51
|
Boileau I, Mansouri E, Williams B, Le Foll B, Rusjan P, Mizrahi R, Tyndale RF, Huestis MA, Payer DE, Wilson AA, Houle S, Kish SJ, Tong J. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging With the Novel Radiotracer [ 11C]CURB. Biol Psychiatry 2016; 80:691-701. [PMID: 27345297 PMCID: PMC5050070 DOI: 10.1016/j.biopsych.2016.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. METHODS Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine, and hair levels of cannabinoids and metabolites were determined. RESULTS In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects (overall Cohen's d = 0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. CONCLUSIONS Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use.
Collapse
Affiliation(s)
- Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Esmaeil Mansouri
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Human Brain Lab, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Belinda Williams
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Human Brain Lab, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Bernard Le Foll
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Department Pharmacology & Toxicology, University of Toronto, Toronto, Canada,Department Psychiatry, University of Toronto, Toronto, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Department Psychiatry, University of Toronto, Toronto, Canada
| | - Romina Mizrahi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Department Psychiatry, University of Toronto, Toronto, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Department Pharmacology & Toxicology, University of Toronto, Toronto, Canada,Department Psychiatry, University of Toronto, Toronto, Canada
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Doris E. Payer
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Human Brain Lab, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Department Psychiatry, University of Toronto, Toronto, Canada
| | - Alan A. Wilson
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Sylvain Houle
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Stephen J. Kish
- Human Brain Lab, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Department Pharmacology & Toxicology, University of Toronto, Toronto, Canada,Department Psychiatry, University of Toronto, Toronto, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Junchao Tong
- Human Brain Lab, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada,Department Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
52
|
Evidence that activation of nuclear peroxisome proliferator-activated receptor alpha (PPARα) modulates sleep homeostasis in rats. Brain Res Bull 2016; 127:156-163. [DOI: 10.1016/j.brainresbull.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022]
|
53
|
Spagnolo PA, Ramchandani VA, Schwandt ML, Kwako LE, George DT, Mayo LM, Hillard CJ, Heilig M. FAAH Gene Variation Moderates Stress Response and Symptom Severity in Patients with Posttraumatic Stress Disorder and Comorbid Alcohol Dependence. Alcohol Clin Exp Res 2016; 40:2426-2434. [PMID: 27716956 DOI: 10.1111/acer.13210] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND A common single nucleotide polymorphism (C385A) in the human fatty acid amide hydrolase (FAAH) gene has been associated with decreased distress responses in healthy volunteers, but its role in psychiatric disorders remains unknown. Here, we obtained genotypes and carried out a secondary analysis of subjects from a trial of comorbid posttraumatic stress disorder (PTSD) and alcohol dependence (AD). We evaluated the effects of C385A variation on behavioral and biochemical biomarkers of distress responses. METHODS Forty-nine patients with PTSD and AD were admitted for 4 weeks to an experimental medicine unit at the National Institutes of Health Clinical Center. Following detoxification, stress reactivity and peripheral endocannabinoid (eCB) levels were assessed in response to a challenge session using personalized auditory guided imagery. Over the course of the study, subjects were also evaluated for changes in PTSD symptom severity. RESULTS FAAH C385A allele carriers showed a marked increase in serum anandamide levels at baseline and throughout the stress challenge procedure compared with C allele homozygotes, while levels of eCBs primarily metabolized through other enzymatic activity, such as 2-arachidonoylglycerol, did not differ between genotype groups. FAAH C385A carriers also had decreased subjective anxiety responses to the stress challenge. Similar effects of FAAH C385A genotype were found at the level of clinical PTSD symptom severity, in particular in the arousal domain. CONCLUSIONS This is to our knowledge the first study showing that FAAH C385A variation modulates stress responses in subjects with disorders characterized by increased stress reactivity. These findings point to the eCB pathway as a promising target for future antistress therapeutics.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biomedical Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Laura E Kwako
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - David T George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
54
|
Fatty acid amide hydrolase inhibitor URB597 prevented tolerance and cognitive deficits induced by chronic morphine administration in rats. Behav Pharmacol 2016; 27:37-43. [PMID: 26274041 DOI: 10.1097/fbp.0000000000000179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibitors of the endocannabinoid metabolic enzyme fatty acid amide hydrolase exert therapeutic effects, but might also be associated with some of the adverse effects of cannabis. However, at least one fatty acid amide hydrolase inhibitor, URB597, has beneficial effects without signs of abuse or dependence. Although previous investigations have evaluated URB597-morphine interactions, the effects of URB597 on morphine tolerance and cognition deficits have not been studied previously. Rats were rendered tolerant to or dependent on morphine by an injection of morphine (10 mg/kg, subcutaneous) twice daily, respectively, for 7 or 10 days. URB597 (1 mg/kg, intraperitoneal) was administered before morphine. The tail-flick and passive avoidance learning tests were used to evaluate tolerance and cognition. Chronic morphine injection led to significant tolerance to the antinociceptive effect on days 5 and 7. URB597 completely prevented the development of morphine tolerance. URB597 also enhanced memory acquisition in the passive avoidance learning test, and although morphine impaired memory, URB597 alleviated this effect. These data show that URB597 protects against tolerance and memory deficits in chronic usage of morphine and suggests URB597 as a promising candidate for the treatment of adverse effects of opioids.
Collapse
|
55
|
Copeland J, Pokorski I. Progress toward pharmacotherapies for cannabis-use disorder: an evidence-based review. Subst Abuse Rehabil 2016; 7:41-53. [PMID: 27217809 PMCID: PMC4862355 DOI: 10.2147/sar.s89857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cannabis is the most widely used and variably regulated drug in the world, with increasing trends of use being reported in the US, Australia, Asia, and Africa. Evidence has shown a decrease in the age of commencement of cannabis use in some developed countries and a prolongation of risk of initiation to cannabis use beyond adolescence among more recent users. Cannabis use is associated with numerous health risks and long-term morbidity, as well as risk of developing cannabis-use disorders. Cannabis users infrequently seek professional treatment, and normally do so after a decade of use. Cannabis-use disorders are currently treated using a selection of psychosocial interventions. Severity of withdrawal is a factor that increases the risk of relapse, and is the target of pharmacotherapy studies. Currently, there is no approved pharmacotherapy for cannabis-use disorders. A number of approaches have been examined, and trials are continuing to find a safe and effective medication with little abuse liability.
Collapse
Affiliation(s)
- Jan Copeland
- UNSW Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Izabella Pokorski
- UNSW Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
56
|
Achterberg EJM, van Swieten MMH, Driel NV, Trezza V, Vanderschuren LJMJ. Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats. Pharmacol Res 2016; 110:151-158. [PMID: 27154553 DOI: 10.1016/j.phrs.2016.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 01/09/2023]
Abstract
Social play behaviour is a vigorous form of social interaction, abundant during the juvenile and adolescent phases of life in many mammalian species, including humans. Social play is highly rewarding and it is important for social and cognitive development. Being a rewarding activity, social play can be dissociated in its pleasurable and motivational components. We have previously shown that endocannabinoids modulate the expression of social play behaviour in rats. In the present study, we investigated whether endocannabinoids modulate the motivational and pleasurable properties of social play behaviour, using operant and place conditioning paradigms, respectively. Treatment with the anandamide hydrolysis inhibitor URB597 did not affect operant responding or social play-induced conditioned place preference (CPP) when administered at a dose (0.1mg/kg) known to increase the expression of social play behaviour, while it modestly reduced operant responding at a higher dose (0.2mg/kg). The cannabinoid-1 (CB1) receptor antagonist rimonabant reduced operant responding when administered at a dose (1mg/kg) known to decrease the expression of social play behaviour, although this effect may be secondary to concurrent drug-induced stereotypic behaviours (i.e., grooming and scratching). These data demonstrate that enhancing endocannabinoid levels does not differentially affect the motivational and pleasurable aspects of social play behaviour, whereas CB1 receptor blockade reduces the motivational aspects of social play behaviour, possibly due to response competition. Thus, endocannabinoids likely drive the expression of social play behaviour as a whole, without differentially affecting its motivational or pleasurable properties.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands
| | - Maaike M H van Swieten
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands
| | - Nina V Driel
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Netherlands.
| |
Collapse
|
57
|
Panlilio LV, Thorndike EB, Nikas SP, Alapafuja SO, Bandiera T, Cravatt BF, Makriyannis A, Piomelli D, Goldberg SR, Justinova Z. Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats. Psychopharmacology (Berl) 2016; 233:1879-88. [PMID: 26558620 PMCID: PMC4846548 DOI: 10.1007/s00213-015-4140-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/29/2015] [Indexed: 11/24/2022]
Abstract
RATIONALE Manipulations of the endocannabinoid system could potentially produce therapeutic effects with minimal risk of adverse cannabis-like side effects. Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of the cannabinoid-receptor agonist, anandamide, and show promise for treating a wide range of disorders. However, their effects on learning and memory have not been fully characterized. OBJECTIVES We determined the effects of five structurally different FAAH inhibitors in an animal model of working memory known to be sensitive to impairment by delta-9 tetrahydrocannabinol (THC). METHODS A delayed nonmatching-to-position procedure was used in rats. Illuminated nosepoke holes were used to provide sample cues (left versus right) and record responses (correct versus incorrect) after delays ranging from 0 to 28 s. Various test drugs were given acutely up to two times per week before daily sessions. RESULTS One FAAH inhibitor, AM3506 (3 mg/kg), decreased accuracy in the memory task. Four other FAAH inhibitors (URB597, URB694, PF-04457845, and ARN14633) and a monoacylglycerol lipase inhibitor (JZL184, which blocks the degradation of the endocannabinoid 2-arachidonoylglycerol) had no effect. Testing of AM3506 in combination with antagonists for receptors known to be affected by anandamide and other fatty acid amides indicated that the impairment induced by AM3506 was mediated by cannabinoid CB1 receptors, and not by alpha-type peroxisome proliferator-activated receptors (PPAR-alpha) or vanilloid transient receptor potential cation channels (TRPV1). CONCLUSIONS FAAH inhibitors differ with respect to their potential for memory impairment, abuse liability, and probably other cannabis-like effects, and they should be evaluated individually for specific therapeutic and adverse effects.
Collapse
Affiliation(s)
- Leigh V. Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Eric B. Thorndike
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Spyros P. Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Tiziano Bandiera
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, USA
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
58
|
Forget B, Guranda M, Gamaleddin I, Goldberg SR, Le Foll B. Attenuation of cue-induced reinstatement of nicotine seeking by URB597 through cannabinoid CB1 receptor in rats. Psychopharmacology (Berl) 2016; 233:1823-8. [PMID: 26864774 DOI: 10.1007/s00213-016-4232-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/31/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE The endocannabinoid system is composed of endocannabinoids (such as anandamide), their target receptors (CB1 and CB2 receptors, CB1Rs and CB2Rs), the enzymes that degrade them (fatty-acid-amide-hydrolase (FAAH) for anandamide), and an endocannabinoid transporter. FAAH inhibition has been recently identified as having a critical involvement in behaviors related to nicotine addiction and has been shown to reduce the effect of nicotine on the mesolimbic dopaminergic system via CB1R and peroxisome proliferator-activated receptor alpha (PPARα). Thus, inhibition of FAAH may represent a novel strategy for smoking cessation, but its mechanism of action on relapse to nicotine seeking is still unknown. OBJECTIVE The study aims to explore the mechanism of action of the inhibitor of FAAH activity, URB597, on relapse to nicotine seeking by evaluating the effect of the CB1R, CB2R, and PPARα antagonists on the attenuating effect of URB597 on cue-induced reinstatement of nicotine seeking in rats. RESULTS URB597 reduced cue-induced reinstatement of nicotine seeking, an effect that was reversed by the CB1R antagonist rimonabant, but not by the CB2R or PPARα antagonists AM630 and MK886, respectively. CONCLUSIONS These results indicate that URB597 reduces cue-induced reinstatement in rats through a CB1 receptor-dependent mechanism, and not via CB2R or PPARα. Since FAAH inhibition represent a novel and promising strategy for tobacco smoking cessation, dissecting how it produces its action may lead to a better understanding of the neurobiological mechanisms underlying nicotine addiction.
Collapse
Affiliation(s)
- Benoit Forget
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1.,Institut Pasteur, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, 75724, Paris Cedex 15, France
| | - Mihail Guranda
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1
| | - Islam Gamaleddin
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1.,Institute of Environmental Studies and Research, Ain Shams University, Cairo, Egypt
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neurosciences Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1. .,Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, CAMH, Toronto, ON, Canada. .,Departments of Family and Community Medicine, Pharmacology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
59
|
Inhibition of monoacylglycerol lipase (MAGL) enhances cue-induced reinstatement of nicotine-seeking behavior in mice. Psychopharmacology (Berl) 2016; 233:1815-22. [PMID: 26490035 DOI: 10.1007/s00213-015-4117-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/02/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Tobacco smoking is still a major population health issue. The endocannabinoid system has been shown to control drug-seeking behaviors. There are two main endocannabinoids: anandamide degraded by fatty acid amide hydrolase (FAAH) and 2-arachidonoylglycerol (2-AG) degraded by monoacylglycerol lipase (MAGL). OBJECTIVES The role of MAGL has only been explored recently, and so far, no study have been performed to evaluate the effects of MAGL inhibitor on nicotine reinforcing properties and cue-induced reinstatement of nicotine seeking. METHODS Here, we investigated the effects of the MAGL inhibitor JZL184 on nicotine self-administration under fixed and progressive-ratio schedules of reinforcement and on cue-induced reinstatement of nicotine seeking in mice. We also evaluated the effects of JZL184 on food self-administration for possible non-specific effects. RESULTS JZL184 (0, 8, and 16 mg/kg) did not affect food taking, nicotine taking, or motivation for nicotine. MAGL inhibition by JZL184 (16 mg/kg) increased reinstatement of previously extinguished nicotine seeking induced by presentation of nicotine-associated cues, but did not produce reinstatement on its own. CONCLUSIONS This study implicates involvement of 2-AG in nicotine-seeking behaviors.
Collapse
|
60
|
Zlebnik NE, Cheer JF. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation? Annu Rev Neurosci 2016; 39:1-17. [PMID: 27023732 DOI: 10.1146/annurev-neuro-070815-014038] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201; .,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
61
|
Pathak S, Kumar KR, Kanta H, Carr-Johnson F, Han J, Bashmakov A, Faure L, Ding H, Vanarsa K, Khan S, Li QZ, Chapman K, Wakeland EK, Mohan C. Fatty Acid Amide Hydrolase Regulates Peripheral B Cell Receptor Revision, Polyreactivity, and B1 Cells in Lupus. THE JOURNAL OF IMMUNOLOGY 2016; 196:1507-16. [DOI: 10.4049/jimmunol.1500291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 12/07/2015] [Indexed: 01/26/2023]
|
62
|
Micoli A, De Simone A, Russo D, Ottonello G, Colombano G, Ruda GF, Bandiera T, Cavalli A, Bottegoni G. Aryl and heteroaryl N-[4-[4-(2,3-substituted-phenyl)piperazine-1-yl]alkyl]carbamates with improved physico-chemical properties as dual modulators of dopamine D3 receptor and fatty acid amide hydrolase. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00590f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the physico-chemical profile of a MTDL series.
Collapse
Affiliation(s)
- A. Micoli
- CompuNet
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - A. De Simone
- School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - D. Russo
- PharmaChemistry
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - G. Ottonello
- PharmaChemistry
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - G. Colombano
- Cancer Research UK Cancer Therapeutics Unit
- The Institute of Cancer Research
- Sutton
- UK
| | - G. F. Ruda
- Structural Genomics Consortium (SGC)
- University of Oxford
- Oxford OX3 7DQ
- UK
- Target Discovery Institute (TDI)
| | - T. Bandiera
- PharmaChemistry
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - A. Cavalli
- CompuNet
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- FaBit
| | - G. Bottegoni
- CompuNet
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- BiKi Technologies S.r.l
| |
Collapse
|
63
|
Hillard CJ. The Endocannabinoid Signaling System in the CNS: A Primer. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:1-47. [PMID: 26638763 DOI: 10.1016/bs.irn.2015.10.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this chapter is to provide an introduction to the mechanisms for the regulation of endocannabinoid signaling through CB1 cannabinoid receptors in the central nervous system. The processes involved in the synthesis and degradation of the two most well-studied endocannabinoids, 2-arachidonoylglycerol and N-arachidonylethanolamine are outlined along with information regarding the regulation of the proteins involved. Signaling mechanisms and pharmacology of the CB1 cannabinoid receptor are outlined, as is the paradigm of endocannabinoid/CB1 receptor regulation of neurotransmitter release. The reader is encouraged to appreciate the importance of the endocannabinoid/CB1 receptor signaling system in the regulation of synaptic activity in the brain.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
64
|
Boileau I, Rusjan PM, Williams B, Mansouri E, Mizrahi R, De Luca V, Johnson DS, Wilson AA, Houle S, Kish SJ, Tong J. Blocking of fatty acid amide hydrolase activity with PF-04457845 in human brain: a positron emission tomography study with the novel radioligand [(11)C]CURB. J Cereb Blood Flow Metab 2015; 35:1827-35. [PMID: 26082009 PMCID: PMC4635238 DOI: 10.1038/jcbfm.2015.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/20/2015] [Accepted: 05/15/2015] [Indexed: 02/03/2023]
Abstract
Positron emission tomography with [(11)C]CURB was recently developed to quantify fatty acid amide hydrolase (FAAH), the enzyme responsible for hydrolyzing the endocannabinoid anandamide. This study investigated the test-retest reliability of [(11)C]CURB as well as its in vivo specificity and the validity of the kinetic model by using the highly specific FAAH inhibitor, PF-04457845. Five healthy volunteers completed test-retest [(11)C]CURB scans 1 to 2 months apart and six subjects completed baseline and blocking scans on the same day after PF-04457845 (p.o.) administration (1, 4, or 20 mg; n=2 each). The composite parameter λk3 (an index of FAAH activity, λ=K1/k2) was estimated using an irreversible two-tissue compartment model with plasma input function. There were no clinically observable responses to oral PF-04457845 or [(11)C]CURB injection. Oral administration of PF-04457845 reduced [(11)C]CURB binding to a homogeneous level at all three doses, with λk3 values decreased by ⩾91%. Excellent reproducibility and good reliability (test-retest variability=9%; intraclass correlation coefficient=0.79) were observed across all regions of interest investigated. Our findings suggest that λk3/[(11)C]CURB is a reliable, highly sensitive, and selective tool to measure FAAH activity in human brain in vivo. Moreover, PF-04457845 is a highly potent FAAH inhibitor (>95% inhibition at 1 mg) in living human brain.
Collapse
Affiliation(s)
- Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Belinda Williams
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Esmaeil Mansouri
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Vincenzo De Luca
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Douglas S Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Alan A Wilson
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Junchao Tong
- Human Brain Lab, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
65
|
Interference with acute nausea and anticipatory nausea in rats by fatty acid amide hydrolase (FAAH) inhibition through a PPARα and CB1 receptor mechanism, respectively: a double dissociation. Psychopharmacology (Berl) 2015; 232:3841-8. [PMID: 26297326 DOI: 10.1007/s00213-015-4050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Fatty acid amide hydrolase (FAAH) inhibition elevates anandamide (AEA), which acts on cannabinoid (CB1 and CB2) receptors, as well as N-palmitoylethanolamide (PEA) and N-oleoylethanolamine (OEA), which act on peroxisome proliferator-activated receptor alpha (PPARα). Here, we determine the mechanism of action of FAAH inhibition on acute and anticipatory nausea (AN). OBJECTIVE We compared the effectiveness and mechanism of action of two FAAH inhibitors, URB597 and PF-3845, to reduce acute nausea and AN in rodent models of conditioned gaping. MATERIALS AND METHODS For assessment of acute nausea, rats were pretreated with vehicle (VEH), URB597 (0.3 and 10 mg/kg, experiment 1a) or PF-3845 (10 mg/kg, experiment 1b) 120 min prior to a saccharin-lithium chloride (LiCl) pairing. To assess the CB1 receptor or PPARα mediation of the effect of PF-3845 on acute nausea, rats were also pretreated with rimonabant or MK886, respectively. For assessment of AN, following four pairings of a novel context with LiCl, rats received a pretreatment of VEH, URB597 (0.3 mg/kg, experiment 2a), or PF-3845 (10, 20 mg/kg, experiment 2b) 120 min prior to placement in the AN context. To assess the CB1 receptor or PPARα mediation of the effect, rats were also pretreated with rimonabant or MK886, respectively. RESULTS PF-3845 (10 mg/kg, but not URB597 0.3 or 10 mg/kg) suppressed acute nausea via PPARα, but not CB1 receptors. URB597 (0.3 and 10 mg/kg) or PF-3845 (10 and 20 mg/kg) reduced AN via CB1 receptors, but not PPARα. CONCLUSIONS FAAH inhibition reduces acute nausea and AN through PPARα and CB1 receptor mediated effects, respectively.
Collapse
|
66
|
Abstract
Brain endocannabinoid (eCB) signalling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated eCB signalling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired eCB signalling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states and cravings that propel addiction. Understanding the contributions of eCB disruptions to behavioural and physiological traits provides insight into the eCB influence on addiction vulnerability.
Collapse
Affiliation(s)
- Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Yasmin L Hurd
- Friedman Brain Institute, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York City, New York 10029, USA
| |
Collapse
|
67
|
The effects of dronabinol during detoxification and the initiation of treatment with extended release naltrexone. Drug Alcohol Depend 2015; 154:38-45. [PMID: 26187456 PMCID: PMC4536087 DOI: 10.1016/j.drugalcdep.2015.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Evidence suggests that the cannabinoid system is involved in the maintenance of opioid dependence. We examined whether dronabinol, a cannabinoid receptor type 1 partial agonist, reduces opioid withdrawal and increases retention in treatment with extended release naltrexone (XR-naltrexone). METHODS Opioid dependent participants were randomized to receive dronabinol 30mg/d (n=40) or placebo (n=20), under double-blind conditions, while they underwent inpatient detoxification and naltrexone induction. Before discharge all participants received an injection of XR-naltrexone, with an additional dose given four weeks later. Dronabinol or placebo was given while inpatient and for 5 weeks afterwards. The primary outcomes were the severity of opioid withdrawal, measured with the Subjective Opioid Withdrawal Scale, and retention in treatment at the end of the inpatient phase and at the end of the 8-week trial. RESULTS The severity of opioid withdrawal during inpatient phase was lower in the dronabinol group relative to placebo group (p=0.006). Rates of successful induction onto XR-naltrexone (dronabinol 66%, placebo 55%) and completion of treatment (dronabinol 35%, placebo 35%) were not significantly different. Post hoc analysis showed that the 32% of participants who smoked marijuana regularly during the outpatient phase had significantly lower ratings of insomnia and anxiety and were more likely to complete the 8-week trial. CONCLUSION Dronabinol reduced the severity of opiate withdrawal during acute detoxification but had no effect on rates of XR-naltrexone treatment induction and retention. Participants who elected to smoke marijuana during the trial were more likely to complete treatment regardless of treatment group assignment.
Collapse
|
68
|
Vázquez C, Tolón RM, Grande MT, Caraza M, Moreno M, Koester EC, Villaescusa B, Ruiz-Valdepeñas L, Fernández-Sánchez FJ, Cravatt BF, Hillard CJ, Romero J. Endocannabinoid regulation of amyloid-induced neuroinflammation. Neurobiol Aging 2015; 36:3008-3019. [PMID: 26362942 DOI: 10.1016/j.neurobiolaging.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022]
Abstract
The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimer's disease (AD). We aimed to evaluate the effect of the pharmacologic and genetic inhibition of anandamide-degrading enzyme in a mouse model of AD (5xFAD). Pharmacologic inhibition of the fatty acid amide hydrolase (FAAH) had little impact on the expression of key enzymes and cytokines and also on the cognitive impairment, plaque deposition, and gliosis in 5xFAD mice. CB1 blockade exacerbated inflammation in this transgenic mouse model of AD. The genetic inactivation of FAAH led to increases in the expression of inflammatory cytokines. At the same time, FAAH-null 5xFAD mice exhibited a behavioral improvement in spatial memory that was independent of the level of anxiety and was not CB1 mediated. Finally, mice lacking FAAH showed diminished soluble amyloid levels, neuritic plaques, and gliosis. These data reinforce the notion of a role for the EC system in neuroinflammation and open new perspectives on the relevance of modulating EC levels in the inflamed brain.
Collapse
Affiliation(s)
- Carmen Vázquez
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Rosa M Tolón
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - M Teresa Grande
- School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Marina Caraza
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Marta Moreno
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Erin C Koester
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Borja Villaescusa
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Lourdes Ruiz-Valdepeñas
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA; Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
69
|
Justinova Z, Panlilio LV, Moreno-Sanz G, Redhi GH, Auber A, Secci ME, Mascia P, Bandiera T, Armirotti A, Bertorelli R, Chefer SI, Barnes C, Yasar S, Piomelli D, Goldberg SR. Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibitors in Non-Human Primate Models of Nicotine Reward and Relapse. Neuropsychopharmacology 2015; 40:2185-97. [PMID: 25754762 PMCID: PMC4613608 DOI: 10.1038/npp.2015.62] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 01/01/2023]
Abstract
Inhibition of the enzyme fatty acid amide hydrolase (FAAH) counteracts reward-related effects of nicotine in rats, but it has not been tested for this purpose in non-human primates. Therefore, we studied the effects of the first- and second-generation O-arylcarbamate-based FAAH inhibitors, URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) and URB694 (6-hydroxy-[1,1'-biphenyl]-3-yl-cyclohexylcarbamate), in squirrel monkeys. Both FAAH inhibitors: (1) blocked FAAH activity in brain and liver, increasing levels of endogenous ligands for cannabinoid and α-type peroxisome proliferator-activated (PPAR-α) receptors; (2) shifted nicotine self-administration dose-response functions in a manner consistent with reduced nicotine reward; (3) blocked reinstatement of nicotine seeking induced by reexposure to either nicotine priming or nicotine-associated cues; and (4) had no effect on cocaine or food self-administration. The effects of FAAH inhibition on nicotine self-administration and nicotine priming-induced reinstatement were reversed by the PPAR-α antagonist, MK886. Unlike URB597, which was not self-administered by monkeys in an earlier study, URB694 was self-administered at a moderate rate. URB694 self-administration was blocked by pretreatment with an antagonist for either PPAR-α (MK886) or cannabinoid CB1 receptors (rimonabant). In additional experiments in rats, URB694 was devoid of THC-like or nicotine-like interoceptive effects under drug-discrimination procedures, and neither of the FAAH inhibitors induced dopamine release in the nucleus accumbens shell--consistent with their lack of robust reinforcing effects in monkeys. Overall, both URB597 and URB694 show promise for the initialization and maintenance of smoking cessation because of their ability to block the rewarding effects of nicotine and prevent nicotine priming-induced and cue-induced reinstatement.
Collapse
Affiliation(s)
- Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA,Preclinical Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, 251 Bayview Boulevard, Baltimore, MD 21224, USA, Tel: +1 443 740 2522, Fax: +1 443 740 2733, E-mail:
| | - Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Guillermo Moreno-Sanz
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Godfrey H Redhi
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Alessia Auber
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Maria E Secci
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Paola Mascia
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Tiziano Bandiera
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Armirotti
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Svetlana I Chefer
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, DHHS, Frederick, MD, USA
| | - Chanel Barnes
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA,Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| |
Collapse
|
70
|
Su SH, Wu YF, Lin Q, Yu F, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 suppress chronic cerebral hypoperfusion-induced neuronal apoptosis by inhibiting c-Jun N-terminal kinase signaling. Neuroscience 2015; 301:563-75. [DOI: 10.1016/j.neuroscience.2015.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Accepted: 03/11/2015] [Indexed: 11/15/2022]
|
71
|
The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs--A practical view. Eur Neuropsychopharmacol 2015; 25:749-62. [PMID: 25791296 DOI: 10.1016/j.euroneuro.2015.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
The endocannabinoid system, comprising cannabinoid CB1 and CB2 receptors, their endogenous ligands anandamide and 2-arachidonoylglyerol, and their synthetic and metabolic enzymes, are involved in many biological processes in the body, ranging from appetite to bone turnover. Compounds inhibiting the breakdown of anandamide and 2-arachidonoylglycerol increase brain levels of these lipids and thus modulate endocannabinoid signalling. In the present review, the preclinical evidence that these enzymes are good targets for development of novel therapies for anxiety and depression are discussed from a practical, rather than mechanistic, point of view. It is concluded that the preclinical data are promising, albeit tempered by problems of tolerance as well as effects upon learning and memory for irreversible monoacylglycerol lipase inhibitors, and limited by a focus upon male rodents alone. Clinical data so far has been restricted to safety studies with inhibitors of anandamide hydrolysis and a hitherto unpublished study on such a compound in elderly patients with major depressive disorders, but under the dose regimes used, they are well tolerated and show no signs of "cannabis-like" behaviours.
Collapse
|
72
|
Perkins KA, Karelitz JL, Michael VC, Fromuth M, Conklin CA, Chengappa KNR, Hope C, Lerman C. Initial Evaluation of Fenofibrate for Efficacy in Aiding Smoking Abstinence. Nicotine Tob Res 2015; 18:74-8. [PMID: 25895948 DOI: 10.1093/ntr/ntv085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Primate and rodent models show that peroxisome proliferator-activated receptor-alpha (PPAR-α) ligands, including fibrate medications, reduce nicotine reinforcement, reward, and related effects. We tested fenofibrate, the most common U.S. Food and Drug Administration-approved fibrate for lipid control versus placebo for initial evidence of efficacy in smoking cessation using a validated cross-over procedure for early Phase 2 evaluations. METHODS Adult dependent smokers (N = 38) in this 4-week within-subjects study were those already intending to try to quit in the next 2 months. All smoked ad libitum during weeks 1 (baseline) and 3 (washout) and began fenofibrate (160 mg/d; dosing approved for lipid control) or placebo near the end of weeks 1 and 3. Following each 4-day dose run-up, they were then instructed to try to quit for 4 days (Tuesday-Friday) during weeks 2 and 4, with the order of medication conditions counter-balanced and administered double-blind. Abstinence was verified daily in each 4-day quit period by self-report of no smoking in the prior 24 hours and carbon monoxide < 5 ppm. Secondary measures of acute smoking reinforcement and cue reactivity prior to quitting, and smoking reduction when trying to quit, were also assessed. RESULTS No differences between fenofibrate versus placebo were found on days quit (means ± SEM of 1.8±0.3 vs. 1.9±0.3, respectively). Similarly, there were no differences in any of the secondary measures (all P > .20). CONCLUSIONS Although higher dosing or other proliferator-activated receptor-alpha agonists may show efficacy, this study indicates that fenofibrate does not aid ability to stop smoking during a brief practice quit period in dependent smokers high in current quit interest.
Collapse
Affiliation(s)
| | | | | | - Margaret Fromuth
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA
| | | | | | - Chris Hope
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA
| | - Caryn Lerman
- Department of Psychiatry and Abramson Cancer Center, University of Pennsylvania, Philadelphia PA
| |
Collapse
|
73
|
Effects of URB597 as an inhibitor of fatty acid amide hydrolase on WIN55, 212-2-induced learning and memory deficits in rats. Pharmacol Biochem Behav 2015; 131:130-5. [DOI: 10.1016/j.pbb.2015.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/18/2022]
|
74
|
Ragen BJ, Seidel J, Chollak C, Pietrzak RH, Neumeister A. Investigational drugs under development for the treatment of PTSD. Expert Opin Investig Drugs 2015; 24:659-72. [PMID: 25773140 DOI: 10.1517/13543784.2015.1020109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Posttraumatic stress disorder (PTSD) is a prevalent, chronic and disabling anxiety disorder that may develop following exposure to a traumatic event. There is currently no effective pharmacotherapy for PTSD and therefore the discovery of novel, evidence-based treatments is particularly important. This review of potential novel treatments could act as a catalyst for further drug investigation. AREAS COVERED In this review, the authors discuss the heterogeneity of PTSD and why this provides a challenge for discovering effective treatments for this disorder. By searching for the neurobiological systems that are disrupted in individuals with PTSD and their correlation with different symptoms, the authors propose potential pharmacological treatments that could target these symptoms. They discuss drugs such as nabilone, d-cycloserine, nor-BNI, 7,8-dihydroxyflavone and oxytocin (OT) to target systems such as cannabinoids, glutamate, opioids, brain-derived neurotrophic factor and the OT receptor, respectively. While not conclusive, the authors believe that these brain systems include promising targets for drug discovery. Finally, the authors review animal studies, proof-of-concept studies and case studies that support our proposed treatments. EXPERT OPINION A mechanism-based approach utilizing techniques such as in vivo neuroimaging will allow for the determination of treatments. Due to the heterogeneity of the PTSD phenotype, focusing on symptomology rather than a categorical diagnosis will allow for more personalized treatment. Furthermore, there appears to be a promise in drugs as cognitive enhancers, the use of drug cocktails and novel compounds that target specific pathways linked to the etiology of PTSD.
Collapse
Affiliation(s)
- Benjamin J Ragen
- New York University School of Medicine, Department of Psychiatry , New York, NY , USA
| | | | | | | | | |
Collapse
|
75
|
Poli G, Giuntini N, Martinelli A, Tuccinardi T. Application of a FLAP-Consensus Docking Mixed Strategy for the Identification of New Fatty Acid Amide Hydrolase Inhibitors. J Chem Inf Model 2015; 55:667-75. [DOI: 10.1021/ci5006806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
76
|
Payandemehr B, Ebrahimi A, Gholizadeh R, Rahimian R, Varastehmoradi B, Gooshe M, Aghaei HN, Mousavizadeh K, Dehpour AR. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:140-5. [PMID: 25448777 DOI: 10.1016/j.pnpbp.2014.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023]
Abstract
Cannabinoid and PPAR receptors show well established interactions in a set of physiological effects. Regarding the seizure-modulating properties of both classes of receptors, the present study aimed to evaluate the roles of the PPAR-gamma, PPAR-alpha and CB1 receptors on the anticonvulsant effects of WIN 55,212-2 (WIN, a non selective cannabinoid agonist). The clonic seizure thresholds after intravenous administration of pentylenetetrazole (PTZ) were assessed in mice weighing 23-30 g. WIN increased the seizure threshold dose dependently. Pretreatment with pioglitazone, as a PPARγ agonist, potentiated the anticonvulsant effects of WIN, while PPARγ antagonist inhibited these anticonvulsant effects partially. On the other hand PPARα antagonist reduced the anticonvulsant effects of WIN significantly. Finally the combination of CB1 antagonist and PPARα antagonist could completely block the anticonvulsant properties of WIN. Taken together, these results show for the first time that a functional interaction exists between cannabinoid and PPAR receptors in the modulation of seizure susceptibility.
Collapse
Affiliation(s)
- Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ebrahimi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bardia Varastehmoradi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Gooshe
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Nayeb Aghaei
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Physiology Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Moreira FA, Jupp B, Belin D, Dalley JW. Endocannabinoids and striatal function: implications for addiction-related behaviours. Behav Pharmacol 2015; 26:59-72. [PMID: 25369747 PMCID: PMC5398317 DOI: 10.1097/fbp.0000000000000109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022]
Abstract
Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists.
Collapse
Affiliation(s)
- Fabricio A. Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departments of Psychology
| | | | | | - Jeffrey W. Dalley
- Departments of Psychology
- Department of Psychiatry, Addenbrookes’s Hospital University of Cambridge, Cambridge, UK
| |
Collapse
|
78
|
Bahi A, Nurulain SM, Ojha S. Ethanol intake and ethanol-conditioned place preference are reduced in mice treated with the bioflavonoid agent naringin. Alcohol 2014; 48:677-85. [PMID: 25288222 DOI: 10.1016/j.alcohol.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/14/2014] [Accepted: 06/20/2014] [Indexed: 10/24/2022]
Abstract
Recently, PPAR-γ activation has emerged as a potential treatment for alcoholism. However, the adverse effects of synthetic PPAR-γ activators, despite being effective drugs, prompted the need for novel PPAR-γ agonists that retain efficacy and potency with a lower potential of side effects. Hence, naringin, a bioflavonoid isolated from citrus fruits and recently identified as a natural ligand of PPAR-γ, has begun to be evaluated for treatment of alcoholism. It is well known to possess several therapeutic benefits in addition to its anti-anxiety and antidepressant properties. In the present study, we assessed whether naringin treatment possesses anti-ethanol reward properties in C57BL/6 mice. We used the two-bottle choice drinking paradigm and ethanol-induced conditioned place preference (CPP) to examine the effect of naringin treatment on ethanol drinking. Results have shown that, compared with vehicle, naringin (10-100 mg/kg) significantly and dose-dependently decreased voluntary ethanol intake and preference in a two-bottle choice drinking paradigm [3-15% (v/v) escalating over 2 weeks], with no significant effect observed on saccharin [0.02-0.08% (w/v)] or on quinine [15-60 μM (w/v)] intake. In addition, there was no significant difference in blood ethanol concentration (BEC) between groups following naringin administration of 3 g of ethanol/kg body weight. Interestingly, when mice were treated with vehicle or naringin (30 mg/kg) before injection of ethanol (1.5 g/kg) during conditioning days, naringin inhibited the acquisition of ethanol-CPP. More importantly, these effects were significantly attenuated when mice were pre-injected with the peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662. Taken together, the present findings are the first to implicate naringin and PPAR-γ receptors in the behavioral and reward-related effects of ethanol and raise the question of whether specific drugs that target PPAR-γ receptors could potentially reduce excessive ethanol consumption and preference.
Collapse
|
79
|
Hillemacher T, Leggio L, Heberlein A. Investigational therapies for the pharmacological treatment of alcoholism. Expert Opin Investig Drugs 2014; 24:17-30. [PMID: 25164385 DOI: 10.1517/13543784.2014.954037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Alcohol dependence is one of the most important psychiatric disorders leading to enormous harm in individuals and indeed within society. Yet, although alcohol dependence is a disease of significant importance, the availability of efficacious pharmacological treatment is still limited. Areas covered: The current review focuses on neurobiological pathways that are the rationale for recent preclinical and clinical studies testing novel compounds that could be used as treatments for alcohol dependence. These neurobiological mechanisms include the: glutamatergic, dopaminergic and GABA mediated pathways as well as neuroendocrine systems. There is also an interest in the approaches for influencing chromatin structure. Expert opinion: There are several compounds in Phase I and Phase II clinical studies that have produced potentially useful results for the treating alcoholism. Further evaluation is still necessary, and the implementation of Phase III studies will help to elucidate the usefulness of these compounds. It is important that personalized approaches (e.g., pharmacogenomics) are investigated in these later studies, as the efficacy of different compounds may vary substantially between subgroups of patients.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Hannover Medical School, Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy , Carl-Neuberg-Str. 1, 30625 Hannover , Germany +49 511 532 2427 ; +49 511 532 2415 ;
| | | | | |
Collapse
|
80
|
Kleberg K, Hassing HA, Hansen HS. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 2014; 40:363-72. [PMID: 24677570 DOI: 10.1002/biof.1158] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/08/2022]
Abstract
Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols, and their structural resemblance to the endocannabinoids makes them players in the endocannabinoid system, where they can interfere with the actions of the true endocannabinoids, because they in several cases engage the same synthesizing and degrading enzymes. In addition they have pharmacological actions of their own, which are particularly interesting in a nutritional and metabolic context. Exogenously supplied oleoylethanolamide, palmitoylethanolamide, and linoleoylethanolamide have anorexic effects, and the endogenous formation of these N-acylethanolamines in the small intestine may serve an important role in regulating food intake, through signaling via PPARα and the vagus nerve to the brain appetite center. A chronic high-fat diet will decrease intestinal levels of these anorectic N-acylethanolamines and this may contribute to the hyperphagic effect of high-fat diet; 2-monoacylglycerols mediate endocrine responses in the small intestine; probably trough activation of GPR119 on enteroendocrine cells, and diet-derived 2-monoacylglycerols, for example, 2-oleoylglycerol and 2-palmitoylglycerol might be important for intestinal fat sensing. Whether these 2-monoacylglycerols have signaling functions in other tissues is unclear at present.
Collapse
Affiliation(s)
- Karen Kleberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
81
|
Tchantchou F, Tucker LB, Fu AH, Bluett RJ, McCabe JT, Patel S, Zhang Y. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury. Neuropharmacology 2014; 85:427-39. [PMID: 24937045 DOI: 10.1016/j.neuropharm.2014.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/23/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults in the United States, but there is still no effective agent for treatment. N-arachidonoylethanolamine (anandamide, AEA) is a major endocannabinoid in the brain. Its increase after brain injury is believed to be protective. However, the compensatory role of AEA is transient due to its rapid hydrolysis by the fatty acid amide hydrolase (FAAH). Thus, inhibition of FAAH can boost the endogenous levels of AEA and prolong its protective effect. Using a TBI mouse model, we found that post-injury chronic treatment with PF3845, a selective and potent FAAH inhibitor, reversed TBI-induced impairments in fine motor movement, hippocampus dependent working memory and anxiety-like behavior. Treatment with PF3845 inactivated FAAH activity and enhanced the AEA levels in the brain. It reduced neurodegeneration in the dentate gyrus, and up-regulated the expression of Bcl-2 and Hsp70/72 in both cortex and hippocampus. PF3845 also suppressed the increased production of amyloid precursor protein, prevented dendritic loss and restored the levels of synaptophysin in the ipsilateral dentate gyrus. Furthermore, PF3845 suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 post-TBI, suggesting a shift of microglia/macrophages from M1 to M2 phenotype. The effects of PF3845 on TBI-induced behavioral deficits and neurodegeneration were mediated by activation of cannabinoid type 1 and 2 receptors and might be attributable to the phosphorylation of ERK1/2 and AKT. These results suggest that selective inhibition of FAAH is likely to be beneficial for TBI treatment.
Collapse
Affiliation(s)
- Flaubert Tchantchou
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Amanda H Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Rebecca J Bluett
- Departments of Psychiatry and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sachin Patel
- Departments of Psychiatry and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
82
|
Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res 2014; 86:18-25. [PMID: 24681513 DOI: 10.1016/j.phrs.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Anandamide is a well-known agonist for the cannabinoid receptors. Along with endogenous anandamide other non-endocannabinoid N-acylethanolamines are also formed, apparently in higher amounts. These include mainly oleoylethanolamide (OEA), palmitoyelethanolamide (PEA) and linoleoylethanolamide (LEA), and they have biological activity by themselves being anorectic and anti-inflammatory. It appears that the major effect of dietary fat on the level of these molecules is in the gastrointestinal system, where OEA, PEA and LEA in the enterocytes may function as homeostatic signals, which are decreased by prolonged consumption of a high-fat diet. These lipid amides appear to mediate their signaling activity via activation of PPARα in the enterocyte followed by activation of afferent vagal fibers leading to the brain. Through this mechanism OEA, PEA and LEA may both reduce the consumption of a meal as well as increase the reward value of the food. Thus, they may function as homeostatic intestinal signals involving hedonic aspects that contribute to the regulation of the amounts of dietary fat to be ingested.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
83
|
Hruba L, McMahon LR. The cannabinoid agonist HU-210: pseudo-irreversible discriminative stimulus effects in rhesus monkeys. Eur J Pharmacol 2014; 727:35-42. [PMID: 24486701 DOI: 10.1016/j.ejphar.2014.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/02/2023]
Abstract
Synthetic cannabinoid abuse and case reports of adverse effects have raised concerns about the pharmacologic mechanisms underlying in vivo effects. Here, a synthetic cannabinoid identified in abused products (HU-210) was compared to the effects of Δ(9)-THC and two other synthetic cannabinoid agonists used extensively in pre-clinical studies (CP 55,940 and WIN 55,212-2). One group of monkeys discriminated ∆(9)-THC (0.1mg/kg i.v.); a separate group received chronic ∆(9)-THC (1mg/kg/12h s.c.) and discriminated rimonabant (1mg/kg i.v.). CP 55,940, HU-210, ∆(9)-THC, and WIN 55,212-2 produced ∆(9)-THC lever responding. HU-210 had a long duration (i.e., 1-2 days), whereas that of the other cannabinoids was 5h or less. Rimonabant (1mg/kg) produced surmountable antagonism; single dose-apparent affinity estimates determined in the presence of ∆(9)-THC, CP 55,940, and WIN 55,212-2 did not differ from each other. In contrast, rimonabant (1mg/kg) produced a smaller rightward shift in the HU-210 dose-effect function. In ∆(9)-THC treated monkeys, the relative potency of CP 55,940, ∆(9)-THC, and WIN 55,212-2 to attenuate the discriminative stimulus effects of rimonabant was the same as that evidenced in the ∆(9)-THC discrimination, whereas HU-210 was unexpectedly more potent in attenuating the effects of rimonabant. In conclusion, the same receptor subtype mediates the discriminative stimulus effects of ∆(9)-THC, CP 55,940 and WIN 55,212-2. The limited effectiveness of rimonabant to either prevent or reverse the effects of HU-210 appears to be due to very slow dissociation or pseudo-irreversible binding of HU-210 at cannabinoid receptors.
Collapse
Affiliation(s)
- Lenka Hruba
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, United States
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
84
|
Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci 2013; 34:637-44. [PMID: 24325918 DOI: 10.1016/j.tips.2013.08.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/23/2022]
Abstract
A long-standing literature linking endocannabinoids (ECBs) to stress, fear, and anxiety has led to growing interest in developing novel anxiolytics targeting the ECB system. Following rapid on-demand biosynthesis and degradation upon neuronal activation, the ECB N-arachidonoylethanolamide (anandamide, AEA) is actively degraded by the serine hydrolase enzyme, fatty acid amide hydrolase (FAAH). Exposure to stress rapidly mobilizes FAAH to deplete the signaling pool of AEA and increase neuronal excitability in a key anxiety-mediating region--the basolateral amygdala (BLA). Gene deletion or pharmacological inhibition of FAAH prevents stress-induced reductions in AEA and associated increases in BLA dendritic hypertrophy and anxiety-like behavior. Additionally, inhibition of FAAH facilitates long-term fear extinction and rescues deficient fear extinction in rodent models by enhancing AEA-CB1 (cannabinoid type 1) receptor signaling and synaptic plasticity in the BLA. These preclinical findings propose restoring deficient BLA AEA levels by pharmacologically inhibiting FAAH as a mechanism to therapeutically mitigate the effects of traumatic stress.
Collapse
|
85
|
Ferreira-Vieira TH, Bastos CP, Pereira GS, Moreira FA, Massensini AR. A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice. Hippocampus 2013; 24:79-88. [PMID: 24115292 DOI: 10.1002/hipo.22206] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 01/22/2023]
Abstract
It is well known that physical exercise has positive effects on cognitive functions and hippocampal plasticity. However, the underlying mechanisms have remained to be further investigated. Here we investigated the hypothesis that the memory-enhancement promoted by physical exercise relies on facilitation of the endocannabinoid system. We observed that the spatial memory tested in the object location paradigm did not persist in sedentary mice, but could be improved by 1 week of treadmill running. In addition, exercise up-regulated CB1 receptor and BDNF expression in the hippocampus. To verify if these changes required CB1 activation, we treated the mice with the selective antagonist, AM251, before each period of physical activity. In line with our hypothesis, this drug prevented the exercise-induced memory enhancement and BDNF expression. Furthermore, AM251 reduced CB1 expression. To test if facilitating the endocannabinoid system signaling would mimic the alterations observed after exercise, we treated sedentary animals during 1 week with the anandamide-hydrolysis inhibitor, URB597. Mice treated with this drug recognized the object in a new location and have increased levels of CB1 and BDNF expression in the hippocampus, showing that potentiating the endocanabinoid system equally benefits memory. In conclusion, the favorable effects of exercise upon spatial memory and BDNF expression depend on facilitation of CB1 receptor signaling, which can be mimic by inhibition of anandamide hydrolysis in sedentary animals. Our results suggest that, at least in part, the promnesic effect of the exercise is dependent of CB1 receptor activation and is mediated by BDNF.
Collapse
Affiliation(s)
- Talita H Ferreira-Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|