is superior to that of sorafenib, currently used to treat advanced HCC. Our study shows that Bkh126 induces Nur77 to connect ER stress to mitochondria-mediated cell killing. The identification of Nur77 as a molecular target of Bhk126 provides a basis for improving the leads for the further development of anti-HCC drugs.
Collapse
|
58
|
Galli GM, Strapazzon JV, Marchiori MS, Molosse VL, Deolindo GL, Fracasso M, Copetti PM, Morsch VM, Baldissera MD, Mendes RE, Boiago MM, da Silva AS. Addition of a Blend Based on Zinc Chloride and Lignans of Magnolia in the Diet of Broilers to Substitute for a Conventional Antibiotic: Effects on Intestinal Health, Meat Quality, and Performance. Animals (Basel) 2022; 12:ani12233249. [PMID: 36496770 PMCID: PMC9740953 DOI: 10.3390/ani12233249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to determine whether adding a blend based on zinc chloride and lignans from magnolia to the diet of broilers could replace conventional performance enhancers. For this study, 360 chickens were divided into four groups, with six repetitions per group (n = 15), as follows: CN, without promoter; GPC, control, 50 mg/kg of enramycin growth promoter; T-50, additive blend at a dose of 50 g/ton; and T-100, additive blend at a dose of 100 g/ton. Chickens fed with the additive blend at 50 g/ton showed a production efficiency index equal to that in the GPC group (p < 0.05). At 42 days, the lowest total bacterial count (TBC) was found in the T-100 group, followed by that in the GPC group (p < 0.001). For E. coli, the lowest count was observed in the T-100 group, followed by that in the CP and T-50 groups (p < 0.001). Higher villus/crypt ratios were observed in birds belonging to the T-100 and T-50 groups than in the GPC and NC groups (p < 0.001). Greater water retention was found in the T-50 group than in NC and T-100 groups (p < 0.048). The lowest water loss during cooking was also noted in the T-50 group (p < 0.033). We concluded that adding the antimicrobial blend, primarily at 50 g/ton, maintains the efficiency of the index of production and improves the intestinal health and meat quality of the birds.
Collapse
Affiliation(s)
- Gabriela M. Galli
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - João V. Strapazzon
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Maiara S. Marchiori
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Vitor L. Molosse
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Guilherme L. Deolindo
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Mateus Fracasso
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Priscila M. Copetti
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Vera M. Morsch
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Matheus D. Baldissera
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Ricardo E. Mendes
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense, Rodovia SC 283—km 17, Concordia 89703-720, SC, Brazil
| | - Marcel M. Boiago
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Aleksandro S. da Silva
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
- Correspondence: ; Tel.: +55-49-20499560
| |
Collapse
|
59
|
Anti-nociceptive effects of magnolol via inhibition of TRPV1/P2Y and TLR4/NF-κB signaling in a postoperative pain model. Life Sci 2022; 312:121202. [PMID: 36414090 DOI: 10.1016/j.lfs.2022.121202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
AIMS The current study explored the anti-nociceptive activity of magnolol in post-incisional inflammatory nociceptive pain. MAIN METHODS Preliminary, the anti-inflammatory, antioxidant, and cytoprotective potential of magnolol were confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. Next, an in-vivo model of planter incision surgery was established in BALB/c mice. Tramadol 50 mg/kg intraperitoneal (i.p.) and magnolol (0.1, 1, 10 mg/kg i.p. + 10 mg/kg intra planter) were administered after plantar incision surgery and behavior parameters were measured. KEY FINDINGS The results indicate that magnolol significantly suppressed post-incision-induced mechanical allodynia, thermal hyperalgesia, and paw edema. Magnolol promisingly inhibited post-incision induces nitric oxide (NO), malondialdehyde (MDA), eosinophil peroxidase (EPO), and neutrophil infiltration. Magnolol strongly attenuated post-incision inducing the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inhibited deoxyribonucleic acid (DNA) fragmentation. Magnolol markedly reverses post-incisional histopathological changes and biochemical composition of the incised paw. Magnolol markedly down-regulated post-incisional increase expression of transient receptor potential vanilloid 1 (TRPV1), purinergic (P2Y) nociceptors as well as toll-like receptor 4 (TLR4), nuclear factor kappa light chain enhancer of activated B cell (NF-κB), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) while upregulating the expression of inhibitor of nuclear kappa B alpha (IκB-α). SIGNIFICANCE The present study strongly suggests that magnolol significantly suppressed post-incisional inflammatory nociceptive pain by targeting TRPV1/P2Y and TLR4/NF-κB signaling.
Collapse
|
60
|
Jiang XY, Ren ZY, Zhang NK, Yang KC, Wang GX, Jiang HF. Screening and evaluating honokiol from Magnolia officinalis against Nocardia seriolae infection in largemouth bass (Micropterus Salmoides). JOURNAL OF FISH DISEASES 2022; 45:1599-1607. [PMID: 35801398 DOI: 10.1111/jfd.13683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Nocardiosis caused by Nocardia seriolae is a major threat to the aquaculture industry. Given that prolonged therapy administration can lead to a growth of antibiotic resistant strains, new antibacterial agents and alternative strategies are urgently needed. In this study, 80 medicinal plants were selected for antibacterial screening to obtain potent bioactive compounds against N. seriolae infection. The methanolic extracts of Magnolia officinalis exhibited the strongest antibacterial activity against N. seriolae with the minimal inhibitory concentration (MIC) of 12.5 μg/ml. Honokiol and magnolol as the main bioactive components of M. officinalis showed higher activity with the MIC value of 3.12 and 6.25 μg/ml, respectively. Sequentially, the evaluation of antibacterial activity of honokiol in vivo showed that honokiol had good biosafety, and could significantly reduce the bacterial load of nocardia-infected largemouth bass (p < .001). Furthermore, the survival rate of nocardia-infected fish fed with 100 mg/kg honokiol was obviously improved (p < .05). Collectively, these results suggest that medicinal plants represent a promising reservoir for discovering active components against Nocardia, and honokiol has great potential to be developed as therapeutic agents to control nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Xin-Yuan Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zong-Yi Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nian-Kun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ke-Chen Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
61
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
62
|
Xie C, Hu W, Gan L, Fu B, Zhao X, Tang D, Liao R, Ye L. Sulfation and Its Effect on the Bioactivity of Magnolol, the Main Active Ingredient of Magnolia Officinalis. Metabolites 2022; 12:870. [PMID: 36144273 PMCID: PMC9505486 DOI: 10.3390/metabo12090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Magnolol, the main active ingredient of Magnolia officinalis, has been reported to display anti-inflammatory activity. Sulfation plays an important role in the metabolism of magnolol. The magnolol sulfated metabolite was identified by the ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and a proton nuclear magnetic resonance (1H-NMR). The magnolol sulfation activity of seven major recombinant sulfotransferases (SULTs) isoforms (SULT1A1*1, SULT1A1*2, SULT1A2, SULT1A3, SULT1B1, SULT1E1, and SULT2A1) was analyzed. The metabolic profile of magnolol was investigated in liver S9 fractions from human (HLS9), rat (RLS9), and mouse (MLS9). The anti-inflammatory effects of magnolol and its sulfated metabolite were evaluated in RAW264.7 cells stimulated by lipopolysaccharide (LPS). Magnolol was metabolized into a mono-sulfated metabolite by SULTs. Of the seven recombinant SULT isoforms examined, SULT1B1 exhibited the highest magnolol sulfation activity. In liver S9 fractions from different species, the CLint value of magnolol sulfation in HLS9 (0.96 µL/min/mg) was similar to that in RLS9 (0.99 µL/min/mg) but significantly higher than that in MLS9 (0.30 µL/min/mg). Magnolol and its sulfated metabolite both significantly downregulated the production of inflammatory mediators (IL-1β, IL-6 and TNF-α) stimulated by LPS (p < 0.001). These results indicated that SULT1B1 was the major enzyme responsible for the sulfation of magnolol and that the magnolol sulfated metabolite exhibited potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lili Gan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dafu Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongxin Liao
- TCM-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- TCM-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
63
|
Zhu Y, Zhang L, Zhou X. Honokiol Improves Acne-like Lesions in a Rabbit Ear Model by Alleviating Hyperkeratosis and Sebum Secretion. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221126369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
The prevalence of acne vulgaris is high, but the topical retinoids used as the foundation of treatment have teratogenic and photosensitivity properties. Previous studies have suggested that honokiol, a small-molecule compound extracted from Magnolia officinalis, could effectively inhibit Cutibacterium acnes ( C acnes) and inflammation in vitro. However, the effect in vivo is unclear. The rabbit ear acne model that we created showed obvious comedones and hyperkeratosis. These lesions were repeatedly measured and recorded by dermatoscopy (ultraviolet light). Compared with the control group, topical 2.5% honokiol cream obviously improved the comedones and hyperkeratosis and effectively reduced sebum secretion, as shown by Oil Red O staining. The effects were equivalent to those of adapalene gel without local side effects. We added honokiol's other functions to acne treatment in addition to antiinflammation, but further studies are needed.
Collapse
Affiliation(s)
- Yuyan Zhu
- Institute of Dermatology and Venereology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Medical College of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lixia Zhang
- Institute of Dermatology and Venereology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Xiyuan Zhou
- Institute of Dermatology and Venereology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
64
|
Menci R, Khelil-Arfa H, Blanchard A, Biondi L, Bella M, Priolo A, Luciano G, Natalello A. Effect of dietary magnolia bark extract supplementation in finishing pigs on the oxidative stability of meat. J Anim Sci Biotechnol 2022; 13:89. [PMID: 35934700 PMCID: PMC9358822 DOI: 10.1186/s40104-022-00740-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnolia bark extract (MBE) is a natural supplement with antioxidant, anti-inflammatory, and antimicrobial activities. Its properties suggest that the dietary supplementation in livestock could improve the quality of products. Therefore, the aim of this study was to investigate, for the first time, the effect of dietary MBE supplementation (0.33 mg/kg) in finishing pigs on the oxidative stability of meat. Oxidative stability is of paramount importance for pork, as it affects storage, retail, and consumer acceptance. For the purpose, the fatty acid profile, cholesterol, fat-soluble vitamins, antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase), non-enzymatic antioxidant capacity (TEAC, FRAP, and Folin-Ciocalteu assays), color stability, and lipid stability of pork were assessed. RESULTS Concerning carcass characteristics, dietary MBE did not affect cold carcass yield, but reduced (P = 0.040) the chilling weight loss. The meat from pigs fed MBE had a lower (P = 0.031) lightness index than the control meat. No effect on intramuscular fat, cholesterol, and fatty acid profile was observed. Dietary MBE did not affect the content of vitamin E (α-tocopherol and γ-tocopherol) in pork, whereas it reduced (P = 0.021) the retinol content. The catalase activity was 18% higher (P = 0.008) in the meat from pigs fed MBE compared with the control group. The MBE supplementation reduced (P = 0.039) by 30% the thiobarbituric acid reactive substances (TBARS) in raw pork over 6 d of aerobic refrigerated storage. Instead, no effect on lipid oxidation was observed in cooked pork. Last, the meat from pigs fed MBE reduced Fe3+-ascorbate catalyzed lipid oxidation in muscle homogenates, with a lower (P = 0.034) TBARS value than the control group after 60 min of incubation. CONCLUSIONS Dietary MBE supplementation in finishing pigs delayed the lipid oxidation in raw meat. This effect was combined with an increased catalase concentration. These results suggest that dietary MBE could have implications for improving the shelf-life of pork.
Collapse
Affiliation(s)
- Ruggero Menci
- Dipartimento Di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | | | | | - Luisa Biondi
- Dipartimento Di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Marco Bella
- Dipartimento Di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Alessandro Priolo
- Dipartimento Di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Giuseppe Luciano
- Dipartimento Di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy.
| | - Antonio Natalello
- Dipartimento Di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| |
Collapse
|
65
|
Cho HM, Park EJ, Park YJ, Ponce-Zea J, Mai VH, Doan TP, Ryu B, Chin YW, Oh WK. Sesquiterpene lactone and its unique proaporphine hybrids from Magnolia grandiflora L. and their anti-inflammatory activity. PHYTOCHEMISTRY 2022; 200:113211. [PMID: 35490776 DOI: 10.1016/j.phytochem.2022.113211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Two undescribed sesquiterpene lactone-proaporphine hybrid skeletons, two undescribed sesquiterpenes, and four known compounds were isolated from the aerial part of Magnolia grandiflora L. The structures of isolated compounds were unambiguously determined based on the interpretation of a combination of NMR spectroscopy, HRESIMS, DP4+ probability calculation of carbon data, X-ray crystallographic analyses, and ECD calculation. The isolated compounds were investigated for their anti-inflammatory activity against nitric oxide production and the protein expression of COX-2 in LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Hyo Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Jin Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Joo Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jorge Ponce-Zea
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Van Hieu Mai
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Thi Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byeol Ryu
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Won Chin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
66
|
Punicalagin: a monomer with anti-Eimeria tenella effect from Fruit peel of Punica granatum L. Poult Sci 2022; 101:102100. [PMID: 36055031 PMCID: PMC9449852 DOI: 10.1016/j.psj.2022.102100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Poultry production was long plagued by coccidiosis, and the development of alternative therapies will make practical sense. In this work, 2 battery experiments were designed. In battery experiment 1, the best effect of 7 anticoccidial herbs (Sophora japonica Linn, Citrus aurantium L, leaf of Acer palmatum, bark of Magnolia officinalis, fruit peel of Punica granatum L., Eclipta prostrata L., and Piper sarmentosum Roxb.) against Eimeria tenella infection of 21-day-old male Chinese Guangxi yellow-feathered chickens were screened out by clinic indexes (bloody feces scores, cecal lesion scores, oocysts output, relative weight gain rate, and survival rate). According to the results from battery experiment 1 and other literature research, we selected 2 monomers which were extracted from fruit peel of Punica granatum L. for further battery experiment 2 which were similar with battery experiment 1. Clinic results showed that Punicalagin had better anticoccidial effect than Ellagic acid. The anticoccidial mechanism exploration results of Elisa, antioxidant test, and pathological observation showed that Punicalagin reduced the cecal inflammation, improved the expression of immunoglobulin in cecal tissue, improved cecal integrity, and restored its REDOX state. Results of 16S rRNA sequencing analysis showed that Punicalagin also maintained the fecal flora health during E. tenella infection through insignificantly increasing the proportion of Lactobacillus and Faecalibacterium as well as significantly reducing the proportion of pathogenic bacteria, Escherichia–Shigella. RNA-Seq analysis results suggested that Punicalagin may play a role in controlling E. tenella infection by interaction with cytochrome P450 family enzymes. Overall, Punicalagin has promising potential as an alternative therapy for chicken Eimeria tenella infection.
Collapse
|
67
|
Honokiol alleviates ulcerative colitis by targeting PPAR-γ-TLR4-NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro. Int Immunopharmacol 2022; 111:109058. [PMID: 35901530 DOI: 10.1016/j.intimp.2022.109058] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is a chronic, idiopathic relapsing inflammatory bowel disease. Honokiol is a major active component of the traditional Chinese medicinal herb Magnolia officinalis, which has been widely used in traditional prescriptions to treat tumors, inflammation, and gastrointestinal disorders. In this study, we investigated the ability of this polyphenolic compound to suppress UC in mice and the possible regulatory mechanism. A mouse model of UC induced with dextran sulfate sodium (DSS) in 40 male C57BL/6J mice was used for the in vivo study, and in vitro experiments were performed in mouse RAW264.7 macrophages. Lipopolysaccharide was used to induce the inflammatory response. The mouse bodyweights, stool consistency, and bleeding were determined and the disease activity indices calculated. RAW264.7 macrophages were cultured with or without either honokiol or lipopolysaccharide. Gene and protein expression was analyzed with RT-PCR and western blotting, respectively. GW6471 and GW9662 were used to interrupt the transcription of peroxisome proliferator activated receptor alpha (PPAR-α) and peroxisome proliferator activated receptor gamma (PPAR-γ). Both the in vivo and in vitro experimental results showed that the oral administration of honokiol markedly attenuated the severity of UC by reducing the inflammatory signals and restoring the integrity of the colon. Honokiol dramatically reduced the proinflammatory cytokines TNF-α, IL6, IL1β, and IFN-γ in mice with DSS-induced UC. It also upregulated PPAR-γ expression, and downregulated the TLR4-NF-κB signaling pathway. Moreover, honokiol inhibited gasdermin-D-mediated cell pyroptosis. These findings demonstrate for the first time that honokiol exerts a strong anti-inflammatory effect in a mouse model of UC, and that its underlying mechanism is associated with the activation of the PPAR-γ-TLR4-NF-κB signaling pathway and gasdermin-D-mediated macrophage pyroptosis. Therefore, honokiol may be a promising new drug for the clinical management of UC.
Collapse
|
68
|
Skin-Beautifying Effects of Magnolol and Honokiol Glycosides. Processes (Basel) 2022. [DOI: 10.3390/pr10071241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycosides have been synthesized using the starting materials magnolol (1) and honokiol (4), isolated from the Japanese white-bark magnolia, and their anti-aging effects on the skin (skin-beautifying effects) have been examined. The advanced glycation end-product (AGE) inhibitory activity test (anti-glycation test) and glycation induction model test, using human-derived dermal fibroblasts, TIG-110 cells, have been conducted to evaluate the anti-aging effects. The synthesized glycoside compounds, 5,5′-di(prop-2-en-1-yl)[1,1′-biphenyl]-2-hydroxy-2′-glucopyranoside (3a), 5,5′-di(prop-2-en-1-yl)[1,1′-biphenyl]-2,2′-diglucopyranoside (3b), 3′,5-di(prop-2-en-1-yl)[1,1′-biphenyl]-4′-hydroxy-2-glucopyranoside (6a) and 3′,5-di(prop-2-en-1-yl)[1,1′-biphenyl]-2,4′-diglucopyranoside (6b), have shown significant anti-glycation activities of less than 0.10 mM in IC50. The glycation induction model test with the fibroblasts, TIG-110 cells, demonstrates that the aforementioned glycosides significantly inhibit the decrease in cell viability. These newly synthesized glycoside compounds are expected to be used as cosmetic ingredients, health foods, and pharmaceutical ingredients, which have inhibitory effects against AGE formation.
Collapse
|
69
|
Zhu S, Liu F, Zhang R, Xiong Z, Zhang Q, Hao L, Chen S. Neuroprotective Potency of Neolignans in Magnolia officinalis Cortex Against Brain Disorders. Front Pharmacol 2022; 13:857449. [PMID: 35784755 PMCID: PMC9244706 DOI: 10.3389/fphar.2022.857449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, neurological diseases including Alzheimer’s disease, Parkinson’s disease and stroke are one of the main causes of death in the world. At the same time, the incidence of psychiatric disorders including depression and anxiety has been increasing. Accumulating elderly and stressed people suffer from these brain disorders, which is undoubtedly a huge burden on the modern aging society. Neolignans, the main active ingredients in Magnolia officinalis cortex, were reported to have neuroprotective effects. In addition, the key bioactive ingredients of neolignans, magnolol (1) and honokiol (2), were proved to prevent and treat neurological diseases and psychiatric disorders by protecting nerve cells and brain microvascular endothelial cells (BMECs). Furthermore, neolignans played a role in protecting nerve cells via regulation of neuronal function, suppression of neurotoxicity, etc. This review summarizes the neuroprotective effect, primary mechanisms of the leading neolignans and provides new prospects for the treatment of brain disorders in the future.
Collapse
Affiliation(s)
- Shun Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongxiang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Hao
- Huarun Sanjiu (ya’an) Pharmaceutical Group Co., LTD., Ya’an, China
| | - Shiyin Chen
- Department of Orthopedics of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| |
Collapse
|
70
|
Heravi MM, Nazari A. Samarium(ii) iodide-mediated reactions applied to natural product total synthesis. RSC Adv 2022; 12:9944-9994. [PMID: 35424959 PMCID: PMC8965710 DOI: 10.1039/d1ra08163b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/12/2022] [Indexed: 12/22/2022] Open
Abstract
Natural product synthesis remains a field in which new synthetic methods and reagents are continually being evaluated. Due to the demanding structures and complex functionality of many natural products, only powerful and selective methods and reagents will be highlighted in this proceeding. Since its introduction by Henri Kagan, samarium(ii) iodide (SmI2, Kagan's reagent) has found increasing use in chemical synthesis. Over the years, many reviews have been published on the application of SmI2 in numerous reductive coupling procedures as well as in natural product total synthesis. This review highlights recent advances in SmI2-mediated synthetic strategies, as applied in the total synthesis of natural products since 2004.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Azadeh Nazari
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
71
|
Peng X, Wang K, Wang Y, Lu Y, Lv F, Cui Y, Wang Y, Si H. Exploration of the Mechanism of the Control of Coccidiosis in Chickens Based on Network Pharmacology and Molecular Docking With the Addition of Modified Gegen Qinlian Decoction. Front Vet Sci 2022; 9:849518. [PMID: 35372563 PMCID: PMC8968990 DOI: 10.3389/fvets.2022.849518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gegen Qinlian Decoction is a long-established Chinese herbal compound for the treatment of diarrhea and dysentery, while Magnolia officinalis has been demonstrated to have some anthelmintic activity. The preliminary screening of this study showed that the addition of Modified Gegen Qinlian Decoction has some effective on the prevention and treatment of coccidiosis in chickens. However, the mechanism of its treatment of chicken coccidiosis is not clear. The network pharmacology study was based on the screening of chemical components and related targets from TCMSP and PharmMapper server databases. Genes related to chicken coccidiosis were obtained from the SRA database, and those genes that intersected with the target genes of Modified Gegen Qinlian Decoction were screened. By exploring the target interactions through the String system and enrichment analysis by the Metascape system, the mechanism of action of Modified Gegen Qinlian Decoction in chicken coccidiosis was identified. Using real-time quantitative polymerase chain reaction (RT-qPCR) to analyze the mRNA levels of the relevant factors in chicken coccidiosis, molecular docking was used to reveal the extent of binding of the key target genes predicted in the network pharmacology by the action of Modified Gegen Qinlian Decoction. Compound and target screening suggested that the 99 chemical targets of Modified Gegen Qinlian Decoction were involved in chicken coccidiosis, and the enrichment results of KEGG pathway suggested that Modified Gegen Qinlian Decoction was significantly associated with PI3K/AKT signaling pathway in chicken coccidiosis. The Hubba gene module in Cytoscape_v3.7.1 software was used to analyze the network topology to obtain the Hubba gene SRC, STAT3, and PPARG, etc. The molecular docking results showed that SRC, STAT3, and PPARG were key targets in the treatment of coccidiosis in chickens by Modified Gegen Qinlian Decoction, which was in agreement with the RT-qPCR results. Through network pharmacology, molecular docking and in vitro experiments, it was confirmed that Modified Gegen Qinlian Decoction fights against chicken coccidiosis through key targets such as SRC, STAT3, and PPARG.
Collapse
|
72
|
Allameh M, Orsat V. Herbal Anxiolytics: Sources and Their Preparation Methods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2043895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mina Allameh
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - V. Orsat
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| |
Collapse
|
73
|
Djeujo FM, Ragazzi E, Urettini M, Sauro B, Cichero E, Tonelli M, Froldi G. Magnolol and Luteolin Inhibition of α-Glucosidase Activity: Kinetics and Type of Interaction Detected by In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2022; 15:ph15020205. [PMID: 35215317 PMCID: PMC8880268 DOI: 10.3390/ph15020205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Magnolol and luteolin are two natural compounds recognized in several medicinal plants widely used in traditional medicine, including type 2 diabetes mellitus. This research aimed to determine the inhibitory activity of magnolol and luteolin on α-glucosidase activity. Their biological profile was studied by multispectroscopic methods along with inhibitory kinetic analysis and computational experiments. Magnolol and luteolin decreased the enzymatic activity in a concentration-dependent manner. With 0.075 µM α-glucosidase, the IC50 values were similar for both compounds (~ 32 µM) and significantly lower than for acarbose (815 μM). Magnolol showed a mixed-type antagonism, while luteolin showed a non-competitive inhibition mechanism. Thermodynamic parameters suggested that the binding of magnolol was predominantly sustained by hydrophobic interactions, while luteolin mainly exploited van der Waals contacts and hydrogen bonds. Synchronous fluorescence revealed that magnolol interacted with the target, influencing the microenvironment around tyrosine residues, and circular dichroism explained a rearrangement of the secondary structure of α-glucosidase from the initial α-helix to the final conformation enriched with β-sheet and random coil. Docking studies provided support for the experimental results. Altogether, the data propose magnolol, for the first time, as a potential α-glucosidase inhibitor and add further evidence to the inhibitory role of luteolin.
Collapse
Affiliation(s)
- Francine Medjiofack Djeujo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Miriana Urettini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Beatrice Sauro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Elena Cichero
- Department of Pharmacy, University of Genova, 16128 Genova, Italy;
- Correspondence: (E.C.); (G.F.); Tel.: +39-049-827-5092 (G.F.); Fax: +39-049-827-5093 (G.F.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genova, 16128 Genova, Italy;
| | - Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
- Correspondence: (E.C.); (G.F.); Tel.: +39-049-827-5092 (G.F.); Fax: +39-049-827-5093 (G.F.)
| |
Collapse
|
74
|
Liu Y, Zhu T, Li J, Bao Y, Cheng B, Chen S, Du J, Hu S. Magnolol Hybrid Nanofibrous Mat with Antibacterial, Anti-Inflammatory, and Microvascularized Properties for Wound Treatment. Biomacromolecules 2022; 23:1124-1137. [DOI: 10.1021/acs.biomac.1c01430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yonghang Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People’s Hospital Affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, P. R. China
| | - Yiming Bao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital Affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, P. R. China
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Shaowei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences of Fudan University, NHC Key Laboratory of Hearing Medicine of Fudan University, Fudan University, 83 Fenyang Road, Shanghai 200031, P. R. China
| |
Collapse
|
75
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
76
|
Gao Y, Ma J, Chen J, Xu Q, Jia Y, Chen H, Li W, Lin L. Establishing Tetraploid Embryogenic Cell Lines of Magnolia officinalis to Facilitate Tetraploid Plantlet Production and Phenotyping. FRONTIERS IN PLANT SCIENCE 2022; 13:900768. [PMID: 35599897 PMCID: PMC9115471 DOI: 10.3389/fpls.2022.900768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 05/03/2023]
Abstract
The production of synthetic polyploids for plant breeding is compromised by high levels of mixoploids and low numbers of solid polyploid regenerants during in vitro induction. Somatic embryogenesis could potentially contribute to the maximization of solid polyploid production due to the single cell origin of regenerants. In the present study, a novel procedure for establishing homogeneous tetraploid embryogenic cell lines in Magnolia officinalis has been established. Embryogenic cell aggregate (ECA) about 100-200 μm across, and consisting of dozens of cells, regenerated into a single colony of new ECAs and somatic embryos following colchicine treatment. Histological analysis indicated that the few cells that survived some colchicine regimes still regenerated to form a colony. In some colonies, 100% tetraploid somatic embryos were obtained without mixoploid formation. New granular ECA from single colonies with 100% tetraploid somatic embryos were isolated and cultured individually to proliferate into cell lines. These cell lines were confirmed to be homogeneous tetraploid by flow cytometry. Many tetraploid somatic embryos and plantlets were differentiated from these cell lines and the stability of ploidy level through the somatic embryogenesis process was confirmed by flow cytometry and chromosome counting. The establishment of homogeneous polyploid cell lines, which were presumed to represent individual polyploidization events, might expand the phenotypic variations of the same duplicated genome and create novel breeding opportunities using newly generated polyploid plantlets.
Collapse
Affiliation(s)
- Yanfen Gao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Junchao Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiaqi Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qian Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanxia Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hongying Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Weiqi Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Weiqi Li,
| | - Liang Lin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Liang Lin,
| |
Collapse
|
77
|
Li L, Chen C, Zhang C, Luo R, Lan X, Guo F, Ma L, Fu P, Wang Y. A honokiol-mediated robust coating for blood-contacting devices with anti-inflammatory, antibacterial and antithrombotic properties. J Mater Chem B 2021; 9:9770-9783. [PMID: 34806726 DOI: 10.1039/d1tb01617b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thrombus, bacterial infections, and severe inflammation are still serious problems that have to be faced with blood-contacting materials. However, it is a great challenge to simultaneously meet the above functional requirements in a simple, economical and efficient method. As such, we put forward a robust and versatile coating strategy by covalently modifying the multi-pharmacological drug honokiol (HK) with an amine-rich polydopamine/polyethyleneimine coating, through which anticoagulant, antibacterial and anti-inflammatory properties were obtained (DPHc) simultaneously. The amine content in the DPHc coating was lower than the detection limit, while it contained abundant phenolic hydroxyl groups (49 μmol cm-2). Meanwhile, the 30 day drug release test confirmed that the drug was firmly modified on the surface of the coating without release. A systematic in vitro and ex vivo evaluation confirmed that the coating had significant anti-thrombotic properties. The antibacterial rates of the DPHc coating against Staphylococcus aureus and Escherichia coli reached 99.98% and 99.99%, respectively. In addition, subcutaneous implantation indicated that the DPHc coating also has excellent histocompatibility. To the best of our knowledge, this is the first study using HK as a coating material that can not only combat thrombosis and infection but also significantly inhibit inflammation associated with the use of blood-contacting materials, thus expanding the application of HK in the field of biomaterials.
Collapse
Affiliation(s)
- Linhua Li
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Chong Chen
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu, 610064, China
| | - Chunle Zhang
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Fan Guo
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Liang Ma
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Ping Fu
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
78
|
Du E, Fan Q, Zhao N, Zhang W, Wei J, Chen F, Huang S, Guo W. Supplemental magnolol improves the antioxidant capacity and intestinal health of broiler chickens. Anim Sci J 2021; 92:e13665. [PMID: 34874084 DOI: 10.1111/asj.13665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Magnolol is a multifunctional polyphenol rich in Magnolia officinalis. The objective of this study was to investigate the effects of magnolol on growth performance, carcass traits, antioxidant capacity, and gut health of broiler chickens. A total of 240 1-day-old broilers were randomly allocated into five dietary treatments: control (Ctrl); control diet supplemented with 100, 200, or 300 mg/kg of magnolol (M100, M200, and M300); and control diet supplemented with 200 mg/kg of bacitracin zinc (PC). The results showed that magnolol linearly decreased the feed conversion ratio between d 0 and d 14, linearly decreased the amount of malondialdehyde and increased the activity of total superoxide dismutase (T-SOD) in both serum and ileal mucosa on d 42 with increasing magnolol levels (p < 0.05). Moreover, the ileal villus height, the ileal villus height to crypt depth ratio, and the jejunal gene expressions of SOD1, glutathione peroxidase, and Claudin1 were linearly up-regulated with increasing magnolol levels (p < 0.05). The supplementation of magnolol had no effect on carcass traits or cecal short chain fatty acids (p > 0.05). The results indicated that magnolol could be applied in the diet of broiler chickens to benefit their antioxidant capacity and intestinal health.
Collapse
Affiliation(s)
- Encun Du
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fang Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
79
|
The Complex Interplay between Autophagy and NLRP3 Inflammasome in Renal Diseases. Int J Mol Sci 2021; 22:ijms222312766. [PMID: 34884572 PMCID: PMC8657456 DOI: 10.3390/ijms222312766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly conserved process of the eukaryotic cell cycle. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and the circulation of degraded products. The dysfunction of autophagy can lead to the pathology of many human diseases. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and can induce caspase-1 activation, thus leading to the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. It has been reported that the interplay between autophagy and NLRP3 inflammasome is involved in many diseases, including renal diseases. In this review, the interplay between autophagy and the NLRP3 inflammasome and the mechanisms in renal diseases are explored to provide ideas for relevant basic research in the future.
Collapse
|
80
|
Cicalău GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobotă I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021; 26:6899. [PMID: 34833990 PMCID: PMC8623889 DOI: 10.3390/molecules26226899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid, produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy we conducted a literature search in the PubMed and Google Scholar databases to identify studies. A total of one hundred eighty-four papers were included in the current review. The results show that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic, and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of carvacrol and magnolol can assist with the development of new treatment strategies, and the design of clinical animal and human trials will maximize the potential benefits of these extracts in subjects suffering from periodontitis or diabetes.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Petru Aurel Babes
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
| | - Horia Calniceanu
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| |
Collapse
|
81
|
Tao W, Hu Y, Chen Z, Dai Y, Hu Y, Qi M. Magnolol attenuates depressive-like behaviors by polarizing microglia towards the M2 phenotype through the regulation of Nrf2/HO-1/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153692. [PMID: 34411834 DOI: 10.1016/j.phymed.2021.153692] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Magnolol (MA) exhibits anti-depressant effect by inhibiting inflammation. However, its effect on microglia polarization remains not fully understood. Herein, our study was performed to evaluate the effect of MA on microglia polarization in chronic unpredictable mild stress (CUMS)-induced depression and explore its potential mechanism. STUDY DESIGN The CUMS procedure was conducted, and the mice were intragastrically treated with MA. BV2 cells were pretreated with MA prior to LPS/ATP challenge. METHODS The levels of TNF-α, IL-1β, IL-6 and IL-4, IL-10 in brain and BV2 cells were examined by ELISA. The mRNA expressions of Arg1, Ym1, Fizz1 and Klf4 in brains were measured. ROS content was determined using flow cytometry. Immunofluorescence was employed to evaluate Iba-1 level, Nrf2 nuclear translocation, Iba-1+CD16/32+ and Iba-1+CD206+ cell population. The protein expressions of Nrf2, HO-1, NLRP3, caspase-1 p20 and IL-1β in brains and BV2 cells were investigated by western blot. Nrf2 siRNA was induced in experiments to explore the role of Nrf2 in MA-mediated microglia polarization. The ubiquitination of Nrf2 was visualized by Co-IP. RESULTS The treatment with MA notably relieved depressive like behaviors, suppressed pro-inflammatory cytokines, promoted anti-inflammatory cytokines and the transcription of M2 phenotype microglia-specific indicators. MA upregulated the expression of Nrf2, HO-1, downregulated the expression of NLRP3, caspase-1 p20, IL-1β both in vivo and in vitro. MA also reduced ROS concentration, promoted Nrf2 nucleus translocation and prevented Nrf2 ubiquitination. Nrf2 Knockdown by siRNA abolished the MA-mediated microglia polarization. CONCLUSION The present research demonstrated that MA attenuated CUMS-stimulated depression by inhibiting M1 polarization and inducing M2 polarization via Nrf2/HO-1/NLRP3 signaling.
Collapse
Affiliation(s)
- Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China
| | - Yuwen Hu
- Jiangsu Medical Device Testing Institute, Nanjing 220023, China
| | - Zhaoyang Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Dai
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
82
|
Bui D, Yin T, Duan S, Wei B, Yang P, Wong SJ, You M, Singh R, Hu M. Pharmacokinetic Characterization and Bioavailability Barrier for the Key Active Components of Botanical Drug Antitumor B (ATB) in Mice for Chemoprevention of Oral Cancer. JOURNAL OF NATURAL PRODUCTS 2021; 84:2486-2495. [PMID: 34463097 PMCID: PMC10607708 DOI: 10.1021/acs.jnatprod.1c00501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aims to characterize the pharmacokinetic (PK) profiles and identify important bioavailability barriers and pharmacological pathways of the key active components (KACs) of Antitumor B (ATB), a chemopreventive agent. KACs (matrine, dictamine, fraxinellone, and maackiain) of ATB were confirmed using the antiproliferative assay and COX-2 inhibition activities in oral cancer cells. The observed in vitro activities of KACs were consistent with their cell signaling pathways predicted using the in silico network pharmacology approach. The pharmacokinetics of KACs were determined after i.v., i.p., and p.o. delivery using ATB extract and a mixture of four KACs in mice. Despite good solubilities and permeabilities, poor oral bioavailabilities were estimated for all KACs, mostly because of first-pass metabolism in the liver (for all KACs) and intestines (for matrine and fraxinellone). Multiple-dose PK studies showed 23.2-fold and 8.5-fold accumulation of dictamine and maackiain in the blood, respectively. Moreover, saliva levels of dictamine and matrine were found significantly higher than their blood levels. In conclusion, the systemic bioavailabilities of ATB-KACs were low, but significant levels of dictamine and matrine were found in saliva upon repeated oral administration. Significant salivary concentrations of matrine justified its possible use as a drug-monitoring tool to track patient compliance during chemoprevention trials.
Collapse
Affiliation(s)
- Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Shengnan Duan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Bo Wei
- Department of Palliative, Rehabilitation and Integrative Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stuart J. Wong
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ming You
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
83
|
Yin Y, Peng F, Zhou L, Yin X, Chen J, Zhong H, Hou F, Xie X, Wang L, Shi X, Ren B, Pei J, Peng C, Gao J. The chromosome-scale genome of Magnolia officinalis provides insight into the evolutionary position of magnoliids. iScience 2021; 24:102997. [PMID: 34505009 PMCID: PMC8417397 DOI: 10.1016/j.isci.2021.102997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Magnolia officinalis, a representative tall aromatic tree of the Magnoliaceae family, is a medicinal plant that is widely used in diverse industries from medicine to cosmetics. We report a chromosome-scale draft genome of M. officinalis, in which ∼99.66% of the sequences were anchored onto 19 chromosomes with the scaffold N50 of 76.62 Mb. We found that a high proportion of repetitive sequences was a common feature of three Magnoliaceae with known genomic data. Magnoliids were a sister clade to eudicots-monocots, which provided more support for understanding the phylogenetic position among angiosperms. An ancient duplication event occurred in the genome of M. officinalis and was shared with Lauraceae. Based on RNA-seq analysis, we identified several key enzyme-coding gene families associated with the biosynthesis of lignans in the genome. The construction of the M. officinalis genome sequence will serve as a reference for further studies of Magnolia, as well as other Magnoliaceae.
Collapse
Affiliation(s)
- Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianmei Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongjin Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feixia Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Wang
- Sichuan Academy of Forestry Sciences, Chengdu 610081, China
| | | | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
84
|
Enaru B, Socaci S, Farcas A, Socaciu C, Danciu C, Stanila A, Diaconeasa Z. Novel Delivery Systems of Polyphenols and Their Potential Health Benefits. Pharmaceuticals (Basel) 2021; 14:946. [PMID: 34681170 PMCID: PMC8538464 DOI: 10.3390/ph14100946] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Liposome-based delivery systems have been studied and used more frequently in recent years due to their advantages, such as low toxicity, specificity, and the ability to protect the encapsulated substance from environmental factors, which could otherwise degrade the active compound and reduce its effectiveness. Given these benefits, many researchers have encapsulated polyphenols in liposomes, thus increasing their bioavailability and stability. Similarly, polyphenols encapsulated in liposomes are known to produce more substantial effects on targeted cells than unencapsulated polyphenols, while having minimal cytotoxicity in healthy cells. Although polyphenols play a role in preventing many types of disease and generally have beneficial effects on health, we solely focused on their chemopreventive effects on cancer through liposomes in this review. Our goal was to summarize the applicability and efficacy of liposomes encapsulated with different classes of polyphenols on several types of cancer, thus opening the opportunity for future studies based on these drug delivery systems.
Collapse
Affiliation(s)
- Bianca Enaru
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Sonia Socaci
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Anca Farcas
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Carmen Socaciu
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Andreea Stanila
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.); (S.S.); (A.F.); (C.S.)
| |
Collapse
|
85
|
Tharabenjasin P, Ferraris RP, Choowongkomon K, Pongkorpsakol P, Worakajit N, Sawasvirojwong S, Pabalan N, Na-Bangchang K, Muanprasat C. β-eudesmol but not atractylodin exerts an inhibitory effect on CFTR-mediated chloride transport in human intestinal epithelial cells. Biomed Pharmacother 2021; 142:112030. [PMID: 34426253 DOI: 10.1016/j.biopha.2021.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/13/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
Oriental herbal medicine with the two bioactive constituents, β-eudesmol (BE) and atractylodin (AT), has been used as a remedy for gastrointestinal disorders. There was no scientific evidence reporting their antidiarrheal effect and underpinning mechanisms. Therefore, we aimed to investigate the anti-secretory activity of these two compounds in vitro. The inhibitory effect of BE and AT on cAMP-induced Cl- secretion was evaluated by Ussing chamber in human intestinal epithelial (T84) cells. Short-circuit current (ISC) and apical Cl- current (ICl-) were measured after adding indirect and direct cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activator. MTT assay was used to determine cellular cytotoxicity. Protein-ligand interaction was investigated by in silico molecular docking analysis. BE, but not AT concentration-dependently (IC50 of ~1.05 µM) reduced cAMP-mediated, CFTRinh-172 inhibitable Cl- secretion as determined by transepithelial ISC across a monolayer of T84 cells. Potency of CFTR-mediated ICl- inhibition by BE did not change with the use of different CFTR activators suggesting a direct blockage of the channel active site(s). Pretreatment with BE completely prevented cAMP-induced ICl-. Furthermore, BE at concentrations up to 200 µM (24 h) had no effect on T84 cell viability. In silico studies indicated that BE could best dock onto dephosphorylated structure of CFTR at ATP-binding pockets in nucleotide-binding domain (NBD) 2 region. These findings provide the first evidence for the anti-secretory effect of BE involving inhibition of CFTR function. BE represents a promising candidate for the therapeutic or prophylactic intervention of diarrhea resulted from intestinal hypersecretion of Cl.
Collapse
Affiliation(s)
- Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07946, USA
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok 10900, Thailand
| | - Pawin Pongkorpsakol
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nichakorn Worakajit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan 10540, Thailand
| | - Sutthipong Sawasvirojwong
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Rangsit Center, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan 10540, Thailand.
| |
Collapse
|
86
|
Chen F, Zhang H, Du E, Fan Q, Zhao N, Jin F, Zhang W, Guo W, Huang S, Wei J. Supplemental magnolol or honokiol attenuates adverse effects in broilers infected with Salmonella pullorum by modulating mucosal gene expression and the gut microbiota. J Anim Sci Biotechnol 2021; 12:87. [PMID: 34365974 PMCID: PMC8351427 DOI: 10.1186/s40104-021-00611-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Salmonella pullorum is one of the most harmful pathogens to avian species. Magnolol and honokiol, natural compounds extracted from Magnolia officinalis, exerts anti-inflammatory, anti-oxidant and antibacterial activities. This study was conducted to evaluate the effects of dietary supplemental magnolol and honokiol in broilers infected with S. pullorum. A total of 360 one-day-old broilers were selected and randomly divided into four groups with six replicates: the negative control group (CTL), S. pullorum-infected group (SP), and the S. pullorum-infected group supplemented with 300 mg/kg honokiol (SPH) or magnolol (SPM). RESULTS The results showed that challenging with S. pullorum impaired growth performance in broilers, as indicated by the observed decreases in body weight (P < 0.05) and average daily gains (P < 0.05), along with increased spleen (P < 0.01) and bursa of Fabricus weights (P < 0.05), serum globulin contents, and the decreased intestine villus height and villus/crypt ratios (P < 0.05). Notably, supplemental magnolol and honokiol attenuated these adverse changes, and the effects of magnolol were better than those of honokiol. Therefore, we performed RNA-Seq in ileum tissues and 16S rRNA gene sequencing of ileum bacteria. Our analysis revealed that magnolol increased the α-diversity (observed species, Chao1, ACE, and PD whole tree) and β-diversity of the ileum bacteria (P < 0.05). In addition, magnolol supplementation increased the abundance of Lactobacillus (P < 0.01) and decreased unidentified Cyanobacteria (P < 0.05) both at d 14 and d 21. Further study confirmed that differentially expressed genes induced by magnolol and honokiol supplementation enriched in cytokine-cytokine receptor interactions, in the intestinal immune network for IgA production, and in the cell adhesion molecule pathways. CONCLUSIONS Supplemental magnolol and honokiol alleviated S. pullorum-induced impairments in growth performance, and the effect of magnolol was better than that of honokiol, which could be partially due to magnolol's ability to improve the intestinal microbial and mucosal barrier.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
87
|
Halder S, Anand U, Nandy S, Oleksak P, Qusti S, Alshammari EM, El-Saber Batiha G, Koshy EP, Dey A. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm J 2021; 29:879-907. [PMID: 34408548 PMCID: PMC8363108 DOI: 10.1016/j.jsps.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.
Collapse
Affiliation(s)
- Swati Halder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, king Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
88
|
Ma C, Qian L, Li J. Effect of functional groups of magnolol-based cyclic phosphonate on structure and properties of flame retardant epoxy resin. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Chen C, Zhang QW, Ye Y, Lin LG. Honokiol: A naturally occurring lignan with pleiotropic bioactivities. Chin J Nat Med 2021; 19:481-490. [PMID: 34247771 DOI: 10.1016/s1875-5364(21)60047-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Honokiol is the dominant biphenolic compound isolated from the Magnolia tree, and has long been considered as the active constituent of the traditional Chinese herb, 'Houpo', which is widely used to treat symptoms due to 'stagnation of qi'. Pharmacological studies have shown that honokiol possesses a wide range of bioactivities without obvious toxicity. Honokiol protects the liver, kidneys, nervous system, and cardiovascular system through reducing oxidative stress and relieving inflammation. Moreover, honokiol shows anti-diabetic property through enhancing insulin sensitivity, and anti-obese property through promoting browning of adipocytes. In vivo and in vitro studies indicated that honokiol functions as an anti-cancer agent through multiple mechanisms: inhibiting angiogenesis, promoting cell apoptosis, and regulating cell cycle. A variety of therapeutic effects of honokiol may be associated with its physiochemical properties, which make honokiol readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier, with high bioavailability. In the future, more clinical researches on honokiol are needed to fully authenticate its therapeutic values.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
90
|
Benedé JL, Rodríguez E, Chisvert A, Salvador A. Rapid and Simple Determination of Honokiol and Magnolol in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1808983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Juan L. Benedé
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| | - Elena Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| | - Amparo Salvador
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| |
Collapse
|
91
|
Gastroprotective Effect of Ethanol Extracts from Bark of Magnolia officinalis on Ethanol-Induced Gastric Mucosal Damage in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6688414. [PMID: 34159200 PMCID: PMC8187047 DOI: 10.1155/2021/6688414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Background. Magnolia officinalis Rehd. and Wils. is widely used in Asian countries because of its multiple pharmacological effects. This study investigated the gastroprotective effect and mechanisms of the ethanol extracts from the bark of Magnolia officinalis (MOE) against ethanol-induced gastric mucosal damage in rats. Methods. MOE was prepared by reflux extraction with 70% ethanol, and its main compounds were analyzed by UPLC-Q-Exactive Orbitrap-MS. DPPH, ABTS, and FRAP methods were used to evaluate the antioxidant capacity of MOE in vitro. The gastroprotective effects of MOE were evaluated by the area of gastric injury, H&E (hematoxylin-eosin), and PAS (periodic acid-Schiff). The mechanism was explored by measuring the levels of cytokines and protein in the NF-κB signaling pathway. Results. 30 compounds were identified from MOE, mainly including lignans and alkaloids. MOE presented a high antioxidant activity in several oxidant in vitro systems. Gastric ulcer index and histological examination showed that MOE reduced ethanol-induced gastric mucosal injury in a dose-dependent manner. MOE pretreatment significantly restored the depleted activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzymes, reduced malondialdehyde (MDA), and prostaglandin E2 (PGE2) levels in the gastric tissue in rats. In addition, MOE also inhibited the activation of nuclear factor kappa B (NF-κB) pathway and decreased the production of proinflammatory cytokines. Conclusions. The gastroprotective effect of MOE was attributed to the inhibition of oxidative stress and the NF-κB inflammatory pathway. The results provided substantial evidence that MOE could be a promising phytomedicine for gastric ulcer prevention.
Collapse
|
92
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
93
|
Hesari M, Mohammadi P, Khademi F, Shackebaei D, Momtaz S, Moasefi N, Farzaei MH, Abdollahi M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int J Nanomedicine 2021; 16:3293-3315. [PMID: 34007178 PMCID: PMC8123960 DOI: 10.2147/ijn.s295508] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Considering the high prevalence of cardiovascular diseases (CVDs), the primary cause of death during the last several decades, it is necessary to develop proper strategies for the prevention and treatment of CVDs. Given the excessive side effects of current therapies, alternative therapeutic approaches like medicinal plants and natural products are preferred. Lower toxicity, chemical diversity, cost-effectiveness, and proven therapeutic potentials make natural products superior compared to other products. Nanoformulation methods improve the solubility, bioavailability, circulation time, surface area-to-volume ratio, systemic adverse side effects, and drug delivery efficiency of these medications. This study intended to review the functionality of the most recent nanoformulated medicinal plants and/or natural products against various cardiovascular conditions such as hypertension, atherosclerosis, thrombosis, and myocardial infarction. Literature review revealed that curcumin, quercetin, and resveratrol were the most applied natural products, respectively. Combination therapy, conjugation, or fabrication of nanoparticles and nanocarriers improved the applications and therapeutic efficacy of herbal- or natural-based nanoformulations. In the context of CVDs prevention and/or treatment, available data suggest that natural-based nanoformulations are considerably efficient, alone or in blend with other herbal/synthetic medicines. However, clinical trials are mandatory to elucidate the safety, cardioprotective effect, and mechanism of actions of nanophytomedicines.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
94
|
Issinger OG, Guerra B. Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling. Biomed Pharmacother 2021; 139:111650. [PMID: 33945911 DOI: 10.1016/j.biopha.2021.111650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases belong to the largest family of enzymes controlling every aspect of cellular activity including gene expression, cell division, differentiation and metabolism. They are part of major intracellular signalling pathways. Hence, it is not surprising that they are involved in the development of major diseases such as cardiovascular disorders, diabetes, dementia and, most importantly, cancer when they undergo mutations, modifications and unbalanced expression. This review will explore the possibility to draw a connection between the application of natural phytochemicals and the treatment of cancer. We have chosen to focus on the PI3K/AKT cellular signalling pathway which has been shown to be a major target by natural compounds in cell cultures and animal models.
Collapse
Affiliation(s)
- Olaf-Georg Issinger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
95
|
Zhao Q, Mäkinen M, Haapala A, Jänis J. Valorization of Bark from Short Rotation Trees by Temperature-Programmed Slow Pyrolysis. ACS OMEGA 2021; 6:9771-9779. [PMID: 33869957 PMCID: PMC8047738 DOI: 10.1021/acsomega.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The tree bark represents an abundant but currently underutilized forest biomass side stream. In this work, temperature-programmed slow pyrolysis with fractional condensation was used for thermochemical conversion of the bark obtained from three short rotation tree species, aspen, goat willow, and rowan. Heating was performed in three stages, drying (135 °C), torrefaction (275 °C), and pyrolysis (350 °C), and the resulting vapors were condensed at 120, 70, and 5 °C, producing nine liquid fractions. An additional fraction was collected in the pyrolysis stage at 0 °C. The obtained liquid fractions were characterized in terms of their yields and bulk chemistry (i.e., CHNOS content, water content, pH, and total acid number) as well as their molecular level chemistry by high-resolution mass spectrometry. The highest liquid yields were obtained for the fractions condensed at 70 °C. The water content varied considerably, being the highest for the drying fractions (>96%) and the lowest for the pyrolysis fractions obtained at 120 °C (0.1-2%). Considerable compositional differences were observed between the liquid fractions. While the drying fractions contained mostly some dissolved phenolics, the torrefaction fractions contained more sugaric compounds. In contrast, the pyrolysis fractions were enriched lipids (e.g., suberinic fatty acids and their derivatives) and alicyclic/aromatic hydrocarbons. These fractions could be further refined into different platforms and/or specialty chemicals. Thus, slow pyrolysis with fractional condensation offers a potential route for the valorization of tree bark residues from forest industry.
Collapse
Affiliation(s)
- Qing Zhao
- Department
of Chemistry, University of Eastern Finland, Joensuu FI-80100, Finland
- School
of Forest Sciences, University of Eastern
Finland, Joensuu FI-80100, Finland
| | - Marko Mäkinen
- Department
of Chemistry, University of Eastern Finland, Joensuu FI-80100, Finland
| | - Antti Haapala
- School
of Forest Sciences, University of Eastern
Finland, Joensuu FI-80100, Finland
| | - Janne Jänis
- Department
of Chemistry, University of Eastern Finland, Joensuu FI-80100, Finland
| |
Collapse
|
96
|
Liu X, Gu Y, Bian Y, Cai D, Li Y, Zhao Y, Zhang Z, Xue M, Zhang L. Honokiol induces paraptosis-like cell death of acute promyelocytic leukemia via mTOR & MAPK signaling pathways activation. Apoptosis 2021; 26:195-208. [PMID: 33550458 PMCID: PMC8016806 DOI: 10.1007/s10495-020-01655-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Acute promyelocytic leukemia (APL) is a blood system disease caused by the accumulation of a large number of immature blood cells in bone marrow. Although the introduction of all-trans retinoic acid (ATRA) and arsenic has reached a high level of complete remission rate and 5-year disease-free survival rate, the occurrence of various adverse reactions still severely affects the quality of life of patients. As a natural product, honokiol (HNK) has the advantages of low toxicity and high efficiency, and it is a potential drug for the treatment of cancer. Since cancer cells can escape apoptotic cell death through multiple adaptive mechanisms, HNK, a drug that induces cancer cell death in a nonapoptotic way, has attracted much interest. We found that HNK reduced the viability of human APL cell line (NB4 cells) by inducing paraptosis-like cell death. The process was accompanied by excessive reactive oxygen species (ROS), mitochondrial damage, endoplasmic reticulum stress, and increased microtubule-associated protein 1 light chain 3 (LC3) processing. The inactivation of proteasome activity was the main cause of misfolded and unfolded protein accumulation in endoplasmic reticulum, such as LC3II/I and p62. This phenomenon could be alleviated by adding cycloheximide (CHX), a protein synthesis inhibitor. We found that mTOR signaling pathway participated in paraptosis-like cell death induced by HNK in an autophagy-independent process. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway induced paraptosis of NB4 cells by promoting endoplasmic reticulum stress. In summary, these findings indicate that paraptosis may be a new way to treat APL, and provide novel insights into the potential mechanism of paraptosis-like cell death.
Collapse
Affiliation(s)
- Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Yan Gu
- Department of Geriatrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003 People’s Republic of China
| | - Yaoyao Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Danhong Cai
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Yu Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Ye Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Zhaofeng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Mei Xue
- College of Basic Medical Sciences, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| |
Collapse
|
97
|
Magnoliae Cortex Alleviates Muscle Wasting by Modulating M2 Macrophages in a Cisplatin-Induced Sarcopenia Mouse Model. Int J Mol Sci 2021; 22:ijms22063188. [PMID: 33804803 PMCID: PMC8003985 DOI: 10.3390/ijms22063188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Cachexia causes high mortality, low quality of life, and rapid weight loss in cancer patients. Sarcopenia, a condition characterized by the loss of muscle, is generally present in cachexia and is associated with inflammation. M2 macrophages, also known as an anti-inflammatory or alternatively activated macrophages, have been shown to play a role in muscle repair. Magnoliae Cortex (M.C) is a widely used medicinal herb in East Asia reported to have a broad range of anti-inflammatory activities; however, the effects of M.C on sarcopenia and on M2 macrophage polarization have to date not been studied. This study was designed to investigate whether the oral administration of M.C could decrease cisplatin-induced sarcopenia by modulating M2 macrophage polarization in mice. C57BL/6 mice were injected intraperitoneally with cisplatin (2.5 mg/kg) to mimic chemotherapy-induced sarcopenia. M.C extract (50, 100, and 200 mg/kg) was administered orally every 3 days (for a total of 12 times). M.C (100 and 200 mg/kg) significantly alleviated the cisplatin-induced loss of body mass, skeletal muscle weight, and grip strength. In addition, M.C increased the expression of M2 macrophage markers, such as MRC1, CD163, TGF-β, and Arg-1, and decreased the expression of M1-specific markers, including NOS2 and TNF-α, in skeletal muscle. Furthermore, the levels of like growth factor-1(IGF-1), as well as the number of M2a and M2c macrophages, significantly increased in skeletal muscle after M.C administration. M.C did not interfere with the anticancer effect of cisplatin in colon cancer. Our results demonstrated that M.C can alleviate cisplatin-induced sarcopenia by increasing the number of M2 macrophages. Therefore, our findings suggest that M.C could be used as an effective therapeutic agent to reverse or prevent cisplatin-induced sarcopenia.
Collapse
|
98
|
Ma R, Xie Q, Wang J, Huang L, Guo X, Fan Y. Combination of urine and faeces metabolomics to reveal the intervention mechanism of Polygala tenuifolia compatibility with Magnolia officinalis on gastrointestinal motility disorders. J Pharm Pharmacol 2021; 73:247-262. [PMID: 33793803 DOI: 10.1093/jpp/rgaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore the intervention mechanism of combining Polygala tenuifolia (PT) with Magnolia officinalis (MO) on gastrointestinal motility disorders caused by PT. METHODS Urine and faeces of rats were collected; the effects of PT and MO on the gastric emptying and small intestine advancing rates in mice were analysed via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) to determine the potential metabolites. Changes in the metabolic profiles of the urine and faeces were revealed by untargeted metabolomics, followed by multivariate statistical analysis. The integration of urine and faeces was applied to reveal the intervention mechanism of PT-MO on PT-induced disorders. KEY FINDINGS PT + MO (1:2) improved the gastrointestinal function in mice suffering from PT-induced gastrointestinal motility disorder. Metabolomics indicated that the PT-MO mechanism was mainly associated with the regulations of 17 and 12 metabolites and 11 and 10 pathways in urine and faeces, respectively. The common metabolic pathways were those of tyrosine, purine, tricarboxylic acid cycle, pyruvate and gluconeogenesis, which were responsible for the PT-MO intervention mechanism. CONCLUSIONS The PT-MO (1:2) couple mechanism mitigated the PT-induced disorders, which were related to the energy, amino acid and fatty metabolisms.
Collapse
Affiliation(s)
- Rong Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoqing Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yamei Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
99
|
Discovery of novel obovatol-based phenazine analogs as potential antifungal agents: synthesis and biological evaluation in vitro. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2020-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To explore candidate fungicides from plant secondary metabolites, 16 novel obovatol-type phenazine derivatives were semi-synthesized from obovatol isolated from the leaves of Magnolia obovata Thunb. The antifungal activity of synthesized compounds was investigated in vitro against four phytopathogenic fungi using the spore germination method. The bioassay results showed that eight derivatives (8b, 8g, 8h–k, 8i′, and 8k′) exhibited better antifungal activity against Fusarium solani than two positive controls, especially compounds 8b (IC50 = 64.61 μg mL−1) and 8i′ (IC50 = 79.97 μg mL−1) showed pronounced inhibition of spore germination activity against F. solani. They could be used as lead compounds for further structural optimization. Additionally, the preliminary structure-activity relationships (SARs) illustrated that the introduction of a benzene ring monosubstituted with electron-withdrawing groups into the obovatol scaffold could lead to potentially antifungal compounds.
Collapse
|
100
|
Guo JW, Cheng YP, Liu CY, Thong HY, Lo Y, Wu CY, Jee SH. Magnolol may contribute to barrier function improvement on imiquimod-induced psoriasis-like dermatitis animal model via the downregulation of interleukin-23. Exp Ther Med 2021; 21:448. [PMID: 33747183 PMCID: PMC7967813 DOI: 10.3892/etm.2021.9876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, recurrent, immune-mediated disease involving the skin and joints. Epidermal hyperproliferation, abnormal keratinocyte differentiation, angiogenesis with blood vessel dilatation, and excess T helper type-1 (Th-1) and Th-17 cell infiltration are the main histopathological features of psoriasis. Magnolol is a polyphenolic compound that exerts its biological properties through a variety of mechanisms such as the NF-κB/MAPK, Nrf2/HO-1 and PI3K/Akt pathways. Magnolol has been demonstrated to exert a number of therapeutic effects on dermatological processes, including acting as an anti-inflammation, antiproliferation and antioxidation agent. However, few studies have been published on the effect of magnolol on psoriasis. Therefore, the present study aimed to elucidate the mechanism of action of magnolol on psoriasis. BALB/c mice were treated topically with imiquimod (IMQ) to induce psoriasis-like dermatitis, and were randomly assigned to the control, vehicle control, low- and high-dose magnolol, and 0.25% desoximetasone ointment treatment groups in order to investigate skin barrier function, any changes in the levels of cytokines and for the histological assessment. High doses of magnolol were indicated to be able to improve the barrier function following IMQ-induced barrier disruption. Magnolol activated peroxisome proliferator-activated receptor-γ, and also significantly inhibited the protein expression of interleukin (IL)-23, IL-1β, IL-6, tumor necrosis factor-α and interferon-γ. However, administering a high dose of magnolol did not lead to any improvement in the clinical and pathological features of the psoriasis severity Taken together, these results demonstrated that downregulation of IL-23 may contribute to barrier function improvement in a psoriatic skin model.
Collapse
Affiliation(s)
- Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.,College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Pin Cheng
- Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Haw-Yueh Thong
- Department of Dermatology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan, R.O.C
| | - Yang Lo
- Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Chen-Yu Wu
- Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Shiou-Hwa Jee
- Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| |
Collapse
|