51
|
García-Marchena N, Maza-Quiroga R, Serrano A, Barrios V, Requena-Ocaña N, Suárez J, Chowen JA, Argente J, Rubio G, Torrens M, López-Gallardo M, Marco EM, Castilla-Ortega E, Santín LJ, Rodríguez de Fonseca F, Pavón FJ, Araos P. Abstinent patients with alcohol use disorders show an altered plasma cytokine profile: Identification of both interleukin 6 and interleukin 17A as potential biomarkers of consumption and comorbid liver and pancreatic diseases. J Psychopharmacol 2020; 34:1250-1260. [PMID: 32536325 DOI: 10.1177/0269881120928176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have demonstrated that alcohol consumption can modulate the immune system by directly activating natural immunity and triggering inflammatory processes in the central nervous system and in peripheral organs, such as the liver and pancreas. Patients with alcohol use disorders have an elevated frequency of comorbid mental disorders and gut diseases (i.e. fatty liver and pancreatitis) that complicate diagnosis, treatment and prognosis. AIMS The present study aims to explore possible associations in circulating plasma cytokine concentrations in abstinent patients diagnosed with alcohol use disorders. METHODS To this end, 85 abstinent subjects with alcohol use disorders from an outpatient setting and 55 healthy subjects were evaluated for both substance and mental disorders. The plasma levels of cytokines interleukin 1 beta, interleukin 4, interleukin 6, interleukin 17A, interferon gamma and tumour necrosis alpha were determined and their association with (a) history of alcohol consumption, (b) psychiatric comorbidity and (c) liver/pancreas comorbidities was explored. RESULTS We found that plasma concentrations of interleukin 1 beta, interleukin 6 and tumour necrosis alpha were increased, whereas plasma concentrations of interleukin 4, interleukin 17A and interferon gamma were decreased in abstinent alcohol use disorder patients as compared with control subjects. Moreover, we found that changes in interleukin 6 and interleukin 17A plasma concentrations in alcohol use disorder patients were associated with the presence of liver and pancreatic diseases. CONCLUSION The present results suggest alcohol use disorder is associated with alterations of plasma cytokines, being interleukin 6 and interleukin 17A potential biomarkers of the presence of comorbidities of digestive organs. The clinical relevance of these findings is discussed in the context of alcohol-induced inflammatory processes.
Collapse
Affiliation(s)
- Nuria García-Marchena
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain.,Unidad de Adicciones, Servicio de Medicina Interna, Institut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Rosa Maza-Quiroga
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Vicente Barrios
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, Madrid, Spain
| | - Nerea Requena-Ocaña
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Julie Ann Chowen
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, Madrid, Spain
| | - Jesús Argente
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, Madrid, Spain
| | - Gabriel Rubio
- Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Torrens
- Institut de Neuropsiquiatria i Addiccions del Parc de Salut Mar, Barcelona, Spain
| | - Meritxell López-Gallardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Eva María Marco
- Departamento de Fisiología II, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain.,Unidad de Gestión Clínica del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
52
|
Stamatovich SN, Lopez-Gamundi P, Suchting R, Colpo GD, Walss-Bass C, Lane SD, Schmitz JM, Wardle MC. Plasma pro- and anti-inflammatory cytokines may relate to cocaine use, cognitive functioning, and depressive symptoms in cocaine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 47:52-64. [DOI: 10.1080/00952990.2020.1828439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Paula Lopez-Gamundi
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela D. Colpo
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Consuelo Walss-Bass
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott D. Lane
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joy M. Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Margaret C. Wardle
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
53
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
54
|
Region-dependent regulation of acute ethanol on γ oscillation in the rat hippocampal slices. Psychopharmacology (Berl) 2020; 237:2959-2966. [PMID: 32700022 DOI: 10.1007/s00213-020-05584-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ethanol use disorders are a serious medical and public health problem in the world today. Acute ethanol intoxication can lead to cognitive dysfunction such as learning and memory impairment. Gamma oscillations (γ, 30-80 Hz) are synchronized rhythmic activity generated by population of neurons within local network, and closely related to learning and memory function. The hippocampus is a critical anatomic structure that supports learning and memory. On the grounds of structure and function, hippocampus can be divided into the intermediate (IH), the dorsal (DH), and ventral hippocampus (VH). The current study is the first to investigate the effects of acute ethanol on γ oscillations in these sub-regions of rat hippocampal slices. METHODS The sustained γ oscillations were induced by 200 nM kainate (KA) in the CA3c of IH, DH, and VH. When KA-induced γ oscillation reached the steady state, ethanol (50 mM or 100 mM) was applied and the effects of ethanol on γ oscillation power was measured in the slices sequentially sectioned from ventral to dorsal hippocampus of adult rats. RESULTS In the intermediate hippocampal slices, compared with control (KA only), ethanol (50 mM) caused 36.1 ± 3.9% decrease in γ power (p < 0.05, n = 10), while ethanol (100 mM) caused 55.3 ± 5.5% decrease in γ power (p < 0.001, n = 14). In the dorsal hippocampus, only ethanol (100 mM) caused 18.1 ± 8.6% decrease in γ power (p < 0.05, n = 12). However, in the ventral hippocampus, neither 50 mM nor 100 mM ethanol affected γ oscillation. CONCLUSIONS Our results demonstrate that ethanol may produce the differential suppression of γ oscillations in a dose-dependent manner in different sub-regions of hippocampus, suggesting that the modulation of ethanol on hippocampal γ oscillation is region-dependent.
Collapse
|
55
|
Mischel RA, Muchhala KH, Dewey WL, Akbarali HI. The "Culture" of Pain Control: A Review of Opioid-Induced Dysbiosis (OID) in Antinociceptive Tolerance. THE JOURNAL OF PAIN 2020; 21:751-762. [PMID: 31841668 PMCID: PMC7286790 DOI: 10.1016/j.jpain.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
It is increasingly recognized that chronic opioid use leads to maladaptive changes in the composition and localization of gut bacteria. Recently, this "opioid-induced dysbiosis" (OID) has been linked to antinociceptive tolerance development in preclinical models and may therefore identify promising targets for new opioid-sparing strategies. Such developments are critical to curb dose escalations in the clinical setting and combat the ongoing opioid epidemic. In this article, we review the existing literature that pertains to OID, including the current evidence regarding its qualitative nature, influence on antinociceptive tolerance, and future prospects. PERSPECTIVE: This article reviews the current literature on OID of gut bacteria, including its qualitative nature, influence on antinociceptive tolerance, and future prospects. This work may help identify targets for new opioid-sparing strategies.
Collapse
Affiliation(s)
- Ryan A Mischel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Karan H Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
56
|
Ezeomah C, Cunningham KA, Stutz SJ, Fox RG, Bukreyeva N, Dineley KT, Paessler S, Cisneros IE. Fentanyl self-administration impacts brain immune responses in male Sprague-Dawley rats. Brain Behav Immun 2020; 87:725-738. [PMID: 32165150 DOI: 10.1016/j.bbi.2020.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Opioid use disorder (OUD) affects over two million in the United States and is an increasing public health crisis. The abuse of fentanyl and the emergence of potent fentanyl derivatives increases the risk for the user to succumb to overdose, but also to develop OUD. While intense attention is currently focused on understanding the complexity of behaviors and neural functions that contribute to OUD, much remains to be discovered concerning the interactions of opioid intake with the immune response in the central nervous system (CNS). In the present studies, we tested the hypothesis that short-term abstinence from fentanyl self-administration associates with altered expression of innate immune markers. Male Sprague-Dawley rats were trained to self-administer fentanyl (0.0032 mg/kg/infusion) to stability followed by 24 h of abstinence. Several innate immune markers, as well as opioid receptors (ORs) and intracellular pattern recognition receptors (PRRs), were interrogated within nodes of the neurocircuitry involved in OUD processes, including the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), hippocampus (HIP) and midbrain (MB). In the present study, few immune targets were impacted in the PFC and MB during short-term abstinence from fentanyl (relative to saline) self-administration. However, increased expression of cytokines [e.g., interleukin (IL)1β, IL5], chemokines [e.g., C-C motif chemokine 20 (MIP3α)], tumor necrosis factor α (TNFα) and interferon (IFN) proteins (e.g., IFNβ and IFNγ)] was seen in the NAc, while decreased expression of cytokines (e.g., several ILs), chemokines [e.g., granulocyte-macrophage colony-stimulating factor (GMCSF), monocyte chemoattractant protein (MCP) MCP1, MIP3α], the chemokine ligand 5 (RANTES) and interferons (e.g., IFNβ and IFNγ) in the HIP. Positive correlations were observed between cumulative fentanyl intake and expression of IL1β and IL6 in the NAc, and significant negative correlations with fentanyl intake and IFN β, IL2, IL5, IL12p70 and IL17 in the HIP. Few changes in OR expression was observed during early abstinence from fentanyl self-administration. Excitingly, the expression of the PRR, stimulator of interferon genes (STING) negatively correlated with cumulative fentanyl intake and significantly correlated to specific cytokines, chemokines and interferon proteins in the HIP. Although the CPu appears relatively invulnerable to changes in innate immune markers, the highest correlations between cumulative fentanyl intake with MAVS and/or STING was measured in the CPu. Our findings provide the first evidence of CNS innate immune responses and implicate STING as novel mechanistic targets of immunomodulation during short-term abstinence from fentanyl self-administration.
Collapse
Affiliation(s)
- Chiomah Ezeomah
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Kathryn A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Sonja J Stutz
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Robert G Fox
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Natalya Bukreyeva
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Kelly T Dineley
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Irma E Cisneros
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA.
| |
Collapse
|
57
|
Flores-Bastías O, Gómez GI, Orellana JA, Karahanian E. Activation of Melanocortin-4 Receptor by a Synthetic Agonist Inhibits Ethanolinduced Neuroinflammation in Rats. Curr Pharm Des 2020; 25:4799-4805. [PMID: 31840601 DOI: 10.2174/1381612825666191216145153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND High ethanol intake induces a neuroinflammatory response resulting in the subsequent maintenance of chronic alcohol consumption. The melanocortin system plays a pivotal role in the modulation of alcohol consumption. Interestingly, it has been shown that the activation of melanocortin-4 receptor (MC4R) in the brain decreases the neuroinflammatory response in models of brain damage other than alcohol consumption, such as LPS-induced neuroinflammation, cerebral ischemia, glutamate excitotoxicity, and spinal cord injury. OBJECTIVES In this work, we aimed to study whether MC4R activation by a synthetic MC4R-agonist peptide prevents ethanol-induced neuroinflammation, and if alcohol consumption produces changes in MC4R expression in the hippocampus and hypothalamus. METHODS Ethanol-preferring Sprague Dawley rats were selected offering access to 20% ethanol on alternate days for 4 weeks (intermittent access protocol). After this time, animals were i.p. administered an MC4R agonist peptide in the last 2 days of the protocol. Then, the expression of the proinflammatory cytokines interleukin 6 (IL-6), interleukin 1-beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus, hypothalamus and prefrontal cortex. It was also evaluated if ethanol intake produces alterations in the expression of MC4R in the hippocampus and the hypothalamus. RESULTS Alcohol consumption increased the expression of MC4R in the hippocampus and the hypothalamus. The administration of the MC4R agonist reduced IL-6, IL-1β and TNF-α levels in hippocampus, hypothalamus and prefrontal cortex, to those observed in control rats that did not drink alcohol. CONCLUSION High ethanol consumption produces an increase in the expression of MC4R in the hippocampus and hypothalamus. The administration of a synthetic MC4R-agonist peptide prevents neuroinflammation induced by alcohol consumption in the hippocampus, hypothalamus, and prefrontal cortex. These results could explain the effect of α-MSH and other synthetic MC4R agonists in decreasing alcohol intake through the reduction of the ethanol-induced inflammatory response in the brain.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile
| | - Gonzalo I Gómez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile
| | - Juan A Orellana
- Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile.,Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile
| |
Collapse
|
58
|
Cantacorps L, Montagud-Romero S, Valverde O. Curcumin treatment attenuates alcohol-induced alterations in a mouse model of foetal alcohol spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109899. [PMID: 32109509 DOI: 10.1016/j.pnpbp.2020.109899] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Alcohol exposure during development produces physical and mental abnormalities in the foetus that result in long-term molecular adjustments in the brain, which could underlie the neurobehavioural deficits observed in individuals suffering from foetal alcohol spectrum disorders. In this study, we assessed the effects of curcumin on cognitive impairments caused by prenatal and lactational alcohol exposure (PLAE). Furthermore, we examined whether curcumin could counteract the molecular alterations that may underlie these behavioural impairments. We focused on inflammatory and epigenetic mechanisms by analysing the expression of pro-inflammatory mediators, such as IL-6, TNF-α, and NF-κB, in the hippocampus and prefrontal cortex, as well as microglia and astrocyte activation in the dentate gyrus. We also assessed the activity of histone acetyltransferase in these brain areas. To model binge alcohol drinking, we exposed pregnant C57BL/6 mice to a 20% v/v alcohol solution during gestation and lactation, with limited access periods. We treated male offspring with curcumin during postnatal days (PD28-35) and then evaluated their behaviour in adulthood (PD60). Our results showed that curcumin treatment during the peri-adolescence period improved the anxiety and memory deficits observed in PLAE mice. At the molecular level, we found enhanced histone acetyltransferase activity in mice subjected to PLAE that curcumin treatment could not reverse to baseline levels. These mice also showed increased expression of pro-inflammatory mediators, which could be rescued by curcumin treatment. They also displayed astrogliosis and microglia activation. Our study provides further evidence to support the use of curcumin as a therapeutic agent for counteracting behavioural and molecular alterations induced by PLAE.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
59
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
60
|
Karimi‐Haghighi S, Dargahi L, Haghparast A. Cannabidiol modulates the expression of neuroinflammatory factors in stress- and drug-induced reinstatement of methamphetamine in extinguished rats. Addict Biol 2020; 25:e12740. [PMID: 30793820 DOI: 10.1111/adb.12740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine (METH) is a highly potent and addictive psychostimulant that is frequently abused worldwide. Although the biggest challenge to the efficient treatment of drug dependence is relapse, its mechanism is completely unclear. Plenty of evidence suggests that inflammation contributes to drug-induced reward especially in brain regions that are involved in the reward system, but there is no document about relapse. Cannabidiol (CBD) is a nonpsychoactive cannabinoid that has powerful anti-inflammatory and immunosuppressive properties. A previous research in our laboratory has demonstrated that CBD prevents reinstatement of METH even in 24-hour rapid eye movement (REM) sleep-deprived (RSD) rats. The aim of this study was to assess whether CBD prevents reinstatement of METH through change of gene expression of cytokines such as interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α (TNF-α) in extinguished rats. Real-time polymerase chain reaction (PCR) was used in this research to assay gene expression of cytokines. We found that stress- and drug-induced reinstatement of METH enhanced mRNA expression of cytokines in the prefrontal cortex (PFC) and hippocampus. Furthermore, CBD treatment significantly reduced the mRNA expression of cytokines in the PFC and hippocampus, but CBD treatment in RSD rats increased expression of cytokines in the hippocampus. It seems that enhancement of cytokines leads to change in neurotransmission and so triggers reinstatement of METH.
Collapse
Affiliation(s)
- Saeideh Karimi‐Haghighi
- Neuroscience Research Center, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| | - Leila Dargahi
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
61
|
Jantzie LL, Maxwell JR, Newville JC, Yellowhair TR, Kitase Y, Madurai N, Ramachandra S, Bakhireva LN, Northington FJ, Gerner G, Tekes A, Milio LA, Brigman JL, Robinson S, Allan A. Prenatal opioid exposure: The next neonatal neuroinflammatory disease. Brain Behav Immun 2020; 84:45-58. [PMID: 31765790 PMCID: PMC7010550 DOI: 10.1016/j.bbi.2019.11.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023] Open
Abstract
The rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model. Specifically, we examined the effects of opioids on the developing brain to elucidate mechanisms of putative neural cell injury, to identify diagnostic biomarkers and to guide clinical studies of outcome and follow-up. We hypothesized that methadone would induce a pronounced inflammatory profile in both dams and their pups, and be associated with immune system dysfunction, sustained CNS injury, and altered cognition and executive function into adulthood. This investigation was conducted using a combination of cellular, molecular, biochemical, and clinically translatable biomarker, imaging and cognitive assessment platforms. Data reveal that perinatal methadone exposure increases inflammatory cytokines in the neonatal peripheral circulation, and reprograms and primes the immune system through sustained peripheral immune hyperreactivity. In the brain, perinatal methadone exposure not only increases chemokines and cytokines throughout a crucial developmental period, but also alters microglia morphology consistent with activation, and upregulates TLR4 and MyD88 mRNA. This increase in neuroinflammation coincides with reduced myelin basic protein and altered neurofilament expression, as well as reduced structural coherence and significantly decreased fractional anisotropy on diffusion tensor imaging. In addition to this microstructural brain injury, adult rats exposed to methadone in the perinatal period have significant impairment in associative learning and executive control as assessed using touchscreen technology. Collectively, these data reveal a distinct systemic and neuroinflammatory signature associated with prenatal methadone exposure, suggestive of an altered CNS microenvironment, dysregulated developmental homeostasis, complex concurrent neural injury, and imaging and cognitive findings consistent with clinical literature. Further investigation is required to define appropriate therapies targeted at the neural injury and improve the long-term outcomes for this exceedingly vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L. Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Kennedy Krieger Institute, Baltimore, MD.,Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM.,Correspondence: Lauren L. Jantzie, PhD, Johns Hopkins University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, 600 N. Wolfe Street, CMSC Building Room 6-104A, Baltimore, MD 21287,
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Jessie C. Newville
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Tracylyn R. Yellowhair
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yuma Kitase
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nethra Madurai
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sindhu Ramachandra
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludmila N. Bakhireva
- Substance Use Research and Education (SURE) Center, University of New Mexico College of Pharmacy, Albuquerque, NM
| | | | - Gwendolyn Gerner
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorraine A. Milio
- Department of Obstetrics & Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrea Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
62
|
Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020; 14:5. [PMID: 32063838 PMCID: PMC6997842 DOI: 10.3389/fncel.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The concept that neuroinflammation induced by excessive alcohol intake in adolescence triggers brain mechanisms that perpetuate consumption has strengthened in recent years. The melanocortin system, composed of the melanocortin 4 receptor (MC4R) and its ligand α-melanocyte-stimulating hormone (α-MSH), has been implicated both in modulation of alcohol consumption and in ethanol-induced neuroinflammation decrease. Chronic alcohol consumption in adolescent rats causes a decrease in an α-MSH release by the hypothalamus, while the administration of synthetic agonists of MC4R causes a decrease in neuroinflammation and a decrease in voluntary alcohol consumption. However, the mechanism that connects the activation of MC4R with the decrease of both neuroinflammation and voluntary alcohol consumption has not been elucidated. Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol drinking motivation, dependence and withdrawal, and its levels are reduced in alcoholics. Deficiencies in BDNF levels increased ethanol self-administration in rats. Further, BDNF triggers important anti-inflammatory effects in the brain, and this could be one of the mechanisms by which BDNF reduces chronic alcohol intake. Interestingly, MC4R signaling induces BDNF expression through the activation of the cAMP-responsive element-binding protein (CREB). We hypothesize that ethanol exposure during adolescence decreases the expression of α-MSH and hence MC4R signaling in the hippocampus, leading to a lower BDNF activity that causes dramatic changes in the brain (e.g., neuroinflammation and decreased neurogenesis) that predispose to maintain alcohol abuse until adulthood. The activation of MC4R either by α-MSH or by synthetic agonist peptides can induce the expression of BDNF, which would trigger several processes that lead to lower alcohol consumption.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| | - Alfredo Adriasola-Carrasco
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
63
|
Linker KE, Gad M, Tawadrous P, Cano M, Green KN, Wood MA, Leslie FM. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun 2020; 11:306. [PMID: 31949158 PMCID: PMC6965638 DOI: 10.1038/s41467-019-14173-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
With the rise of e-cigarette use, teen nicotine exposure is becoming more widespread. Findings from clinical and preclinical studies show that the adolescent brain is particularly sensitive to nicotine. Animal studies have demonstrated that adolescent nicotine exposure increases reinforcement for cocaine and other drugs. However, the mechanisms that underlie these behaviors are poorly understood. Here, we report reactive microglia are critical regulators of nicotine-induced increases in adolescent cocaine self-administration. Nicotine has dichotomous, age-dependent effects on microglial morphology and immune transcript profiles. A multistep signaling mechanism involving D2 receptors and CX3CL1 mediates nicotine-induced increases in cocaine self-administration and microglial activation. Moreover, nicotine depletes presynaptic markers in a manner that is microglia-, D2- and CX3CL1-dependent. Taken together, we demonstrate that adolescent microglia are uniquely susceptible to perturbations by nicotine, necessary for nicotine-induced increases in cocaine-seeking, and that D2 receptors and CX3CL1 play a mechanistic role in these phenomena. Adolescents are particularly sensitive to nicotine. Here the authors show that in mice, microglial activation contributes to the enhanced sensitivity to cocaine caused by nicotine exposure in young mice.
Collapse
Affiliation(s)
- K E Linker
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA.
| | - M Gad
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - P Tawadrous
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - M Cano
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - K N Green
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - M A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - F M Leslie
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA.,Department of Pharmacology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
64
|
Cocaine-induced changes in CX 3CL1 and inflammatory signaling pathways in the hippocampus: Association with IL1β. Neuropharmacology 2019; 162:107840. [PMID: 31704270 DOI: 10.1016/j.neuropharm.2019.107840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022]
Abstract
Cocaine induces neuroinflammatory response and interleukin-1 beta (IL1β) is suggested a final effector for many cocaine-induced inflammatory signals. Recently, the chemokine fractalkine (CX3CL1) has been reported to regulate hippocampus-dependent neuroinflammation and synaptic plasticity via CX3C-receptor 1 (CX3CR1), but little is known about the impact of cocaine. This study is mainly focused on the characterization of CX3CL1, IL1β and relevant inflammatory signal transduction pathways in the hippocampus in acute and repeated cocaine-treated male mice. Complementarily, the rewarding properties of cocaine were also assessed in Cx3cr1-knockout (KO) mice using a conditioned place preference (CPP). We observed significant increases in CX3CL1 and IL1β concentrations after cocaine, although repeated cocaine produced an enhancement of CX3CL1 concentrations. CX3CL1 and IL1β concentrations were positively correlated in acute (r = +0.61) and repeated (r = +0.82) cocaine-treated mice. Inflammatory signal transduction pathways were assessed. Whereas acute cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2 and p-p65/p65 NFκB ratios after cocaine injection, repeated cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2, p-p38/p38 MAPK, p-NFκB p65/NF-κB p65 and p-CREB/CREB ratios. Baseline p-p38/p38 MAPK and p-CREB/CREB ratios were downregulated in repeated cocaine-treated mice. Regarding the cocaine-induced CPP, Cx3cr1-KO mice showed a notably impaired extinction but no differences during acquisition and reinstatement. These results indicate that cocaine induces alterations in CX3CL1 concentrations, which are associated with IL1β concentrations, and activates convergent inflammatory pathways in the hippocampus. Furthermore, the CX3CL1/CX3CR1 signaling could mediate the processes involved in the extinction of cocaine-induced CPP.
Collapse
|
65
|
Lu RB, Wang TY, Lee SY, Chen SL, Chang YH, See Chen P, Lin SH, Chu CH, Huang SY, Tzeng NS, Lee IH, Chin Chen K, Kuang Yang Y, Chen P, Chen SH, Hong JS. Correlation between interleukin-6 levels and methadone maintenance therapy outcomes. Drug Alcohol Depend 2019; 204:107516. [PMID: 31513981 PMCID: PMC7077753 DOI: 10.1016/j.drugalcdep.2019.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/08/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The outcome of methadone maintenance therapy (MMT) varies in each patient with opioid use disorder (OUD). Opioid abuse activates proinflammatory processes by increasing cytokine production and impairing neurotrophic factor expression, and possibly leads to a vicious cycle that hinders recovery. Therefore, we investigated whether markers of inflammation and neurotrophic expression correlate with the MMT outcomes in OUD patients. METHOD We investigated OUD patients undergoing MMT and followed them up for 12 weeks. We measured plasma tumor necrosis factor (TNF)-α, C-reactive protein (CRP), interleukin (IL)-6, IL-1β, transforming growth factor (TGF)-β1, brain-derived neurotrophic factor (BDNF), urinary morphine tests, and plasma morphine levels at baseline and on weeks 1, 4, 8, and 12 during MMT. Multiple linear regressions and generalized estimating equations (GEEs) were used to examine the correlation between the cytokine and BDNF levels and MMT outcomes. RESULTS We initially enrolled 104 patients, but only 78 patients completed end-of-study assessments. Plasma levels of CRP, TGF-β1, and BDNF fell during MMT. Plasma IL-6 levels were significantly associated with plasma morphine levels (P = 0.005) and urinary morphine-positive (+) results (P = 0.04), and significantly associated with poor compliance (P = 0.009) and early dropout from MMT (P = 0.001). However, other cytokine and BDNF levels were not consistently associated with MMT outcomes. CONCLUSION Higher IL-6 levels were associated with poor MMT outcomes. Additional studies on regulating IL-6 expression to improve treatment outcomes in OUD patients might be warranted.
Collapse
Affiliation(s)
- Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou City Sheng Jin Road No. 1 Huanglong residential area, China; Beijing YiNing Hospital, No.9 Minzhuang Road, Haidian District, Beijing 100195, China; Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan.
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Department of Psychiatry, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung 81362, Taiwan
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; Lipid Science and Aging Research Center, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Yun-Hsuan Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Department of Psychology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 3F, No.367, Sheng-Li Rd., North District, Tainan 70456, Taiwan
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan; Student Counseling Center, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 11490, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, No.345, Zhuangjing Rd., Douliu, Yunlin 64043, Taiwan
| | - Ping Chen
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Shih-Heng Chen
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, 111 T.W. Alexander Drive, N.C. 27709, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, 111 T.W. Alexander Drive, N.C. 27709, USA
| |
Collapse
|
66
|
Zaparte A, Schuch JB, Viola TW, Baptista TAS, Beidacki AS, do Prado CH, Sanvicente-Vieira B, Bauer ME, Grassi-Oliveira R. Cocaine Use Disorder Is Associated With Changes in Th1/Th2/Th17 Cytokines and Lymphocytes Subsets. Front Immunol 2019; 10:2435. [PMID: 31749792 PMCID: PMC6843068 DOI: 10.3389/fimmu.2019.02435] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Background: Cocaine is a psychostimulant drug with high addictive proprieties. Evidence suggests that cocaine use leads to critical changes in the immune system, with significant effects on T, B, and natural killer (NK) cells and influencing peripheral levels of cytokines. The presence of abstinence-related symptoms during detoxification treatment is known to influence the prognosis. Here, our aim was to investigate immune profiles in women with cocaine use disorder (CUD) according to withdrawal symptoms severity. Methods: Blood samples and clinical data were collected at onset of detoxification treatment of 50 women with CUD. The patients were stratified according to Cocaine Selective Severity Assessment (CSSA) scores in low withdrawal (L-W) and high withdrawal (H-W) categories. In addition, we also included a control group with 19 healthy women as reference to immune parameters. Peripheral blood was collected and lymphocyte subsets were phenotyped by multi-color flow cytometry (B cells, CD4+ T, CD8+ T, NK cells, and different stages of T-cell differentiation). PBMCs from patients and healthy controls were stimulated in vitro with phytohemagglutinin (1%) for 72 h to assess the production of Th1/Th2/Th17 cytokines. Results: Following stimulation, lymphocytes from women with CUD produced increased levels of Th1/Th2/Th17 cytokines. However, higher levels of IL-2 and IL-17 were observed only in the L-W group, while higher levels of IL-6 were detected in the H-W group compared to controls. H-W group showed lower percentage of early-differentiated Th cells (CD4+CD27+CD28+), elevated percentage of Th cells (CD3+CD4+), intermediate-differentiated Th cells (CD4+CD27−CD28+), and B cells (CD3−CD19+). Both CUD groups showed decreased percentages of naïve T cells (CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+). Conclusion: Our data demonstrated that CUD can lead to increased production of Th1/Th2/Th17 cytokines and lymphocyte changes.
Collapse
Affiliation(s)
- Aline Zaparte
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago W Viola
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Talita A S Baptista
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Stephanie Beidacki
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carine H do Prado
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab, School of Health Science, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moisés E Bauer
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Stress Immunology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
67
|
Calcineurin signaling as a target for the treatment of alcohol abuse and neuroinflammatory disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019. [PMID: 31601401 DOI: 10.1016/bs.pmbts.2019.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Converging lines of evidence point to a significant role of neuroinflammation in a host of psychiatric conditions, including alcohol use disorder, TBI, and PTSD. A complex interaction of both peripheral and central signaling underlies processes involved in neuroinflammation. Calcineurin is a molecule that sits at the nexus of these processes and has been clearly linked to a number of psychiatric disorders including alcohol use disorder (AUD). Like its role in regulating peripheral immune cells, calcineurin (CN) plays an integral role in processes regulating neuroimmune function and neuroinflammatory processes. Targeting CN or elements of its signaling pathways at critical points may aid in the functional recovery from neuroinflammatory related disorders. In this review we will highlight the role of neuroinflammation and calcineurin signaling in AUD, TBI and stress-induced disorders and discuss recent findings demonstrating a therapeutic effect of immunosuppressant-induced calcineurin inhibition in a pre-clinical model of binge alcohol drinking.
Collapse
|
68
|
Targeting neuroinflammation with minocycline in heavy drinkers. Psychopharmacology (Berl) 2019; 236:3013-3021. [PMID: 30919006 PMCID: PMC6764907 DOI: 10.1007/s00213-019-05205-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE Alcohol has both acute and chronic effects on neuroimmune signaling, including triggering pro-inflammatory cytokine release by microglia. Minocycline, a second-generation tetracycline antibiotic, inhibits microglial activation and reduces neuroinflammation in preclinical studies. In mice, minocycline also reduces ethanol intake, attenuates ethanol-induced conditioned place preference, and inhibits ethanol-induced microglial activation and pro-inflammatory cytokine release. OBJECTIVE Here, for the first time, we tested the effects of minocycline on subjective response to ethanol and acute ethanol-induced inflammation in humans. METHODS Forty-eight heavy drinkers participated in a double-blind, placebo-controlled trial in which they were randomized to receive placebo, 100 mg, or 200 mg of minocycline for 10 days. Each subject then underwent two experimental sessions in which they were given a fixed dose of intravenous ethanol using a "clamp" procedure (100 mg%) or placebo (normal saline) on days 8 and 10 of treatment. RESULTS Minocycline was well tolerated, but there was no effect of either dose of minocycline on subjective response to ethanol or ethanol-induced craving; minocycline effects on cognitive function seem to interact with age. Minocycline treatment did not alter serum cytokine levels at baseline or during ethanol-exposure, although certain baseline cytokine levels predict sedative response to ethanol. CONCLUSION These findings indicate that a short-term treatment with minocycline may not alter ethanol-related inflammation or subjective response to ethanol in humans. Further research is needed to identify pharmacological agents with robust effects on ethanol-induced inflammation to determine whether neuroimmune modulation represents a viable treatment strategy for alcohol use disorder.
Collapse
|
69
|
A potential role for microglia in stress- and drug-induced plasticity in the nucleus accumbens: A mechanism for stress-induced vulnerability to substance use disorder. Neurosci Biobehav Rev 2019; 107:360-369. [PMID: 31550452 DOI: 10.1016/j.neubiorev.2019.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Stress is an important risk factor for the development of substance use disorder (SUD). Exposure to both stress and drugs abuse lead to changes in synaptic plasticity and stress-induced alterations in synaptic plasticity may contribute to later vulnerability to SUD. Recent developmental neuroscience studies have identified microglia as regulators of synaptic plasticity. As both stress and drugs of abuse lead to microglial activation, we propose this as a potential mechanism underlying their ability to change synaptic plasticity. This review focuses on three components of synaptic plasticity: spine density, brain-derived neurotrophic factor (BDNF) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression. Their roles in addiction, stress, and development will be reviewed, as well as possible mechanisms by which microglia could regulate their function. Potential links between stress, vulnerability to addiction, and microglial activity will be explored.
Collapse
|
70
|
Zhang X, Peng Y, Grace PM, Metcalf MD, Kwilasz AJ, Wang Y, Zhang T, Wu S, Selfridge BR, Portoghese PS, Rice KC, Watkins LR, Hutchinson MR, Wang X. Stereochemistry and innate immune recognition: (+)-norbinaltorphimine targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling. FASEB J 2019; 33:9577-9587. [PMID: 31162938 PMCID: PMC6988860 DOI: 10.1096/fj.201900173rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
Deregulation of innate immune TLR4 signaling contributes to various diseases including neuropathic pain and drug addiction. Naltrexone is one of the rare TLR4 antagonists with good blood-brain barrier permeability and showing no stereoselectivity for TLR4. By linking 2 naltrexone units through a rigid pyrrole spacer, the bivalent ligand norbinaltorphimine was formed. Interestingly, (+)-norbinaltorphimine [(+)-1] showed ∼25 times better TLR4 antagonist activity than naltrexone in microglial BV-2 cell line, whereas (-)-norbinaltorphimine [(-)-1] lost TLR4 activity. The enantioselectivity of norbinaltorphimine was further confirmed in primary microglia, astrocytes, and macrophages. The activities of meso isomer of norbinaltorphimine and the molecular dynamic simulation results demonstrate that the stereochemistry of (+)-1 is derived from the (+)-naltrexone pharmacophore. Moreover, (+)-1 significantly increased and prolonged morphine analgesia in vivo. The efficacy of (+)-1 is long lasting. This is the first report showing enantioselective modulation of the innate immune TLR signaling.-Zhang, X., Peng, Y., Grace, P. M., Metcalf, M. D., Kwilasz, A. J., Wang, Y., Zhang, T., Wu, S., Selfridge, B. R., Portoghese, P. S., Rice, K. C., Watkins, L. R., Hutchinson, M. R., Wang, X. Stereochemistry and innate immune recognition: (+)-norbinaltorphimine targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Matthew D. Metcalf
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Brandon R. Selfridge
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mark R. Hutchinson
- Discipline of Physiology, Adelaide Medical School and Australian Research Council (ARC) Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, South Australia, Australia
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
71
|
O'Sullivan SJ, Malahias E, Park J, Srivastava A, Reyes BAS, Gorky J, Vadigepalli R, Van Bockstaele EJ, Schwaber JS. Single-Cell Glia and Neuron Gene Expression in the Central Amygdala in Opioid Withdrawal Suggests Inflammation With Correlated Gut Dysbiosis. Front Neurosci 2019; 13:665. [PMID: 31333398 PMCID: PMC6619439 DOI: 10.3389/fnins.2019.00665] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Drug-seeking in opioid dependence is due in part to the severe negative emotion associated with the withdrawal syndrome. It is well-established that negative emotional states emerge from activity in the amygdala. More recently, gut microflora have been shown to contribute substantially to such emotions. We measured gene expression in single glia and neurons gathered from the amygdala using laser capture microdissection and simultaneously measured gut microflora in morphine-dependent and withdrawn rats to investigate drivers of negative emotion in opioid withdrawal. We found that neuroinflammatory genes, notably Tnf, were upregulated in the withdrawal condition and that astrocytes, in particular, were highly active. We also observe a decreased Firmicutes to Bacteroides ratio in opioid withdrawal indicating gut dysbiosis. We speculate that these inflammatory and gut microflora changes contribute to the negative emotion experienced in opioid withdrawal that motivates dependence.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Evangelia Malahias
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James Park
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Beverly A S Reyes
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jon Gorky
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
72
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
73
|
Woodcock EA, Hillmer AT, Mason GF, Cosgrove KP. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review. MOLECULAR NEUROPSYCHIATRY 2019; 5:125-146. [PMID: 31312635 PMCID: PMC6597912 DOI: 10.1159/000499621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
There is tremendous interest in the role of the neuroimmune system and inflammatory processes in substance use disorders (SUDs). Imaging biomarkers of the neuroimmune system in vivo provide a vital translational bridge between preclinical and clinical research. Herein, we examine two imaging techniques that measure putative indices of the neuroimmune system and review their application among SUDs. Positron emission tomography (PET) imaging of 18 kDa translocator protein availability is a marker associated with microglia. Proton magnetic resonance spectroscopy quantification of myo-inositol levels is a putative glial marker found in astrocytes. Neuroinflammatory responses are initiated and maintained by microglia and astrocytes, and thus represent important imaging markers. The goal of this review is to summarize neuroimaging findings from the substance use literature that report data using these markers and discuss possible mechanisms of action. The extant literature indicates abused substances exert diverse and complex neuroimmune effects. Moreover, drug effects may change across addiction stages, i.e. the neuroimmune effects of acute drug administration may differ from chronic use. This burgeoning field has considerable potential to improve our understanding and treatment of SUDs. Future research is needed to determine how targeting the neuroimmune system may improve treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Kelly P. Cosgrove
- Departments of Psychiatry, and of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
74
|
A comparison of hippocampal microglial responses in aged and young rodents following dependent and non-dependent binge drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:305-343. [PMID: 31733666 PMCID: PMC9875180 DOI: 10.1016/bs.irn.2019.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alcoholism is a highly visible and prevalent issue in the United States. Although binge-drinking is assumed to be a college-age problem, older adults (ages 65+) consume binge amounts of alcohol and have alcohol use disorders (AUDs). Moreover, individuals with alcohol dependence in their youth often continue to drink as they age. As such, this study tested the hypothesis that the effects of alcohol on hippocampal microglia are exacerbated in aged versus younger rodents in two AUD models. Briefly, adult (2-3 months) and aged (15+ months) Sprague-Dawley rats were administered alcohol or control diet using the Majchrowicz model to study alcohol-induced neurodegeneration. To study the effects of non-dependent binge consumption on microglia, adolescent (6-8 weeks) and aged (18+ months) C57/BL6N were subjected to the Drinking in the Dark paradigm. Microglia number and densitometry were assessed using immunohistochemistry. Hippocampal subregional and model/species-specific effects of alcohol were observed, but overall, aging did not appear to increase the alcohol-induced microglia reactivity as measured by Iba-1 densitometry. However, analysis of microglial counts revealed a significant decrease in the number microglia cells in both the alcohol-induced neurodegeneration and DID model across age groups. In the dentate gyrus, the loss of microglia was exacerbated by aging, particularly in mice after DID, non-dependent model. Using qRT-PCR, the persistence of alcohol and aging effects was assessed following the DID model. Allograft Inflammatory Factor 1 mRNA was increased in both young and aged mice by alcohol exposure; however, only in the aged mice did the alcohol effect persist. Overall, these data imply that the microglial response to alcohol is complex with evidence of depressed numbers of microglia but also increased reactivity with advanced age.
Collapse
|
75
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
76
|
Randall PA, Vetreno RP, Makhijani VH, Crews FT, Besheer J. The Toll-Like Receptor 3 Agonist Poly(I:C) Induces Rapid and Lasting Changes in Gene Expression Related to Glutamatergic Function and Increases Ethanol Self-Administration in Rats. Alcohol Clin Exp Res 2018; 43:48-60. [PMID: 30403408 DOI: 10.1111/acer.13919] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Growing evidence suggests that neuroimmune signaling via Toll-like receptors (TLRs) alters brain circuitry related to alcohol use disorders. Both ethanol (EtOH) exposure and the TLR3 agonist, poly(I:C), increase brain TLR3 expression in neurons and glia. Furthermore, previous studies have shown that cortical TLR3 expression is correlated with lifetime EtOH intake in humans. METHODS The current experiments investigated the consequences of poly(I:C) treatment on gene expression in 2 brain regions contributing to alcohol reinforcement, the insular cortex (IC) and nucleus accumbens (Acb) and on operant EtOH self-administration, in Long Evans rats. RESULTS TLR3 activation increased mRNA levels of neuroimmune genes (TLR3, COX2), glutamatergic genes (mGluR2, mGluR3, GLT1), and the trophic factor BDNF in Acb and IC. Furthermore, increases in each of these genes were correlated with increases in TLR3 mRNA, suggesting that TLR3 induction of these genes may impact excitatory transmission in IC and Acb. TLR3 activation also increased EtOH self-administration 18 days postinjection and enhanced the effects of the mGluR2/3 agonist LY379268 to reduce EtOH self-administration following poly(I:C). CONCLUSIONS Together, these findings suggest lasting consequences of TLR3 activation on gene expression including increases in Group II mGluRs in the Acb. Furthermore, we show an important role for TLR3 signaling in EtOH intake, and a functional involvement of Group II mGluRs.
Collapse
Affiliation(s)
- Patrick A Randall
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Viren H Makhijani
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
77
|
Fries GR, Khan S, Stamatovich S, Dyukova E, Walss-Bass C, Lane SD, Schmitz JM, Wardle MC. Anhedonia in cocaine use disorder is associated with inflammatory gene expression. PLoS One 2018; 13:e0207231. [PMID: 30408130 PMCID: PMC6224118 DOI: 10.1371/journal.pone.0207231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/27/2018] [Indexed: 12/22/2022] Open
Abstract
Treatments for Cocaine Use Disorder (CUD) are variably effective, and there are no FDA-approved medications. One approach to developing new treatments for CUD may be to investigate and target poor prognostic signs. One such sign is anhedonia (i.e. a loss of pleasure or interest in non-drug rewards), which predicts worse outcomes in existing CUD treatments. Inflammation is thought to underlie anhedonia in many other disorders, but the relationship between anhedonia and inflammation has not been investigated in CUD. Therefore, we assessed peripheral genome-wide gene expression in n = 48 individuals with CUD with high (n = 24) vs. low (n = 24) levels of anhedonia, defined by a median split of self-reported anhedonia. Our hypothesis was that individuals with high anhedonia would show differential gene expression in inflammatory pathways. No individual genes were significantly different between the low and high anhedonia groups when using t-tests with a stringent false discovery rate correction (FDR-corrected p < 0.05). However, an exploratory analysis identified 166 loci where t-tests suggested group differences at a nominal p < 0.05. We used DAVID, a bioinformatics tool that provides functional interpretations of complex lists of genes, to examine representation of this gene list in known pathways. It confirmed that mechanisms related to immunity were the top significant associations with anhedonia in the sample. Further, the two top differentially expressed genes in our sample, IRF1 and GBP5, both have primary inflammation and immune functions, and were significantly negatively correlated with total scores on our self-report of anhedonia across all 48 subjects. These results suggest that prioritizing development of anti-inflammatory medications for CUD may pay dividends, particularly in combination with treatment-matching strategies using either phenotypic measures of anhedonia or biomarkers of inflammatory gene expression to individualize treatment.
Collapse
Affiliation(s)
- Gabriel Rodrigo Fries
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sarwar Khan
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sydney Stamatovich
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Elena Dyukova
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Scott D. Lane
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Joy M. Schmitz
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Margaret C. Wardle
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
78
|
Kuo SC, Yeh YW, Chen CY, Huang CC, Ho PS, Liang CS, Lin CL, Yeh TC, Tsou CC, Yang BZ, Lu RB, Huang SY. Differential effect of the DRD3 genotype on inflammatory cytokine responses during abstinence in amphetamine-dependent women. Psychoneuroendocrinology 2018; 97:37-46. [PMID: 30005280 DOI: 10.1016/j.psyneuen.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/25/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022]
Abstract
Amphetamine exposure impacts on innate and adaptive immunity and DRD3 may modulate the effect of amphetamine on the immune response. We assessed the immune-cytokine markers in 72 female patients with amphetamine dependence (AD) at baseline and after 4-week drug abstinence and in 51 healthy women. Multiplex magnetic bead assay was used to measure the plasma cytokine expression level simultaneously in all participants and DRD3 rs6280 polymorphism was genotyped in patients. We demonstrated an increase of the T helper 1 (Th1) cytokines (IL-2), Th2 cytokines (IL-4, IL-5, IL-6 and IL-10) and other cytokines (IL-1β) in the entire AD cohort. A similar cytokine pattern, along with a significantly decreased IL-8 and IL-10 levels was observed after 4-week abstinence. Among AD patients with DRD3 rs6280 TT genotype, the cytokine expression profile was consistent with total AD cohort at baseline and revealed a significant down-regulated plasma level of the Th1, Th2, and other cytokines except for IL-6 after 4-week abstinence. In AD group with DRD3 rs6280 C allele carrier, we found IL-2 level was significantly higher than healthy controls at baseline and remained higher, accompanied with a borderline increase in IL-4, IL-6 and IL-1β levels after 4-week abstinence. Our results suggest that chronic use of amphetamine increased both pro- and anti-inflammatory cytokines in AD patients, indicating the immune imbalance that may persist for 4 weeks or more. Besides, DRD3 rs6280 TT genotype may be associated with favorable recovery in general inflammatory cytokines during period of abstinence.
Collapse
Affiliation(s)
- Shin-Chang Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Wei Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Yen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Chih Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Buddhist Tzu Chi General Hospital, Taipei Branch, Taipei, Taiwan, ROC
| | - Pei-Shen Ho
- Department of Psychiatry, Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Long Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Hsinchu Branch, Taoyuan Armed Forces General Hospital, Hsinchu, Taiwan, ROC
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Chih Tsou
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Bao-Zhu Yang
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ru-Band Lu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - San-Yuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
79
|
Linker KE, Cross SJ, Leslie FM. Glial mechanisms underlying substance use disorders. Eur J Neurosci 2018; 50:2574-2589. [PMID: 30240518 DOI: 10.1111/ejn.14163] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/28/2022]
Abstract
Addiction is a devastating disorder that produces persistent maladaptive changes to the central nervous system, including glial cells. Although there is an extensive body of literature examining the neuronal mechanisms of substance use disorders, effective therapies remain elusive. Glia, particularly microglia and astrocytes, have an emerging and meaningful role in a variety of processes beyond inflammation and immune surveillance, and may represent a promising therapeutic target. Indeed, glia actively modulate neurotransmission, synaptic connectivity and neural circuit function, and are critically poised to contribute to addictive-like brain states and behaviors. In this review, we argue that glia influence the cellular, molecular, and synaptic changes that occur in neurons following drug exposure, and that this cellular relationship is critically modified following drug exposure. We discuss direct actions of abused drugs on glial function through immune receptors, such as Toll-like receptor 4, as well as other mechanisms. We highlight how drugs of abuse affect glia-neural communication, and the profound effects that glial-derived factors have on neuronal excitability, structure, and function. Recent research demonstrates that glia have brain region-specific functions, and glia in different brain regions have distinct contributions to drug-associated behaviors. We will also evaluate the evidence demonstrating that glial activation is essential for drug reward and drug-induced dopamine release, and highlight clinical evidence showing that glial mechanisms contribute to drug abuse liability. In this review, we synthesize the extensive evidence that glia have a unique, pivotal, and underappreciated role in the development and maintenance of addiction.
Collapse
Affiliation(s)
- K E Linker
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - S J Cross
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - F M Leslie
- Department of Pharmacology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
80
|
Iacopetta K, Collins-Praino LE, Buisman-Pijlman FTA, Hutchinson MR. Can neuroimmune mechanisms explain the link between ultraviolet light (UV) exposure and addictive behavior? Brain Behav Immun 2018; 73:125-132. [PMID: 30009997 DOI: 10.1016/j.bbi.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
High ultraviolet (UV) light exposure on the skin acts as a reinforcing stimulus, increasing sun-seeking behavior and even addiction-like sun seeking behavior. However, the physiological mechanisms that underlie this process remain to be defined. Here, we propose a novel hypothesis that neuroimmune signaling, arising from inflammatory responses in UV-damaged skin cells, causes potentiated signaling within the cortico-mesolimbic pathway, leading to increased sun-seeking behaviors. This hypothesized UV-induced, skin-to-brain signaling depends upon cell stress signals, termed alarmins, reaching the circulation, thereby triggering the activation of innate immune receptors, such as toll-like receptors (TLRs). This innate immune response is hypothesized to occur both peripherally and centrally, with the downstream signaling from TLR activation affecting both the endogenous opioid system and the mesolimbic dopamine pathway. As both neurotransmitter systems play a key role in the development of addiction behaviors through their actions at key brain regions, such as the nucleus accumbens (NAc), we hypothesize a novel connection between UV-induced inflammation and the activation of pathways that contribute to the development of addiction. This paper is a review of the existing literature to examine the evidence which suggests that chronic sun tanning resembles a behavioral addiction and proposes a novel pathway by which persistent sun-seeking behavior could affect brain neurochemistry in a manner similar to that of repeated drug use.
Collapse
Affiliation(s)
- Krystal Iacopetta
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Lyndsey E Collins-Praino
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Femke T A Buisman-Pijlman
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Mark R Hutchinson
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
81
|
Wang TY, Lee SY, Chang YH, Chen SL, Chen PS, Chu CH, Huang SY, Tzeng NS, Lee IH, Chen KC, Yang YK, Chen SH, Hong JS, Lu RB. Correlation of cytokines, BDNF levels, and memory function in patients with opioid use disorder undergoing methadone maintenance treatment. Drug Alcohol Depend 2018; 191:6-13. [PMID: 30071446 PMCID: PMC6487886 DOI: 10.1016/j.drugalcdep.2018.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with opioid use disorder (OUD) show memory deficiencies and impaired treatment outcomes. Emerging evidence suggests that opioid abuse activates proinflammatory processes by increasing cytokine production and impairing neuroprotection, which damages the memory function in OUD patients. Therefore, we investigated whether plasma-based inflammatory and neurotrophic markers correlate with memory function in OUD patients. METHOD OUD patients undergoing methadone maintenance therapy (MMT) were investigated and followed up for 12 weeks. Plasma tumor necrosis factor (TNF)-α, C-reactive protein (CRP), interleukin (IL)-6, transforming growth factor (TGF)-β1, brain-derived neurotrophic factor (BDNF) levels, and Wechsler Memory Scale-Revised (WMS-R) scores were assessed at baseline and after 12 weeks of MMT. Multiple linear regressions and generalized estimating equations (GEEs) were used to examine the correlation between cytokines and memory performance. RESULTS We enrolled 89 patients at baseline; 47 patients completed the end-of-study assessments. Although Pearson correlations showed that CRP and TGF-β1 levels were significantly, negatively associated with some memory indices, the results were not significant after correction. The GEE results, controlled for several confounding factors and multiple testing, showed that changes in TNF-α levels were negatively correlated with changes in the visual memory index (P = 0.01), and that changes in IL-6 levels were negatively correlated with changes in the verbal memory index (P = 0.009). CONCLUSION Memory performance, TNF-α, and IL-6 levels in OUD patients were negative correlated. Additional studies on regulating TNF-α and IL-6 expression to improve memory function in OUD patients might be warranted.
Collapse
Affiliation(s)
- Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, No. 345, Zhuangjing Road, Douliu, Yunlin 64043, Taiwan.
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Department of Psychiatry, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung 81362, Taiwan
| | - Yun-Hsuan Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Department of Psychology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan;,Department of Medical Research, China Medical University Hospital, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Graduate Institute of Medicine, College of Medicine;,Lipid Science and Aging Research Center, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 3F, No.367, Sheng-Li Rd., North District, Tainan 70456, Taiwan
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan;,Student Counseling Center, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 11490, Taipei, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| | - Yen-Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, No.345, Zhuangjing Rd., Douliu, Yunlin 64043, Taiwan;,Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, 111 T.W. Alexander Drive, Research Triangle Park, N.C. 27709, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, 111 T.W. Alexander Drive, Research Triangle Park, N.C. 27709, USA
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan;,Addiction Research Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan;,Beijing YiNing Hospital, No.9 Minzhuang Road, Haidian District, Beijing 100195, China;,Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| |
Collapse
|
82
|
Varrassi G, Fusco M, Skaper SD, Battelli D, Zis P, Coaccioli S, Pace MC, Paladini A. A Pharmacological Rationale to Reduce the Incidence of Opioid Induced Tolerance and Hyperalgesia: A Review. Pain Ther 2018; 7:59-75. [PMID: 29594972 PMCID: PMC5993687 DOI: 10.1007/s40122-018-0094-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is an important health and social problem. Misuse and abuse of opioids in chronic non-cancer pain management seem to be a huge problem, in some countries. This could probably affect the normal use of such analgesics in patients in need of them. Basic and clinical researches should find the solution to mitigate the potential damage. Dysregulation of mast cell and microglia activation plays an important role in the pathogenesis and management of chronic pain. Persistent mast cell activation sensitizes nociceptors and initiates central nervous system inflammatory processes, involving microglial cell activation and sensitization of spinal somatosensory neurons. Exposure of mast cells and microglia to opioids is well known to provoke activation of these non-neuronal immune cell populations, thereby contributing to an exacerbation of pro-inflammatory and pro-nociceptive processes and promoting, over the long-term, opioid-induced hyperalgesia and tolerance. This review is intended to provide the reader with an overview of the role for these non-neuronal cells in opioid-induced chronic pain and tolerance as a consequence of prolonged exposure to these drugs. In addition, we will examine a potential strategy with the aim to modulate opioid-induced over-activation of glia and mast cells, based on endogenous defense mechanisms and fatty acid amide signaling molecules.
Collapse
Affiliation(s)
- Giustino Varrassi
- Department of Anesthesia and Pain Medicine, University of L'Aquila, L'Aquila, Italy.
| | - Mariella Fusco
- Center for Medical Documentation and Information, Epitech, Padua, Italy
| | | | - Daniele Battelli
- Department of Anesthesia and Pain Medicine, San Marino Hospital, San Marino, San Marino
| | - Panagiotis Zis
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Stefano Coaccioli
- Department of Internal Medicine, University of Perugia, Terni, Italy
| | - Maria Caterina Pace
- Department of Anesthesia and Pain Medicine, University of Napoli, Naples, Italy
| | - Antonella Paladini
- Department of Anesthesia and Pain Medicine, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
83
|
Zhu R, Bu Q, Fu D, Shao X, Jiang L, Guo W, Chen B, Liu B, Hu Z, Tian J, Zhao Y, Cen X. Toll-like receptor 3 modulates the behavioral effects of cocaine in mice. J Neuroinflammation 2018; 15:93. [PMID: 29571298 PMCID: PMC5865345 DOI: 10.1186/s12974-018-1130-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The nucleus accumbens in the midbrain dopamine limbic system plays a key role in cocaine addiction. Toll-like receptors (TLRs) are important pattern-recognition receptors (PPRs) in the innate immune system that are also involved in drug dependence; however, the detailed mechanism is largely unknown. METHODS The present study was designed to investigate the potential role of TLR3 in cocaine addiction. Cocaine-induced conditioned place preference (CPP), locomotor activity, and self-administration were used to determine the effects of TLR3 in the rewarding properties of cocaine. Lentivirus-mediated re-expression of Tlr3 (LV-TLR3) was applied to determine if restoration of TLR3 expression in the NAc is sufficient to restore the cocaine effect in TLR3-/- mice. The protein levels of phospho-NF-κB p65, IKKβ, and p-IκBα both in the cytoplasm and nucleus of cocaine-induced CPP mice were detected by Western blot. RESULTS We showed that both TLR3 deficiency and intra-NAc injection of TLR3 inhibitors significantly attenuated cocaine-induced CPP, locomotor activity, and self-administration in mice. Importantly, the TLR3-/- mice that received intra-NAc injection of LV-TLR3 displayed significant increases in cocaine-induced CPP and locomotor activity. Finally, we found that TLR3 inhibitor reverted cocaine-induced upregulation of phospho-NF-κB p65, IKKβ, and p-IκBα. CONCLUSIONS Taken together, our results describe that TLR3 modulates cocaine-induced behaviors and provide further evidence supporting a role for central pro-inflammatory immune signaling in drug reward. We propose that TLR3 blockade could be a novel approach to treat cocaine addiction.
Collapse
Affiliation(s)
- Ruiming Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China.,Healthy Food Evaluation Research Center, Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065, China
| | - Dengqi Fu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Xue Shao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Bo Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Bin Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Zhengtao Hu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China.
| |
Collapse
|
84
|
Ezquer F, Morales P, Quintanilla ME, Santapau D, Lespay-Rebolledo C, Ezquer M, Herrera-Marschitz M, Israel Y. Intravenous administration of anti-inflammatory mesenchymal stem cell spheroids reduces chronic alcohol intake and abolishes binge-drinking. Sci Rep 2018; 8:4325. [PMID: 29567966 PMCID: PMC5864829 DOI: 10.1038/s41598-018-22750-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol intake leads to neuroinflammation and astrocyte dysfunction, proposed to perpetuate alcohol consumption and to promote conditioned relapse-like binge drinking. In the present study, human mesenchymal stem cells (MSCs) were cultured in 3D-conditions to generate MSC-spheroids, which greatly increased MSCs anti-inflammatory ability and reduced cell volume by 90% versus conventionally 2D-cultured MSCs, enabling their intravenous administration and access to the brain. It is shown, in an animal model of chronic ethanol intake and relapse-drinking, that both the intravenous and intra-cerebroventricular administration of a single dose of MSC-spheroids inhibited chronic ethanol intake and relapse-like drinking by 80–90%, displaying significant effects over 3–5 weeks. The MSC-spheroid administration fully normalized alcohol-induced neuroinflammation, as shown by a reduced astrocyte activation, and markedly increased the levels of the astrocyte Na-glutamate (GLT-1) transporter. This research suggests that the intravenous administration of MSC-spheroids may constitute an effective new approach for the treatment of alcohol-use disorders.
Collapse
Affiliation(s)
- Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Carolyne Lespay-Rebolledo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
85
|
Murakami G, Edamura M, Furukawa T, Kawasaki H, Kosugi I, Fukuda A, Iwashita T, Nakahara D. MHC class I in dopaminergic neurons suppresses relapse to reward seeking. SCIENCE ADVANCES 2018; 4:eaap7388. [PMID: 29546241 PMCID: PMC5851664 DOI: 10.1126/sciadv.aap7388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 05/12/2023]
Abstract
Major histocompatibility complex class I (MHCI) is an important immune protein that is expressed in various brain regions, with its deficiency leading to extensive synaptic transmission that results in learning and memory deficits. Although MHCI is highly expressed in dopaminergic neurons, its role in these neurons has not been examined. We show that MHCI expressed in dopaminergic neurons plays a key role in suppressing reward-seeking behavior. In wild-type mice, cocaine self-administration caused persistent reduction of MHCI specifically in dopaminergic neurons, which was accompanied by enhanced glutamatergic synaptic transmission and relapse to cocaine seeking. Functional MHCI knockout promoted this addictive phenotype for cocaine and a natural reward, namely, sucrose. In contrast, wild-type mice overexpressing a major MHCI gene (H2D) in dopaminergic neurons showed suppressed cocaine seeking. These results show that persistent cocaine-induced reduction of MHCI in dopaminergic neurons is necessary for relapse to cocaine seeking.
Collapse
Affiliation(s)
- Gen Murakami
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Mitsuhiro Edamura
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Daiichiro Nakahara
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
86
|
Ronan PJ, Strait SA, Palmer GM, Beresford TP. Central Administration of Cyclosporine A Decreases Ethanol Drinking. Alcohol Alcohol 2018; 53:193-199. [PMID: 29281037 DOI: 10.1093/alcalc/agx102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Aims Abstinence among alcohol dependent liver graft recipients is remarkably high. The routine use of anti-immune agents in these patients led to rodent studies showing that immunosuppressants acting through inhibition of calcineurin (CLN) are highly effective in decreasing alcohol consumption. It remained unclear, however, whether the decreased alcohol consumption in rodent models is mediated through peripheral suppression of immune response or centrally through direct inhibition of cyclophilin-CLN in the brain. We tested the hypothesis that direct brain inhibition of CLN with intracerebroventricular (ICV) injections of the immunosuppressant cyclosporine A (CsA) is sufficient to decrease ethanol consumption in a rodent model of binge-like drinking. Methods Male C57BL/6NHsd mice were put through a modified 'drinking in the dark' (DID) paradigm. Effects of both peripheral (IP) and central (ICV) injections of CsA on ethanol consumption were assessed. Results Here, as in earlier work, IP CsA administration significantly decreased alcohol consumption. Supporting our hypothesis, central administration of CsA was sufficient to decrease alcohol consumption in a dose-dependent manner. There was no significant effect of CsA on water or sucrose consumption. Conclusions These results clearly implicate a CLN-mediated mechanism in brain in the inhibitory effects of CsA on ethanol consumption and provide novel targets for investigation of treatment for Alcohol Use Disorders (AUD). These results also add to the growing body of literature implicating neuroimmune mechanisms in the etiology, pathophysiology and behaviors driving AUD. Short Summary The unusually high abstinence rate and routine use of immunosuppressants in AUD liver graft recipients led us to rodent studies showing that immunosuppressants acting through inhibition of calcineurin (CLN) are highly effective in decreasing drinking. Here we demonstrate that this effect is mediated by brain rather than peripheral immune mechanisms.
Collapse
Affiliation(s)
- Patrick J Ronan
- Laboratory for Clinical and Translational Research in Psychiatry, Research Service and Psychiatry, Denver VA Medical Center, 1050 Clermont Street, Denver, CO 80220-0116, USA.,Sioux Falls VA Research Service, 2501 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Psychiatry and Division of Basic Biomedical Sciences, Sanford USD School of Medicine, MC151, 2501 W. 22nd St., Sioux Falls, SD 57105, USA
| | - Sydney A Strait
- Sioux Falls VA Research Service, 2501 W. 22nd St., Sioux Falls, SD 57105, USA
| | - Geralyn M Palmer
- Sioux Falls VA Research Service, 2501 W. 22nd St., Sioux Falls, SD 57105, USA
| | - Thomas P Beresford
- Laboratory for Clinical and Translational Research in Psychiatry, Research Service and Psychiatry, Denver VA Medical Center, 1050 Clermont Street, Denver, CO 80220-0116, USA.,Department of Psychiatry, University of Colorado Denver School of Medicine, Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
87
|
Martinez P, Lien L, Zemore S, Bramness JG, Neupane SP. Circulating cytokine levels are associated with symptoms of depression and anxiety among people with alcohol and drug use disorders. J Neuroimmunol 2018; 318:80-86. [PMID: 29500107 DOI: 10.1016/j.jneuroim.2018.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/28/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Psychological distress is common among people with a substance abuse disorder in treatment. Identifying correlates of psychological distress may serve as points of intervention to improve substance abuse treatment outcomes. Immune function measured as cytokine levels have been associated with psychological distress, but this association remains unexplored among people with a substance abuse disorder in treatment. This study aimed to examine whether cytokine levels in patients treated for a substance use disorder were related to depression, anxiety, and overall psychological distress, and to observe these associations separately among people with a past year alcohol use disorder and those with a past year drug use disorder. METHODS We collected cross-sectional data from 80 inpatients at five alcohol and substance abuse treatment centers in Norway. We determined alcohol and drug diagnoses, and assessed symptoms of depression, anxiety, and overall psychological distress. We tested blood samples for IL-1, IL-6, TNF-α, INF-γ, and IL-10. We used multivariate linear regressions to examine the associations between cytokine levels and psychological distress measures. RESULTS All cytokines were significantly and positively associated with depression score. INF-γ was significantly and negatively associated with anxiety, and IL-6 was significantly and positively associated psychological distress. Among people with only an alcohol use disorder, IL-6 was positively associated with depression and psychological distress scores, and IL-10 was negatively associated with anxiety score. Among people with only a drug use disorder, TNF-α was positively associated with depression score. CONCLUSION The relationship between immune function and psychological distress is robust in the context of substance abuse, and further research is warranted.
Collapse
Affiliation(s)
- Priscilla Martinez
- Alcohol Research Group, Public Health Institute, 6001 Shellmound St, Suite 450, Emervyville, CA 94608, USA.
| | - Lars Lien
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Box 104, 2381 Brumunddal, Norway.
| | - Sarah Zemore
- Alcohol Research Group, Public Health Institute, 6001 Shellmound St, Suite 450, Emervyville, CA 94608, USA.
| | - Jørgen G Bramness
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Box 104, 2381 Brumunddal, Norway.
| | - Sudan Prasad Neupane
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Box 104, 2381 Brumunddal, Norway; Norwegian Center for Addiction Research, University Of Oslo, Box 1171, Blindern, 0318 Oslo, Norway.
| |
Collapse
|
88
|
Karoly HC, Bidwell LC, Mueller RL, Hutchison KE. Investigating the Relationships Between Alcohol Consumption, Cannabis Use, and Circulating Cytokines: A Preliminary Analysis. Alcohol Clin Exp Res 2018; 42:531-539. [PMID: 29286537 DOI: 10.1111/acer.13592] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, human and animal studies have converged to support altered inflammatory signaling as a molecular mechanism underlying the pathophysiology of alcohol use disorders (AUDs). Alcohol binds to receptors on immune cells, triggering signaling pathways that produce pro-inflammatory cytokines. Chronic inflammation is associated with tissue damage, which may contribute to negative effects of AUD. Conversely, cannabis is associated with decreased inflammatory signaling, and animal studies suggest that cannabinoids may impact alcohol-induced inflammation. Thus, the impact of cannabis on inflammation in AUDs in humans warrants examination. METHODS We explored the relationship between self-reported alcohol and cannabis use and circulating levels of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-8, and IL-1β in the blood. Among 66 regular drinkers (mean age = 30.08), we examined circulating cytokines and administered questionnaires assessing alcohol consumption and days of cannabis use over the past 90 days. We examined whether alcohol consumption, cannabis use, and gender were associated with changes in circulating cytokines, and whether there was a significant interaction between alcohol and cannabis use predicting blood levels of circulating cytokines. RESULTS A positive association between alcohol and IL-6 emerged. We also observed a negative association between cannabis and IL-1β. Follow-up moderation analyses indicated a cannabis by alcohol interaction predicting circulating IL-6, such that cannabis nonusers showed a stronger relationship between alcohol and IL-6 compared to cannabis users. CONCLUSIONS These preliminary findings suggest that cannabinoid compounds may serve to mitigate inflammation associated with alcohol use. In addition, the present results provide data to inform future investigations, with the goal of ultimately leveraging knowledge of the role of inflammation in AUDs to develop more effective treatments focused on novel immune targets.
Collapse
Affiliation(s)
- Hollis C Karoly
- Department of Psychology & Neuroscience , University of Colorado Boulder, Boulder, Colorado
| | - L Cinnamon Bidwell
- Institute of Cognitive Science , University of Colorado Boulder, Boulder, Colorado
| | - Raeghan L Mueller
- Department of Psychology & Neuroscience , University of Colorado Boulder, Boulder, Colorado
| | - Kent E Hutchison
- Department of Psychology & Neuroscience , University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
89
|
Flores-Bastías O, Karahanian E. Neuroinflammation produced by heavy alcohol intake is due to loops of interactions between Toll-like 4 and TNF receptors, peroxisome proliferator-activated receptors and the central melanocortin system: A novel hypothesis and new therapeutic avenues. Neuropharmacology 2018; 128:401-407. [DOI: 10.1016/j.neuropharm.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023]
|
90
|
Abstract
Supplemental Digital Content is Available in the Text. This descriptive case series among adults documents that pain can return temporarily at healed, previously pain-free injury sites during acute opioid withdrawal. Withdrawal pain can be a barrier to opioid cessation. Yet, little is known about old injury site pain in this context. We conducted an exploratory mixed-methods descriptive case series using a web-based survey and in-person interviews with adults recruited from pain and addiction treatment and research settings. We included individuals who self-reported a past significant injury that was healed and pain-free before the initiation of opioids, which then became temporarily painful upon opioid cessation—a phenomenon we have named withdrawal-associated injury site pain (WISP). Screening identified WISP in 47 people, of whom 34 (72%) completed the descriptive survey, including 21 who completed qualitative interviews. Recalled pain severity scores for WISP were typically high (median: 8/10; interquartile range [IQR]: 2), emotionally and physically aversive, and took approximately 2 weeks to resolve (median: 14; IQR: 24 days). Withdrawal-associated injury site pain intensity was typically slightly less than participants' original injury pain (median: 10/10; IQR: 3), and more painful than other generalized withdrawal symptoms which also lasted approximately 2 weeks (median: 13; IQR: 25 days). Fifteen surveyed participants (44%) reported returning to opioid use because of WISP in the past. Participants developed theories about the etiology of WISP, including that the pain is the brain's way of communicating a desire for opioids. This research represents the first known documentation that previously healed, and pain-free injury sites can temporarily become painful again during opioid withdrawal, an experience which may be a barrier to opioid cessation, and a contributor to opioid reinitiation.
Collapse
|
91
|
Wang TY, Lee SY, Hu MC, Chen SL, Chang YH, Chu CH, Lin SH, Li CL, Wang LJ, Chen PS, Chen SH, Huang SY, Tzeng NS, Lee IH, Chen KC, Yang YK, Hong JS, Lu RB. More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder. Psychoneuroendocrinology 2017; 85:42-48. [PMID: 28810156 DOI: 10.1016/j.psyneuen.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 11/27/2022]
Abstract
Antisocial personality disorder (ASPD) is highly comorbid with substance use disorders (SUDs). We hypothesize that chronic neuroinflammation and the loss of neurotrophic factors prompts the pathogenesis of both disorders. We used ELISA to measure plasma levels of proinflammatory (tumor necrosis factor-α [TNF-α], C-reactive protein [CRP]) and anti-inflammatory factors (transforming growth factor-β1 [TGF-β1] and interleukin-10 [IL-10]), and brain-derived neurotrophic factor (BDNF) in male patients with ASPD (n=74), SUDs (n=168), ASPD comorbid with SUDs (ASPD+SUDs) (n=438), and Healthy Controls (HCs) (n=81). A multivariate analysis of covariance (MANCOVA) controlled for possible confounders was used to compare cytokines and BDNF levels between groups. The results of MANCOVA adjusted for age showed a significant (p<0.001) main effect of diagnosis on inflammatory factors and BDNF expression in these groups. ASPD, SUDs, and ASPD+SUDs patients had significantly (p<0.001) higher TNF-α levels but lower TGF-β1 and BDNF levels. SUDs and ASPD+SUDs patients had higher IL-10 levels than did ASPD patients and HCs. There was no difference in IL-10 levels between HCs and ASPD. Moreover, subgrouping SUDs and ASPD±SUDs into opioid use disorder (OUD) and other SUDs groups showed that the IL-10 levels were specifically higher in OUD and ASPD±OUD groups than other SUDs (P≤0.001). We conclude that uncontrolled inflammation and losing neurotrophic factors, with or without comorbid SUDs, underlies ASPD. IL-10 expression might be more specifically associated with OUD.
Collapse
Affiliation(s)
- Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Chuan Hu
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Hsuan Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychology, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Li
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, NC, USA
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Jau-Shyong Hong
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, NC, USA
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
92
|
Maza-Quiroga R, García-Marchena N, Romero-Sanchiz P, Barrios V, Pedraz M, Serrano A, Nogueira-Arjona R, Ruiz JJ, Soria M, Campos R, Chowen JA, Argente J, Torrens M, López-Gallardo M, Marco EM, Rodríguez de Fonseca F, Pavón FJ, Araos P. Evaluation of plasma cytokines in patients with cocaine use disorders in abstinence identifies transforming growth factor alpha (TGFα) as a potential biomarker of consumption and dual diagnosis. PeerJ 2017; 5:e3926. [PMID: 29038767 PMCID: PMC5641428 DOI: 10.7717/peerj.3926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/24/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cocaine use disorder (CUD) is a complex health condition, especially when it is accompanied by comorbid psychiatric disorders (dual diagnosis). Dual diagnosis is associated with difficulties in the stratification and treatment of patients. One of the major challenges in clinical practice of addiction psychiatry is the lack of objective biological markers that indicate the degree of consumption, severity of addiction, level of toxicity and response to treatment in patients with CUD. These potential biomarkers would be fundamental players in the diagnosis, stratification, prognosis and therapeutic orientation in addiction. Due to growing evidence of the involvement of the immune system in addiction and psychiatric disorders, we tested the hypothesis that patients with CUD in abstinence might have altered circulating levels of signaling proteins related to systemic inflammation. METHODS The study was designed as a cross-sectional study of CUD treatment-seeking patients. These patients were recruited from outpatient programs in the province of Malaga (Spain). The study was performed with a total of 160 white Caucasian subjects, who were divided into the following groups: patients diagnosed with CUD in abstinence (N = 79, cocaine group) and matched control subjects (N = 81, control group). Participants were clinically evaluated with the diagnostic interview PRISM according to the DSM-IV-TR, and blood samples were collected for the determination of chemokine C-C motif ligand 11 (CCL11, eotaxin-1), interferon gamma (IFNγ), interleukin-4 (IL-4), interleukin-8 (IL-8), interleukin-17α (IL-17α), macrophage inflammatory protein 1α (MIP-1α) and transforming growth factor α (TGFα) levels in the plasma. Clinical and biochemical data were analyzed in order to find relationships between variables. RESULTS While 57% of patients with CUD were diagnosed with dual diagnosis, approximately 73% of patients had other substance use disorders. Cocaine patients displayed greater cocaine symptom severity when they were diagnosed with psychiatric comorbidity. Regarding inflammatory factors, we observed significantly lower plasma levels of IL-17α (p < 0.001), MIP-1α (p < 0.001) and TGFα (p < 0.05) in the cocaine group compared with the levels in the control group. Finally, there was a significant primary effect of dual diagnosis on the plasma concentrations of TGFα (p < 0.05) in the cocaine group, and these levels were lower in patients with dual diagnoses. DISCUSSION IL-17α, MIP-1α and TGFα levels are different between the cocaine and control groups, and TGFα levels facilitate the identification of patients with dual diagnosis. Because TGFα reduction is associated with enhanced responses to cocaine in preclinical models, we propose TGFα as a potential biomarker of complex CUD in humans.
Collapse
Affiliation(s)
- Rosa Maza-Quiroga
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Nuria García-Marchena
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Pablo Romero-Sanchiz
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - María Pedraz
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Antonia Serrano
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Raquel Nogueira-Arjona
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan Jesus Ruiz
- Diputación de Málaga, Centro Provincial de Drogodependencias, Málaga, Spain
| | - Maribel Soria
- Diputación de Málaga, Centro Provincial de Drogodependencias, Málaga, Spain
| | - Rafael Campos
- Diputación de Málaga, Centro Provincial de Drogodependencias, Málaga, Spain
| | - Julie Ann Chowen
- Department of Endocrinology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Jesus Argente
- Department of Endocrinology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Marta Torrens
- Institut de Neuropsiquiatria i Addiccions (INAD) del Parc de Salut Mar, Barcelona, Spain
| | | | - Eva María Marco
- Department of Physiology II Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco Javier Pavón
- Hospital Regional Universitario de Málaga, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Pedro Araos
- Department of Physiology II Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
93
|
Somkuwar SS, Fannon MJ, Bao Nguyen T, Mandyam CD. Hyper-oligodendrogenesis at the vascular niche and reduced blood-brain barrier integrity in the prefrontal cortex during protracted abstinence. Neuroscience 2017; 362:265-271. [PMID: 28870701 DOI: 10.1016/j.neuroscience.2017.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/13/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Alcoholism is a relapsing disorder with limited treatment options, in part due to our limited understanding of the disease etiology. We have recently shown that increased ethanol-seeking in a behavioral model of relapse in a rat model of alcoholism was associated with increased oligodendrogenesis which was positively correlated with platelet/endothelial cell adhesion molecule (PECAM-1) expression in the medial prefrontal cortex (mPFC). The current study investigated whether newly born oligodendrocytes form close physical associations with endothelial cells expressing PECAM-1 and whether these changes were accompanied by altered blood-brain barrier (BBB) integrity. Colableling and confocal analysis demonstrate that newly born oligodendroglia were always located in close physical proximity to PECAM-1 in the mPFC of rats that were ethanol dependent and demonstrated high propensity for relapse. Notably, the endothelial proximity of new oligodendrocytes was associated with reduced expression of endothelial barrier antigen (SMI-71), a marker for BBB integrity. Furthermore, voluntary wheel running during abstinence enhanced SMI-71 expression in endothelial cells, indicating protection against abstinence-induced reduction in BBB integrity. Taken together, these results suggest that ethanol experience and abstinence disrupts homeostasis in the oligo-vascular niche in the mPFC. Reversing these mechanisms may hold the key to reducing propensity for relapse in individuals with moderate to severe alcohol use disorder.
Collapse
Affiliation(s)
| | | | - Tran Bao Nguyen
- Skaggs School or Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA; Skaggs School or Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA; Department of Anesthesiology, University of California San Diego, CA, USA.
| |
Collapse
|
94
|
Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol 2017; 22:581-615. [PMID: 26833803 DOI: 10.1111/adb.12349] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
Abstract
Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for the treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies, and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Megan M. Yardley
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
| | - Lara A. Ray
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
- Department of Psychiatry and Biobehavioral Sciences; University of California, Los Angeles; Los Angeles CA USA
| |
Collapse
|
95
|
Zerdazi EH, Oliveira J, Vorspan F, Bennabi M, Jamain S, Etain B, Leboyer M, Tamouza R, Bellivier F. TLR4 gene polymorphism associated with lifetime cigarette smoking in bipolar disorder. J Neuroimmunol 2017; 305:96-101. [PMID: 28284355 DOI: 10.1016/j.jneuroim.2017.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
|
96
|
Lawrimore CJ, Crews FT. Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron-Like SH-SY5Y and Microglia-Like BV2. Alcohol Clin Exp Res 2017; 41:939-954. [PMID: 28273337 PMCID: PMC5407472 DOI: 10.1111/acer.13368] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ethanol (EtOH) consumption leads to an increase of proinflammatory signaling via activation of Toll-like receptors (TLRs) such as TLR3 and TLR4 that leads to kinase activation (ERK1/2, p38, TBK1), transcription factor activation (NFκB, IRF3), and increased transcription of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. This immune signaling cascade is thought to play a role in neurodegeneration and alcohol use disorders. While microglia are considered to be the primary macrophage in brain, it is unclear what if any role neurons play in EtOH-induced proinflammatory signaling. METHODS Microglia-like BV2 and retinoic acid-differentiated neuron-like SH-SY5Y were treated with TLR3 agonist Poly(I:C), TLR4 agonist lipopolysaccharide (LPS), or EtOH for 10 or 30 minutes to examine proinflammatory immune signaling kinase and transcription factor activation using Western blot, and for 24 hours to examine induction of proinflammatory gene mRNA using RT-PCR. RESULTS In BV2, both LPS and Poly(I:C) increased p-ERK1/2, p-p38, and p-NFκB by 30 minutes, whereas EtOH decreased p-ERK1/2 and increased p-IRF3. LPS, Poly(I:C), and EtOH all increased TNF-α and IL-1β mRNA, and EtOH further increased TLR2, 7, 8, and MD-2 mRNA in BV2. In SH-SY5Y, LPS had no effect on kinase or proinflammatory gene expression. However, Poly(I:C) increased p-p38 and p-IRF3, and increased expression of TNF-α, IL-1β, and IL-6, while EtOH increased p-p38, p-IRF3, p-TBK1, and p-NFκB while decreasing p-ERK1/2 and increasing expression of TLR3, 7, 8, and RAGE mRNA. HMGB1, a TLR agonist, was induced by LPS in BV2 and by EtOH in both cell types. EtOH was more potent at inducing proinflammatory gene mRNA in SH-SY5Y compared with BV2. CONCLUSIONS These results support a novel and unique mechanism of EtOH, TLR3, and TLR4 signaling in neuron-like SH-SY5Y and microglia-like BV2 that likely contributes to the complexity of brain neuroimmune signaling.
Collapse
Affiliation(s)
- Colleen J Lawrimore
- Bowles Center for Alcohol Studies , School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Neurobiology , University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fulton T Crews
- Bowles Center for Alcohol Studies , School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
97
|
N-acetylcysteine Prevents Alcohol Related Neuroinflammation in Rats. Neurochem Res 2017; 42:2135-2141. [DOI: 10.1007/s11064-017-2218-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
|
98
|
|
99
|
Strickland JC, Bolin BL, Romanelli MR, Rush CR, Stoops WW. Effects of acute buspirone administration on inhibitory control and sexual discounting in cocaine users. Hum Psychopharmacol 2017; 32. [PMID: 28120485 DOI: 10.1002/hup.2567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/12/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Cocaine users display deficits in inhibitory control and make impulsive choices that may increase risky behavior. Buspirone is an anxiolytic that activates dopaminergic and serotonergic systems and improves impulsive choice (i.e., reduces sexual risk-taking intent) in cocaine users when administered chronically. We evaluated the effects of acutely administered buspirone on inhibitory control and impulsive choice. METHODS Eleven subjects with a recent history of cocaine use completed this within-subject, placebo-controlled study. Subjects performed two cued go/no-go and a sexual risk delay-discounting task following oral administration of buspirone (10 and 30 mg), triazolam (0.375 mg; positive control), and placebo (negative control). Physiological and psychomotor performance and subject-rated data were also collected. RESULTS Buspirone failed to change inhibitory control or impulsive choice; however, slower reaction times were observed at the highest dose tested. Buspirone did not produce subject-rated drug effects but dose-dependently decreased diastolic blood pressure. Triazolam impaired psychomotor performance and increased ratings of positive subject-rated effects (e.g., Like Drug). CONCLUSIONS These findings indicate that acutely administered buspirone has little impact on behavioral measures of inhibitory control and impulsive sexual decision-making. Considering previous findings with chronic dosing, these findings highlight that the behavioral effects of buspirone differ as a function of dosing conditions.
Collapse
Affiliation(s)
| | - B Levi Bolin
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | | | - Craig R Rush
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA.,Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - William W Stoops
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA.,Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
100
|
Evaluation of TSPO PET imaging, a marker of glial activation, to study the neuroimmune footprints of morphine exposure and withdrawal. Drug Alcohol Depend 2017; 170:43-50. [PMID: 27875800 DOI: 10.1016/j.drugalcdep.2016.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A growing area of research suggests that neuroimmunity may impact the pharmacology of opioids. Microglia is a key component of the brain immunity. Preclinical and clinical studies have demonstrated that microglial modulators may improve morphine-induced analgesia and prevent the development of tolerance and dependence. Positron emission tomography (PET) using translocator protein 18kDa (TSPO) radioligand is a clinically validated strategy for the non-invasive detection of microglial activation. We hypothesized that TSPO PET imaging may be used to study the neuroimmune component of opioid tolerance and withdrawal. METHODS Healthy rats (n=6 in each group) received either saline or escalating doses of morphine (10-40mg/kg) on five days to achieve tolerance and a withdrawal syndrome after morphine discontinuation. MicroPET imaging with [18F]DPA-714 was performed 60h after morphine withdrawal. Kinetic modeling was performed to estimate [18F]DPA-714 volume of distribution (VT) in several brain regions using dynamic PET images and corresponding metabolite-corrected input functions. Immunohistochemistry (IHC) experiments on striatal brain slices were performed to assess the expression of glial markers (Iba1, GFAP and CD68) during 14days after morphine discontinuation. RESULTS The baseline binding of [18F]DPA-714 to the brain (VT=0.086±0.009mLcm-3) was not increased by morphine exposure and withdrawal (VT=0.079±0.010mLcm-3) indicating the absence of TSPO overexpression, even at the regional level. Accordingly, expression of glial markers did not increase after morphine discontinuation. CONCLUSIONS Morphine tolerance and withdrawal did not detectably activate microglia and had no impact on [18F]DPA-714 brain kinetics in vivo.
Collapse
|